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Abstract

Interfaces of light and matter serve as a platform for exciting many-body physics and pho-
tonic quantum technologies. Due to the recent experimental realization of atomic arrays at
sub-wavelength spacings, collective interaction effects such as superradiance have regained
substantial interest. Their analytical and numerical treatment is however quite challenging.
Here we develop a semiclassical approach to this problem that allows to describe the coherent
and dissipative many-body dynamics of interacting spins while taking into account lowest-
order quantum fluctuations. For this purpose we extend the discrete truncated Wigner ap-
proximation, originally developed for unitarily coupled spins, to include collective, dissipative
spin processes by means of truncated correspondence rules. This maps the dynamics of the
atomic ensemble onto a set of semiclassical, numerically inexpensive stochastic differential
equations. We benchmark our method with exact results for the case of Dicke decay, which
shows excellent agreement. For small arrays we compare to exact simulations, again showing
good agreement at early times and at moderate to strong driving, and to a second order cu-
mulant expansion. We conclude by studying the radiative properties of a spatially extended
three-dimensional, coherently driven gas and compare the coherence of the emitted light to
experimental results.
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1 Introduction

The accurate description of non-equilibrium dynamics of interacting quantum spin systems
is one of the major challenges of many-body theory. At the same time it is of central impor-
tance in many areas of physics. A prime example is the collective interaction of two-level
atoms with the quantized electromagnetic field, which after integrating out the radiation field
can be mapped onto collectively coupled spins with long-range interactions and dissipation.
Collective light-matter interactions have been a central problem in quantum optics starting
from the early work of Dicke [1]. Dicke showed that an ensemble of closely spaced two-level
quantum emitters can display intriguing collective effects in the emission of light such as sub-
and superradiance [2, 3] observed in a number of experiments [4–6]. This collective cou-
pling between light and atoms has recently regained substantial interest as it is at the heart
of many photonic quantum technologies [7]. Collective light-atom couplings are for example
the basis of ensemble-based quantum memories for photons [8–10], quantum repeaters [11],
and many concepts for realizing strongly interacting photons [12–15]. Here the interplay of
the nonlinear atomic response and quantum entanglement results in rich coherent many-body
dynamics.

A comprehensive theoretical treatment of the collective interaction of light with quantum
emitters is however only simple if the spatial extension of the emitters can be neglected as in
the case of the Dicke model or in cavity QED. Spatially extended systems can only be described
by solving the master equation, e.g. by Monte-Carlo Wave Function (MCWF) simulations [16],
if the number of excitations is small or for small ensemble sizes. Numerical techniques based on
matrix product states [17], which have proven to be extremely powerful for one-dimensional
systems with short-range couplings are usually not appropriate in higher spatial dimensions
and for long-range couplings. Likewise a classical treatment of collective phenomena in terms
of Maxwell-Bloch equations does not capture the buildup of quantum correlations between the
atoms. While some universal features of superradiance can be predicted for spatially extended
systems without involved numerics [18,19], there is for example no simple access to the tim-
ing and intensity of superradiant bursts. Expanding on the classical mean-field description
in terms of Maxwell-Bloch equations, cumulant expansion techniques have been employed
to account for correlations [20–22], but generally require higher order expansions for accu-
rate predictions. Cumulant expansions are furthermore often ill-controlled and can suffer from
intrinsic instabilities. Moreover their numerical complexity grows as a power law of the expan-
sion order n, i.e. scales as N n, where N is the number of spins, making them computationally
expensive. The same holds for non-equilibrium Greens function approaches such as the one
employed in [23].

In the present paper we propose an alternative, semiclassical approach that allows to de-
scribe the coherent and dissipative many-body dynamics of interacting spins, taking into ac-
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count lowest-order quantum fluctuations. Our approach is inspired by the success of the dis-
crete truncated Wigner approximation (DTWA) for the treatment of unitarily interacting spin
systems [24], which has recently been extended to include single-particle dissipation [25–27].
Within the truncated Wigner approximation the dissipative many-body dynamics of spins is
mapped to a generalized diffusion problem of the Wigner quasi-probability distribution in
phase space. The exact relation between the dynamics of the many-body density matrix in
Hilbert space and the Wigner function in phase space is given by correspondence rules, which
lead to higher-order partial differential equations for the Wigner function. These are in gen-
eral intractable without further approximations. A very successful approximation applicable
to unitarily coupled spins is the DTWA, which can be extended to include single particle decay
and dephasing [25]. The approach of Ref. [25] is however not useful for collective dissipative
processes such as superradiance. We here pursue a different route. We propose approximate
correspondence rules which lead to Fokker-Planck type equations of motion for the Wigner
quasi distribution equivalent to a set of coupled stochastic differential equations (SDEs) for
the spin orientations. Since the number of these equations scales linearly in the number of
spins, the solution is numerically inexpensive and allows investigating system sizes much larger
than in other semiclassical approaches. In the truncated Wigner approximation quantum fluc-
tuations are taken into account to lowest order by nondeterministic initial conditions and by
collectively coupling the spins to white noise processes, which generate (weak) entanglement
between the spins.

Our paper is organized as follows: In Sect. 2 we give a compact summary of the con-
tinuous Wigner phase space representation of an ensemble of two-level systems (spins). We
introduce a truncated Wigner Approximation for spin ensembles with collective couplings in
Sect. 3. In particular we propose and motivate approximate correspondence rules and discuss
general conditions for their validity. The main application of our methods are collective light-
matter couplings in free space, which we will introduce in Sect. 4. In Sect. 5 we benchmark
our method for the Dicke decay, i.e. the collective emission of light from a tightly localized
ensemble of two-level atoms, for which the full master equation can be solved exactly. We find
excellent agreement and give a physical interpretation of the emerging collective response
within the semiclassical approximation. We then study collective light-matter phenomena in
spatially extended systems in Sect. 6, where the full dynamics can no longer be described
exactly. We consider superradiance from regular arrays of atoms and an elongated cloud of
coherently driven atoms. Finally Sect. 7 summarizes the results and gives an outlook to future
work.

2 Wigner Representation for Spins

An approach widely used in quantum optics to describe the dynamics of interacting, driven-
dissipative many-body systems beyond the mean-field level is the truncated Wigner approxi-
mation (TWA) [28–32]. It describes interactions on a mean-field level but allows taking both
thermal and leading-order quantum fluctuations into account by averaging over nondetermin-
istic initial conditions and by coupling to stochastic noise sources. In the following we will give
a compact summary of the Wigner representation of an ensemble of two-level systems or spins,
but refer to Refs. [33, 34] for a more general introduction to phase-space representations in
quantum mechanics. We formulate the TWA by studying the correspondence rules [35], which
translate the action of an operator in Hilbert space to a differential operator in phase space,
and show that they have a simple asymptotic limit for collective processes.
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2.1 Wigner representation of two-level systems

The connection between Hilbert space and Wigner phase space, spanned by some c-number
variables Ω is given by the representation of an operator Ô in terms of a complex function
WÔ(Ω), called the Weyl symbol

Ô =

∫

dΩ WÔ(Ω) ∆̂(Ω). (1)

Here ∆̂(Ω) is the so-called phase point operator or Wigner kernel. Inversely the Weyl symbol
can be expressed explicitly in terms of the operator by

WÔ(Ω) = Tr
�

∆̂(Ω) Ô
�

. (2)

