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Abstract

We generalize a real-space Chern number formula for gapped free fermions to higher
orders. Using the generalized formula, we prove recent proposals for extracting thermal
and electric Hall conductance from the ground state via the entanglement Hamiltonian in
the special case of non-interacting fermions, providing a concrete example of the connec-
tion between entanglement and topology in quantum phases of matter.
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1 Introduction

Two-dimensional gapped systems can exhibit rich topological phenomena. For example, the
quasi-particle excitations in topologically ordered states possess anyonic statistics [1]; the chiral
edge modes of gapped ground states with broken time-reversal symmetry lead to quantized
transport coefficients such as the electric and thermal Hall conductance [2,3]. As entanglement
is playing an increasingly important role in unifying different branches of quantum physics, it is
of foundational interest to explicitly relate these topological properties to the complex pattern
of entanglement in the ground state.

A classic example along this line is the topological entanglement entropy [4–6], which is
the constant piece in the von Neumann entropy S(ρA) of the reduced density matrix ρA on a
subregion A of a gapped ground state. The topological entanglement entropy probes the total
quantum dimension, a topological invariant that reflects the total “size” of the superselection
sectors. Later, a more refined characterization was proposed by Li and Haldane [7]. The basic
idea was to regard the spectrum of the entanglement Hamiltonian

KA := − ln ρA (1.1)

as a resolution and improvement of the entanglement entropy. In particular, the entanglement
spectrum contains non-trivial information about the gapless edge states.

Recently, Kim et al. proposed that the thermal Hall conductance can be extracted from the
commutator of entanglement Hamiltonians [8]. This conjecture was further generalized to the
systems with a global U(1) symmetry by Fan et al. [9]. More specifically, let us consider three
jointed regions A, B and C of a gapped ground state |ψ⟩ on a two dimensional infinite lattice
(all three sectors are large comparing to the correlation length)

|ψ〉

AB

C

The aforementioned conjectures in Ref. [9] and [8] claim respectively that

σxy =
i

2
⟨ψ|[KAB, Q

2
BC ]|ψ⟩, c− =

3i

π
⟨ψ|[KAB, KBC ]|ψ⟩. (1.2)

Here KAB = − ln ρAB and KBC = − ln ρBC are the entanglement Hamiltonians associated with
the AB and BC regions; QBC is the total charge on the BC region. On the l.h.s. of the
conjectured formulas, σxy is the electric Hall conductance, and c− is the chiral central charge1,
i.e. the dimensionless parameter in the thermal Hall conductance κxy =

π
6
c−T . To support the

conjectures, the authors of [8–11] provided a few arguments in addition to the numerical tests.
However, a rigorous proof is still in search. Part of the difficulty is that the exact form of the
entanglement Hamiltonian for a region of irregular shape is hardly tractable.

1When conformal symmetry is present for the gapless edge, c− = c− c is the difference between the central
charges for holomorphic and anti-holomorphic sectors.
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Nevertheless, for the ground state of non-interacting fermions, the entanglement Hamilto-
nian is quadratic and directly related to the spectral projector [12], a matrix that is defined
on a single particle Hilbert space rather than an exponentially large many-body Hilbert space.
The main result of this paper is a generalized real-space Chern number formula that allows us
to compute the commutators of non-linear functions of restricted spectral projectors, including
the r.h.s. of (1.2) in their single particle forms as special cases. Our formula is a higher order
version of what Kitaev proposed in Ref. [13], known as the “noncommutative Chern number”
due to its close connection to the noncommutative geometry [14] and its application in proving
the quantization of Hall conductance in disorder systems [15].

The rest of the paper is organized as follows. In Sec. 2, we set up the conventions, review
the aforementioned real-space Chern number formula, and show our generalization to higher
orders. A combinatorial proof of the generalized formula is presented in Appendix A, and its
“smooth” variant is discussed in Appendix B. We then apply the generalized formula to prove
the conjectures (1.2) for the non-interacting fermions in Sec. 3 (using a corollary proved in
Appendix C). Finally, we conclude with a discussion on the dynamical nature of the commutator
formulas with entanglement Hamiltonian in Sec. 4.

