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Abstract: We explore decay channels for charged black holes with vanishing

temperature in N = 2 supersymmetric compactifications of string theory. If not

protected by supersymmetry, such extremal black holes are expected to decay as a

consequence of the weak gravity conjecture. We concentrate on double extremal,

non-supersymmetric black holes for which the values of the scalar fields are constant

throughout space-time, and explore decay channels for which decay into BPS and

anti-BPS constituents is energetically favorable. We demonstrate the existence of

decay channels at tree level for large families of double extremal black holes. For

specific charges, we also find stable non-supersymmetric black holes, suggesting re-

combination of (anti)-supersymmetric constituents to a non-supersymmetric object.
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1 Introduction

Black holes with vanishing temperature do not emit Hawking radiation. Still such

extremal black holes are expected to decay, if not protected by supersymmetry, as

a consequence of the Weak Gravity Conjecture (WGC) [1]. This conjecture states

that gravity is the weakest force in any consistent theory of quantum gravity. More

precisely, the conjecture states that in any consistent theory of quantum gravity there

must exist at least one object on which the gravitational force is smaller than that
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due to a gauge charge [1–3]. Consequently, there must be a bound on the mass of this

object in terms of the other charges of the theory. For example, in four-dimensional

gravity with a U(1) gauge field this bound reads [3]

M ≤ MpQ, (1.1)

where Q is the charge and Mp the four-dimensional Planck mass. The stronger

version of the conjecture, put forward in [4], states that only BPS black holes are

allowed to saturate the weak gravity bound. It is important to note that the WGC

is a statement about low-energy effective theories. As such, it does not make qual-

itative predictions on the exact UV completion of the theory. It is possible that

non-supersymmetric states of the UV completion are stable against decay [29].

Decay channels of black holes have been studied in many cases, see for exam-

ple [5–13]. A common approach is to consider higher derivative corrections, and to

demonstrate that their coefficients imply that the ratio M/Q decreases with increas-

ing Q. In theories with gauge group U(1)b, b > 1, decay of extremal black holes leads

to further conditions, in particular conditions on the convex hull of charge-to-mass

ratios [6].

In the present paper, we will consider decay channels for four-dimensional black

holes in N = 2 supergravity. These theories have generically multiple U(1) gauge

fields, as well as families of solutions of extremal black holes, both supersymmetric

[14, 15]1 as well as non-supersymmetric [17–19]. Both families involve non-trivial

dynamics of the scalar fields, known as the attractor mechanism, which describes the

evolution of the scalar fields from asymptotic infinity to the horizon. As described

above, the weak gravity conjecture suggests that it is energetically favorable for the

extremal black holes to decay.

We restrict to the simplest class of extremal, supersymmetric black holes, namely

those solutions with constant scalar fields. These solutions are known as double

extremal black holes. In particular, as an indication of possible decay we study

the ratio of masses between the non-supersymmetric double extremal black holes

and their constituents. To avoid non-constant scalar fields for the constituents, we

mostly restrict to decay channels with BPS and anti-BPS objects.2 We are able

to demonstrate that this subclass of constituents provides viable decay channels for

large families of extremal black holes. In addition, we also explore R2 corrections to

these decay channels.

More specifically, we consider compactifications of IIA string theory, with black

holes formed as bound state of Dp-branes supported on p-dimensional cycles of the

Calabi-Yau threefold X. Black holes with vanishing D6-brane charge are amenable

1See for a comprehensive review, for example [16].
2Decay channels 4.2a and 4.3e include constituents which are extremal but neither BPS nor

anti-BPS.

– 2 –



to analytic analysis, for example of the attractor points. We restrict to such black

holes in this paper. The charge lattice contains supersymmetric cones, which con-

tain the charges of supersymmetric black holes. The magnetic charges are carried

by D4-branes and are positive for supersymmetric black holes. These correspond

to holomorphic, effective divisors of X. For both supersymmetric [20, 21] and non-

supersymmetric black holes [22] with positive D4-brane charges, the microscopic

entropy is rather well understood in terms of the Maldacena-Strominger-Witten

(MSW) conformal field theory (CFT). Such a description is not available for generic

non-supersymmetric black holes in IIA supergravity.

By analyzing threshold masses in supergravity, we explore the stability of non-

supersymmetric black holes in two families:

1. Black holes with positive magnetic charges, but electric D0-brane charge oppo-

site to that of supersymmetric black holes. The charges of non-supersymmetric

states of the MSW CFT lie in this cone of the charge lattice [23, 24]. Based

on mass ratios, we demonstrate in Section 4.2, decay channel 4.2c, that it

is energetically favorable for such black holes to decay to a bound state of

D0-branes and “polar” D0-D4-branes. The latter are themselves formed from

bound states [25, 26]. We expect that the quantum-mechanical process for

this decay is Schwinger pair creation of D0 and anti-D0-branes in the electric-

magnetic field of the extremal black holes. Such pair creation in the background

of Reissner-Nordström black holes has been discussed by [27, 28].

Curiously, we find that including F-term R2 corrections appears to make these

decay channels less favorable. While this could be viewed as weakening the

evidence for theWGC, we expect that a full analysis ofR2 corrections, including

D-terms, is likely to be in better agreement with the predictions of the WGC.

2. Black holes with positive and negative magnetic charges. These charges corre-

spond to non-holomorphic divisors. Analogously to five dimensions [29, 30], we

find that the inequalities for decay depend crucially on geometric data of the

compactification geometry, in particular the triple intersection numbers3 and

the positive cone of divisors. For b2(X) = 2 and properly identifying the full

effective cone of the CY threefold, we establish various valid decay channels at

tree level, channels 4.4b in Section 4.4.

While we find decay channels for various double extremal solutions, we are unable

to identify such decay channels for a few specific cases of magnetically charged non-

supersymmetric states. We expect that these are stable against decay, and give

rise to recombination of (anti-)supersymmetric constituents to a non-supersymmetric

3These numbers are the entries of the triple intersection tensor Cabc which determines the cubic

prepotential (2.3) in supergravity.
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bound state, as discussed recently also in five dimensions [29–31]. The interpretation

in terms of the WGC is that these states are required to be purely quantum, or

microscopic, ie they are elementary particles of the UV completion of the low-energy

effective theory.

The paper is organised as follows. In Section 2 we briefly review the background

material on N = 2 supergravity and black holes in four dimensions. Section 3 is

devoted to finding the attractor solutions for various Calabi-Yau compactifications.

We then discuss various possible decay channels for these solutions in Section 4. The

connection to the five-dimensional results is made in Section 5 and we conclude with

a brief discussion and outlook in Section 6. In the Appendix we collect some useful

formulas and computations.

2 Extremality and attractors

In this Section we review the physical setup we will be working in, namely black hole

solutions in four-dimensional N = 2 supergravity.

2.1 Review of N = 2 supergravity in four dimensions

We consider type IIA string theory on a compact Calabi-Yau threefold (CY3), X, or,

equivalently, M-theory on a circle times a CY3. This gives rise to N = 2 supergravity

in four dimensions with h1,1(X) vector multiplets, with hi,j(X) the Hodge numbers

of X. The bosonic part of the supergravity action takes the form

S =
1

κ4

∫
R1,3

d4x
√
−G

(
R− 2gab̄(∂t

a)(∂t̄b̄)

−fAB(t)F
A
µνF

Bµν − 1

2
f̃AB(t)F

A
µνF

B
ρσϵ

µνρσ

)
,

(2.1)

where κ4 is the four-dimensional Newton’s constant, G the determinant of the space-

time metric, and R the Riemann curvature. Moreover, A,B = 0, . . . , h1,1(X), and

fAB, f̃AB are determined in terms of the prepotential F introduced below [16, 17].

The metric on the complex moduli space M of Kähler moduli is gab̄.

The complexified Kähler moduli ta are parametrized by the projective coordi-

nates XA,

ta := Xa

X0 = Ba + iJa, (2.2)

where Ba are the B-fields and Ja are the (real) Kähler moduli, such that the Kähler

form J = Jaωa with ωa ∈ H1,1(X) a basis of H1,1(X). The triple intersection

numbers of the divisor dual to ωa we denote by Cabc.

Let F (XA) be the prepotential of the theory. This function is homogenous of

degree 2, F (λXA) = λ2F (XA) for λ ∈ C∗. Using this symmetry, we can consider the

gaugeX0 = 1. We will mostly be interested in the large volume limit, Ja → ∞, where
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we can neglect higher loop and instanton corrections. The perturbative prepotential

is given by4

F (XA) =
1

6
Cabc

XaXbXc

X0
+

1

24

1

64
c2,a

Xa

X0
Â, (2.3)

where c2,a is the second Chern class of X, and Â is a chiral background field related to

the Weyl multiplet. The latter term involving Â will give rise to a curvature squared

(or R2) correction in the effective action of supergravity. In most of our discussion,

we reduce to tree level and set c2,a = 0. In the gauge X0 = 1, we have then

F (ta) =
1

6
Cabct

atbtc. (2.4)

The Kähler potential reads

K(XA, X̄A) = − log
[
−i
(
(XA)∗∂AF −XA(∂AF )∗

)]
. (2.5)

At tree level, this evaluates to

K(XA, X̄A) =− log
[
i1
6
Cabc(t

a − t̄a)(tb − t̄b)(tc − t̄c)
]
= − log [8VIIA] , (2.6)

with VIIA the tree level CY volume,

VIIA =
1

6
CabcJ

aJ bJ c. (2.7)

This volume is in string units and varies as function of the vector multiplet moduli

[26]. For use in Sec. 5, we note that the volume in 11D Planck units belongs to a

hypermultiplet, and is independent of the vector multiplet moduli. As a result, the

volume is fixed in five-dimensional supergravity. For more details, see also Sec. 5.