Of particular interest is the Weyl symbol Wρ̂(Ω) of the density operator ρ̂, which is called the
Wigner function or Wigner (quasi-probability) distribution. The latter notion is due to the fact
that Wρ̂(Ω) ∈ R and

∫

dΩWρ̂(Ω) = Tr(ρ̂) = 1, (3)

but can be negative.
Originally formulated for continuous degrees of freedom the concept of phase space rep-

resentations can be extended to systems with finite-dimensional Hilbert spaces [36] such as
spin-1

2 systems. There is however some freedom in choosing the phase point operators. A spe-
cific discrete representation has been introduced by Wooters in [36], which is the foundation
of the discrete truncated Wigner approximation [24]. Here we adopt however a different, con-
tinuous representation of spin-1/2 states ρ̂ through rotations of the particular discrete phase
point operator ∆̂0 =

1
2(1̂2 +

p
3σ̂z)

∆̂(θ ,φ) = U(θ ,φ,ψ)∆̂0U†(θ ,φ,ψ), Ω= (θ ,φ) (4)

which was shown in [25] to be more appropriate to describe dissipative spin systems. Here
U(θ ,φ,ψ) = e−iσ̂zφ/2e−iσ̂ yθ/2e−iσ̂zψ/2, are the SU(2) rotation operators with Euler angles
(θ ,φ,ψ), which gives

∆̂(θ ,φ) =
1
2

�

1̂2 + s(θ ,φ)σ̂
�

=
1
2

�

1+
p

3 cosθ
p

3e−iφ sinθp
3eiφ sinθ 1−

p
3 cosθ

�

, (5)

Note that in [25] we have used a slightly different definition of the Wigner kernel that is
obtained by letting θ → π− θ and φ → −φ. Based on the same work, we have shown that,
using a gauge freedom, the most relevant states | ↓〉 and | ↑〉 can be represented by simple,
positive Wigner functions. Namely

W|ψ〉〈ψ|(θ ,φ) =
1

sinθψ
δ(θψ − θ ), (6a)

θψ =

(

arccos
�

1p
3

�

, ψ=↑
π− arccos

�

1p
3

�

, ψ=↓
, (6b)

which are straightforwardly verified by substituting them into Eq. (1). The above Wigner
function can be sampled by a fixed θ = θψ and drawing 0≤ φ < 2π from a uniformly random
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distribution. We note furthermore that the vector s(θ ,φ) appearing in Eq. (5) is just the Weyl
symbol of the Pauli spin-matrices

s(θ ,φ)≡Wσ̂(θ ,φ) =
p

3
�

sinθ cosφ, sinθ sinφ, cosθ
�T

. (7)

Similarly, the Weyl symbols of the creation- and annihilation operators σ̂± = (σ̂x ± iσ̂ y)/2 are
given by

s±(Ω)≡Wσ̂±(Ω) =
p

3
2

sinθ eiφ . (8)

The kernel in Eq. (5) can easily be extended to a system of N spin-1/2 systems via s → sn and
Ω→ Ω= {Ωn}, with j = 1,2, . . . , N labelling the spins.

2.2 Time evolution of the Wigner function

Our goal is to find an approximate solution of the master equation of many-body spin systems

d
d t
ρ̂ = −i[Ĥ, ρ̂] +

1
2

∑

µ

�

2 L̂µρ̂ L̂†
µ − { L̂

†
µ L̂µ, ρ̂}

�

(9)

where the many-body Hamiltonian Ĥ and the Lindblad operators L̂µ, describing Markovian
dissipative processes, are some functions of the spin-1/2 operators σ̂µj . Generically Ĥ and/or

the L̂µ describe interactions between spins which are higher dimensional, i.e. have couplings
that cannot be reduced to a one-dimensional topology. The latter excludes in general efficient
descriptions in terms of matrix product states [17].

To develop an approximate, semiclassical approach we need to translate the master equa-
tion of the density operator ρ̂ into an equation of motion for the Wigner function Wρ̂(Ω). As
the terms on the right hand side of Eq. (9) can be decomposed into products of spin opera-
tors and the density operator, this requires expressing the Weyl symbol of a composition of
operators as emerging on the r.h.s. of (9), e.g. Ĥρ̂→WĤρ̂ in terms of the individual symbols
WĤ and Wρ̂. In phase space the Weyl symbol of a product does not correspond to a simple
multiplication WÂB̂ ̸=WÂ ·WB̂ of the scalar functions. Instead, the composition is given by the
Moyal product or star product

WÂB̂(Ω) =WÂ ⋆WB̂ =

∫∫

dΩ′dΩ′′WÂ(Ω
′)WB̂(Ω

′′)Tr
�

∆̂(Ω)∆̂(Ω′)∆̂(Ω′′)
�

, (10)

which also has a differential form [33, 37]. The so called correspondence rules allow us to
express the star product of Weyl symbols involving a spin operator, such as Wσ̂

µ
j
⋆WÂ, as dif-

ferential operators acting on WÂ. With these rules we can iteratively translate compositions
of operators as they appear in the master equation of ρ̂ into a partial differential equation for
the Wigner function Wρ̂.

A more direct approach for deriving phase space equations that we have recently consid-
ered [25] is based on a simple observation: For a continuous phase space representation of a
single spin, generated by the kernel given in Eq. (5), the matrices ∆̂,∂θ ∆̂,∂φ∆̂ and ∂ 2

φ
∆̂ span

the Hilbert space. Hence any product of operators Ô∆̂ or ∆̂Ô can be expressed as a differential
operator acting on ∆̂. Therefore, as can be seen from Eq. (1), the same operator acting on
ρ̂ can be converted into a differential operator acting on the Wigner function. However, the
infinitesimal volume elements dΩn are not constant due to the curved phase space. It is there-
fore instructive to express the correspondence rules in terms of the contravariant coordinates
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(x1, x2) = (θ ,φ) of the phase space of a single spin and the metric tensor gµν which is given
by

g =
1

2π

�

1 0
0 sin2 θ

�

. (11)

The derivatives acting on the Wigner function are then given by covariant derivatives

∇xn
=

1
p

det(g)

∂

∂ xn

Æ

det(g) = cscθn
∂

∂ xn
sinθn (12)

with xn = θn,φn. This yields correspondence rules such as [25]

σ̂zρ̂ ↔
�p

3cosθ +∇θ
3 sinθ − 2 cscθ

p
3

−∇φ i +∇2
φ

2cotθ cscθ
p

3

�

Wρ̂(Ω). (13)

A full list of these rules, but in the aforementioned different angle convention, is given in
Ref. [25].

For general spin- j systems, exact expressions for the correspondence rules are known [35],
but are complicated. They do have a simple semiclassical form in the limit j →∞, but for
j = 1/2, which is by far the most commonly considered case in many branches of physics, this
semiclassical limit is not directly applicable.