2 Generalized real-space Chern number formula

2.1 Preliminaries

We consider the quadratic Hamiltonian with a spectral gap on a two dimensional infinite lattice

H =
∑
j,k

hjkc
†
jck, {cj, c†k} = δjk, (2.1)

where h = h† is a hermitian matrix.
Assuming a diagonalization h = UDU †, the ground state |ψ⟩ is filled by the normal modes

with negative eigenvalues (energies). The spectral projector P is defined accordingly,

P :=
1

2
(I − sgn(h)), with sgn(h) := U sgn(D)U †. (2.2)

The projector P is directly related to the correlation matrix as ⟨ψ|cjc†k|ψ⟩ = δjk − Pjk, or

equivalently ⟨ψ|c†jck|ψ⟩ = Pkj. The spectral gap implies a finite correlation length, i.e. |Pjk| <
Ce−|j−k|/ξ with indices j, k labeling sites on the lattice, and |j− k|/ξ is the distance in the unit
of the correlation length ξ.

In Ref. [13] (Appendix C. 3), a real-space Chern number formula is proposed as follows

AB

C

ν(P ) = 12πi [Tr (PAPBPC)− Tr (PCPBPA)] , (2.3)

where A,B,C are the spatial projectors onto the corresponding sectors depicted on the left
(i.e. diagonal matrices with diagonal elements 0 or 1 depending on the site indices). All three
sectors are large comparing to the correlation length. The value ν(P ) does not change if any

3



site is reassigned from one sector to another, and therefore is a topological invariant. This
definition does not rely on the translational invariance, but in the translational invariant case,
it reproduces the familiar TKNN formula expressed in the momentum space [16]

ν(P ) =
1

2πi

∫
tr

(
P̃

(
∂P̃

∂qx

∂P̃

∂qy
− ∂P̃

∂qy

∂P̃

∂qx

))
dqxdqy, (2.4)

where P̃ (qx, qy) is the Fourier transform of P and tr(·) traces the band indices. As a projector

onto the filled bands, P̃ (qx, qy) naturally defines a complex fiber bundle over the torus, on which
(2.4) computes the first Chern character.

The Hamiltonian (2.1) is written in the complex fermion basis, which is suitable for systems
with charge conservation, such as the integer quantum Hall and the Chern insulators [17]. In
these cases, we have the charge operator defined for each local region, e.g., QA =

∑
j∈A c

†
jcj. The

electric Hall conductance and the chiral central charge are proportional to the Chern number
as follows

2πσxy = ν(P ), c− = ν(P ) (P in complex basis) . (2.5)

For systems without a global U(1) symmetry, such as the (p + ip) superconductor [18], a
more convenient basis is the Majorana fermions, where a general quadratic Hamiltonian can
be written as follows

H =
i

2

∑
j,k

mjkχjχk, {χj, χl} = δjk. (2.6)

Here m = −mT is a real, skew-symmetric matrix. In the Majorana basis, the spectral projector
is given similarly as P = 1

2
(I − sgn(im)), where im is hermitian and therefore sgn(im) =

U sgn(D)U † is well defined. Again, we have the relation between the correlation matrix and
the projector ⟨ψ|χjχk|ψ⟩ = Pkj = δjk − Pjk.

As a projector in the Majorana basis, the Chern number of P is defined in the same way as
in (2.3). However, the relation to the chiral central charge is different as each Majorana chiral
edge mode only carries 1/2 of the complex fermion one, i.e.

c− =
ν(P )

2
(P in Majorana basis). (2.7)

Alternatively, one could have directly started with the Majorana basis and regard the charge
conserved Hamiltonian (2.1) as a special case. Then the electric Hall conductance, when it
applies, comes with an extra 1/2 factor in its relation to the Chern number, i.e. 2πσxy = ν(P )/2
with P in the Majorana basis. It is a consequence of the spectrum doubling when we rewrite
(2.1) into the form of (2.6).

2.2 Generalization

The real-space Chern number formula (2.3) involves the spatial projectors A, B and C in a
multi-linear way. In this section, we give a generalization that allows repeated appearance of
the spatial projectors. The main result is the following formula

12πi [Tr((PAP )mPBP (PCP )n)− Tr((PCP )nPBP (PAP )m)] =
6m!n!