The electric-magnetic charge of a (D0, D2, D4, D6) brane bound state is denoted

by

γ = (q0, qa, p
a, p0) ∈ Q2b2+2. (2.8)

Sometimes it is also useful to consider γ as a cohomology class,

γ = p0ω0 + paωa + qaω
a + q0ω

0 ∈ ⊕3
j=0H

2j(X,Q), (2.9)

where ω0 is the generator of H0(X,Z), ωa is a basis for H2(X,Z), ωa a basis for

H4(X,Z) and ω0 the generator for H6(X,Z). We will sometimes also consider the

(ωA, ω
A) as basis elements for the Poincaré dual homology.

The superpotential is defined by

W (γ,XA) = qAX
A − pA∂AF, (2.10)

4Our convention for the prepotential follows the literature on extremal black holes [17, 18], and

differs by a sign from some other literature, for example [16].
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while the metric on the complexified Kähler moduli space, M, is defined in terms of

the Kähler potential as

gab̄ := ∂a∂b̄K. (2.11)

We denote the central charge by Z(γ,XA, X̄A), defined as

Z(γ,XA, X̄A) = eK/2W (γ,XA). (2.12)

Upon a rescaling XA → λXA with λ ∈ C∗, we have Z → λ/|λ|Z.
We note that W is a holomorphic function (2.10) of the moduli t (2.2) in the

gauge X0 = 1, and we will also use W = W (γ, t). Similarly, we also use the notation

Z(γ, t, t̄) = Z(γ, t) for Z(γ,XA, X̄A) and elsewhere, omitting the dependence on

anti-holomorphic variables where appropriate.

The Kähler covariant derivative ∇aZ of the central charge reads [18]

∇aZ = ∂aZ + 1
2
(∂aK)Z. (2.13)

We have a simple relation between the covariant derivative of Z and the derivative

of |Z|,

∂a|Z| =W̄ 1/2

(
1

2

∂aW

W 1/2
+

1

2
(∂aK)W 1/2

)
eK/2 =

1

2
e−iα∇aZ,

∂̄ā|Z| =
1

2
eiα∇̄āZ̄,

(2.14)

where α is the phase of Z [32]

eiα =
Z

|Z|
.

Moreover, the covariant derivative acting on W reads

∇AW = ∂AW + (∂AK)W. (2.15)

2.2 Black hole solutions

We consider the static spherically symmetric metric [33]

ds2 = e2Udt2 − e−2U

[
c4

sinh4 cτ
dτ 2 +

c2

sinh2 cτ
dΩ2

]
, (2.16)

with τ ∈ (0,∞) a parametrization of the radial direction, with τ → 0 at asymptotic

infinity and τ → ∞ near the horizon.

A one-dimensional Lagrangian describing the radial evolution of U , t and t̄ as

functions of τ can be derived from the two-derivative supergravity action. It is given

by [17, 18]

L(U, ta, t̄ā) =
(
∂U

∂τ

)2

+ gaā
∂ta

∂τ

∂t̄ā

∂τ
+ e2UVBH(γ, t). (2.17)

– 6 –



The black hole potential VBH(γ, t) is a function of the charges and couplings of the

theory and in the case of N = 2 supergravity it takes the form

VBH(γ, t) = gab̄∇aZ ∇̄b̄Z̄ + |Z|2 = eK
[
gab̄∇aW (∇bW )∗ + |W |2

]
, (2.18)

where Z is the central charge (2.12).

The Lagrangian is supplemented by the constraint(
∂U

∂τ

)2

+ gaā
∂ta

∂τ

∂t̄ā

∂τ
− e2UVBH(γ, t) = c2, (2.19)

where c = 2ST , with S the entropy and T the temperature of the black hole [34].

This condition is a manifestation of the first law of black hole thermodynamics,

stating that the total energy of the system should be conserved.

The equations of motion from the Lagrangian (2.17) for U and t read

∂2
τU =e2UVBH ,

e2U
∂VBH

∂t̄b̄
=gab̄

∂2ta

∂τ 2
+

(
∂gab̄
∂t̄ā

− ∂gaā

∂t̄b̄

)
∂ta

∂τ

∂t̄ā

∂τ̄
+

∂gab̄
∂tb

∂ta

∂τ

∂tb

∂τ
.

(2.20)

When the moduli space is complex Kähler we have Γa
bc̄ = 0 and the second equation

simplifies. The Christoffel symbol of the Kähler metric is

Γa
bc = gad̄∂bgcd̄, (2.21)

and we can write
∂2ta

∂τ 2
+ Γa

bc

∂tb

∂τ

∂tc

∂τ
= gab̄e2U

∂VBH

∂t̄b̄
. (2.22)

The equations of motion are second order non-linear differential equations. Thus

the initial conditions for τ = 0 require the initial values as well as the initial first

derivatives (or velocities).

The Lagrangian can alternatively be written as [33]

L =
(
∂τU ± eU |Z|

)2
+
∣∣∂τ ta ± eiα eUgab̄∇̄j̄Z̄

∣∣2 ∓ 2
d

dτ

(
eU |Z|

)
, (2.23)

From this it is evident that the first order conditions

∂τU = −eU |Z|,
∂τ t

a = −eU+iαgab̄∇̄b̄Z̄,
(2.24)

minimize the Lagrangian. Here we fixed the sign, by requiring that e−2U → ∞ for

τ → ∞. The constraint (2.19) vanishes, c = 0, if these linear equations are satisfied.

These conditions are however not necessary for c = 0.

The system described above has a natural interpretation in classical mechanics

as a particle moving in a (2b2+1)-dimensional space, and the constraint (2.19) is the
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conservation of kinetic plus potential energy. Here the potential energy is identified

with −e2UVBH . Thus stable extrema correspond to maxima of VBH , while minima of

VBH are unstable. Since L does not contain a dissipative term, converging attractor

solutions only occur if the total energy equals the maxima of −e2UVBH such that

the particle approaches the unstable maximum for τ → 0. This is in the BPS case

ensured by the linear BPS equations (2.24), while for the non-BPS second order

equations (2.22), such converging attractor behavior only occurs for the right choice

of “initial velocity” dta/dτ |τ=0.

We recall the following terminology:

• A black hole solution is extremal, if the constraint (2.19) is satisfied with c = 0.

• A black hole solution is BPS, if it satisfies the linear equation (2.24). In su-

pergravity, such solutions are supersymmetric. These solutions are a subset of

the extremal black holes.

• An extremal black hole solution is double extremal, if the scalar fields are in-

dependent of r = 1/τ . Then c2/ sinh(cτ)2 → 1/τ 2 in the metric (2.16) and

U(τ) = − log(1 +
√
VBH τ).

The double extremal solutions are a subset of the extremal black holes. They

come in two types

1. Double extremal BPS black holes: BPS solutions, satisfying (2.24), for

which ∂ta/∂τ = 0, and thus ∇aZ = 0, throughout space-time.

2. Double extremal non-BPS black holes: Solutions for which ∂ta/∂τ = 0

throughout space-time, but not satisfying (2.24). As a result, ∂̄āVBH = 0

but ∇aZ ̸= 0.

At spatial infinity, we have τ → 0, and U → Mτ , with M the ADM mass

determined at asymptotic infinity. The metric becomes Minkowski for r → ∞ and

the constraint reads

M(γ, t∞,Σ)2 − |Z(γ, t∞)|2

= c2 + |∇aZ(γ, t∞)|2 − gaāΣ
aΣ̄ā,

(2.25)

or

M(γ, t∞,Σ)2 = c2 + VBH(γ, t∞)− gaāΣ
aΣ̄ā, (2.26)

where we defined the scalar charge Σa := dta

dτ

∣∣∣
τ=0

[18].

As mentioned above, extremal black holes have zero temperature and thus c = 0.

The subset of BPS solutions satisfy the linear equations (2.24), and in particular

Σa = −gaā∇̄āZ̄(γ, t∞). (2.27)
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So we reproduce the well-known relation between the mass and the central charge,

M(γ, t∞) = |Z(γ, t∞)|. (2.28)

For non-BPS extremal black holes we still have c = 0, but Σa ̸= −gaā∇̄āZ̄(γ, t∞),

and therefore also M2 ̸= |Z|2. Eq. (2.26) gives an upperbound for the mass of these

black holes, M2 ≤ VBH(γ, t∞). For the case of double extremal black holes Σa = 0,

such that we have M2 = VBH . In this paper, we will only be concerned with decay

channels for such double extremal black holes, either BPS or non-BPS.

2.3 Attractor equations

The determination of the attractor values of the moduli at the horizon, limτ→∞ ta(τ),

is an important problem since these are necessary for the evaluation of the mass

and entropy of double extremal black holes. Already for the linear BPS equations

(2.24), this is in general a hard and non-trivial question [35] with interesting links

to arithmetic geometry [36–38]. Recently, techniques have also been developed to

include non-perturbative genus 0 instanton contributions [39]. In the non-BPS case,

Eq. (2.20) demonstrates that the values at the horizon ta(∞) minimize the effective

potential [17, 18, 40]. Therefore, in order to find the attractor solutions we are

interested in solving the equations

∂aVBH(γ, tγ) = eK
(
gbc̄(∇a∇bW )∇̄c̄W̄ + 2(∇aW )W̄

)
= 0. (2.29)

The BPS attractors minimise the central charge such that ∇AW = 0, while the

non-BPS attractors are the solutions to the above equations with ∇AW ̸= 0. For

the BPS attractor equation, ∇AW = 0 (2.15), we use that

∂AK = i eK
(
(XB)∗∂A∂BF − (∂AF )∗

)
.