2.3 An example for an exact FPE: spontaneous emission of a single two-level
atom

Let us start by applying the correspondence rules such as Eq. (13) to the important simple
example of spontaneous decay, where an exact FPE can be derived. Two-level atoms in free
space can undergo spontaneous relaxation to the energetically lower state by emission of light
quanta. This is due to the fundamental coupling of the atoms to the quantized electromag-
netic field. The description of this phenomenon can be drastically simplified by assuming that
the field is in equilibrium (which is the vacuum at optical frequencies) and by subsequently
integrating out the field’s degrees of freedom. A Born-Markov approximation then yields the
effective Lindblad master equation [38]

d
d t
ρ̂ =
Γ0
2
(2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂ − ρ̂σ̂+σ̂−) (14)

for the density operator ρ̂(t) of an individual atom. The rate Γ0 is the Einstein A coefficient.
Following the arguments of [25] we translate the master equation for ρ̂ into an Fokker-

Planck equation for the Wigner function Wρ̂(Ω, t):

∂

∂ t
Wρ̂(Ω, t) =− Γ0∇θ

�

cotθ +
cscθ
p

3

�

W (Ω, t)

+
Γ0
2
∇2
φ

�

1+ 2cot2 θ +
2 cotθ cscθ
p

3

�

Wρ̂(Ω, t). (15)

It has an equivalent set of Itô SDEs [39,40]

dθ =Γ0

�

cotθ +
cscθ
p

3

�

d t, (16a)

dφ =

√

√

Γ0

�

1+ 2 cot2 θ +
2cotθ cscθ
p

3

�

dWφ , (16b)

where dWφ is the differential of a Wiener process. These equations are exact and solving them
is numerically inexpensive without further approximation.
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2.4 The general case: Truncated Wigner Approximations (TWA) as diffusion
approximations

Knowing the exact phase space formulation of the master equation shifts the quantum many-
body problem of solving a large matrix differential equation of the density operator ρ̂(t),
Eq. (9), to solving a high-dimensional partial differential equation with possibly infinitely many
orders of derivatives for the c-number quasi-distribution Wρ̂(t). Except for special cases, such
as the one discussed in Sec. 2.3, both formulations are useless without the introduction of
further approximations.

From the perspective of complexity, the core idea behind different variants of the TWA
consists of neglecting higher order terms of the equation of motion of Wρ̂(Ω, t) such that the
remaining expression is a covariant Fokker-Planck equation (FPE) in terms of suitable phase
space variables Ω

∂

∂ t
Wρ̂(Ω, t) =−

∑

x∈Ω
∇xAx(Ω, t)Wρ̂(Ω, t) +

1
2

∑

x ,y∈Ω
∇x∇y Dx y(Ω, t)Wρ̂(Ω, t), (17)

where D(Ω, t) = B(Ω, t)BT (Ω, t) ∈ R2N×2N is a positive semidefinite matrix. It then can be
equivalently expressed by the set of SDEs [41]

dx = A(Ω, t)d t + B(Ω, t)dW , (18)

where dW ∈ R2N is a multivariate differential Wiener process. This and all further SDEs will
implicitly be stated in the Itô calculus.

In a numerical implementation, we can efficiently compute Ntraj independent solutions of
the SDEs [42], which we call trajectories. All relevant expectation values can then be directly
calculated in the Wigner phase by using the relation

Tr
�

ρ̂Ô
�

=

∫

dΩWρ̂(Ω)WÔ(Ω) =WÔ(Ω). (19)

The bars indicate the stochastic average

WÔ(Ω)≈
1

Ntraj

Ntraj
∑

n=1

WÔ(Ω
(n)), (20)

where Ω(n) refers to the phase space coordinate of the n’th trajectory and where the approxi-
mation due to a stochastic error vanishes as we let Ntraj→∞.

In summary, this means that the time evolution of the Wigner function in TWA is governed
by a diffusion process in the spherical Wigner phase space. From a physical standpoint, this
truncation should be formulated in a systematic fashion which elucidates its validity in terms
of a small parameter.

When adding spin-spin interactions, such as Ising-type couplings, the resulting equation for
Wρ̂(Ω, t) is no longer of Fokker-Planck type and approximations are needed. A commonly used
approximation is the discrete truncated Wigner approximation (DTWA) [24], which essentially
amounts to a mean-field factorization of the Wigner function. This approach always produces
deterministic equations and cannot account for the noise expected in dissipative systems.

As shown in [26,43] independent dephasing of spins can be incorporated in the DTWA, but
the description of decay requires some ad-hoc modelling [44], which is not justified in general.
Therefore it is not surprising that the standard DTWA cannot be applied to collective decay
processes such as superradiance. We recently developed an alternative approach, termed hy-
brid continuous-discrete truncated Wigner approximation (CDTWA), which describes the time
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evolution of the many-body density operator by a continuous representation of the many-body
spin Wigner function but samples the initial distribution from a discrete representation [25].
The CDTWA incorporates (uncorrelated) decay and dephasing of the spins in a consistent way,
but in the context of collective decay does not generally reveal which correlated terms can be
neglected or not (see Sec. IV. E of Ref. [25]).

3 Truncated Wigner Approximation for Large Spin Ensembles with
Collective Couplings

Neither the standard DTWA nor the CDTWA mentioned in the previous section are suitable for
describing problems of collective couplings among spins. We now present an alternative ap-
proach based on an approximate form of the correspondence rules for collective spin processes
and derive conditions for their validity.

3.1 Semiclassical limit of the correspondence rules for collective operators

If an ensemble of two-level atoms is confined to a small volume comparable in size with the
wavelength of the dipole transition between the two states, the coupling to the quantized elec-
tromagnetic field leads to a correlated emission of photons known as sub- and superradiance.
Collective processes in an ensemble of N spins can be described in terms of collective operators

Ŝ({cn}) =
N
∑

n=1

cnσ̂n (21)

where the "degree of cooperativity" is encoded in the weights {cn} = (c1, c2, . . . ) ∈ CN . For
c1 = c2 = · · · = cN the operator Ŝ({cn}) describes the maximally cooperative case of an all-to-
all coupling, relevant e.g. for modelling Dicke superradiance, see Sect. 4, while a distribution of
the cn’s peaked for some index n= j corresponds to the low-cooperativity case of short-range
interaction. The action of Ŝ({cn}) on the state ρ̂ can be exactly expressed as a differential
operator acting on the Wigner function Wρ̂(Ω) in the phase space, however this differential
operator does not have a simple form [34, 35]. For the resulting equation of motion for the
Wigner function to be of practical use, we propose instead truncated correspondence rules

WŜ({cn})ρ̂(Ω)≈ S({cn})Wρ̂(Ω) =
N
∑

n=1

cn (sn + Ln)Wρ̂(Ω), (22a)

with Ln =i∇θn





+ sinφn
− cosφn

0



+ i∇φn





cotθn cosφn
cotθn sinφn
−1



 , (22b)

where sn(Ω) is given by Eq. (7) and Ln is the angular momentum differential operator ex-
pressed in terms of covariant derivatives. Similarly we find the action

Wρ̂Ŝ({cn})(Ω)≈
N
∑

n=1

cn (sn − Ln)Wρ̂(Ω) (23)

for operators acting from the right-hand side. Note that the above contributions are the first
and third term on the right-hand side of Eq. (13), whereas the remaining terms denote "quan-
tum corrections" to this lowest order contribution. The intuition behind this truncation is
simple: For a single spin- j, the same semiclassical limit can be obtained by letting j →∞.
This reveals that classical and quantum contributions separate in the Wigner phase space.
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We note that this approximation leads to a Fokker-Planck equation for Wρ̂ without higher-
order derivatives if the master equation is at most bilinear in the collective operators. This
allows for an efficient simulation in terms of SDEs. Eqs. (22) are the central element of our
approach and form the basis of the simulations of collective decay phenomena discussed in
Sects. 4 and 6.