(m+ n+ 1)!
ν(P ) (2.8)
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where m,n ∈ Z+ are positive integers. The original form (2.3) corresponds to the special case
when m = n = 1.2 We show a combinatorial proof of (2.8) in Appendix A.

Extending to infinite size. The formula (2.8) is not sensitive to the exterior, since the
contribution is localized in the center. Therefore, we may extend A,B,C to the whole infinite
lattice (plane) and obtain the following equivalent form using A+B + C = 1

AB

C

⇒ AB

C

4πiTr[(PAP )m, (PBP )n] =
2m!n!

(m+ n)!
ν(P ), (2.9)

where m,n ∈ Z+ are positive integers. The derivation of the equivalence is contained in the
Appendix A (cf. (A.12)). Note it is important that the regions A, B are infinite in the above
formula, otherwise the commutator is traceless.

Smooth version. It is tempting to guess the expressions on the r.h.s. of (2.8) or (2.9) are
related to the Euler-Beta function. Indeed, we show in the Appendix B that the following
“smooth” version of (2.9)

2πiTr[(PfP )m, (PgP )n] = ν(P )

∮
Σ

fmdgn, (2.10)

also holds. Here f and g are two functions on the two dimensional plane that are smooth over
the scale much larger than the correlation length. We further require f and g to have stable
asymptotics far away from the center, namely they are functions only of the angular variable
at a large enough contour Σ (dashed circle in (2.9)), i.e. f(r, θ) = f(θ), g(r, θ) = g(θ) when
outside Σ. On the l.h.s. of (2.10), f and g are understood as diagonal matrices with elements
given by the values of the functions f and g.

Heuristically, to mimic (2.9), we let fA and gB be two “blurred” indicator functions (i.e. 1
on the corresponding region and 0 otherwise) on A and B respectively, satisfying fA + gB = 1
along the boundary between A and B.

θ
A B

fA + gB = 1

(2.11)

The non-zero contribution of the integral
∮
Σ
fmA dg

n
B is then concentrated near the blurred bound-

ary (yellow region) and produces the desired answer

2πiTr[(PAP )m, (PBP )n] =

∫ 1

0

(1− gB)
mdgnB =

m!n!

(m+ n)!
. (2.12)

See Appendix B for more details.

2The seemingly redundant P ’s added via P = P 2 is to make the combinations PAP and PCP hermitian,
so that the powers m,n are analytically continuable.
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3 Application to entanglement Hamiltonian

The particular generalization (2.8) for the real-space Chern number in the last section was
originally motivated by the attempts to prove the two conjectures (1.2) on the relations between
the entanglement Hamiltonian and the topological invariants. In this section, we show a proof
for the non-interacting gapped fermion system, where the following corollary of (2.8) is vital.

Let P be the spectral projector for a gapped quadratic Hamiltonian of fermions (complex
or Majorana) on the two dimensional (infinite) lattice. We have

AB

C

12πiTr (PABC [P
m
AB, P

n
BC ]) = 6

(
1

m+ n+ 1
− m!n!

(m+ n+ 1)!

)
ν(P ), (3.1)

for non-negative integers m,n ∈ Z⩾0. Here the subscripts in the projectors denote the restric-
tions to the corresponding regions, e.g. PAB := (A+B)P (A+B) where A, B are understood as
spatial projectors as before. The derivation of the above corollary is presented in Appendix C.

There is an interesting “reflection property” follows immediately from (3.1): if replace PAB
by 1− PAB, we obtain the same formula with an opposite sign

12πiTr (PABC [(1− PAB)
m, P n

BC ]) =
m∑

m′=0

(−1)m
′
(
m

m′

)
· 12πiTr

(
PABC [P

m′

AB, P
n
BC ]

)
= −6

(
1

m+ n+ 1
− m!n!

(m+ n+ 1)!

)
ν(P ).

(3.2)

The same reflection property applies when replacing PBC → 1− PBC .
Furthermore, we also have the following formulas from the derivative of (3.1) at m = 0

and/or n = 0

12πiTr (PABC [lnPAB, PBC ]) = 3ν(P ), 12πiTr (PABC [lnPAB, lnPBC ]) = π2ν(P ) . (3.3)

Again, each time when we replace PAB by (1− PAB) or PBC by (1− PBC), the r.h.s flips sign.
In the first formula, we have taken n = 1 for its application in the next subsection.

