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Abstract1

We consider continuous time-crystalline phases in dissipative many-body sys-2

tems of atoms in cavities, focusing on the role of short-range interatomic in-3

teractions. First, we show that the latter can alter the nature of the time4

crystal by changing the type of the underlying critical bifurcation. Second, we5

characterize the heating mechanism and dynamics resulting from the short-6

range interactions and demonstrate that they make the time crystal inherently7

metastable. We argue this is generic for the broader class of dissipative time8

crystals in atom-cavity systems whenever the cavity loss rate is comparable9

to the atomic recoil energy. We observe that such a scenario for heating10

has several similarities to the one proposed for preheating in the early uni-11

verse, where the oscillating coherent inflation field decays into a cascade of12

exponentially growing fluctuations. By extending approaches for dissipative13

dynamical systems to our many-body problem, we obtain analytical predic-14

tions for the parameters describing the phase transition and the heating rate15

inside the time-crystalline phase. We underpin and extend the analytical pre-16

dictions of the heating rates with numerical simulations, which also show that17

the metastable regime exists when the inherent stochastic nature is taken into18

account.19
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1 Introduction37

Following the first conceptualization of time-crystalline phases of matter [1, 2], it was38

quickly proven that such phases cannot appear in thermal equilibrium [3–5]. However, it39

is possible to realize such phases in periodically driven systems, both closed [6–11] and40

dissipative [12,13].41

Among the latter, systems of atoms in optical cavities have emerged as an ideal42

platform to realize continuous time-crystalline phases [14–16], where an effectively time-43

independent drive of the atomic system is counterbalanced by the loss of photons out of the44

cavity mirrors. In these phases, continuous time-translation invariance is spontaneously45

broken, and oscillations persist even though the system possesses a macroscopic number46

of degrees of freedom, among which energy can be redistributed via interactions.47

Since the phase space of scattering by cavity-mediated interactions between atoms48

is limited due to their long range, redistribution of energy through these processes is49

inefficient [17–19]. However, the intrinsic atomic short-range interactions allow for efficient50

redistribution of energy among the atoms. Indeed, experiments show strong indications51

that these interactions are one of the main fundamental limiting factors to the measured52

lifetime of the time crystal [12].53

Despite their crucial role, short-range atomic interactions have not been theoretically54

investigated so far in a systematic way for continuous time crystals in atom-cavity setups.55

In this work, we undertake this task. We not only provide a complete picture of the56

possible destabilization processes but also show that short-range interactions can alter the57

nature of the time crystal itself.58

In Section 2 we describe the model under consideration, which has a simple and ex-59

perimentally realizable mechanism for the appearance of time-crystalline phases for an60

interacting BEC coupled to two cavity modes [20]. In Section 3 approaches for classical61

non-linear dissipative systems is extended to our many-body problem and we obtain an62

analytic description of the time crystal in terms of cavity-induced critical bifurcations and63

show how inter-atomic interactions can modify the nature of the latter. These results are64

used in Section 4, where we identify the dominating scattering processes responsible for65

energy redistribution among the atoms. Using these scattering processes we compute the66

dependence of the energy-redistribution rates on external parameters identify the corre-67

sponding time scales. Lastly, in Section 5, we show numerically that for realistic noise68

levels, the metastability of the time crystal is fully determined by the redistribution rates69

due to inter-atomic interactions.70

The analytic understanding of the results, underpinned with numerical analysis, allows71

for a deep insight into the generic features of the phenomenology beyond the specific72
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model considered and provides orientation for future investigations both in theory and73

experiment.74

2 Model75

The system considered is an ultracold gas of bosonic atoms in a BEC state, dispersively76

coupled with equal strength to two modes of an optical cavity. In this regime, a photon77

imparts a recoil momentum of Q = 2π/λ to an atom, with λ being the wavelength of78

the photon in a given mode. In the thermodynamic limit, the atomic BEC at momentum79

k is described by a complex field ψk satisfying the Gross-Pitaevski mean-field equations.80

Furthermore, in the limit of a small transverse extend of the BEC compared to the cavity81

waist we can simplify the model to one spatial dimension [19,20]82

i∂tψk =k2ψk + U
∑
q,q′

ψqψq′ψ̄q+q′−k +
η̃√
2

∑
j=1,2

Re (ϕj) (ψk+Q + ψk−Q) , (1)

where the bar denotes complex conjugation. This equation has been written in units of the83

recoil energy ER = h̄2Q2/2m and in the rotating frame of the laser. The time-dependence84

of the fields is kept implicit and the atom field has been normalized to 1. The cavity-mode85

wavelengths have been chosen to be equal, as we assume the modes differ in the transverse86

direction [20]. The coupling strength η̃ can experimentally be tuned by the strength of87

the transverse pump while the atoms are interacting with each other through a contact88

interaction of strength U . The complex field ϕj corresponds to the coherent cavity-field89

amplitude which satisfies the equation90

i∂tϕj =(∆j − iκ)ϕj +
η̃

2
√
2

∞∑
k=−∞

ψ̄k (ψk+Q + ψk−Q) , (2)

where the cavity field has been normalized by the square root of the atom number. The91

cavity linewidths, κ, have been assumed to be identical for both modes. In the following we92

will consider κ on an energy scale similar to the recoil energy, as realized for instance in [21].93

In the actual implementation of the dispersive atom-cavity coupling, the characteristic94

frequency of each cavity mode ∆j corresponds to the detuning of the mode frequency95

with respect to laser-driven two-photon transitions [20]. The steady state of this model96

can break time-translation invariance when the two detunings have opposite signs. With97

this in mind the detunings are parametrized as ∆1 = −
(
∆− δ

2

)
and ∆2 = ∆ + δ

2 . By98

choosing 0 < δ < 2∆ the negative detuning has the smallest amplitude |∆1| < |∆2|.99

The mean-field description of this system becomes exact in the thermodynamic limit100

[22]. It, however, does not give rise to a unique steady state of the atomic system. To101

determine the latter, one needs to include quantum fluctuations [23]. The time scale102

needed to reach this steady state does grow inversely with the system size. For the large103

atomic clouds considered here, the relaxation to this steady state is thus irrelevant on the104

experimental time scale. Additionally, for a system with a finite number of atoms, the105

openness of the cavity gives rise to an additional stochastic term in the cavity equation.106

The strength of the stochastic term scales with κ/
√
N , with N being the number of atoms.107

We will initially consider the limit of N → ∞ and in Sec. 5 show that the conclusions108

remain valid also for finite system sizes.109
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3 Nature of the time crystal110