3.2 Validity of the approximate correspondence rules

We now discuss the range of validity of the truncated correspondence rules, Eqs. (22). To this
end we first note that the density operator ρ̂ of a system of N spins has the general form

ρ̂ =
∑

µ

ρµ σ̂
µ1
1 . . . σ̂µN

N , with µ= (µ1,µ2, . . . ), (24)

and µn = (0, x , y, z), with σ̂0 = 1̂ and s0 = 1, from which we can immediately deduce

Wρ̂(Ω) =
∑

µ

ρµ sµ1
1 . . . sµN

N . (25)

Note that this expression, while being exact, is only of formal use as the sum contains an
exponentially large number of terms. It does allow us, however, to explicitly calculate the
exact Weyl symbol of operators such as Ŝz({cn})ρ̂ through direct evaluation of Eq. (2) via
Eq. (25):

WŜz({cn})ρ̂(Ω) = Tr
�

∆̂(Ω) Ŝz({cn})ρ̂
�

=
∑

µ

ρµ

∑

n

cnTr
�

∆̂(Ω) σ̂z
n σ̂

µ1
1 . . . σ̂µN

N

�

.

Applying the spin algebra of the Pauli matrices and evaluating the individual Weyl symbols
yields

WŜz({cn})ρ̂(Ω) =
∑

µ

ρµ

∑

n

sµ1
1 . . . cn

�

δµn,0 sz
n +δµn,z + iϵz,µn,νn

sνn
n

�

. . . sµN
N , (26)

where ϵi jk is the Levi-Civita symbol. The truncation approximation in Eqs. (22) of the same
Weyl symbol is obtained, on the other hand, by applying the z-component of Eq. (22a) to the
Wigner function in Eq. (25), which yields:

Sz({cn})Wρ̂(Ω) =
∑

µ

ρµ

∑

n

sµ1
1 . . . cn

�

sz
nsµn

n + iεz,µn,νn
sνn
n

�

. . . sµN
N . (27)

To determine the error of Eq. (27) made by the truncated correspondence rule we define
its difference to Eq. (26)

δz(Ω)≡WŜz({cn})ρ̂(Ω)−Sz({cn})Wρ̂(Ω)

=
∑

µ

ρµ

∑

n

sµ1
1 . . . cn

�

δµn,0sz
n +δµn,z − sµn

n sz
n

�

. . . sµN
N

=
∑

µ

ρµ

∑

n

sµ1
1 . . . cn

�

1−δµn,0

� �

δµn,z − sµn
n sz

n

�

. . . sµN
N . (28)

In a similar way we can proceed with the x- and y-components Ŝ x({cn})ρ̂ and Ŝ y({cn})ρ̂. This
gives the full difference vector

δ(Ω)≡ (δx ,δ y ,δz)T (Ω) =
∑

µ

ρµ

∑

n

sµ1
1 . . . cn

�

1−δµn,0

� �

1− sns T
n

�µn . . . sµN
N , (29)
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where the superscript µn indicates the µn’th row of the given matrix. Finally, the error can be
quantified by the norm of the vector δ(Ω)

||δ(Ω)||2 =
∫

dΩ
�

|δx |2 + |δ y |2 + |δz|2
�

=
∑

µ,ν

ρ∗µρν

∑

n

 

f µνnn +
∑

m ̸=n

f µνmn

!

. (30)

We now evaluate the diagonal and non-diagonal parts separately. We find for the diagonal
contribution:

f µνnn =|cn|2
�

1−δµn,0

� �

1−δνn,0

�

·
∫

dΩ sµ1
1 sν1

1 · · ·
∑

i=x ,y,z

�

δµn,i − sµn
n si

n

� �

δνn,i − sνn
n si

n

�

. . . sµN
N sνN

N

=2N+1
�

1−δµn,0

�

δµ,ν|cn|2, (31)

which follows from
∫

dΩ sµn
n sνn

n = Tr(σ̂µn
n σ̂

νn
n ) = 2δµn,νn

and |sn|2 = 3. The off-diagonal
components all vanish

f µνmn = 0, for m ̸= n,

as each contains factors
∫

dΩn sµn
n

�

1−δνn,0

� �

δνn,i − sνn
n si

n

�

= 0.

Since

Tr(ρ̂2) =
∑

µ,ν

ρ∗µρν Tr(σ̂µ1
1 σ̂

ν1
1 ) . . . Tr(σ̂µN

N σ̂
νN
N ) = 2N

∑

µ

|ρµ|2, (32)

we see that

||δ(Ω)||2 =2N
∑

µ

|ρµ|2
N
∑

n=1

2|cn|2
�

1−δµn,0

�

≤2|{cn}|2Tr
�

ρ̂2
�

. (33)

When ρ̂ is the completely mixed state, we have µn = 0 for every n and therefore the truncated
correspondence rules are exact. For general states we can infer the error to scale as

||δ(Ω)|| ∼ |{cn}|=

� N
∑

n=1

|cn|2
�1/2

. (34)

One recognizes that if the coefficients cn all have comparable magnitudes we have

||δ(Ω)|| ∼O(
p

N). (35)

A necessary condition for the asymptotic correspondence rules to be valid is that the relative
deviation to the exact Weyl symbol is small, i.e.

||δ(Ω)||
||WŜ({cn})ρ̂||

≪ 1. (36)

10
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Note that

||WŜ({cn})ρ̂||=
Ç

Tr
�

ρ̂2Ŝ({cn})†Ŝ({cn})
�

. (37)

This expression can maximally scale as O(N), in which case the truncation approximation
Eq. (36) is satisfied for large ensemble sizes N . We now argue that this is the case if the dy-
namics of the system takes place in the subspace of states with large cooperativity. To this end
consider the totally symmetric operators with cn ≡ 1. The total angular momentum operator
Ŝ

2
= Ŝ

†
Ŝ has eigenstates | j, m,α〉 with so-called cooperativity 0 ≤ j ≤ N

2 , projection |m| ≤ j
on the z-axis and the parameter α distinguishing degenerate states. If ρ̂ = | j, m,α〉〈 j, m,α|
and j ̸= 0, then Eq. (36) yields

||δ(Ω)||
||WŜ({cn})ρ̂||

≤
p

2N〈 j, m,α| j, m,α〉

|〈 j, m,α|Ŝ2| j, m,α〉|1/2
=

√

√ 2N
j( j + 1)

=O
�

1
p

N

�

, (38)

i.e. the cooperativity of the spin ensemble determines the validity of the asymptotic form of
the correspondence rules.

3.3 Two-body interactions and collective dephasing

Before turning to specific applications of our TWA approach, let us discuss two special cases of
collective spin-spin interactions and collective dissipative processes which are relevant e.g. for
ensembles of two-level atoms coupled via a cavity field.

To describe the time evolution under the action of a collective interaction we can use the
truncated correspondence rules of Eq. (22) resulting in

−
i
2

�

Ŝ x({cn})Ŝ x({cn}), ρ̂
� ≈
←→

∑

mn

cmcn

�

+∇θm
sinφmsx

n +∇φm
cotθm cosφmsx

n

+∇θn
sinφnsx

m +∇φn
cotθn cosφnsx

m

�

Wρ̂(Ω),

(39a)

−
i
2

�

Ŝ y({cn})Ŝ y({cn}), ρ̂
� ≈
←→

∑

mn

cmcn

�

−∇θm
cosφms y

n +∇φm
cotθm sinφms y

n

−∇θn
cosφns y

m +∇φn
cotθn sinφns y

m

�

Wρ̂(Ω),

(39b)

−
i
2

�

Ŝz({cn})Ŝz({cn}), ρ̂
� ≈
←→

∑

mn

cmcn

�

−∇φm
sz
n −∇φn

sz
m

�

Wρ̂(Ω). (39c)

The equivalent stochastic differential equations in θn,φn are in fact deterministic and quantum
fluctuations enter only through the averaging over the Wigner distribution of the initial state.
A change of variables θn,φn→ sn to Cartesian coordinates then gives equations of the type

d sn =2cnSµ({cn})× snd t, (40)

where Sµ({cn}) =
∑

m cmsµmeµ with µ = x , y, z. This is a Larmor precession of the vectors sn
about the cumulative magnetic field 2cnSµ({cn}) and is equivalently predicted by a mean-field
approximation and the standard DTWA.