3.1 Electric Hall conductance

Gapped Hamiltonians with charge conservation and broken time-reversal symmetry can possess
chiral edge modes that carry electric current

µ

jedge

jedge = σxyµ, (3.4)

where µ is the chemical potential that is much smaller than the bulk gap, i.e. µ≪ ∆bulk. The
dimensionless coefficient σxy is the electric Hall conductance.
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Authors of [9] proposed a formula that computes σxy from the ground state wave-function
|ψ⟩ as follows,

|ψ⟩

AB

C
σxy =

i

2
⟨ψ| [KAB, Q

2
BC ] |ψ⟩ . (3.5)

where QBC =
∑

j∈BC qj is the charge of the region BC and KAB is the entanglement Hamilto-
nian for the region AB.

The goal of this subsection is to prove (3.5) for the non-interaction gapped fermions. We
start with the quadratic Hamiltonian in the form of (2.1), where the local charge is the fermion
occupation number, i.e. QBC =

∑
j∈BC c

†
jcj. Moreover, the ground state of such a non-

interacting Hamiltonian is Gaussian, i.e. it satisfies Wick’s theorem. This key property enables
us to write down the entanglement Hamiltonian KΩ of the ground state |ψ⟩ for an arbitrary
region Ω [12]

KΩ =
∑
jl

kΩ,jlc
†
jcl, kΩ = ln

1− PΩ

PΩ

, (3.6)

where PΩ = ΩPΩ is the spatial restriction of the spectral projector P . Spectral projector P is
defined in (2.2) and related to the correlation matrix as Pjk = δjk − ⟨ψ|cjc†k|ψ⟩ = ⟨ψ|c†kcj|ψ⟩.

Now, we are ready to compute the r.h.s. of (3.5) explicitly via Wick contractions. The
result reads

r.h.s. = −iTr (PABC [kAB, PBC ]) = −iTr
(
PABC

[
ln

1− PAB
PAB

, PBC

])
, (3.7)

which can further split into two terms with ln(1− PAB) and − lnPAB respectively. Each term

can be evaluated as in (3.3), and the sum is ν(P )
2π

= σxy, which proves (3.5) in non-interacting
fermion systems.

3.2 Thermal Hall conductance

The chiral edge modes of a gapped ground state with broken time-reversal symmetry can also
carry energy, leading to thermal transport

T

Iedge

Iedge =
π

12
c−T

2 (3.8)

where Iedge is the energy current runs anti-clockwisely along the edge and the temperature is
assumed to be much smaller than the bulk energy gap, i.e. T ≪ ∆bulk. As mentioned in the
introduction, the dimensionless real number c− is known as the chiral central charge, which is
related to the thermal Hall conductance at low temperature via κxy(T ) =

π
6
c−T +O(T 2).

Authors of [8, 10] proposed the following formula to compute the chiral central charge c−
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from the ground state wave-function |ψ⟩

|ψ⟩

AB

C
c− =

3i

π
⟨ψ| [KAB, KBC ] |ψ⟩ (3.9)

Since the thermal Hall effect also exists without the charge conservation, it is more con-
venient to use Majorana basis in this subsection for a unified framework to include both the
topological insulators and superconductors. Therefore, we consider the quadratic Hamiltonian
in the form of (2.6). The corresponding subregion entanglement Hamiltonian on Ω is given as
follows in the Majorana basis [19]

KΩ =
i

2

∑
jl

kΩ,jkχjχl, ikΩ = ln
1− PΩ

PΩ

(P in Majorana basis) (3.10)

The normalization factor 1/2 is chosen such that [−iK(kAB),−iK(kBC)] = −iK([kAB, kBC ]).
Recall that ⟨ψ|χjχl|ψ⟩ = δjl − Pjl = Plj, we have the r.h.s. of (3.9) as follows

r.h.s. =
3i

2π
Tr (PABC [ikAB, ikBC ]) =

3i

2π
Tr

(
PABC

[
ln

1− PAB
PAB

, ln
1− PBC
PBC

])
, (3.11)

which further splits into four terms involving commutators that have been evaluated in (3.3).
The upshot is that each term contributes a ν(P )/8, and they give ν(P )/2 = c− in total for P
in the Majorana basis.3

4 Summary and discussion

In this paper, we have generalized the real-space Chern number formula to higher orders, and
applied it to establish the relations between entanglement Hamiltonian and Chern number,
hence proved the two conjectures (1.2) for non-interacting gapped fermion systems.