Below a critical coupling strength ηc, all atoms are in the homogeneous state ψ0, and the111

coherent part of the cavity fields is empty. This configuration is denoted as the normal112

phase (NP) and it is always a fixed point of the equations of motion Eqs. (1) and (2).113

As η̃ is increased beyond ηc the NP fixed point becomes unstable and the system enters114

a state where a fraction of the atom population is transferred to ψ±Q and the coherent115

fields of the cavity becomes finite. This symmetry-broken state is often referred to as116

the superradiant (SR) or self-organized state [24, 25]. The frequency ωc of the excitation117

becoming undamped above ηc, can be derived through a linear expansion around the NP118

fixed point [26] (see [27] for an alternative approach). This is done by considering a small119

perturbation to the state NP state and only keeping the terms linear in the perturbation.120

One can then derive an equation for when the perturbation becomes unstable, indicated121

by a zero real part of the eigenvalue of the resulting Jacobian of the linear system.122

The frequency of the unstable perturbation is determined by the imaginary part of the123

eigenvalue. It is found that an unstable mode can appear for three different frequencies124

of the critical mode. The determination of which the three possible modes that ends up125

manifesting in the system is set identifying which of the three modes require the smallest126

corresponding values of ηc. The first of the three potential instabilities is a static solution127

with ωc = ωc,s = 0. The second frequency at which the system can become critical is a128

resonance at the energy of the Bogoliubov excitation of the BEC at the recoil momentum129

with frequency ωc = ωa =
√
ER (ER + 2U) and lastly, there is a possibility of an instability130

at a frequency given by131

ωc =

√
δ2

4
+
√

(4∆2 − δ2) (∆2 + κ2)−∆2 − κ2, (3)

which is solely determined by cavity parameters, that is, it does not depend on U and ER.132

This feature, which can be attributed to the fact that the cavity is the only dissipation133

channel, implies a robustness of this self-sustained periodic signal to perturbations of the134

nonlinear medium that causes this signal to appear in the first place. To determine which135

mode that becomes unstable one identifies which mode leads to the smallest real critical136

coupling given by137

ηc = lim
κa→0

√√√√√ ω2
a + κ2a − ω2

c

ER
∑

j=1,2

∆j(∆2
j+κ2−ω2

c)
ω4
c+2ω2

c(κ2−∆2
j)+(∆2

j+κ2)
2

, (4)

where κa is the atom lifetime which we, for simplicity consider infinitely long. always138

depends on both cavity and atom parameters [26]. The phase diagram will therefore139

depend on all parameters of the model.140

In Fig. 1(a) the frequency of the critical mode at ηc is plotted as a function of κ and ∆141

and is a good order parameter for distinguishing the three different phases of the system.142

For ∆ < δ/2 both cavity modes have a positive detuning and the system always exhibits143

static superradiance (SSR), characterized by a critical mode with zero frequency. SSR144

requires a finite critical atom-cavity coupling such that the critical mode is a polariton.145

For ∆ > δ/2 one of the modes acquires a negative detuning. Differently from a positively-146

detuned mode, a negatively-detuned one disfavors a superradiant density modulation.147

The competition between the two cavity modes induces an oscillating superradiant phase148

(OSR) [20,28], which also requires a finite coupling strength such that the critical mode is149

again a polariton. Instead, when the solution with ωc = ωa has a real critical coupling, ηc150
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Figure 1: The critical frequency of the instability is shown in the lower plot
of a) as a function of ∆ and κ. By tuning ∆ the critical mode change from
exhibiting static to oscillating superradiance and a purely atomic instability over
a large range of cavity loss rates. The upper plot shows the critical frequency
and coupling along the dashed line in the lower plot. In b) the sign of the cubic
interaction as a function of ∆ and U is plotted for κ = 0.4ER. This determines
the stability of the symmetry-broken state beyond the linear analysis. For for
the entire figure δ = 0.2ER.

in Eq. (4) vanishes, making the critical mode purely atomic. We refer to this instability151

as the atomic instability (AI).152

Both the OSR and AI critical modes break continuous time-translation invariance and153

can thus potentially signal a continuous time-crystal phase. However, whether the latter154

is stable is determined by non-linear effects not included so far. In order to capture155

these in the present interacting many-body system, we perform a systematic perturbative156

expansion in the relative distance from the critical point η = (η̃ − ηc) /ηc. The resulting157

effective non-linear equation is of the Stuart-Landau form (see e.g. [29]), and is an equation158

of motion for the collective degrees of freedom which are excited in the SR phases. These159

degrees of freedom constitute the so-called center manifold and are defined by the critical160

mode, which is composed of both cavity modes as well as of the zero and recoil momentum161

components of the BEC, ψ0 and ψ±Q. Within the center manifold and to leading order in162

η the recoil momentum component is given by163

ψ±Q(t) =
√
ηR
(
c+e

iωct + c−e
−iωct

)
, (5)

with c± being the atomic components of the critical-mode eigenvector obtained from the164

linear analysis [26]. The cavity fields have the same form with c± replaced by the cavity165

components of the critical mode. Finally, since to leading order the only occupied atom166

components are ψ0 and ψ±Q, these are linked by normalization such that167

ψ0 =

√
1− |ψQ|2 − |ψ−Q|2 ∼ b0 + b+e

i2ωct + b̄+e
−i2ωct, (6)

with b0 = 1− ηR2
(
|c+|2 + |c−|2

)
and b+ = −ηR2c+c̄−. The perturbative approach yields168

an equation of motion for the amplitude, R, in the symmetry-broken phase:169

Ṙ = γR− grR3, (7)

where γ is the exponential growth rate of the critical mode obtained from the linear170

analysis, which in this case can be shown to be positive. The non-linearity of the center171
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manifold or in other words, the strength of the self-interaction of the excitations present172

in the critical mode, is quantified by gr (see Appendix A.2 for closed expressions for these173

quantities and the proof of the sign of γ). For stable time-crystalline and static solutions,174

R must be time-independent, real, and positive:175

R =

√
γ

gr
> 0. (8)

As γ > 0, our analytic solutions can only be stable if gr > 0. This is physically clear since176

otherwise the attractive self-interaction would lead to a first order transition into a phase177

that requires higher-order non-linearities for stabilization.178

The sign of gr is shown in Fig. 1(b). If ωc is pushed to ωa, gr = 0 i.e. the self-interaction179

vanishes as the critical mode is purely atomic, which corresponds to the white region in180

Fig. 1(b). As the fraction γ/gr goes to zero as ωc approaches ωa (see Eq. (33)), the AI181

phase has no stable time-crystaline solution.182

Short-range interactions between the atoms qualitatively modify gr and lead to two183

separatrices in Fig. 1(b). The expression for the separatrix Uc2(∆), drawn with a solid line184

is given in Eq. (29), while the separatrix Uc1(∆) between the white and the blue region,185

is defined by the condition that the energy cost of a Bogoliubov excitation, ωa, equals ∆.186