Then taking the real and imaginary part of ∇AW = 0 gives the well-known equations

qA = 2Im
(
eK/2 Z̄ FA

)
, pA = 2Im

(
eK/2 Z̄ XA

)
. (2.30)

An important quantity when studying the attractor solutions is the matrix

mkl =
1

2
∂k∂lVBH(γ, tγ), (2.31)

and its eigenvalues, which are referred to as the mass matrix and masses of the scalar

fields, respectively, in [17]. The indices k, l run over the 2h1,1(X) real dimensions

of the Kähler moduli space. Here tγ refers to the critical values of the scalars. An

attractor solution is a good solution if the eigenvalues of mkl are all positive.
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2.4 D0-D2-D4 black holes

We will focus on D0-D2-D4 systems, and thus set the D6 brane charge, p0, to zero.

The microscopics of these black holes is described by the MSW CFT [20], and parti-

tion functions can be studied in detail [25, 41, 42, 44, 45]. To establish the attractor

equations for both BPS and non-BPS black holes of this type, we first specialize

various quantities to the case p0 = 0. In the gauge X0 = 1, we have for the tree level

superpotential 5

W =q0 + qat
a − 1

2
Cabcp

atbtc. (2.32)

We introduce various shorthand notations

Cab =Cabcp
c, CabCbc = δac, Ca = Cabcp

bpc, C = Cabcp
apbpc,

Lab =CabcJ
c, LabLbc = δac, La = CabcJ

bJ c, L = CabcJ
aJ bJ c,

(2.33)

as well as the shifted variables

q̂0 := q0 +
1

2
Cabqaqb, t̂a := ta − Cabqb, (2.34)

or, since Cabqb is real, B̂
a = Ba − Cabqb. These shifts are motivated by a fractional

spectral flow giving an effectively pure D0-D4 system [41, 42]. Finally, since Cab

induces a quadratic form, of signature (1, b2 − 1), for elements k1, k2 ∈ H4(X,R), we
will make use of the notation Cabk

a
1k

b
2 = k1 · k2, and similar.

In Appendix A we give a few useful explicit formulas for the central charge and

the black hole effective potential in terms of the charges and moduli for the D0-D2-D4

system. Using these formulas, we find the BPS condition

∇aW =
i

4

La

VIIA

[
q̂0 −

1

2

(
(B̂ · B̂) + 2i(J · B̂)− (J · J)

)]
−Cab(B̂

b+ iJ b) = 0. (2.35)

This is one set of equations for the real part and one set for the imaginary part. The

real part tells us that (since Ja > 0 in the Kähler cone)

La

4VIIA

J · B̂ = CabB̂
b =⇒ B̂a = 0, (2.36)

and the imaginary part gives the equation,

Ja(q̂0 +
1

2
(J · J)) = 4VIIA pa, (2.37)

where we used LabCbcJ
c = pa.

5In other places in the literature the holomorphic central charge is taken as −
∫
X
e−t ∧ γ. This

convention results in a different sign for q0.
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Extremising the full potential instead gives the condition that

∂aVBH =
i

4

La

VIIA

[
(J · J)2 + (B̂ · B̂)2 + 2(J · B̂)2 + 4q̂20 − 4q̂0(B̂ · B̂)

]
− 2iVIIA

[
CafgL

bfLcgCbdCceB̂
dB̂e − 2iCabCcdL

bcB̂d − Cabp
b
]

+ Cab

[
2(J · B̂)J b + 2(B̂ · B̂)B̂b − 2i(J · J)J b − 2i(J · B̂)B̂b − 4q̂0B̂

b
]
.

(2.38)

vanishes. The real part now tells us that

2VIIAL
abB̂cCbc = Ja(J · B̂) + B̂a(B̂ · B̂)− 2q̂0B̂

a, (2.39)

with one solution being B̂a = 0. The imaginary part gives the condition

La

8VIIA

[
(J · J)2 + (B̂ · B̂)2 + 2(J · B̂)2 + 4q̂20 − 4q̂0(B̂ · B̂)

]
= VIIACafgL

bfLcgCbdCceB̂
dB̂e − VIIACabp

b + CabJ
b(J · J) + CabB̂

b(J · B̂)

(2.40)

When B̂a = 0 this becomes

Ja(4q̂20 + (J · J)2) = 8VIIA

(
(J · J)pa − VIIAL

abCbcp
c
)
. (2.41)

In this paper, we focus our attention on this case and refer, in the following, to this

equation as the attractor equation. For the one-moduli case, we show below that the

solutions with B̂ ̸= 0 are not viable.

This CFT is chiral and has (0, 4) supersymmetry. The entropy (4.8) follows from

the Cardy formula with central charges cL = C + c2 · p and cR = C + c2 · p/2. For a
unitary CFT, the supersymmetric representations need to satisfy

L0 −
cL
24

≥ 0, L̄0 −
cR
24

≥ 0, (2.42)

with L0, L̄0 being the Virasoro generators. The momentum along the M-theory circle,

or the D0 brane charge, is given as the difference between the Virasoro generators,

q0 = L0 − L̄0 −
cL − cR

24
. (2.43)

Putting this together we get a lower bound for q̂0 for the supersymmetric states,

q̂0 ≥ −cL
24

. (2.44)

The Cardy formula gives the microscopic entropy for large |q̂0| [20, 22–24],

BPS: SCFT = 2π
√
q̂0 cL/6,

non-BPS: SCFT = 2π
√

−q̂0 cR/6.
(2.45)
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The equation for the BPS entropy obviously breaks down for −cL/24 ≤ q̂0 < 0.

These states are supersymmetric, but do not consist of single black hole centers.

Instead, they are bound states of multiple constituents. For example, the states

with q̂0 = −cL/24 are bound states of a D6-brane with an anti-D6 brane, with the

D4-brane charge generated by a flux on the 6-brane worldvolume [25, 26]. Since all

states corresponding to q̂0 < 0 are bound states of multiple constituents there is no

BPS attractor point associated to such a total charge. On the other hand, the CFT

states consist of those states at the large volume attractor point t∗γ [26],

(t∗γ)
a = Cabqb + ipaλ, (2.46)

with λ sufficiently large. We refer to the states with −cL/24 ≤ q̂0 < 0 as “polar

D0-D4 states”, since these states give rise to the so-called polar term in the partition

function [41, 43].

3 Attractor solutions for one- and two-parameter models

In this section we study the attractor solutions for different families of Calabi-Yau

manifolds.

3.1 The general class of attractor solutions

There is a general way to solve the attractor equations for any Calabi-Yau threefold

[17, 35]. We will start by studying this solution. However, as we will see later this

does not give all the non-supersymmetric solutions for the Calabi-Yau manifolds with

h1,1(X) > 1. The procedure is to first make the ansatz that t̂a = ipaz, for some real

parameter z [17]. For this ansatz, the attractor equation, (2.41), reduces to

(q̂0 − 1
6
z2C)(q̂0 +

1
6
z2C) = 0. (3.1)

The first factor corresponds to the BPS solution (satisfying ∇aW = 0) and the

second to the non-BPS one (with ∇aW ̸= 0). We thus have the two solutions [35]6

BPS: t̂aγ = ipa
√

6q̂0
C

,

non-BPS: t̂aγ = ipa
√

−6q̂0
C

.

(3.2)

We will refer to these as the “general” solutions in the following, since they hold

for any Calabi-Yau. The Kähler cone condition tells us that Ja = Im ta > 0, which

6Here we choose the sign of the solution by requiring that Ja should be in the Kähler cone, and

thus positive. For the square root and other fractional powers, we will use the convention that the

image of a positive real number is a positive real number.
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thus means that we need pa > 0 and ±6q̂0
C

> 0 for the BPS and non-BPS solutions,

respectively. The non-BPS solutions have the same charges as the non-BPS states

of the MSW CFT [20]. Therefore modulo decay of multi-center black holes in the

decoupling limit [26], these solutions are captured by the MSW CFT.

It is possible to determine the effect of R2 corrections to F-terms for the attractor

values. For the BPS case, a closed expression is available [46], following Wald’s

formalism. For the non-BPS attractor values, an order by order analysis in c2 can

be carried out using the entropy formalism [47–49]. The results for both cases are

BPS: t̂aγ = ipa

√
6q̂0

C + c2 · p
, Âγ = −64 e−K(tγ ,t̄γ)

Z(γ, tγ)
2 ,

non-BPS: t̂aγ = ipa
√
−6q̂0

C

(
1− 9

32

c2 · p
C

+ . . .

)
, Âγ = −4 e−K(tγ ,t̄γ)

Z(γ, tγ)
2 .

(3.3)

Thus the magnitude of the Kähler modulus is reduced in both cases. It is important

to note that we are only considering F-term corrections in the above, while non-

supersymmetric black holes may also be affected by R2 corrections to D-terms [50].

3.2 One-parameter CYs

Let us now turn to examples of Calabi-Yau threefolds with h1,1(X) = 1. For ease of

notation we define κ := C111, p := p1 and q := q1.

For this simple case we can return to the generic equation for the minimising of

the potentials. For the BPS case we saw in (2.37) that we need B̂ = 0, the BPS

solution for J is then

J2
γ =

6q̂0
κp

. (3.4)

For the minimising of the full potential we saw that we can have either B̂ = 0 or

B̂ ̸= 0. The first case gives (2.41) and the solutions

J2
γ = ±6q̂0

κp
. (3.5)

This reproduces the generic solution found in (3.2), with the minus sign again corre-

sponding to the non-BPS solution. If we instead assume B̂ ̸= 0 we find that (2.39)

and (2.40) give

B̂2
γ =

18q̂0
κp

,

J2
γ =− 24q̂0

κp
.

(3.6)

However, this is not a viable attractor solution. One way to see this is that it gives

opposite signs for B̂2 and J2, even though both should be strictly positive for a viable
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solution (i.e. B̂ and J should be real). It further gives negative eigenvalues for the

mass matrix (2.31).

We thus conclude that for h1,1(X) = 1, the only attractor solutions are the ones

given by the general solution (3.2).