In addition to unitary interactions described by a von Neumann equation, collective dissi-
pative processes described by Linblad master equations are oftentimes of interest as well. A
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particularly simple case is that of collective dephasing for which we find an exact mapping to a
FPE [34]

γ

2

�

2Ŝ
z
({cn})ρ̂Ŝ

z
({cn})− Ŝ

z
({cn})Ŝ

z
({cn})ρ̂ − ρ̂Ŝ

z
({cn})Ŝ

z
({cn})

�

↔
γ

2

∑

mn

∇φm
∇φn

4cmcnWρ̂(Ω). (41)

This equation has the equivalent set of very simple SDEs

dθn = 0, dφn = 2
p
γcndW. (42a)

It is not surprising that all angles φn couple to the same noise dW , as their time evolution can
equivalently be generated by a dynamic Hamiltonian contribution Ĥ = γŜ

z
({cn})η(t) where

η(t) is a white noise process with identical properties as dW .

4 TWA Description of Collective Light Emission

Let us consider N two-level atoms with arbitrary but non-overlapping positions r n coupled
to the quantized electromagnetic field at distances comparable to the wavelength λe of the
two-level transition. In contrast to the case of atoms spaced at distances much larger than
λe, which allows a formal elimination of the coupling to the radiation field for each atom
individually, leading to the effective Lindblad master equation (14), here radiative couplings
between the atoms need to be taken into account. In addition we allow for a driving of the
atoms by an external coherent light field

E(r , t) =ecE(r )e−iωc t + c.c. (43)

which is polarized along the unit vector ec and has the wave vector k c = enωc/c with en·ec = 0.
The corresponding Rabi frequency for the j’th atom is Ω j = p · ec E(r j), where p is the atomic
transition dipole moment, which is assumed to be identical for all atoms. We denote the
detuning between the classical field and the atoms as ∆ =ωc −ωe. Formally integrating out
the electromagnetic field and using a Born-Markov approximation results in a master equation
of the N atom system which reads [45]

d
d t
ρ̂ =− i

�

Ĥ, ρ̂
�

+
1
2

∑

mn

Γmn(2σ̂
−
mρ̂σ̂

+
n − σ̂

+
mσ̂
−
n ρ̂ − ρ̂σ̂

+
mσ̂
−
n ). (44)

The effective Hamiltonian

Ĥ =−
∆

2

∑

n

σ̂z
n −

∑

n

�

Ωnσ̂
+
n + h.a.

�

+
∑

n

∑

m ̸=n

Jmnσ̂
+
mσ̂
−
n , (45)

describes the coupling to the external coherent drive as well as the radiative coupling between
the two-level atoms with rates Jmn. These rates as well as the positive definite decay matrix
Γ = GGT ∈ RN×N , where the choice of G is unique up to a unitary rotation, are given by the
free space Green’s tensor GE(r m, r n,ωe) of the electric field

−Jmn +
i
2
Γmn =

1
ε0

�

2πωe

c

�2

p† ·GE(r m, r n,ωe) · p. (46)

12



SciPost Physics Submission

Their explicit expressions are

Jmn

Γ0
=−

3
4

§

�

1− |ep · ermn
|2
� cos(kermn)

kermn

−
�

1− 3|ep · ermn
|2
�

�

sin(kermn)
(kermn)2

+
cos(kermn)
(kermn)3

�ª

, (47a)

Γmn

Γ0
=

3
2

§

�

1− |ep · ermn
|2
� sin(kermn)

kermn

+
�

1− 3|ep · ermn
|2
�

�

cos(kermn)
(kermn)2

−
sin(kermn)
(kermn)3

�ª

, (47b)

where r mn = r m−r n and ep (ermn
) is the unit vector along the polarization p (the position r mn)

and ke =ωe/c. The diagonal elements Γnn = Γ0 are given by the Einstein A coefficient and we
set Jnn = 0, thereby absorbing it into the atomic detuning ∆. This contribution corresponds
to the Lamb shift, which is however not correctly described within the dipole approximation
of the atom-light coupling. In fact Jnn diverges since rmn → 0 for m = n. In the following
sections we will assume resonant driving of the atoms and therefore set ∆= 0.

An exact mapping of the master equation to phase space would go beyond a Fokker-Planck
description, however the asymptotic correspondence rules of Eqs. (22) reduce it to

∂

∂ t
Wρ̂(Ω, t) =

�

−L1 +
1
2
L2

�

Wρ̂(Ω, t), (48a)

L1 =
N
∑

n=1

§

∇θn

�

Γnn

2
cotθn +

p
3

N
∑

m=1

sinθm

�

Jmn sinφmn +
Γmn

2
cosφmn

��

+∇φn

p
3 cotθn

N
∑

m=1

sinθm

�

−Jmn cosφmn +
Γmn

2
sinφmn

�ª

, (48b)

L2 =
N
∑

m,n=1

Γmn

�

∇θm
∇θn

cosφmn +∇φm
∇φn

cotθm cotθn cosφmn

−∇θm
∇φn

cotθn sinφmn +∇φm
∇θn

cotθm sinφmn

�

, (48c)

where φmn = φm − φn. Note that applying the approximate correspondence rules to terms
such as Ŝ({cn})−ρ̂Ŝ({cn})− from either left-to-right or right-to-left produces a small imaginary
contribution even though the master equation is real-valued. This produces a neglectable error
but can be alleviated by taking the symmetric average of both variations which corresponds
to just taking the real part of either one. The above FPE possesses an equivalent set of SDEs
given by

dθn =
�

Γnn

2
cotθn +

p
3

N
∑

m=1

sinθm

�

Jmn sinφmn +
Γmn

2
cosφmn

��

d t

+
N
∑

m=1

Gnm(− cosφndWθm
+ sinφndWφm

), (49a)

dφn =
p

3 cotθn

N
∑

m=1

sinθm

�

−Jmn cosφmn +
Γmn

2
sinφmn

�

d t

+
N
∑

m=1

Gnm cotθn(sinφndWθm
+ cosφndWφm

), (49b)

with 2N independent Wiener increments.
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Note that Eq. (48) does not reduce to Eq. (15) when taking the limit N = 1. The latter
is exact due to a representation in terms of a suitable choice of operators in the single-spin
Hilbert space whereas the former uses an expansion in the total angular momentum of the
ensemble of spins and therefore becomes invalid at small N .