When U > Uc1 the self-interactions of the critical mode become finite and repulsive as187

ωc < ωa, leading to a finite cavity component of the critical mode.188

It is further remarkable that the sign of the self-interactions can be changed via U .189

Indeed, within the blue region in Fig. 1(b), that is, for Uc1 < U < Uc2, the self-interactions190

of the critical mode are attractive: gr < 0. This is due to the fact the short-range191

repulsion U , which penalizes density modulations and in particular excitation of the recoil192

component ψ±Q, is not sufficient to counteract the decrease of energy due to coupling to the193

negatively detuned cavity mode. The resulting instability of the OSR solution corresponds194

to a subcritical Hopf bifurcation [30] of Eq. (6). On the other hand, when U > Uc2 (green195

region in the figure), the short-range repulsion penalizes density-modulations enough to196

change the sign of the self-interaction of the critical mode and thus stabilize the OSR phase.197

This corresponds to a transition from a subcritical to a supercritical Hopf bifurcation.198

4 Energy redistribution199

Up to this point, the OSR time crystal is found to exist in a stable fashion as a supercritical200

Hopf bifurcation. Its infinite lifetime is a consequence of the coherent scattering between201

the atomic modes with momentum q = 0 and q = ±nQ, with n being a positive integer.202

Only the n = 1 modes belong to the CM but the higher-order integer modes only lead to203

a small renormalization of the amplitude of the OSR phase. This happens because the204

nQ modes all scatter effectively with the cavity such that a steady state is found with an205

occupation of the n > 1 modes that is exponentially decreasing with n. For this reason we206

refer to the manifold with all the nQ modes as the extended center manifold. However, the207

atomic interactions allow for scattering of occupation into modes where q ̸= nQ. We will208

refer to those as the not-center-manifold (NCM) modes. As these modes are not coupled209

effectively to the CM modes by the cavity they can exhaust the occupation in the nQ210

modes and thereby destroy the coherent nature of the OSR phase. To fully assess the211

stability of the OSR phase, one has to allow for the redistribution of energy including the212

NCM modes. Hence, one needs to treat the many-body problem of scattering between213

quasi-particles and a time-dependent coherent field.214

Let us first predict which NCM modes initially participate in the scattering process,215

assuming we are only slightly into the OSR phase. If one also considers the regime of small216
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Figure 2: a) The dynamic nature of the OSR phases combined with finite atom-
interaction leads to occupation of atom modes out of the center manifold, through
the symmetric and asymmetric process illustrated here. b) The scaling of the
growth rates, computed from the Floquet quasi-energies of the linearized equa-
tions, for the asymmetric channel marked with orange stars, with a square-root
fit (orange line) and the scaling of symmetric channel marked with red stars, with
a linear fit (red line). The same parameters as in Fig. 3 have been used.

U , which is the experimentally relevant one [21], then the occupation of an NCM mode is217

described by a collision that is first order in U . If all NCM modes are initially unoccupied,218

then the incoming modes must belong to the center manifold. From Eqs. (5) and (6) it219

is seen that there are essentially five occupied components in the stable OSR phase. The220

dominant component is a zero frequency and zero momentum component with weight b0.221

Then there are components carrying momentum ±Q at the frequency ωc with weight c±222

and finally the smallest contribution comes from the zero momentum modes with frequency223

2ωc which are weighted by b+. As the scattering is momentum and energy conserving the224

fastest-growing NCM mode results from scattering between the atomic components b0 and225

c± of the center manifold, as illustrated in Fig. 2(a). For this process, the outgoing NCM226

modes with energies ϵq, ϵq′ have to satisfy q + q′ = Q, ϵq + ϵq′ = ωc. Since here q ̸= −q′,227

we call this the asymmetric channel. Near the critical point, we can approximate ϵq with228

the Bogoliubov dispersion of the BEC excitations in the absence of the cavity field, which229

for small U reads ωB(k) ≈ ERk
2 + U . This yields q = Q/2 +

√
ωc − ER/2− 2U/

√
2 and230

q′ = Q−q. From the approximation of the CM components in Eqs. (5) and (6), we predict231

an exponential growth of these two Bogoliubov modes with a rate Γ = Γasym ∝ U
√
η. This232

asymmetric channel can be closed off if ωc < ER/2 + 2U , which leaves us with a different233

channel where the component b0 scatters with b+, or c+ with c−. Both these processes234

produce a symmetric NCM pair with q = −q′ =
√
ωc − U . One representative process of235

this symmetric channel is shown in Fig. 2(a). In contrast to the asymmetric counterpart,236

we predict Γ = Γsym ∝ Uη for the symmetric scattering processes.237

In order to further verify the above predictions, we have linearized Eqs. (1) and (2)238

around the OSR phase and extracted the rate by computing the Floquet quasi-energies.239

The details of these calculations can be found in Appendix B and the resulting growth rates240

are shown in the lower panel of Fig. 3. It is seen that the predicted momentum (orange241

marks for the asymmetric channel and red mark for the symmetric channel) is only reliable242

close to the phase transition as the dispersion of the NCM mode is quickly modified due243

to the growing oscillating density modulation. We also find an additional momentum244
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Figure 3: The lower plot shows the exponential growth rates of the atomic modes
outside of the center manifold. The parameters are equivalent to those in Fig. 1
with ∆ = 0.6ER resulting in ωc = 0.586ER, and we choose U = 0.01ER. The
orange ticks indicate the predicted momentum based on the asymmetric channel,
while the red tick signifies the symmetric channel momentum. The green tick is
the atom mode coupled to the symmetric channel through the cavity. The upper
plot shows the resulting atom distribution after 200 periods at the dashed line in
the lower plot, both with numerical integration of Eqs. (1) and (2) in blue and
from the linearized prediction with the dashed green line.

component that grows (marked in green), which arises from the scattering between a245

negative momentum NCM mode in the symmetric channel and the recoil component of the246

center manifold. The computed growth rates for the symmetric and asymmetric modes are247

shown in Fig. 2(b), and in both cases, an excellent agreement with our simple predictions248

based on Fig. 2(a) is demonstrated. Finally, in order to fully confirm our predictions,249

we performed a full numerical integration using a Runge-Kutta-4 routine, starting from250

the OSR phase at η = 0.06, corresponding to the white dashed line in the lower panel of251

Fig. 3. After evolving the system for 200 periods we compared the momentum distribution252

with the predictions based on the Floquet quasi-energies and find excellent agreement, as253

shown in the upper panel of Fig. 3.254

As long as the NCM modes with the largest occupation are still small compared to255

unity, i.e. the time crystal has not melted yet, the CM modes still satisfy256 ∑
q=0,±Q

|ψq|2 ≈ 1.