3.3 Two-parameter CICYs with autochthonous divisors

We now turn to considering the case of h1,1(X) = 2. Since we now have two classes

of divisors we can get new types of behaviour. It is in general hard to find all

solutions to the full attractor equations (either BPS or non-BPS) for generic two-

parameter CYs. To simplify, we consider only the cases with B̂a = 0, as in (2.41).

Besides the generic solutions (3.2), we will see that there are further solutions once

we lift the assumption that t̂a ∝ pa. If we look at classes of CYs where certain

intersection numbers vanish, we can more easily solve the general equations without

making this assumption. To this end, let us start looking at complete intersection

Calabi-Yau (CICY) manifolds in P1 × Pn. As we discuss below, these CYs have

C111 = C112 = 0 and the generators of their effective cone include an autochtonous

divisor.7 This class of solutions correspond to 16 of the CICYs of [51]. There are

also 10 toric hypersurface Calabi-Yau (THCY) manifolds in [51] that will satisfy the

same conditions, and thus have the same solutions for the attractor equations. See

also Tables 2 and 3 of the Appendix. In this paper we focus the discussion on the

CICYs, but the analysis for the THCY gives the same results.

The CICYs of the class considered here are all constructed in an ambient space

of the type A = P1×Pn, for some n > 1. We thus have an embedding of the Calabi-

Yau X in A, f : X → A. Assuming that the embedding satisfies the conditions of

the Lefshetz hyperplane theorem, the cohomology of X, Hr(X,Q) is isomorphic to

Hr(A,Q) for r ≤ 2. Thus in particular, the cohomology of 2-forms is isomorphic,

and two generators ωj are pull-backs from 2-forms on A, ωa = f ∗ηa. Thus, the

map f ∗ : H2(A,Q) → H2(X,Q) combined with Poincaré duality gives a map f̃ ∗ :

H2n(A,Q) → H2(X,Q).

Our main interest is in the effective cone C(X) ⊂ H4(X,Z). The effective cone

C(A) ⊂ H2n(A,Z) is spanned by two divisors D1 and D2. We take these to be

D1 ≃ Pn ⊂ A and D2 ≃ P1 × HPn , with HPn ∈ H2n−2(Pn) the hyperplane of Pn.

Using f̃ ∗ introduced above, we obtain effective divisors of X by Da = f̃ ∗Da for

a = 1, 2. Clearly, D1 does not self-intersect, and therefore the intersection numbers

C111 and C112 of X vanish.

It is not true in general that D1 and D2 are the generators of the effective cone

C(X). Generically, the effective cone C(X) is enlarged from that generated by the

divisors D1 and D2 inherited from the ambient space. The effective cone C(X) is

7Since the generic expressions such as (2.41) are of course symmetric in J1 and J2 we get the

same type of solutions with the indices 1 and 2 interchanged.
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instead generated by D1 and an exceptional divisor, D3, of the form D3 = mD2−D1

for somem [51, 52]. See Appendix B for the explicit forms for the different Calabi-Yau

manifolds we consider. This third divisor is sometimes referred to as autochthonous,

since it is not inherited from an effective divisor on the ambient space [53]. Similarly

for the THCYs of Table 3, the effective cones are also generated by a third exceptional

divisor (together with one of the divisors inherited from the ambient space), of the

same form. We will see later that this third divisor plays an important role when

studying the possible decays of the non-supersymmetric black holes [29].

Among the solutions that minimise the effective potential are of course the gen-

eral solutions (3.2). In addition, we find for this class of CYs the “particular solution”,

J1
γ = − 1

3C122

(3C122p
1 + 2C222p

2)

√
−6q̂0

C
,

J2
γ = p2

√
−6q̂0

C
.

(3.7)

This solution can be obtained from the general BPS solution (3.2) by the map

p1 7→ − 1

3C122

(3C122p
1 + 2C222p

2), p2 7→ p2. (3.8)

This transformation keeps |C| invariant but changes the sign of C, C = 3C122p
1(p2)2+

C222(p
2)3 7→ −C. We will discuss in Section 5 how this solution is related to the 5-

dimensional solutions of [29, 30].

Let us consider the domain of the charges for which (3.7) can be a proper solu-

tion. For the moduli to be in the Kähler cone, we need p2 > 0 and − 1
3C122

(3C122p
1 +

2C222p
2) > 0. Since Cabc > 0 for all a, b, c, except for C111 = C112 = 0 and permu-

tations, then −3C122p
1 > 2C222p

2 > 0, such that p1 and p2 have opposite signs. As

a result, there is no overlap between the charge domains for (3.7) and the general

solution for which the pa have the same sign. For (3.7), we have furthermore that

C < 0, such that for this solution to be in the Kähler cone we also need q̂0 > 0

(contrary to the general non-BPS solution). The three possible attractor solutions

for this class of Calabi-Yau manifolds thus live in three separate charge sectors given

by
BPS: pa > 0, q̂0 > 0,

General non-BPS: pa > 0, q̂0 < 0,

Particular non-BPS: p2 > 0, −p1 >
2C222

3C122

p2 > 0, q̂0 > 0.

(3.9)

We note here that, if we instead have C122 = C222 = 0, we get the same results

as above with C222 interchanged with C111, and C122 with C112. In particular, even

though we focused the discussion around the complete intersection Calabi-Yaus of

Table 2, the same results hold for all the toric hypersurfaces of Table 3.

– 15 –



3.4 Two-parameter families without autochthonous divisors

There are two THCY and one CICY in the classification of [51] that do not get an

enlarged Kähler cone due to the presence of an autochthonous divisor, these all have

C111 = C222 = 0. See Table 4. This means that the effective cones of these manifolds

are generated simply by D1 and D2, and these generators have no self-intersection.

In five dimensions these allow for stable non-BPS black strings according to the

analysis of [29, 30]. As before, we have the general solutions (3.2). In addition

there are particular solutions, which are of a different flavor than the class of CYs

in Subsection 3.3. Finding all solutions of the attractor equations (2.41) for Ja is

complicated. To obtain solutions, we start by studying the solutions in terms of the

charges pa. For the case of C111 = C222 = 0, Eq. (2.41) gives

p1 =
2q̂0(C112J1 + 2C122J2)(2C

2
112J

2
1 + C112C122J1J2 + C2

122J
2
2 )

J2(C112J1 + C122J2)
√

H(J1, J2)
,

p2 =− 2q̂0(2C112J1 + C122J2)(C
2
112J

2
1 + C112C122J1J2 + 2C2

122J
2
2 )

J1(C112J1 + C122J2)
√

H(J1, J2)
,

(3.10)

where we defined

H(J1, J2) := 4C6
112J

6
1 + 12C5

112C122J
5
1J2 + 21C4

112C
2
122J

4
1J

2
2

+ 22C3
112C

3
122J

3
1J

3
2 + 21C2

112C
4
122 + 12C112C

5
122J1J

5
2 + 4C6

122J
6
2 ,

(3.11)

for brevity. Note that, similar to the solutions we found for C111 = C112 = 0, we

must have sgn(p1) ̸= sgn(p2) in order for this solution to be in the Kähler cone. As

stated above, the inverted solutions in terms of Ja are generally not tractable, but

using the above solutions we can find a few special cases where things simplify. To

illustrate this, we set p2 = −4p1 < 0 and consider the THCY with C112 = C122 = 1,

referred to as (1, 1)2,29−54 in [51]. Entry two of Table 4. For this particular set of charges

the solutions for Ja are easy to find,

J1
γ =

(
239− 57

√
17

236

)1/4√
q̂0
p1
,

J2
γ =

3 +
√
17

2

(
239− 57

√
17

236

)1/4√
q̂0
p1
.

(3.12)

4 Double extremal black holes and decay channels

In this section, we consider decay channels for extremal black holes. An extremal

black hole can decay if the sum of the masses of the decay products
∑

j Mj is smaller

or equal to the total mass M of the black hole under consideration. Thus if the ratio

R =
M2

(
∑

j Mj)2
, (4.1)
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is larger than 1 decay is energetically favorable. The simplest class of extremal black

holes for which this ratio is readily determined are the double extremal black holes,

whose mass squared M2 is given by VBH (2.26) and the moduli are constant, given

by the attractor values tγ.

To avoid non-trivial attractor flows for the decay products, we consider BPS

and anti-BPS objects as constituents. For such objects, the mass simplifies and is

given by the absolute value of the central charge, which is also easily determined

for non-constant attractor flows. We thus consider an extremal, non-BPS black hole

with charge γ as a bound state of BPS and anti-BPS states with charges γj, such

that
∑

j γj = γ. For such decay channels, the ratio R (4.1) becomes

R(γ, {γj}) :=
VBH(γ, tγ)

(
∑

j |Z(γj, tγ)|)2
, (4.2)

where Z(γj, tγ) (2.12) is the central charge of the (anti-)BPS state with charge γj
evaluated at the attractor point tγ for the total charge γ. If R > 1, it is energetically

favorable for the non-BPS state to decay into the (anti)-BPS constituents, while if

R < 1 the state is stable. The case R = 1 could be considered as a threshold bound

state, and we will find various threshold decay channels.

If all charges correspond to D-branes of the same dimension, the numerator of

R (4.1) is mathematically the volume squared of a submanifold in X with homology

class γ, whose volume is at a local minimum as function of the moduli parametrizing

the embedding of the submanifold. The denominator of R (4.2) for (anti)-BPS

constituents is the volume squared of the “piece-wise calibrated cycle”, that is to say

the volume of the linear combination of holomorphic and anti-holomorphic cycles,

whose homology class adds up to γ.