The single-particle terms can be treated exactly and yield

i∆
2
[σ̂z

n, ρ̂]↔∆ · ∇φn
Wρ̂(Ω), (50a)

i
2
[Ωnσ̂

+
n +Ω

∗
nσ̂
−
n , ρ̂]↔−

�

∇θn
Im
�

Ωneiφn
�

+∇φn
Re
�

Ωneiφn
�

cotθn

�

Wρ̂(Ω), (50b)

which gives the following additional deterministic contributions

dθn =Im
�

Ωneiφn
�

d t, (51a)

dφn =
�

Re
�

Ωneiφn
�

cotθn −∆
�

d t, (51b)

to the above SDEs.
In the following sections we will investigate specific examples of atomic matter coupled to

quantized light fields and demonstrate the strengths and weaknesses of the TWA by comparing
its predictions of several observables to numerically exact results. An experimentally available
observable is for example the total photon emission rate

I(t) = −
d
d t
〈Ŝz〉|Γ =

1
2

N
∑

m,n=1

Γmn〈2σ̂+mŜzσ̂−n − σ̂
+
mσ̂
−
n Ŝz − Ŝzσ̂+mσ̂

−
n 〉 (52)

into all spatial directions. It is typically easier to detect the intensity of the emitted light into
a solid angle with a direction defined by the unit vector ek or small areas obtained from an
integration over some geometric configuration thereof. The photon emission rate along the
unit vector ek is given by [45]

Iek
(t) =I0

ek

N
∑

m,n=1

e
2πi
λe

ek(r m−r n)〈σ̂+mσ̂
−
n 〉, (53a)

I0
ek
=Γ0(1− |ep · ek|2), (53b)

where I0
ek

is the enveloping emission profile of a single atom. Note that this can be rewritten
in terms of collective operators

Iek
(t) =I0

ek
〈Ŝ({e−

2πi
λe

ek r n})†Ŝ({e−
2πi
λe

ek r n})〉 (54)

such that the Weyl symbol

Ŝ({cn})†Ŝ({cn})↔|S−({cn})|2 +
1
2

Sz({|cn|2}) (55)

required for the calculation of the expectation value follows from applying the truncated corre-
spondence rules from right to left. The aforementioned total radiated intensity is thus explicitly
given as

I(t) = −
p

3
2
Γ0

∑

n

cosθn −
3
4

∑

mn

Γmnsinθm sinθn cos(φm −φn). (56)
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Unlike cumulant expansions, which only allow the investigation of expectation values up to the
truncation order, the TWA can in principle be used to calculate arbitrary expectation values.
A prime example for this is the second order correlation function the detected light

g(2)ek
(τ= 0; t) =

�

�

�

�

�

I0
ek

Iek
(t)

�

�

�

�

�

2

〈Ŝ({e−
2πi
λe

ek r n})†Ŝ({e−
2πi
λe

ek r n})†Ŝ({e−
2πi
λe

ek r n})Ŝ({e−
2πi
λe

ek r n})〉, (57)

which similarly evaluates to

Ŝ({cn})†Ŝ({cn})†Ŝ({cn})Ŝ({cn})↔

|S−({cn})|4 + 2Sz({|cn|2})|S−({cn})|2 +
1
2
|Sz({|cn|2})|2 − S−({|cn|2cn})∗S−({cn}).

(58)

Just like in Eq. (48) the truncation produces a small imaginary component for the Weyl symbol
if complex cn are considered. This is again alleviated by taking the symmetric average over
the left-to-right and right-to-left application of the correspondence rules which effectively pro-
duces just the real part of the above symbol.

Moreover we consider the spin squeezing parameter ξ2 defined as

ξ2 =
N

�

�〈Ŝ〉
�

�

2 min
en

�

∆Ŝen

�2
, (59)

where Ŝ =
�

Ŝ x , Ŝ y , Ŝz
�T

is the collective spin operator and ∆Ŝen
= 〈Ŝ2

en
〉 − 〈Ŝen

〉2 is the vari-

ance of the operator Ŝen
= en · Ŝ projected onto an axis that is orthogonal to the mean spin,

i.e. 〈Ŝ〉 · en = 0. This minimal variance is not only of interest in quantum metrology, but
furthermore a squeezing of ξ2 < 1 implies entanglement [46].

5 Dicke Decay

To benchmark our method and to illustrate its strengths, we will first study the case where
all atoms couple with identical rates Γmn = Γ0, and where the unitary couplings are ignored
Jmn ≡ 0. This model was proposed by Dicke as an approximation to the radiative coupling
of a free gas at very strong confinement [1]. The model also typically arises in cavity- and
waveguide QED.

We fix the non-unique choice of G in Γ = GGT to Gmn =
p

Γ0δn,1. Substituting this
into Eqs. (49) reveals that the phase space angles only couple to 2 of the possible 2N white
noise processes. This is intuitive, e.g. from cavity QED, where these two degrees of freedom
represent the noisy coherent amplitude dα = dWx + idWy of the bosonic cavity mode that
adiabatically follows the state of the atoms. If the system is initially in the inverted state
|e1e2 . . . eN 〉 = | j = N/2, m = N/2〉, it can only decay along the states of maximal cooperativ-
ity j = N/2. Hence we expect the TWA be a good approximation at large N . The ensemble
descends this ladder of states with initially increasing and then decreasing rates. This gives
rise to the effect of superradiance, i.e. the emission of light at a rate faster than that of a single
atom [1]. Furthermore the restriction to just N + 1 states means that an exact and efficient
numerical integration of the master equation in terms of rates is possible [3].

In Fig. 1 we compare the TWA prediction of the number of excitations and the total emis-
sion rate to exact results. The TWA results were produced using an Euler-Maruyama inte-
gration scheme [42] with a timestep ln(N)Γ0∆t/N = 10−3 and an averaging over 64 · 103

trajectories. They accurately reproduce the exact results. Even at small ensemble sizes of
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Figure 1: Dynamics of the Dicke decay for varying ensemble sizes N . For an initially
inverted system the a) number of excitations and b) emission rate of are shown as
predicted by the TWA (solid lines) and exact results (dashed lines). c) Absolute
difference of the exact excitation number and TWA prediction. For the initially fully
mixed state d) depicts population trapping of the excitation number. The dashed
lines indicate the exact steady state populations. e) Time evolution of the relative
deviation of the TWA population prediction to the exact steady state.

N = 8 a maximum absolute error of only ≈ 1% occurs which further decreases in N . The
positions and heights of the superradiant bursts are matched with similar accuracy.

Since only the states of maximal j = N/2 couple to the vacuum state |g1 g2 . . . gN 〉, other
initial states cannot fully emit their excitations. This gives rise to the effect of excitation trap-
ping. For simplicity consider even N . If we assume the initial state to be the completely mixed
state, given by the factorized Wigner function Wρ̂(Ω) =

∏N
n=1 W (n)

ρ̂
(Ωn) with W (n)

ρ̂
(Ωn) = 1/2,

the steady state population can be determined by summing over the (2 j + 1)d j states in each
j-ladder with degeneracy d j and with probability 2−N each and multiplying by the population
− j of the bottom state, leading to

〈Ŝz(t →∞)〉=
N/2
∑

j=0

(2 j + 1)d j

2N
(− j), (60a)

d j = (2 j + 1)
N !

(N/2+ j + 1)!(N/2− j)!
. (60b)

In Fig. 1 d) and e) we again see a very good agreement of the TWA with the exact results that
improves as N increases.