The rate of the fastest-growing NCM modes therefore sets the time scale on which the257

cascade becomes relevant. This time scale is explicitly given by τ = ln a0/Γ, where a0 is258

the initial seed in the NCM modes. This initial seed is determined by the temperature of259

the system and energy of the fastest growing NCM mode.260

5 Metastable nature of time crystal261

In the previous section, we have established that atom interactions lead to scattering from262

the CM to NCM modes with q ̸= nQ, with n ∈ Z+. We have identified the fastest-263

growing NCM modes and that they grow exponentially. As these NCM modes are not264
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coupled via the cavity to the CM modes, one expects them to evolve incoherently, such265

that the coherent nature of the OSR will be destroyed once the occupation of the NCM266

modes becomes non-negligible. To verify this, in this section, we will analyze the full267

numerical solution of Eqs. (1) and (2) in more detail.268

Before discussing this we note that the numerical calculations require very dense mo-269

mentum grids. This is because the NCM modes have to be numerically broadened such270

that they can be sampled on a finite grid. The artificial linewidth corresponds to a time271

scale, which has to be much smaller than the simulated time. Here we use a broaden-272

ing of 2 × 10−6ER, allowing us to reach simulation times of order 105/ER. As quantum273

fluctuations have been neglected a small finite seed is needed for all the NCM modes274

and we initialize all the NCM modes with a constant magnitude of 10−11, corresponding275

to a0 discussed at the end of the previous section. Additionally, it is also necessary to276

go to large momentum values to ensure the results are fully converged (we truncate at277

|kmax| = 5.4Q). The resulting numerical momentum grids are thus very long O(4× 104).278

To fully understand the stability of the OSR phase it is also necessary to include the279

fact that a finite number of atoms gives a stochastic nature to the equations due to the280

openness of the cavity. This limits the magnitude of the numerical time step as the noise281

appears correlated on a time scale of ∆t, with ∆t being the numerical time step. We282

therefore require that ∆t≪ 1/Emax where Emax ∼ k2max is the largest energy scale in our283

simulation. The simulations therefore require a small time step (we use ∆t = 5 × 10−4
284

and a Runge-Kutta-2 routine for the deterministic part [31]). All parameters apart from285

U will be kept the same as those used in Fig. 3 such that ωc = 0.586ER leading to a286

characteristic periode of T = 2π/ωc = 10.735E−1
R . To verify that the asymmetric channel287

is closed when ωc < ER/2 + 2U , while simultaneously decreasing the computation time,288

we consider U = 0.1ER. As the symmetric channel grows with a rate proportional to η,289

the increase of U by a factor of 10 ultimately results in an increase of the NCM growth290

rate by ≈ 2.45. Consequently, the necessary simulation time is more than halved even291

though the asymmetric scattering channel is closed.292

The resulting effective cavity potential felt by atoms defined as293

Vc(t) = ηc
η + 1√

2

∑
j=1,2

Re (ϕj(t)) , (9)

is plotted in Fig. 4(a). Vc(t) is good observable as it not only describes the optical potential294

felt by the atoms but also, up to a constant prefactor, corresponds to measuring the x-295

quadrature of the cavity field. For early times one observes perfectly coherent oscillations296

expected from the stable OSR phase. After the blue shaded region, which stops at t =297

600E−1
R ≈ 56T the amplitude of Vc starts being perturbed as the occupation of the NCM298

modes becomes relevant. The exponential growth and following cascade leads to a sharp299

decrease in the amplitude of optical potential and a loss of its temporal coherence.300

The loss of coherence is more clearly seen in Fig. 4(b) where the power spectrum of301

the Fourier transform of the two shaded regions in Fig. 4(a) is shown. For early time the302

spectrum is clearly dominated by a peak at the predicted frequency (marked in red) and303

a small contribution from a higher harmonic at 3ωc. The finite width for early times is304

a consequence of the finite interval of the Fourier transform combined with the use of a305

window function to avoid aliasing. The spectrum of the long-time region clearly shows that306

no coherent oscillation is present in the cavity fields. At late times, there is a competition307

between synchronization via the cavity that favors the OSR phase, and decoherence caused308

by scattering involving NCM modes. The amplitude of the incoherent oscillations in this309

region is therefore related to the magnitude of U . To highlight the fact that the loss of310

coherence is an effect of having lost occupation in the CM modes, Fig. 4(c) shows the311
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Figure 4: a) The effective cavity potential felt by the atoms resulting from the full
numerical solution of Eqs. (1) and (2) for the same parameters as Fig. 3 apart from
U = 0.1ER. The insets show a zoomed-in view of Vc(t) from the early and late
time regions respectively (the arrows indicate the regions the insets are parts of).
b) The power spectrum of the Fourier transform performed on the finite interval
marked by the blue (tearly ∈ {0, 600}E−1

R ) and green (tlate ∈ {3400, 4000}E−1
R )

shaded regions in plot (a). The red line indicates the predicted ωc while the orange
line is at 3ωc. c) The corresponding momentum distribution of the atomic modes
within the stable OSR region in blue (t1 = 250E−1

R ) and after its destruction
in green (t2 = 3250E−1

R ). The red lines indicate the momentum of the fastest-
growing modes predicted by symmetric channel scattering predictions.

occupation of the atomic modes, averaged over one period T , for a time within the early312

and late time regions respectively. Here the early time occupation shows all occupation313

is basically in the CM modes (q = {0,±Q}). For late times this occupation has been314

completely redistributed to a continuum of momentum modes with the most occupied315

mode being the symmetric modes predicted at q = ±
√
ωc − U which are marked with red316

lines. It is worth pointing out that, as predicted, the asymmetric momentum modes seen317

in Fig. 3 are absent. The broad nature of the atomic distribution at late times is a result of318

the exponential growth of the initial NCM modes together with the fact that the occupied319

NCM modes act as sources for occupying new NCM modes, leading to an exponentially320

growing cascade of modes out of CM and into the NCM.321

From the perspective of the growing NCM modes, this cascade can be understood322

as the unstable regime of parametric resonance with the center manifold modes acting323

as parametric drive via the short-range interactions. This is analogous to preheating in324

the early universe [32,33], where the weakly interacting and oscillating, coherent inflation325

field decays into a cascade of exponentially growing fluctuations, leading to extreme non-326

equilibrium conditions inaccessible to perturbative methods and finally to thermalization327

[34]. Explicitly, the CM modes take the role of the inflaton field and the growing NCM328

modes resemble the particles created by the oscillating field. The analytic discussion we329

have presented corresponds to the linearized classical regime [35], which at later times will330

be superseded by increasingly non-linear effects leading to a cascade of even more quickly331

growing fluctuations that eventually thermalize [36]. At this point, a conceptual difference332

between the closed evolution considered for the early universe, and the driven open cavity333

model we discuss here emerges. Our model never fully thermalizes. Instead, it reaches a334

highly non-trivial state that corresponds to a compromise between thermalization due to335

short-ranged interactions and the flow equilibrium imposed by drive and dissipation.336
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Figure 5: Plot of the Fourier spectrum of Vc(t) for different atom numbers which
is inversely related to the noise level. The parameters are kept equivalent to those
in Fig. 4. As the time crystalline phase is only metastable the Fourier transform
is performed on finite region with t ∈ {0, 600E−1

R } as the early time result in
Fig. 4(b). The red line indicates the predicted ωc.