4.1 The general BPS solutions

We review and collect a few results for BPS solutions. At the BPS attractor point

taγ (3.2), the exponentiated Kähler potential evaluates to

eK(tγ ,t̄γ)/2 =
1√

8VIIA

=
1

2
√
2

(
C

6q̂30

)1/4

. (4.3)

The holomorphic central charge reads

W (tγ, γ) = 4q̂0. (4.4)

For the central charge we thus find

Z(γ, tγ) = (2q̂0C/3)
1/4 . (4.5)

And the mass of the double extremal BPS black hole,

MBPS = |Z(γ, tγ)| = (2q̂0C/3)
1/4. (4.6)
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This reproduces the well-known black hole entropy at tree level SBH = π
√
2q̂0C/3

(2.45) [20]. If we include the R2 correction, the mass becomes

MBPS = (2q̂0(C + c2 · p)/3)1/4 , (4.7)

and the entropy

SBH = π
√

2q̂0(C + c2 · p)/3. (4.8)

Again in agreement with the microscopic entropy (2.45) [20, 46].

4.2 The general non-BPS solutions

This subsection considers decay channels for non-BPS states with generic attractor

point (3.2). We will find that these black holes can decay at tree level to D0’s and

polar D0-D4 states.

We start by determining various quantitites. Using the general attractor moduli,

taγ = ipa
√

−6q̂0
C

+ Cabqb (3.2) of the non-BPS state we can evaluate the Kähler

potential

eK(tγ ,t̄γ)/2 =
1√

8VIIA

=
1

2
√
2

(
− C

6q̂30

)1/4

. (4.9)

The central charge function for this moduli for some set of charges γ̃ = (q̃0, q̃a, p̃
a) is

then

Z(γ̃, tγ) =
1

2
√
2

(
− C

6q̂30

)1/4
[
q̃0 + iq̃ap

a

√
−6q̂0

C
+ q̃aC

abqb

− 1

2

(
p̃apbCab

6q̂0
C

+ 2ip̃aqa

√
−6q̂0

C
+ Cabcp̃

aCbdCceqdqe

)]
.

(4.10)

If we set γ̃ = γ we get the central charge of the non-BPS black hole at the attractor

point,

Z(γ, tγ) = − 1√
2
(−1

6
Cq̂0)

1/4. (4.11)

We can also calculate the effective potential by using the formulas given in Ap-

pendix A and evaluate them at the attractor point taγ,

W (γ, tγ) =− 2q̂0,

∇aW (γ, tγ) =
1

2
iCabp

b

√
−6q̂0

C
,

gab̄(tγ, t̄γ) =− 1

8q̂0C
(2CabC − 3CacCbdp

cpd),

gab̄(tγ, t̄γ) =− 2

3

√
−6q̂30

C

(
6

√
− C

6q̂0
Cab − 3papb

√
− 6

q̂0C

)
.

(4.12)
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Note that the absolute value of the central charge W is smaller for the non-BPS

black hole than for the BPS black hole (4.4).

One verifies using these equations that the effective potential evaluates to

VBH(γ, tγ) = M2
non−BPS = 16 q̂20 e

K =
√

−2q̂0C/3. (4.13)

The entropy SBH = π
√
−2q̂0C/3 agrees with the leading term of the microscopic

entropy (2.45) [22–24].

We can compare this to the central charge squared, of the non-BPS object, (4.11),

which gives
VBH(γ, tγ)

|Z(γ, tγ)|2
= 4. (4.14)

Thus the tree level mass of this non-BPS black hole is exactly twice the magnitude

of its central charge.

Channel 4.2a: Decay into non-BPS constituents

When the R2 corrections from the vector multiplet sector to the non-BPS mass are

included, the mass squared is no longer simply related by VBH as in (2.26). The

correction to the non-BPS mass is determined to first order in [54]. It reads

Mnon−BPS = (−2q̂0C/3)
1/4

(
1− 3

320

c2 · p
C

+ . . .

)
(4.15)

The negative sign does make such black holes unstable for decay into lighter non-

BPS constituents as suggested by WGC, at least if the charge of the black hole γ is

parallel to that of the constituents γj. In that case, the non-BPS black hole as well

as the non-BPS constituents are double extremal. For example, if we consider the

decay γ = nγ′ → n× γ′, we have for the ratio R (4.1),

R(γ, {n× γ′}) = 1 + (n2 − 1)
3

160

c2 · p
C

+ · · · > 1. (4.16)

Thus for increasing charge the ratio R decreases, and non-BPS black holes of this

type can decay to non-BPS states with charge vectors whose entries are relatively

prime.

Channel 4.2b: Decay into D0’s and D4’s

We proceed by considering decay of the non-BPS bound state into a number of D0-

branes, and separate D4-branes (here we assume that the D2-brane charge vanishes).

Using (4.10), we have for the central charges

Z0 := Z(γ0, tγ) =− 1

2
√
2

(
−Cq0

6

)1/4

,

Za := Z(γa, tγ) =
1

2
√
2

(
−Cq0

6

)1/4(
3paCa

C

)
, (no sum over a),

(4.17)
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where the notation is that Z0 is the central charge of a D0-brane with charge

γ0 = (q0, 0, 0), while Za is the central charge function of a D4-brane wrapping the

ath divisor, i.e. with γa = (0, 0, . . . , pa, 0, . . . ). The mass ratio (4.2) with these

constituents is then

R(γ, {γ0, γa}) =
VBH(γ, tγ)(

|Z0|+
∑h1,1

a=1 |Za|
)2 =

16(
1 + 3

∑h1,1

a=1

∣∣Capa

C

∣∣)2 , (4.18)

where we again do not make use of the Einstein summation convention in the de-

nominator. Since C and Cap
a are both positive for all a, the sum over a evaluates

to 1, and we arrive at

R(γ, {γ0, γa}) = 1. (4.19)

This indicates that the double extremal non-BPS magnetic black hole could be con-

sidered as a threshold bound state of D0 and D4 BPS constituents.

Similar results were analysed in great detail for the STU model in [55], where the

only non-zero intersection number is C123 and we indeed have that the above ratio

is equal to unity. For the STU model the authors of [55] make use of its U-duality

group to argue that the result for the D0-D4 system is generic.

One may wonder whether R2 corrections alter the conclusion of threshold sta-

bility. Including the first order R2 corrections in (4.17) using (3.3), one obtains:

Z0 =− 1

2
√
2

(
−Cq0

6

)1/4(
1 +

23

64

c2 · p
C

+ . . .

)
,

Za =
1

2
√
2

(
−Cq0

6

)1/4(
3paCa

C

)(
1− 23

192

c2 · p
C

+ . . .

)
,

(4.20)

with again no sum over a. Thus the effect of R2 corrections is that the mass of the D0-

brane increases, since the VIIA decreases, while the mass of the D4-brane decreases.

Interestingly, if we sum up |Z0|+
∑

a |Za|, the first order corrections cancel exactly.

As a result, while R = 1 (4.18) before including corrections, it becomes

R(γ, {γ0, γp}) = 1− 3

160

c2 · p
C

+ . . . (4.21)

after including corrections. The R2 corrections thus make decay in this orginally

threshold channel less likely. This possibly suggests that different constituents, pos-

sibly non-(anti)-BPS, give viable decay channels instead of this one.

Channel 4.2c: Decay into D0’s and D0-D4’s

Since the R2 corrections do not improve decay in the channels studied above, we

explore other decay channels at tree level. In particular decay into a supersym-

metric D0-D4 state with charge γp = (q̃0, 0, p
a), and a D0-branes with charge γ0 =
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(q0 − q̃0, 0, 0). Then we have for Z0 and Zp,

Z0 =
1

2
√
2

(
− C

6q30

)1/4

(q0 − q̃0),

Zp =
1

2
√
2

(
− C

6q30

)1/4

(q̃0 − 3q0).

(4.22)

Now if we determine the ratio R for this decay, we find

R(γ, {γ0, γp}) =
VBH(γ, tγ)

(|Z0|+ |Zp|)2
=

(
1− q̃0

2q0

)−1

= 1 +
q̃0
2q0

+ . . . , (4.23)

where we assumed |q̃0/q0| < 1. Thus we see that if q̃0 has the same sign as q0, and

thus negative, R > 1, and these constituents give rise to a proper decay channel.

Eq. (2.44) demonstrates that states with q̃0 and C > 0 indeed exists, these are the

“polar” D0-D4 states. As explained there, these states are not black hole solutions

with a single black hole center, but instead bound states of multiple constituents,

such as D6, anti-D6 and D0-branes.

If we include R2 interactions, there will be a competition between the negative

contribution of (4.21) and the positive contribution of (4.23), even though the R2

correction differs from R = 1 with O(charge−2), and the tree level (4.23) differs from

1 with O(charge0). Since q0 is unbounded below but q̃0 is bounded below by −C/24,

the term q̃0/q0 in (4.23) can be arbitrarily small. On the other hand, further R2

corrections are expected beyond those of the vector multiplets considered here. So

the results here are not conclusive.

We will study the effect of turning on the D2-brane charge for the decay of

the one-parameter threefolds below. When we go to threefolds with h1,1 > 1 more

possibilities will be available, as we discuss in Sec. 4.4.

4.3 One-parameter models and dyonic black holes

To reach exact expressions for R, let us consider the one-parameter models in this

section. For these threefolds, there are only the general solutions (3.5) to the attractor

equations. For the double extremal case, the mass of the BPS black hole is given by

(4.6) with C = κp3, while the mass of the non-BPS black holes is given by (4.13).

The central charge of the D0-D2-D4 system, for some charges γ̃ = (q̃0, q̃, p̃), at

the non-BPS attractor moduli is, from (4.10),

Z(γ̃, tγ) = eK/2

[
q̃0 + i(q̃p− qp̃)A+

qq̃

κp
− q2p̃

2κp2
− 3q̂0

p̃

p

]
(4.24)

with A =
√

− 6q̂0
κp3

.