A direct question for future is how far we can go in connecting entanglement to topological
invariants in the periodic table of free fermion topological states [21–23], e.g., 2d and 3d time-
reversal invariant topological insulators [24–26]. Following the strategy of this paper, it seems
that suitable generalizations of the real-space Chern number formula to “Z2” and/or higher
dimensions are crucial. Another related open question is how to formulate these conjectures in
the low energy effective field theory, such as the Chern Simons theory, where the factorization
of Hilbert space is not immediately available.

At last, we would like to comment on the dynamical nature of the commutators that involve
an entanglement Hamiltonian. Indeed, as a hermitian operator, the entanglement Hamiltonian
KΩ of a region Ω may be used to generate a unitary4 U(s) = exp(−isKΩ) on Ω. It acts

3A similar proof has been constructed independently by Nikita Sopenko [20].
4Terminology-wise, this evolution U(s) is also known as the (half-sided) modular flow or the modular au-

tomorphism. Accordingly, the entanglement Hamiltonian is also called the modular Hamiltonian, due to its
appearance in the Tomita-Takesaki modular theory [27–29], whose growing popularity among physicists may
be partially attributed to its successful applications in the quantum field theory and the gauge-gravity duality.
See [30] for a recent introduction to the subject.
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non-trivially on a generic operator O that has support on Ω, via a Heisenberg-like equation

O(s) := eisKΩOe−isKΩ ,
d

ds
O(s)

∣∣∣
s=0

= i[KΩ, O], (4.1)

where the commutator is interpreted as the rate of change under the evolution U(s). Conjectures
(1.2) seem to suggest, as explained in [9, 11] via a Cardy-like formula argument, the above
dynamics may be used to distill the universal information from the seemingly non-universal
data such as the area-law coefficient α in the von Neumann entropy S(ρA) = α|∂A| − γ + · · · .
It will be interesting to test this mechanism beyond gapped phases.

It is also worth emphasizing that the dynamics generated by the entanglement Hamiltonian
is “intrinsic” – as it is constructed from the entanglement pattern in the wave-function itself
rather than external driving sources such as the parent Hamiltonian. This property may be
particularly useful when applied to a quantum state that is not obtained from a Hamiltonian
but through a quantum simulator [31].
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A Combinatorial proof of the generalized formulas

In this appendix, we present a combinatorial proof of the generalized real-space formula

12πi [Tr((PAP )mPBP (PCP )n)− Tr((PCP )nPBP (PAP )m)]︸ ︷︷ ︸
=:α3(m,n)

=
6m!n!

(m+ n+ 1)!
ν(P ) (A.1)

and its equivalent form when A, B, and C extend to infinity (we will assume A + B + C = 1
for the whole section)

AB

C

4πiTr[(PAP )m, (PBP )n]︸ ︷︷ ︸
=:α2(m,n)

=
2m!n!

(m+ n)!
ν(P ). (A.2)

More specifically, we will derive a set of recurrence relations between α3(n,m) and α2(n,m)
which will uniquely determine their forms as shown in the above formulas, given the initial
condition α3(1, 1) = α2(1, 1) = ν(P ).

The derivation is partly inspired by the manipulations in Ref. [13] Appendix C.3.
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A useful lemma. We begin with a lemma that is useful in deriving the recurrence relation for
α2(m,n). Partition the plane into four different sectors (as shown below), with the correspond-
ing real-space projectors denoted by Π1,2,3,4 respectively. Then, Πx = Π1+Π4 and Πy = Π1+Π2

are the projectors onto the right and upper half-plane. The lemma is stated as follows

x

y

12

3 4
2πiTr

[
(PΠxP )

m, (PΠyP )
n
]︸ ︷︷ ︸

=:ρ(m,n)

= ν(P ). (A.3)

It reduces to Eq. (128) of Ref. [13] when m = n = 1. Therefore, what we need to show is that
ρ(m,n) is independent of the arguments m,n.