5.1 Finite size of atom clouds337

Any experiment will necessarily be performed with a finite number of atoms, N , in the338

cloud. As mentioned, in Section 2, the openness of the cavity then gives rise to a stochastic339

term in the cavity equations such that they take the form340

i∂tϕj =(∆j − iκ)ϕj +
η̃

2
√
2

∞∑
k=−∞

ψ̄k (ψk+Q + ψk−Q) +

√
κ

N
∆W (t), (10)

where ∆W (t) is the Wiener increment [31]. To verify that the metastable OSR phase341

is not just robust towards atomic perturbation but also cavity noise we have performed342

the numerical calculations with different atom numbers (effectively changing the noise343

level). In principle one should compute several trajectories. Here, however, we are not344

interested in the noise-averaged state at late times but merely in the characteristic lifetime345

of the OSR phase. As the latter is much longer than any microscopic time scale of the346

system, it is faithfully obtained already from a single trajectory. To this extent, the Fourier347

spectrum for different levels of noise has been plotted in Fig. 5. Here it is seen that the348

time-crystalline order emerges once the cloud contains 103 atoms or more. It should be349

pointed out that we are considering a setup with a subrecoil linewidth of κ = 0.4ER which350

is comparable to relevant experimental setups [21] in which N = 105. We thus predict351

that the metastable region of the OSR phase is stable against realistic noise levels.352

5.2 Cavity parameters353

Of particular experimental relevance is the question regarding the dependence of the life-354

time of the OSR phase on the choice of cavity parameters. So far, we have investigated355

the dependence of the lifetime on the frequency of the CM components. However, the356

same frequency can be generated with an infinite number of different cavity parameters.357

This is because one can depart from the simple fully symmetric cases discussed here and358

include different loss rates for the different cavity modes and different coupling to the359

atomic cloud. Experimentally the latter can be easily controlled by changing the power360

in the corresponding pump sideband. So the question then becomes, given that the CM361

oscillates at a set frequency does it matter how the cavity is configured to achieve this fre-362

quency? Our analysis shows that, for small U , the scattering out of the OSR phase, which363

sets the lifetime, is contained in the first-order scattering processes between the atomic364

11
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CM components of the atoms illustrated in Fig. 2(a). The magnitude of the atomic CM365

components therefore have to depend on cavity parameters directly (and not just through366

ωc) to impact the lifetime of the OSR phase. Using the full analytic description of the OSR367

phase derived in Appendix A.2, one finds that the time-averaged magnitude of the recoil368

components in CM, given in Eq. (37) is only a function of η, U, ωc and ER. In this model369

the lifetime of the OSR phase is thus independent of the specific cavity configuration.370

This should be contrasted with the previous results for the frequency of the OSR phase in371

Eq. (3), which was shown to be independent of U and as such stable against interatomic372

interactions. Apart from this intriguing duality, the fact that the lifetime is not explicitly373

depending on the cavity configuration gives a large amount of freedom for experimental374

realizations.375

6 Conclusion376

We have analyzed the role of short-range interactions on the nature and stability of contin-377

uous time crystals in dissipative many-body systems of ultracold bosonic atoms in cavities.378

First, we have shown that short-range interatomic interactions can alter the nature of379

the time crystal by transforming the underlying classical bifurcation from sub- to super-380

critical.381

Second, we have studied the effect of interatomic interactions on the time crystal. Our382

analysis shows that when the system can only dissipate energy through the cavity, the383

interatomic interactions makes the time crystal inherently metastable. This can be un-384

derstood from the fact that the time crystalline phase requires superradiance and thus385

coherent scattering of cavity photons between the atomic states. The interatomic interac-386

tions deplete the superradiant mode by populating atomic states that scatter incoherently.387

In the absence of an ordering principle, like a low temperature in thermal equilibrium, the388

depletion proceeds until the time crystalline phase ceases to exist.389

We showed that near the transition, the amplitude of atomic component of the time390

crystalline phase is independent of the details of the underlying critical polaritonic mode.391

Instead it only depends on the frequency of the oscillations and the proper dimensionless392

distance from the critical point. The cavity dissipation is therefore not able to efficiently393

cool the system [37–39] (NCM modes can be de-excited only at higher order in our expan-394

sion, see Appendix B). This suggests that the metastable nature we identified is generic for395

these cavity systems [40], as long as the cavity linewidth is comparable to the recoil energy.396

We note that time-dependent Hartree-Fock approximations would miss this heating [41],397

as they lack collisions, and thus redistribution [42].398

While we that the time crystalline phase is only metastable, we have shown that399

its lifetime increases significantly by considering ωc < ER/2 + 2U which prohibits the400

asymmetric scattering processes that lead to much higher growth rates. As interatomic401

interactions can be weak in dilute systems, the time-crystalline phases can appear stable402

on a time scale of the order of hundreds of periods, consistent with numerical predictions403

in related models [43, 44]. We numerically show this statement to hold true, also in the404

presence of realistic noise levels.405

Finally, we pointed out that cascading effect responsible for the destruction of the time406

crystalline phase is analogous to preheating in the early universe. It will be interesting to407

pursue this analogy deeper into the highly excited regime using appropriate atom-photon408

diagrammatic approaches [45,46].409
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A Center manifold coefficients412

The two-cavity mode system considered is a simplification of the N cavity mode system413

discussed in [26]. In this reference the standard methods of stability analysis and bifur-414

cation theory [29, 30] is applied to understand the origin of the limit cycle, which we use415

as the foundation for our exploration. We refer the interested reader to reference [26]416

for a more detailed derivation of the critical frequency and coupling. In this appendix,417

we instead focus on a self-contained derivation of the analytical description of the center418

manifold dynamics.419

The starting point is the equations of motion in Eqs. (1) and (2), which we use to420

define the autonomous system of non-linear first order ODE’s421

v̇ = F (v), (11)