Channel 4.3a: Decay into D0-D4 and anti-D0-D4
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If we consider first the case of no D2 branes,8 since there is only one divisor, the only

possible (anti-)BPS bound state constituents are either that we have the D0 and D4

branes separate, giving the mass ratio (4.23), as we saw in the previous Section.

Alternatively, we can consider decay into a BPS state D0-D4 brane and anti-BPS

state D0-D4-brane,

γ1 = (−xq0, 0, zp),

γ2 = ((1 + x)q0, 0, (1− z)p).
(4.25)

for some x ≥ 0 and z ≥ 1. This gives the mass ratio

R(γ, {γ1, γ2}) =
VBH(γ, tγ)

(|Z(γ1, tγ)|+ |Z(γ2, tγ)|)2
=

4

(x+ 3z − 1)2
≤ 1, (4.26)

with the saturation happening at x = 0, z = 1, which is the situation where the D0-

and D4-branes are part of separate constituents, as before.

Channel 4.3b: Decay into D0-, D2- and D4-branes

We proceed by letting the D2-brane charges be generic. Then we can, for example,

consider constituents with charges

γ0 = (q0, 0, 0),

γq = (0, q, 0),

γp = (0, 0, p).

(4.27)

The corresponding central charges are

Z0 := Z(γ0, tγ), Zq := Z(γq, tγ) Zp := Z(γp, tγ), (4.28)

we get the mass ratio

R(γ, {γ0, γq, γp}) =
VBH(γ, tγ)

(|Z0|+ |Zq|+ |Zp|)2

=
16(q0 +

q2

2kp
)2

(|q0|+
∣∣ q2
kp

+ iqpA
∣∣+ ∣∣3q0 + 2 q2

kp
+ iqpA

∣∣)2 .
(4.29)

This is equal to one when q = 0 but smaller than one when q ̸= 0, such that it does

not correspond to an allowed decay channel for the dyonic black hole.

Channel 4.3c: Decay into D0-D2-D4 and anti-D0-D2-D4

Alternatively, we can consider the decay products with charges

γ1 = (−xq0, yq, zp),

γ2 = ((1 + x)q0, (1− y)q, (1− z)p),
(4.30)

8Equivalently we can consider the situation where we have some (anti-)D2 branes that form a

bound state with the D0 branes. We then simply put hats on the relevant factors.
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for some x ≥ 0, z ≥ 1 and y ∈ Q. The central charges Zj are,

Z1 := Z(γ1, tγ), Z2 := Z(γ2, tγ). (4.31)

This means that γ1 is a BPS D0-D2-D4 state while γ2 is an anti-BPS state. The

mass ratio,

R(γ, {γ1, γ2}) =
VBH(γ, tγ)

(|Z1|+ |Z2|)2
, (4.32)

only has a maximum equal to one for certain values of q. For example, if q0 = −50000,

k = 5 and p = 10, the maximum is only equal to one if q ∈ {−1, 0, 1}, and this

happens when x = 0, y = 3
4
and z = 1. If |q| > 1 the maximum is smaller than one.

Channel 4.3d: Decay into D0-D2-D4 and anti-D0-D2-D4

Another possible situation we can consider is where the initial non-BPS state has no

D2 charge but decays into two BPS states with D2 charges, of course adding up to

zero. We thus consider two BPS states with charges γ1 and γ2 and γ = γ1 + γ2. The

central charges are

Z1 := Z(γ1, tγ), Z2 := Z(γ2, tγ), (4.33)

with

γ1 = (−xq0, yq, zp),

γ2 = ((1 + x)q0,−yq, (1− z)p),
(4.34)

for x ≥ 0, y ∈ Q and z ≥ 1. The mass ratio with these states however also does

not reach a value larger than one. It exactly becomes one only when x = y = 0 and

z = 1, which corresponds to the previous situation where we have no electric charge

in the decay constituents and the D0- and D4-branes are split.

Channel 4.3e: Decay into non-BPS D0-D4 and BPS D0-D4

We briefly explore here the case of a decay channel for a D0-D4 double extremal black

hole with charge γ = (q0, 0, p), with as constituents an extremal, but non-(anti)-BPS

D0-D4 black hole with charge γ̃ = (q̃0, 0, p̃), and a BPS D0-D4 black hole with charge

γ − γ̃. The ratio of interest is then

R({γ̃, γ − γ̃}, tγ) =
VBH(γ, tγ)

(M(γ̃, tγ,Σ) + |Z(γ − γ̃, tγ)|)2
. (4.35)

The upperbound M(γ̃, t,Σ)2 ≤ VBH(γ̃, t) implies,

R({γ̃, γ − γ̃}, tγ) ≥
VBH(γ, tγ)

(
√
VBH(γ̃, tγ) + |Z(γ − γ̃, tγ)|)2

. (4.36)

Using the variables x = q̃0/q0 and z = p̃/p, we can evaluate the rhs exactly, such

that

R({γ̃, γ − γ̃}, tγ) ≥
16

(2
√
3z2 + x2 + |3z − x− 2|)2

. (4.37)
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We find that in case the BPS black hole has positive D0-brane charge, q0 − q̃0 ≥ 0,

the rhs is always ≤ 1. However, if the D0-D4 state is polar, such that q0 − q̃0 < 0

the ratio is larger than 1, and thus provides a viable decay channel. This is similar

to what we found for decay channel 4.2c. It would be interesting to study such

decay channels from a multi-center perspective as in [61]. We leave a more in depth

analysis of such decay channels for future work.

4.4 Decay channels for CICYs with autochthonous divisors

Let us now turn to the complete intersection Calabi-Yau models with h1,1(X) = 2

studied in Sec. 3.9 This family of CY manifolds has C111 = C112 = 0. For this family,

we can make contact with the recent investigations of five-dimensional solutions in

[29, 30], which will be done in Sec. 5.

We start by considering the ratio of VBH/|Z|2. We find for the particular attrac-

tor solution, (3.7), that VBH(γ, tγ) = 16q̂20, and we have the ratio

VBH(γ, tγ)

|Z(γ, tγ)|2
= 4. (4.38)

This equals the ratio for the general attractor solution (3.2).

Channel 4.4a: Charges spanned by D1 and D2

We proceed by considering decay channels for vanishing electric charge, qa = 0. Thus

the total charge reads γ = q0+p1D1+p2D2 with D1 and D2 divisors. The constraints

on the charges for this attractor point are p2 > 0, p1 < −2C222

3C122
p2 and q̂0 > 0. We can

thus set p1 = −2C222

3C122
np2 for some n > 1. For very large n, this charge approaches

the cone of charges populated by BPS black holes.

For the decay channels, we first study

γ0 = q0,

γ1 = p1D1,

γ2 = p2D2,

(4.39)

such that γ = γ0 + γ1 + γ2.

In contrast to the general solution we now find

R(γ, {γ0, γ1, γ2}) =
VBH(γ, tγ)

(|Z(γ0, tγ)|+ |Z(γ1, tγ)|+ |Z(γ2, tγ)|)2

=
4(1− 2n)2

(1− 4n)2
< 1.

(4.40)

This ratio is shown in Fig. 1, and we see that it asymptotes to one for large n. This

is natural to expect, since in the large-n limit the particular solution becomes the

9The story is analogous for the THCY of Table 3.
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BPS one, with a different sign on p1. However, in general we thus see that, we do not

have a threshold bound state as for the generic solution. It is therefore interesting

to see how this non-BPS state can decay.

10 20 30 40 50
n

0.88

0.90

0.92

0.94

0.96

0.98

ℛ

Figure 1. Mass ratio of Eq. (4.40) as function of the proportionality constant n between

the magnetic charges.

Channels 4.4b: Charges spanned by D1, D2 and the autochthonous divisor

D3

The charges of the constituents above contained positive linear combinations of

D1 and D2. As mentioned in Section 3, the effective cone is generated by an extra,

or autochthonous, effective divisor. This is of the general form D3 = mD2 −D1, for

some m ≥ 1. We have listed these divisors for various Calabi-Yaus in Appendix B.

Since the cone extends beyond that generated by D1 and D2, we should allow for

BPS constituents with magnetic charge p̃1D1 + p̃3D3 with p̃1, p̃3 ≥ 0.

We will study this in what follows. We keep the charge ratio p1 = −2C222

3C122
np2

with n > 1, as before. For the decay channels, we now consider four constituents

with three carrying a magnetic charge,

γ0 = x0q0,

γ1 = x1q0 + p̃1D1,

γ2 = x2q0 + p̃2D2,

γ3 = x3q0 + p̃3D3 = x3q0 + p̃3(mD2 −D1).

(4.41)

From charge conservation we have the following restrictions that must be satisfied∑
j

xj = 1, p1 = p̃1 − p̃3, p2 = p̃2 +mp̃3. (4.42)
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We can further assume that p̃3 = z3p
2 for some rational number z3. We now find

Z0 = x0q0,

Z1 = q0

(
x1 + 3

C122

C222

2n− 1

(
z3 −

2C222

3C122

n

))
,

Z2 = q0

(
x2 +

4n− 1

2n− 1
(1−mz3)

)
,

Z3 = q0

(
x3 +

z3
2n− 1

(
m(4n− 1)− 3

C122

C222

))
.

(4.43)

To have BPS or anti-BPS constituents, it is important that the signs of the coefficients

in front of the charges are compatible, in the sense that we must have

sgn(x1) =sgn(p̃1) = sgn
(
z3 − 2C222

3C122
n
)
,

sgn(x2) =sgn(p̃2) = sgn(1−mz3),

sgn(x3) =sgn(z3).