Furthermore, the Dicke decay is a prime example for revealing how superradiance emerges
within a semiclassical framework. With the assumption that Jmn = 0 and Γmn = Γ0 we can see
that the SDEs of Eqs. (49) are closely related to the Kuramoto model [47]

d
d t
φn =ωn +

N
∑

m=1

Kmn sin(φm −φn), (61)

which describes harmonic oscillators with frequencies ωn and pairwise coupling rates Kmn. If
we compare this to the equations of the relative phases φn of the two-level states, we can iden-
tify ωn = −∆ = 0 and Kmn =

1
2Γ0 sinθm cotθn. The coupling is long-ranged and, due to the
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Figure 2: Time evolution of three sample trajectories according to the Dicke decay in
TWA with N = 256 atoms. Depicted are a) the number of excitations, b) coherences
and c) average phases of the atomic ensemble. The dashed vertical lines denote times
of peak coherence.

appearing θm terms, time-dependent. Additionally, the phases are subjected to non-diagonal
and non-linear noise. Nevertheless the origin of superradiant bursts in the Dicke model is re-
lated to the phase transition in the Kuramoto model from a completely incoherent state where
all {φn} are uniformly distributed to that of spontaneous synchronization. This emergence
of synchronization φm = φn causes a dynamic shift of the changes dθn and therefore of the
total number of excitation 〈Ŝz〉. As a result, the photon emission rate will transition from
individually radiating atoms γ(t = 0)∼ N to collectively enhanced emission ∼ N2.

In the Kuramoto model, synchronization is quantified by the order parameters

reiψ =
1
N

N
∑

n=1

eiφn , (62)

where 0 ≤ r ≤ 1 is the coherence and ψ is the average phase. Individual trajectories of
the Dicke decay in TWA, denoted by the subscript ( j), indeed share the feature of emerging
transient coherence as is shown in Fig. 2. Even though the coherences r( j) approach zero at
short and long times, there is an intermediate window where they peak significantly. Around
this peak, the change of the phases in time vanishes and the signal-to-noise ratio is strongly
enhanced. At the same time, the slope of the number of excitations is minimal, i.e. a photon
emission burst occurs.

At first glance this coherent locking of phases might be surprising when compared to the
rate equation of the density operator which does not show such an effect. We note however
that the emerging average phase ψ( j) of a single trajectory during the burst is uniformly dis-
tributed. By taking an additional trajectory average before computing the order parameters,
the coherence vanishes at all times.

6 Dynamics of Spatially Extended Systems

Let us now turn to the more realistic spatially extended systems, where idealizations such
as the Dicke decay are no longer sufficient. First, we consider the recently developed light-
matter interfaces based on regular arrays of atoms [48] with sub-wavelength lattice constants.
In these arrays interference from the precisely positioned atomic emitters leads to pronounced
collective responses despite a comparatively small number of atoms. Using atomic configura-
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Figure 3: Dynamics of a coherently driven 4× 4 quadratic atomic array with lattice
spacing a = 0.8λe. a) Sketch of the array that is aligned in the x-y-plane and driven by
a plane wave propagating along the z-axis. b) Total excitation number, c) total photon
emission rate into free space and d) spin squeezing for a coherently driven atomic
array as a function of time. The TWA predictions (solid lines) are compared to MCWF
simulations (dashed lines). The different colors denote varying Rabi frequencies Ω.

tions inspired by these recent experimental advancements, we benchmark the performance of
the TWA based on the truncated correspondence rules with numerically exact results.

The atomic ensembles are treated according to their full master equation of Eq. (44) in-
cluding dissipation and the dipole-dipole interactions. The numerical predictions are obtained
from solving the SDEs of Eqs. (49). For all examples we choose a timestep Γ0∆t = 10−3 and
NTraj = 64 ·103 trajectories for the TWA simulations. We compare the semiclassical predictions
to Monte Carlo wavefunction (MCWF) simulations obtained by using the QuantumOptics.jl
package [49]. These are, apart from stochastic fluctuations due to a finite number of trajecto-
ries, exact. All MCWF expectation values were calculated from NTraj = 103 trajectories.

Finally, we consider a dense elongated cloud of harmonically trapped atoms driven by a
laser. We model the geometry and coherent drive after a recent experimental investigation [50]
and study the coherence of the light emitted by the cloud.

6.1 Driven atomic arrays

Let us first consider an array of N = 16 atoms in a 4×4 quadratic lattice in the x-y-plane with
lattice constant a = 0.8λe.

Here and in the next section, each atom is assumed to have a dipole allowed transition from
the ground state |g〉 to the excited state |e〉with circular polarization ep = (1, i, 0, )T/

p
2 along

the z-direction. They are initially in the collective ground state |g1 g2 . . . gN 〉 and are driven
by a plane wave which propagates perpendicularly to the array such that the Rabi frequencies
are simply reduced to Ωn = Ω.

In Fig. 3 we see that the interplay of driving and dissipation leads to damped Rabi oscil-
lations in the number of excitations and finally to a non-trivial steady state. At small driving
Ω/Γ0 < 1 the TWA does not reproduce the transient dynamics and steady state values obtained
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Figure 4: Dynamics of an initially inverted array at a spacing of a = 0.2λe and
without an external drive. a) Number of excitations as a function of time as predicted
by our TWA method (blue), a second order cumulant expansion (purple, MF 2) and
by an exact MCWF simulation (green). The shaded areas denote variances∆Sz/2. b)
TWA (solid lines) and second order cumulant expansion (dashed lines) predictions
of the number of excitations starting from the fully inverted state (green) and the
collective ground state (blue). c) Distribution of the eigenvalues γi of the dissipation
matrix Γ and | ji| of the dipole-dipole interaction matrix J. Stacked points denote
degeneracies. d) Weights of the most superradiant and subradiant eigenvectors of Γ .

from MCWF simulations, which are still feasible for this small number of emitters.
As the driving increases, the match between semiclassical and exact dynamics improves.

In the moderate to strong driving regime Ω/Γ0 ≥ 1 we see a very good agreement across all
observables. Most notably, the spin squeezing parameter is matched closely, suggesting an
overall excellent prediction of general second moments.

The ever improving performance in the strong driving regime Ω/Γ0 ≥ 1 can be explained
by the competition of the driving and the dissipation. Here, only the cooperative, i.e. superra-
diant, modes significantly contribute to the dynamics. On the other hand, subradiant modes
with their weak rates become insignificant for the overall dynamics and the steady state.

6.2 Inverted atomic arrays

Now we analyze the relaxation of an initially fully inverted state |e1e2 . . . eN 〉 in the absence of
a classical driving field, i.e. we set Ω0 = 0. The atoms again form a 4× 4 quadratic array in
the x-y-plane with a smaller lattice constant of a = 0.2λe.

In Fig. 4 a) we see the comparison between the TWA prediction, second order cumulant
expansion (MF 2) and a MCWF simulation. The second order cumulant expansion [20–22]
result was produced using the QuantumCumulants.jl package. The dynamics can be split into
two time regimes: The superradiant regime Γ0 t ≲ 1 and the subradiant regime Γ0 t ≳ 1. In
contrast to the second order cumulant expansion, the TWA closely matches the exact results
during the superradiant burst. As the system transitions into subradiance, the semiclassical
prediction converges to a finite number of excitations

∑

n〈σ̂
+
n σ̂
−
n 〉 ≈ N/10, i.e. it gets stuck at

a subradiant plateau which is unstable in a full quantum treatment. We verify that this is a
steady state according to the TWA by comparing it to another semiclassical evolution starting
from the collective ground state as shown in b) where, even in the absence of any excitation
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Figure 5: Dynamical and steady state radiation of a driven, cigar-shaped cloud of
N = 1400 atoms. a) Sketch of the geometry of the driven cloud. b) Photon emission
rate into the x- and y-direction and c) corresponding coherence of the emitted light
at Ω0 = 10Γ0 as a function of time. Steady state values of d) the photon emission
rate in x-direction and e) coherences as measured (green circles), predicted by a
driven Dicke model (blue solid line), both taken from [50], and the DTWA (purple
diamonds) at varying Ω0.

processes, the system evolves out of the collective ground state. The second order cumulant
expansion does not suffer from this problem, however fails to match the early time dynamics
and similar unphysical creation of excitations in systems with subradiant modes, though not
as pronounced as the TWA, has also been observed in other systems [20,21].