Here v is a vector containing the two complex cavity fields and all the complex atom422

fields with the different discretized momenta. As both cavity modes transfer the same423

longitudinal momentum (Q) and the BEC is initially homogeneous, the emerging critical424

mode only contains the cavity fields, the homogeneous atom state and the ±Q atom modes.425

These modes constitute the center manifold426

vcm = (ϕ0, ϕ1, ψ0, ψQ, ψ−Q)
T . (12)

The normal phase X0 = (0, 0, 1, 0, 0)T is a fixed point of F . When η̃ < ηc this fixed point427

is stable but becomes unstable for η̃ ≥ ηc.428

As stated in the main text, slightly past the critical point the symmetry-broken state429

can be approximated as430

u =
√
µRvReiωct + c.c. , (13)

where µ = η̃ − ηc is the absolute distance to the critical point and ωc is the frequency of431

the unstable right eigenvector vR. We will write the equations of motion in terms of the432

real (xα) and imaginary part (pα) of the complex fields in which the center manifold is433

spanned by vectors of the form434

vR =
(
vR
c1 ,v

R
c2 ,v

R
Q,v

R
−Q

)T
, (14)

with vR
α = (xα, pα)

T . The approximation in Eq. (13) only describes the new fixed point435

well if the bifurcation is of the supercritical form, which means that the self-interaction of436

the critical mode is repulsive. The linear coefficient in the amplitude equation Eq. (7) is437

given by the real part of438

λ =
∑
i,j

vL
i

(
∂L

∂µ

)
i,j

vR
j , (15)

where the latin indices run over all components in the center manifold i, j ∈ {xc1, pc1, xc2439

, pc2, xQ, pQ, x−Q, p−Q}. The Jacobian matrix L = ∇F |X0
evaluated at the normal-phase440

fixed point X0 and vL (vR) is the left (right) critical eigenvector. We define the linear441

coefficient as γ = Re (λ). The cubic coefficient of Eq. (7) is given by the real part of442

g = −1

2

∑
i,j,k,q

vL
i

∂3Fi

∂Xj∂Xk∂Xq

∣∣∣∣
X0,µ=0

vR
j v

R
k v̄

R
q = −vL

i (N0)
j,k,q
i vR

j v
R
k v̄

R
q , (16)
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where the cubic coefficient in the main text is gr = Re (g). Within the center manifold443

there is no contribution to quadratic contribution from ∂2F because the center manifold444

obeys a reflection symmetry, which originates from the fact that the coupled Eqs. (1)445

and (2) posses a Z2-symmetry. This symmetry is that the equations are invariant under the446

simultaneous phase shift of the atoms by ψk → eiπk/Qψk and the cavity fields ϕj → −ϕj .447

A.1 The critical eigenvector448

To compute λ and g we use that the symmetry results in the right and left eigenvector449

components for each mode α ∈ {c1, c2, Q,−Q} are related by450

vL
α = ±σxvR

α , (17)

where σx is the first Pauli spin-1/2 matrix. Furthermore, the eigenvectors are normalized451

such that Eq. (17) is realized with the upper sign. The two effective interaction parameters452

can now be written solely in terms of the right eigenvectors453

λ =
∑
i,j

(
(14 ⊗ σx)v

R
)
i

(
∂L

∂µ

)
i,j

vR
j ,

g = −
∑

i,j,k,k,q

(
(14 ⊗ σx)v

R
)
i
(N0)

j,k,q
i vR

j v
R
k v̄

R
q .

(18)

The cavity eigenvector components are connected to the atomic eigenvector components454

through the definition of the critical eigenvector455

(L0 − iωc)v
R = 0, (19)

which leads to the relation456

vR
cj = −

√
2ηcβj

(
1 0 1 0

κ+iωc
∆j

0 κ+iωc
∆j

0

)
xQ
pQ
x−Q

p−Q

, (20)

where457

βj =
∆j

2

∆2
j + κ2 − ω2

c − 2iωcκ

∆4
j + 2∆2

j (κ
2 − ω2

c ) + (κ2 + ω2
c )

2 . (21)

From the critical eigenvalue condition det (L0 − Iωc) = 0 one finds458

η2cβ = η2c
∑
j=1,2

Reβj =
ω2
a − ω2

c

2ER
,

Imβj = 0.

(22)

Linearizing around the normal phase means that the short-range interaction only couples459

the modes Q and −Q in a symmetric manner. As the cavity also couples identically to460

these two modes, the components of the critical eigenvector obeys xQ = x−Q = xa and461

pQ = p−Q = pa. Using this symmetry xa and pa can be connected through Eq. (19) and462

one finds463

pa =
iωc

ER
xa = iω̃xa, (23)
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where the dimensionless frequency ω̃ = ωc/ER has been introduced for later convenience.464

Now vR can be fully expressed through the parameters of our theory and xa. A closed-form465

expression for xa can be found through the normalization condition466

∑
i

vL
i v

R
i = 1 → xa =

1

2

4η2c
∑
j

[
β2j
κ+ iωc

∆j

]
+
iωc

ER

−1/2

. (24)

This form of xa guarantees the upper sign in Eq. (17).467

A.2 Computing gr and γ468

By substituting the critical eigenvector into Eq. (15) one finds the expression469

λ =
8

ηc
x2aη

2
cβ =

2η2cβ

ηc

(
4η2c

∑
j

[
β2j

κ+iωc
∆j

]
+ iωc

ER

)
=
ω2
a − ω2

c

ER

1

ηc

(
4η2c

∑
j

[
β2j

κ+iωc
∆j

]
+ iωc

ER

) . (25)

The expression for g is470

g = x2a|xa|
2ER

(
Ũ
(
3 + 2ω̃2 + 3ω̃4

)
+ 4

(
1− ω̃2

) (
3 + ω̃2

))
= x2a|xa|

2ERWa

(
Ũ , ω̃

) (26)

where the dimensionless interaction is defined as Ũ = U/ER.471

It is clear that the only part that makes both λ and g complex is in x2a. As the472

coefficients for our theory are related to the real part of λ and g, it is relevant to extract473

the real part of x2a474

Re
(
x2a
)
= η2cκ

∑
j

β2
j

∆j∣∣∣(4η2c ∑j

[
β2j

κ+iωc
∆j

]
+ iωc

ER

)∣∣∣2
=

η2cκ

2
∣∣∣(4η2c ∑j

[
β2j

κ+iωc
∆j

]
+ iωc

ER

)∣∣∣2
∑
j

∆j

(
∆2

j + κ2 − ω2
c

)2
+ 4ω2

c

(
∆2

j − ω2
c

)
(
∆4

j + 2∆2
j (κ

2 − ω2
c ) + (κ2 + ω2

c )
2
)2 .
(27)