(4.44)

Now, for brevity, let us consider one particular case, namely the K3 fibration

#7887 in Table 2, also studied in [29]. This has C122 = 4, C222 = 2 and D3 =

4D2 − D1. This means that we now have p1 = −n
3
p2. Taking the above analysis

and constraints into consideration, and assuming that x0 ≥ 0,10 we end up with

four different expressions for the mass ratios, viable in four different regimes for the

charges:

• For x1 ≥ 0, x2 ≤ 0 z3 ≥ n/3:

R1(γ, {γj}) =
4(2n− 1)2

(x2 − 2n(1 + x2 − 8z3)− 4z3)2
.

• For x1 ≤ 0, x2 ≤ 0, 1/4 ≤ z3 ≤ n/3:

R2(γ, {γj}) =
4(2n− 1)2

((2n− 1)(x1 + x2)− 2(8n− 5)z3)2
.

• For x1 ≤ 0, x2 ≥ 0, 0 ≤ z3 ≤ 1/4:

R3(γ, {γj}) =
4(2n− 1)2

(1 + 2n(x1 − 2)− x1 + 6z3)2
.

• For x1 ≤ 0, x2 ≥ 0, z3 ≤ 0:

R4(γ, {γj}) =
4(2n− 1)2

(x0 + x2 − 2n(1 + x0 + x2 − 8z3)− 4z3)2
.

10similar results are found when assuming x0 ≤ 0
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We can maximise these ratios separately over their corresponding domains, and its

easy to show that the maximising values for x0, x1, x2 and z3 are given by

R1 : x0 = 1/4, x1 = 1/2, x2 = 0, z3 = n/3,

R2 : x0 = 1/2, x1 = 0, x2 = 0, z3 = 1/4,

R3 : x0 = 1/4, x1 = 0, x2 = 1/2, z3 = 1/4,

R4 : x0 = 1/2, x1 = 0, x2 = 1/2, z3 = 0.

(4.45)

The resulting maximised ratios are then functions of the proportionality constant n

between p1 and p2, and are shown in Fig. 2. We can clearly see that the maximum

values for R2 and R3, which are both given by

Rmax
2 = Rmax

3 =
16(1− 2n)2

(5− 8n)2
, (4.46)

allows for a ratio larger than unity for any n (although tending to one for large n,

for the same reason as mentioned above). This means that these regimes allow for

the decay of the non-supersymmetric black hole.

2 4 6 8 10
n

0.5

1.0

1.5

ℛ1

ℛ2,ℛ3

ℛ4

Figure 2. Maximised mass ratios for the K3 fibration, or 7887 of Tab. 2, as functions of

the proportionality constant n. The two ratios R2 and R3 coincide.

We can do the same analysis for the other CICYs of Table 2, the result is that

11 out of the 16 gives exactly the same behaviour, i.e. exactly the same maximized

ratios as above while the remaining five (7817, 7840, 7858, 7873 and 7885 in Table

2) differ slightly. As an example, the results for the CICY 7817 is shown in Fig. 3.

Interestingly, we see that for n sufficiently close to 1 we now have two distinct decay

channels for the non-supersymmetric black hole. This happens for all the five CICYs

not giving the same behaviour as Fig. 2.

We can see that the autochthonous divisors are vital for decay at tree level. If

we consider only the cone generated by positive linear combinations of D1 and D2,

we have that the most general BPS-anti-BPS decay products are given by

γ1 = xq0 − z1p
1D1 + z2p

2D2,

γ2 = (1− x)q0 + (1 + z1)p
1D1 + (1− z2)p

2D2,
(4.47)
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Figure 3. Maximised mass ratios for the CICY 7817 of Table 2 as functions of the

proportionality constant n. The two ratios R2 and R3 coincide completely.

for some numbers x, z2 ≥ 1 and z1 ≥ 0. The mass ratio (4.2) is then maximised by

the saturating values, x = z2 = 1, z1 = 0, giving the result (4.40). From the graphs

we also observe that for large n the ratios approach 1 (or less), which is consistent

since for increasing n the charge of the black hole approaches the cone of charges of

BPS black holes.

The story is different for the general solutions (3.2). Since the charge of the D0

brane is negative for the general non-BPS solution we think of this as an anti-D0

brane. We consider the same four constituents as before, (4.41). Performing the same

analysis as above, dividing the problem into domains depending on the signs of the

coefficients and maximising the ratio for each case, we now find that the maximum

values are always equal to the threshold value of one.

4.5 A model without autochthonous divisors

As discussed in Sec. 3.4 there are three two-moduli Calabi-Yau in [51] without an

autochthonous divisor. These all have C111 = C222 = 0. They are the bi-cubic

in P2 × P2 with C112 = C122 = 3 in [29] and two THCY with C112 = C122 = 1

or 3 respectively in [30]. Refs [29, 30] found that non-BPS 5-dimensional black

strings are valid and stable solutions against decay for p1/p2 < 0. This gives rise

to recombination of holomorphic and anti-holomorphic cycles mentioned before. We

will discuss in this subsection, non-BPS black holes for these geometries.

Since there are no autochthonous divisors generating a large cone, the effective

cones of these CYs are simply generated by D1 and D2, the pull backs of generators

of the effective cone of the ambient space. As in Sec. 3, we focus on one example

with C112 = C122 = 1 and p2 = −4p1. From the Kähler condition we must have that

q̂0 and p1 have the same sign. We thus take p1 > 0, which means that p2 < 0. For

the decay channels we consider decay into a BPS and anti-BPS constituent,

γ1 =xq0 + z1p
1D1 − z2p

2D2,

γ2 =(1− x)q0 + (1− z1)p
1D1 + (1 + z2)p

2D2,
(4.48)
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for x, z1 ≥ 1 and z2 ≥ 0. The mass ratio is then however always smaller than one,

and is maximised by the saturation values x = z1 = 1, z2 = 0, givingR(γ, {γ1, γ2}) ∼
0.83. Including the possibility of decay into small BPS black holes with slight negative

D0 charge, as in (4.23), does not seem to improve drastically on this bound, and it

does not reach above unity after taking this into consideration. Here we further note

that the maximum values are given when the C’s of each constituents are equal to

zero such that for q0 to be smaller than zero as in (4.23) we need to consider the c2,a
corrections in cL.

Thus also in this 4-dimensional case, this example suggests that the spectrum

contains a stable non-BPS object. The WGC suggests that these only have small

charges. It would be worthwhile to study more potential decay channels and to

properly include R2 corrections to the mass of the non-BPS solutions.

5 Lifting to M-theory

The 4-dimensional theory we have considered can be seen as M-theory on a CY3 X

times a circle. From the M-theory perspective the charges of the D2 and D4 branes

then comes from M2 and M5 branes wrapping cycles in the CY while the D0 brane

charge corresponds to momentum along the circle. If we decompactify the circle we

get five-dimensional theories as studied in [29, 30]. Let us therefore briefly discuss

how to relate the solutions.

In five dimensions the overall volume of X is not dynamical, so we have one

less degree of freedom to work with. This effectively means that the one-parameter

Calabi-Yau manifolds will not give a dynamical theory in 5d. We therefore restrict

to the case of h1,1(X) = 2. In five dimensions we will also have that electric objects

are pointlike, i.e. correspond to black holes, while magnetic objects are string like,

i.e, correspond to black strings. So they are treated separately in [29, 30]. We will

focus on discussing the black strings, as these are related to the dyonic solutions we

have studied in this paper.

Let us denote the five-dimensional vector multiplet (real) scalars by τa and fix

the overall (tree level) volume of the five-dimensional moduli space,

V5d =
1

6
Cabcτ

aτ bτ c, (5.1)

to be equal to one. For the case C111 = C112 = 0, it was found in [29, 30] that the

five-dimensional black string attractor solutions are11

BPS:

{
τ 1γ = p1

(C/6)1/3
,

τ 2γ = p2

(C/6)1/3
,

non-BPS:

{
τ 1γ = −3C122p1+2C222p2

3C122(C/6)1/3
,

τ 2γ = p2

(C/6)1/3
.

(5.2)

11Note our conventions differ from those of [30]. We have rescaled C by a factor of −1/6.
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In [29] the main example of this type is that of the K3-fibration having C122 = 4 and

C222 = 2.

The relation between the four-dimensional Kähler moduli, Ja, arising from com-

pactifying type IIA string theory on a CY3, and the five-dimensional vector multiplet

scalars, τa, coming from compactifying M-theory on the same CY3, is given by

τa =
1

V
1/3
IIA

Ja, (5.3)

where VIIA is, as before, the volume of X in string units (2.7) [26, 56]. Given the

four-dimensional attractor solutions of Sec. 3, it is straightforward to evaluate VIIA

at the various attractor points,

VIIA =


√

6q30
C
, BPS (3.2),√

−6q30
C
, General non-BPS (3.2)√

−6q30
C
, Particular non-BPS (3.7).

(5.4)

It is now straightforward to check that the 4d BPS solutions as well as the particular

non-BPS solutions, (3.7), satisfy (5.3) when compared to (5.2). Namely, we have

Ja
γ

τaγ
=

∣∣∣∣6q30C
∣∣∣∣1/6 , (5.5)

while for the general non-BPS solution, (3.2), Eq. (5.3) only holds when compared

with the 5d BPS solution. This is expected since the radius of the M-theory circle

goes to infinity and the direction of the momentum does not break supersymmetry.

We thus have only supersymmetric attractors at this point. Breaking supersymmetry

through reversing of the orientation of the compactification manifold, such as we have

done for the general solution by flipping the sign of q0, is sometimes called “skew-

whiffing” and appears in many places in the literature [57, 58].

In a similar way, we can also study the relation between the solutions for the

models with C111 = C222 = 0 in four and five dimensions. For the solutions (3.10)

we start by defining x = J1

J2 and then study the ratio

p1

p2
= −x(2C112 + C122x)(C

2
122 + C112C122x+ 2C2

112x
2)

(C122 + 2C112x)(2C2
122 + C112C122x+ C2

112x
2)

. (5.6)

This agrees with the corresponding ratios in the five-dimensional solutions of [30]

when setting C112 = C122 = 1 or 3. So these should correspond to the same solutions.