This can be explained by the distribution of the eigenvalues of Γ and J as can be seen in c).
At the timescale Γ0 t ≤ 1 the rates γi of the cooperative superradiant eigenmodes of the matrix
Γ = U ·diag({γ j}) ·UT dominate the dynamics, whereas the eigenvalues ji of the dipole-dipole
interaction matrix J only significantly contribute at Γ0 t ≳ 1.

In d) we show the amplitude distribution of the most superradiant (green, j = N) and sub-
radiant eigenvectors (blue, j = 1) of U i j . The superradiant mode is strongly cooperative as
all coefficients have the same sign and are of approximately equal magnitude. In contrast, the
subradiant mode has alternating signs and couples the atoms with more varying magnitudes.
The validity criterion of Eq. (36) is satisfied when the superradiant mode acts on the collective
ground state, but for the subradiant mode it is not. The presence of several modes with eigen-
values 10−2 < γi/Γ0 < 100 shows that such low-cooperativity effects already become relevant
at the timescale of the simulation and therefore the TWA fails to escape the plateau.

6.3 Superradiance from an extended atomic cloud driven by an external laser

Lastly, we consider the radiative properties of an ensemble of N = 1400 atoms in an extended,
three-dimensional harmonic trap, see Fig. 5 a). An experimental realization of this configura-
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tion was recently investigated [50]. The authors claim that the cloud of atoms behaves like an
effective driven Dicke model (DDM) along the elongated x-direction, i.e. it can be described
by the master equation

d
d t
ρ̂ =−

iΩ
2
[Ŝ x , ρ̂] +

Γ0
2
(2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂ − ρ̂Ŝ+Ŝ−). (63)

However, the disordered atomic positions lead to a reduced cooperativity which is captured by
an effectively smaller ensemble size Ñ = µN . They found that µ≈ 0.005 yields a good match
between the experimental observations and the DDM.

To describe the experiment within the DTWA, the positions of the atoms are normally
distributed with standard deviation ξ= (10,0.25, 0.25)λe along each dimension and vanishing
mean, such that the cloud is cigar-shaped and has the reported 1/e2-radial widths.

The atoms are assumed to have circular polarized transitions in the y-z-plane, i.e. we
choose ep = (0, 1, i)T/

p
2. They are initially in the collective ground state |g1 g2 . . . gN 〉 and are

are driven by a plane wave with k c =
2π
λe

ez such that we obtain Rabi frequenciesΩn = Ω0eik c ·r n .
We perform simulations at varying driving strengths Ω0/Γ0 = 1, 2, . . . , 10.

In Fig. 5 b) and c) the dynamics of the cloud at Ω0 = 10Γ0, i.e. in the superradiant regime,
is compared to that of a single atom in free space. The incoming field drives damped Rabi oscil-
lations which are further suppressed due to collective effects. The photon emission rate Ie y

(t)
along the short side also shows collectively-damped oscillations, but converges to the single-
particle emission rate. In stark contrast to this, the emission into the x-direction shows a strong
initial superradiant burst. The steady state photon emission rate per atom Iex

(Γ0 t = 10)/N
is also greatly enhanced. The second order correlation function of the light in the y-direction
immediately saturates to that of a single thermal mode, demonstrating that the atoms emit
independently into this direction and that no coherent locking occurs. In contrast, photons
emitted into the elongated direction show a much stronger degree of coherence.

In d) and e) we investigate the steady state radiation according to the DTWA. Here, at
β = 2Ω0/Γ0Ñ ≈ 1.4 the transition from the magnetic to the superradiant regime of the DDM
occurs. We compare the coherence of the emitted light to the experimental results and the
corresponding DDM prediction [50] and see a much closer agreement with the DDM. The
higher value of g(2) in the experimental data suggests additional dephasing effects, e.g. due to
the thermal motion of the atoms, which is not included in the DDM and DTWA descriptions.

7 Conclusion

We here presented a semiclassical, numerically efficient approach to describe the many-body
dynamics of spins with collective interactions and dissipation. The approach is an extension of
the discrete truncated Wigner approximation [24], which approximates the time evolution of a
physical state in the Wigner phase space by a diffusion-like process taking into account classical
and leading-order quantum fluctuations. The equation of motion of the Wigner distribution of
the many-body density matrix can be cast into a differential form by applying correspondence
rules, i.e. the action of an operator on the state translated into phase space. We proposed a
specific truncation of said correspondence rules by only keeping lowest-order contributions
which maps the Lindblad master equation of interacting two-level systems to a Fokker-Planck
equation with positive diffusion. The latter allows for a numerically inexpensive propagation
in time by solving only linearly many stochastic differential equations.

We derived quantifiable conditions for the validity of the approximation in terms of an
upper bound on the error that is introduced by the truncation. We showed in particular that
the truncation becomes exact if the many-body dynamics is dominated by degrees of freedom
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with high cooperativity in a large ensemble. Thus the method is ideally suited for the anal-
ysis of collective processes such as superradiant emission of light in atomic ensembles. We
benchmarked our method against exact results for the Dicke decay, which can be obtained
without further approximations and found excellent agreement that improves with the num-
ber of atoms in the ensemble. In the case of small atomic arrays, we compared predictions
from our semiclassical approach with exact Monte Carlo wavefunction results and showed that
early superradiant timescales are well captured, however longer subradiant timescales cannot
be reliably described. When the array is coherently driven with Rabi frequencies at or above
the single-particle linewidth, the influence of the subradiant modes becomes negligible and
the emerging dynamics is again well captured within the semiclassical approximation, while a
second order cumulant expansion shows major deviations from exact results. Furthermore we
study the dynamics of a driven, harmonically trapped, spatially extended ensemble of quan-
tum emitters and calculated its population dynamics, direction resolved photon emission rates
and their corresponding degree of coherence expressed in terms of g(2) correlations. The ex-
perimental detected light is more thermal than the TWA simulation and the prediction from
a simpler theoretical model, which suggests the existence of dephasing mechanisms not yet
present in the current theory.

Our approach paves the way for studying strongly cooperative effects in large and spatially
extended ensembles of two-level systems. Specifically, recent light-matter interfaces such as
trapped gases and atomic arrays and their non-linear response to incoming coherent light
[48,50] can be studied with ensemble sizes much larger than N ≃ 50 as is considered in this
work. Typically, not much analytical progress can be made in such systems and methods based
on tensor networks do not work reliably due to the high dimensionality of these setups and
intrinsic long-range interactions.

Future works will investigate whether the truncation, which so far is a diffusion approxima-
tion, can be improved by extending it to a jump-diffusion approximation by including classical
Poissonian jump processes. This might allow for an extension of the validity of our theory
to regimes of moderate or even low cooperativity. Motivated by the excellent agreement of
spin squeezing and coherence of the emitted light, we believe that our method can be used
to analyze the generation of non-classical states of realistic, experimentally realizable atomic
configurations and their emitted light.
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