This directly shows that the only dependence on U in xa is through ηc in Eq. (4). Due475

to the complexity of the full closed form expression of g it is insightful to consider the476

behavior of Re
(
x2a
)
and Wa separately.477

First considering Wa478

Wa

(
Ũ , ω̃

)
= Ũ

(
3 + 2ω̃2 + 3ω̃4

)
+ 4

(
1− ω̃2

) (
3 + ω̃2

)
. (28)

The interesting feature of Wa is the fact that it has a sign change through a zero-crossing479

at a critical frequency ω̃0 such that Wa

(
Ũ , ω̃0

)
= 0. The closed form expression for ω̃0 is480

ω̃0 =

√
Ũ − 4 + 2

√
2
√
8− 4Ũ − Ũ2

4− 3Ũ
=

√
1 +

Ũ

2
+O(Ũ2). (29)
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This exactly defines the separatrix Uc2 shown as a black line in Fig. 1(b). Fig. 1(b) is481

plotted as a function of ∆ and not ωc because of the atom instability. In the regime where482

κ < ER, the equations simplify because near ∆ ∼ ER one has that ωc ≈ ∆. This means483

that one can replace ω̃0 with ∆/ER instead of substituting in the full expression in Eq. (3).484

The relevant quantity that one should compare ω̃0 to is the dimensionless frequency of the485

bare atomic instability, which happens at486

ω̃a =
√
1 + 2Ũ , (30)

and which sets the dashed separatrix Uc1 in Fig. 1(b). For Ũ = 0 the frequencies ω̃0 and487

ω̃a coincide, which means that there will be no cubic interactions for the atomic instability488

without short-range interactions. As Ũ is made finite we see from the expansion in Eq. (29)489

that ω̃a > ω̃0 for small Ũ < 1. By keeping the full expression for ω̃0, one finds that the490

critical Ũc where ω̃a = ω̃0 is491

Ũc =
√
2, (31)

which is the intersection point of the separatrices at finite U with ∆ =
√

1 + 2
√
2ER.492

Below this interaction strength, ω̃0 is smaller than ω̃a. The effect is that Wa(Ũ , ω̃a) < 0493

for all Ũ < Ũc.494

To determine the nature of the interactions one has to determine the sign of Re
(
x2a
)
.495

This sign is fixed by the numerator of Eq. (27) and using the parametrization discussed496

in the main text one finds497 ∑
j=1,2

∆j

((
∆2

j + κ2 − ω2
c

)2
+ 4ω2

c

(
∆2

j − ω2
c

))
=
δ

2

((
δ2 + 4κ2

)2
16

+ ∆2
(
3δ2 + 4κ2

)
+ 8∆4

)
.

(32)
So for any values of κ, ∆ and |δ|, the sign of Re

(
x2a
)
is set by the sign of δ. This means that498

for a chosen sign of δ the sign of Wa determines whether the non-linear self-interactions499

are repulsive or attractive. Additionally this also means that γ > 0. If δ > 0 then ωc < ωa500

and both η2cβ in Eq. (22) and Re
(
x2a
)
are greater than zero. If δ < 0 then ωc > ωa and501

both η2cβ and Re
(
x2a
)
are negative such that γ is again positive.502

Next consider the fraction γ/gr which determines the magnitude of the stable time-503

crystalline phase. By using the above derived relations one can show that it scales with504 √
ϵ in the limit where ω2

c → ω2
a − ϵ with ϵ≪ {ER,∆1/2, κ}505

lim
ω2
c→ω2

a−ϵ

γ

gr
= lim

ω2
c→ω2

a−ϵ

8

ηc

ω2
a − ω2

c

2ER

Re
(
x2a
)

Re (x2a) |xa|
2ERWa (U/ER, ω/ER)

= lim
ωc→ωa

32

ηc

ω2
a − ω2

c

2E2
RWa (U/ER, ω/ER)

∣∣∣∣∣∣4η2c
∑
j

[
β2j
κ+ iωc

∆j

]
+
iωc

ER

∣∣∣∣∣∣
= lim

ω2
c→ω2

a−ϵ

32√√√√ ω2
a−ω2

c

ER
∑

j=1,2

∆j(∆2
j
+κ2−ω2

c)
ω4
c+2ω2

c(κ2−∆2
j)+(∆2

j
+κ2)

2

ω2
a − ω2

c

2E2
RWa (U/ER, ω/ER)

×

∣∣∣∣∣∣4η2c
∑
j

[
β2j
κ+ iωc

∆j

]
+
iωc

ER

∣∣∣∣∣∣
= 32

√
ϵ

√
ER
∑

j=1,2

∆j(∆2
j+κ2−ω2

a)
ω4
a+2ω2

a(κ2−∆2
j)+(∆2

j+κ2)
2

2E2
RWa (U/ER, ω/ER)

ωa

ER
+O

(
ϵ3/2

)
.

(33)
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This is important as it proves that the AI region does not possess a stable time-crystalline506

solution, to leading order in µ, as ϵ→ 0 for the AI.507

The fact that we have analytical expressions for all the important quantities also508

allows us to show some intriguing features of the time-crystalline phase within the center509

manifold. The first important feature was discussed in the main text, namely that the510

frequency of OSR phase is independent of the atom parameters. The second important511

feature we will show now is that the time-averaged occupation in the recoil field is only512

indirectly depending on the cavity parameters. As stated in the conclusions, this is means513

that our heating discussion is more generic, as it does not depend on the specific cavity514

configuration. If we write Eq. (5) using xa and pa the occupation in the recoil mode is515

given by516

|ψQ(t)|2 =
1

2

(
|xa|2 + |pa|2

)
=
µ

4
R2

(
2|xa|2 + x2a exp(i2ωct) + x̄2a exp(−i2ωct)

+ 2|pa|2 + p2a exp(i2ωct) + p̄2a exp(−i2ωct)

)
.