For the case of C112 = C122 = 1 and p2 = −4p1 we have the solutions (3.12) in four

dimensions, while the corresponding non-supersymmetric solutions in five dimensions

are
τ 1γ =(−4 +

√
17)1/3,

τ 2γ =

(
7 +

√
17

2

)1/3

.
(5.7)
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It is again easy to calculate the 4d Kähler volume, VIIA, at this attractor point and

see that the relation (5.3) again hold for these solutions.

We have thus seen that the 4d particular solutions are the ones that lift to the

5d non-BPS black string solutions of [29, 30].

6 Discussion

Motivated by the weak gravity conjecture, we have studied double extremal attractor

black holes in four-dimensional N = 2 supergravity. In support of the conjecture, we

have demonstrated many decay channels where decay of non-supersymmetric black

holes into BPS and anti-BPS constituents is energetically favorable. An important

aspect of our analysis is the attractor mechanism, which depends only on the ex-

tremality of the black holes and thus allows us to study both supersymmetric and

non-supersymmetric solutions.

Eq. (4.23) demonstrates that for the general attractor points (3.2) at tree level,

non-BPS extremal black holes can decay into D0-branes and “polar” D0-D4 branes.

We have also explored higher derivative R2 corrections from the vector multiplet

sector [23, 24, 48, 49, 59]. Curiously, we find with Eq. (4.21) that these R2 correc-

tions make these decay channels more stable rather than unstable. This behavior

is untypical for R2 corrections, which commonly lead to a larger charge to mass ra-

tio. Notable exceptions are identified for non-supersymmetric theories in [60, Section

2.2]. Since we studied in this paper supersymmetric theories, we expect that D-term

higher derivative corrections will further correct the mass formula favoring decay of

non-supersymmetric extremal black holes.

Our results are complementary to recent results on black strings in five-dimensional

supergravity [29, 30]. Some qualitative differences between four- and five-dimensional

supergravity is additional electric D0-brane charge, and that the B-field makes the

moduli of the Calabi-Yau complex. In this paper we have discussed how these dif-

ferences affect the results for black hole decay in four dimensions.

We conclude with mentioning a few directions which deserve further study:

1. It would be interesting to better understand the stability of black holes, whose

decay channels to BPS and anti-BPS are only marginally unstable at tree level.

A better understanding of the R2 corrections to the threshold decay channels

4.2b is desirable.

2. Studying the decay channels from the perspective of the 2-dimensional CFT

could provide important insights in the decay processes.

3. It is desirable to carry out an analogous analysis for extremal black holes which

are not double extremal, that is to say with a non-trivial flow for the moduli

from spatial infinity to the horizon. To this end, one would need to understand
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Non-BPS solution Decay Mass ratio Section

Gen. sol. w/ corr., (3.3) D0s and D4s 1− 3
160

c2·p
C + . . . 4.2b

Gen. sol. w/o corr., (3.2) Polar D0s, and D4s 1 + q̃0
2q0

+ . . . 4.2c

Gen. sol. w/o corr., (3.2) Various D0-D2-D4 systems Always ≤ 1 4.3a-4.3d

Gen. sol., (3.2) BPS D0-D4, and non-BPS D0-D4 Possibly > 1 4.3e

Part. sol., (3.7) w/o considering autoch. divisor 4(1−2n)2

(1−4n)2 < 1 4.4a

Part. sol., (3.7) Including autoch. divisor 16(1−2n)2

(5−8n)2 > 1 4.4b

Part. sol., (3.12) No autoch. divisor < 1 4.5

Table 1. We collect the various results on the decay channels for non-supersymmetric

black holes considered in this paper. In Section 4.2b we consider the decay of the general

solution, (3.3), into D0- and D4-branes when including R2 corrections, while Secs. 4.2c and

4.3a-4.3e consider the decay into various D0-D2-D4 and anti-D0-D2-D4 systems without

considering R2 corrections. In Sections 4.4a and 4.4b we consider the decay of the particular

solutions (3.7) into D0-D4 and anti-D0-D4 states whose magnetic charges are spanned

either by the divisors inherited directly from the ambient space or by considering the extra

autochthonous divisors. For decay to be possible we find that the autochthonous divisor

must be considered. Finally, in Sec. 4.5 we consider Calabi-Yau manifolds that do not

have such an autochthounous divisor, we then find that the mass ratio is always smaller

than 1 suggesting that these non-BPS states are stable against decay.

the non-BPS attractor flows better, possibly including multi-centers [61]. This

is also of interest for point 1 above, since one can then explore decay channels

with non-BPS constituents, which may be more favorable than the ones with

BPS and anti-BPS constituents. We have briefly explored this type of decay

in channel 4.3e.

Some possible avenues for progress in this direction is the use of “fake” super-

symmetry [19], as well as the results of [62] and the solutions of [63].

Acknowledgments

JA would like to thank Cody Long for explaining certain aspects of their paper [29].

We are also happy to thank Nima Arkani-Hamed, Matthew Rochford and Antoine

Vincenti for discussions. The majority of this work was carried out while JA was

a graduate student in the School of Mathematics, Trinity College Dublin. During

this time, JA was supported by the Government of Ireland Postgraduate Scholarship

Programme GOIPG/2020/910 of the Irish Research Council. JM is supported by

the Laureate Award 15175 “Modularity in Quantum Field Theory and Gravity” of

the Irish Research Council, and the Ambrose Monell Foundation.

– 32 –



A Some useful formulas and notations

Using the notations introduced in Sec. 3 for the D0-D2-D4 system at tree level, with

gauge X0 = 1, we can list various useful formulas. First, we have for p0 = 0,

∂aW =qa − Cabcp
btc,

∂aK =
3i

2

La

L
,

(A.1)

such that

∇aW =qa − Cabcp
btc +

3iLa

2L
W,

(∇aW )∗ =qa − Cabcp
bt̄c − 3iLa

L
W ∗.

(A.2)

We also need the metric and its inverse

gab̄ =
3

4L

(
3

L
LaLb − 2Lab

)
,

gab̄ =
2L

3

(
3

L
JaJ b − Lab

)
,

(A.3)

where LabLbc = δac. From this we also find the Christoffel symbols

Γa
bc =

3i

2L
(Lbδ

a
c + Lcδ

a
b − LbcJ

a)− i

2
LadCdbc, (A.4)

that appear in the equations of motion for the scalar moduli (2.22).

As mentioned in Sec. 3, at tree level we can express the superpotential as

W (γ) = q0 + taqa −
1

2
Cabcp

atbtc = q̂0 −
1

2
Cabt̂

at̂b, (A.5)

where γ = (q0, qa, p
a, 0) [17]. Since ta = Ba + iJa we can also write this as

W (γ) = q0 + (Ba + iJa)qa −
1

2
Cab(B

aBb + 2iJaBb − JaJ b). (A.6)

The real and imaginary parts of W are then

Re(W ) =q0 +Baqa −
1

2
(B ·B − J · J) = q̂0 +

1

2
(J · J − B̂ · B̂),

Im(W ) =Jaqa − J ·B = −J · B̂.
(A.7)

This means that we now have

|W |2 =1

4
(J · J)2 + (J · J)

(
q0 +Baqa −

1

2
B ·B

)
+ JaJ bqaqb + (J ·B)2 − 2Jaqa(J ·B)

+ q20 +BaBbqaqb +
1

4
(B ·B)2 − (B ·B)(q0 +Baqa) + 2q0B

aqa

=
1

4
(J · J)2 + (J · J)(q̂0 −

1

2
(B̂ · B̂)) + (J · B̂)2 + q̂20 − q̂0(B̂ · B̂) +

1

4
(B̂ · B̂)2.

(A.8)
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The black hole potential can be expressed in a similar way as

e−KVBH =− 4VIIAL
ab(qa − CacB

c)(qb − CbdB
d)

+ (J · J)2 − 4VIIA(p · J) + 2(J ·B)2 + 2JaJ bqaqb − 4Jaqa(J ·B)

+ 4q20 + 4BaBbqaqb − 4(q0 +Baqa)(B ·B) + (B ·B)2 + 8q0B
aqa

=− 4VIIAL
abCacCbdB̂

cB̂d + (J · J)2 − 4VIIA(p · J)
+ 2(J · B̂)2 + 4q̂20 − 4q̂0(B̂ · B̂) + (B̂ · B̂)2.

(A.9)

We can simplify this expression further in special cases. First of all we consider a

D0-D4 system, i.e. setting qa = 0. This is equivalent to removing the hats in the

above expression, i.e.,

e−KVBH =(J · J)2 − 4VIIA(p · J) + 2(J ·B)2 − 4VIIAL
abCacCbdB

cBd

+ 4q20 − 4q0(B ·B) + (B ·B)2.
(A.10)

Alternatively, we can set B̂a = 0, which gives

e−KVBH = (J · J)2 − 4VIIA(p · J) + 4q̂20. (A.11)

For the one moduli case, h1,1(X) = 1, it is straightforward to determine the

inverse Lab. To state the result for this case, we introduce the shorthand notation

C111 = κ, p1 = p and similarly for J and B. This gives now

e−KVBH =
κ2p2

3

(
J4 + 4B̂2J2 + 3B̂4 − 12q̂0

κp
B̂2 +

12q̂20
κ2p2

)
. (A.12)

We can also note that Lab is a quadratic form on H2(X,R) with the signature

(1, b2 − 1), similar to Cab.

B Data of Calabi-Yau manifolds

In this Appendix, we collect some data of the Calabi-Yau families of interest to this

paper. This data is collected in the Tables 2-4. The presentation follows that of [51].
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