(34)

Due to the periodicity of the system the time average is given by517 〈
|ψQ|2

〉
T
=

∫ 2π/ωc

0
|ψQ(t)|2dt =

µ

2
R2
(
|xa|2 + |pa|2

)
=
µ

2
R2|xa|2

(
1 + ω̃2

)
, (35)

where pa have been eliminated through Eq. (23). Using the results from Eqs. (25) and (26)518

we find519

R2 =
Re (λ)

Re (g)
=

4
(
ω̃2
a − ω̃2

)
ηc|xa|2Wa

(
Ũ , ω̃

) . (36)

Inserting this into Eq. (35) we find520 〈
|ψQ|2

〉
T
=

2η
(
ω̃2
a − ω̃2

) (
1 + ω̃2

)
Wa

(
Ũ , ω̃

) , (37)

which only depends on the atom parameters, the OSR frequency, and the relative depth521

into the OSR phase, η. The same ω̃ can be generated with many different cavity con-522

figurations, for example by changing δ and having a small κ or even more generally by523

departing from the fully symmetric case presented here.524

B Including fluctuations outside the center manifold525

While our theory within the center manifold predicts that the time crystal is stable also526

with finite interactions U , it does not capture atom modes outside of the center manifold.527

The contact interaction allows occupation in the center manifold to scatter to the other528

atom modes with momenta different from ±Q and 0. Inside the OSR phase the NCM529

modes can be occupied due to the presence of the OSR. This leads to heating and poten-530

tially also the destruction of the time crystal in the long time limit. One way to describe531

this is to linearize around the OSR solution vosr(t)532

v(t) = vosr(t) + δv(t). (38)
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This leads to an equation for the fluctuations533

v̇ = v̇osr + ˙δv = F (vosr + δv) = F (vosr) + ∇F |v=vosr
δv+O

(
δv2
)

→ ˙δv = ∇F |v=vosr
δv+O

(
δv2
)
≈ Josr(t)δv,

(39)

where Josr(t) is a time-dependent matrix-valued function. Using the approximate fixed534

point from the analytical OSR solution we can derive an approximate form of Josr(t). Due535

to the periodicity of the OSR solution Josr(t) can be expanded in a discrete Fourier series536

of the form537

Josr(t) =
4∑

n=−4

Mne
inωct. (40)

The coupling to the cavity in Eq. (1) is proportional to a product of a NCM mode and538

a cavity field. To first order in fluctuations there is therefore no coupling between cavity539

fluctuations and the NCM modes. For the leading-order heating mechanism δv only540

includes the atom modes with momentum k /∈ {0, Q,−Q} and is therefore solely described541

by Eq. (1) with the cavity fields replaced by the OSR solution. It is for this reason that542

we are able to use the simple scattering description, discussed in the main text, to predict543

the momentum of the growing modes.544

Because the cavity loss has already been used to stabilize the OSR phase within the545

center manifold this means that the cavity is not able to cool down the NCM modes546

at the linear level. As one includes higher orders in fluctuations the cavity fluctuations547

can potentially start cooling down the NCM but as this is a higher-order effect, fine548

tuning would be needed to make it overcome the first-order heating before the system has549

thermalized and the OSR phase is destroyed.550

To verify our simple scattering predictions we derive Josr(t) from Eq. (1). The linearized551

equation for the NCM mode with momentum k is552

i∂tψk =

(
−Ω̇ + k2 − U

∣∣∣ψ̂0

∣∣∣2 + 2U

(∣∣∣ψ̂0

∣∣∣2 + ∣∣∣ψ̂Q

∣∣∣2 + ∣∣∣ψ̂−Q

∣∣∣2))ψk + U
(
ψ̂2
0 + 2ψ̂−QψQ

)
¯̂
ψ−k

+
η̃√
2

∑
j

Re
(
ψ̂j

)
(ψk+Q + ψk−Q) ,

(41)
where the hat has been used to identify the OSR components that are approximated as553

unchanged within the linearization. The overall phase of the atoms is set by Ω̇ and chosen554

such that Im{ψ0} = 0 within the center manifold [26]. Within the linearization the value555

is556

Ω̇ =
η̃√
2

∑
j

Re(ϕj)
ψQ + ψ̄Q + ψ−Q + ψ̄−Q

2ψ0

+ U

(
2− ψ2

0 +
1

2

[(
ψQ + ψ̄Q

) (
ψ−Q + ψ̄−Q

)
+
(
ψQ − ψ̄Q

) (
ψ−Q − ψ̄−Q

)])
.

(42)

From Eq. (41) we see that the finite occupation of the cavity field leads to coupling of557

the k NCM mode with the NCM mode at k ± Q. As the occupation of the NCM fields558

are small and we consider ωc < ER, one can truncate after one recoil kick such that559

|k| < Q. This is confirmed by the full numerical solution of Eqs. (1) and (2) shown in560

the main text. With this truncation each NCM, ψk, couples to the seven other fields561

{ψ̄k, ψ−k, ψ̄−k, ψk−Q, ψ̄k−Q, ψ−k+Q, ψ̄−k+Q}. For each value of k we therefore find a562
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Josr(t) given by563

Josr(t) = i



−mk 0 0 −gk −mQ −gQ 0 0
0 m̄k ḡk 0 ḡQ m̄Q 0 0
0 −gk −mk 0 0 0 −mQ −gQ
ḡk 0 0 m̄k 0 0 ḡQ m̄Q

−mQ −gQ 0 0 −mk−Q 0 0 −gk
ḡQ m̄Q 0 0 0 m̄k−Q ḡk 0
0 0 −mQ −gQ 0 −gk −mk−Q 0
0 0 ḡQ m̄Q ḡk 0 0 m̄k−Q


, (43)

with the vector δvT = (ψk, ψ̄k, ψ−k, ψ̄−k, ψk−Q, ψ̄k−Q, ψ−k+Q, ψ̄−k+Q)
T and the five564

different entries being565

mk = k2 + U − 2U
(
ψ̂2
Q +

¯̂
ψ2
Q

)
− η̃√

2

∑
j

Re(ϕ̂j)
ψ̂Q +

¯̂
ψQ

ψ̂0

,

mk−Q = mk→k−Q,

mQ =
η̃√
2

∑
j

Re(ϕ̂j) + 2Uψ̂0

(
¯̂
ψQ + ψ̂Q

)
,

gk = U
(
2ψ̂2

Q + ψ̂2
0

)
,

gQ = 2Uψ̂Qψ̂0.

(44)

Inserting the OSR solutions into Eq. (44) one finds an analytical expression for Josr(t)566

which is periodic such that Josr(t) = Josr(t + T ) with T = 2π/ωc. We then employ567

standard Floquet theory by numerically time-evolving the eight equations over one period568

T . This allows us to find the fundamental matrix Φ(t) which is defined as the solution to569

∂tΦ(t) = Josr(t)Φ(t), (45)

with the initial condition Φ(0) = 18. The eigenvalues λi of the monodromy matrix M =570

Φ(T ) determines the growth rates of the NCM modes Γi = Re(log(λi)/T ). To understand571

the initial heating effects we only need to investigate the eigenmode with the largest growth572

rate Γ = max(Γi). By Computing Γ as a function of k we are able to compute the growth573

rates of the different channels as plotted in Fig. 3.574
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