Without loss of generality, we assume m > 1, n ⩾ 1 and consider the difference

ρ(m,n)− ρ(m− 1, n) = −2πiTr
[
P (Π2 +Π3)P

(
P (Π1 +Π4)P

)m−1
,
(
P (Π1 +Π2)P

)n]
. (A.4)

Now for terms with Π3, they contain either (1) two real-space projectors that do not share a
boundary; or (2) three or more orthogonal real-space projectors. Both cases have an absolutely
convergent trace for individual terms and therefore the trace of the commutator vanishes.
Consequently, Π3 can be dropped from r.h.s.

r.h.s. = −2πiTr
[
PΠ2P

(
P (Π1 +Π4)P

)m−1
,
(
P (Π1 +Π2)P

)n]
. (A.5)

Next, we perform a replacement Π1 + Π2 = 1 − Π3 − Π4 and show that the above terms all
vanish by repeating the arguments. Similarly, ρ(m,n)− ρ(m,n− 1) = 0. Q.E.D.

Recurrence relations. We will derive three recurrence relations, two of which are for α3(m,n)
and α2(m,n) separately, and the third one relates α3 and α2.

1. Recurrence relation for α3(m,n).

We replace the leftmost/rightmost A in the first/second term of α3(m,n) with 1−B−C
and have

α3(m,n) = α3(m− 1, n)− α3(m− 1, n+ 1) for n > 1 . (A.6)

We can then start with α3(m, 1) and apply Eq. (A.6) repetitively to deduce

α3(m, 1) =
m∑
j=1

(
m− 1

j − 1

)
(−1)j−1α3(1, j) =

m∑
j=1

(
m− 1

j − 1

)
(−1)j−1α3(j, 1) . (A.7)

where in the second step we have used the reflection property, i.e., α3(1, j) = α3(j, 1),
which can be shown by cyclically permuting ABC.

2. Recurrence relation for α2(n,m).

Starting with the lemma Eq. (A.3), we rewrite it in terms of the real-space projectors
Π1,2,3,4 explicitly

ν(P ) = 2πiTr
[
(P (Π1 +Π4)P )

m, (P (Π1 +Π2)P )
n
]
. (A.8)
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We can split (P (Π1+Π4)P )
m into two terms (P (Π1+Π4)P )

m− (PΠ1P )
m and (PΠ1P )

m,
each of which has a simple commutator. For the former, since all terms contain Π4, we
can drop Π2 terms in the commutator for the same reason used in the previous subsection.
Therefore, we have

Tr
[
(P (Π1 +Π4)P )

m − (PΠ1P )
m, (P (Π1 +Π2)P )

n
]
=Tr

[
(P (Π1 +Π4)P )

m, (PΠ1P )
n
]

= Tr
[
(P (1− Π2)P )

m, (PΠ1P )
n
]
.

(A.9)
From the first to the second line, we have replaced Π1+Π4 with 1−Π2−Π3 and dropped
Π3. The other term can be manipulated similarly. The upshot is that

ν(P ) = 2πi Tr
[(
P (1− Π2)P

)m
, (PΠ1P )

n
]
+ 2πi Tr

[
(PΠ1P )

m, (P (1− Π4)P )
n
]

(A.10)

Now, we are ready to expand the above expression into polynomials of PΠ2P and PΠ4P
and obtain the following equation

2ν(P ) = −
m∑
j=1

(
m

j

)
(−1)jα2(j, n)−

n∑
j=1

(
n

j

)
(−1)jα2(m, j) .

Taking m = 1 and use the reflection α2(1, j) = α2(j, 1), we find

(1 + (−1)m+1)α2(m, 1) = 2ν(P )−
m−1∑
j=1

(
m

j

)
(−1)j+1α2(j, 1) . (A.11)

Note that the left-hand side only involves α2(m, 1) for odd m.

3. The relation between α3(m,n) and α2(m,n).

Starting with α3(m,n), we fully cyclically permute all terms as (m + n + 1)-cycles and
then use B = 1− A− C to obtain

(m+ n+ 1)α3(m,n) = 3α2(m,n) . (A.12)

Combining Eq. (A.7) and (A.12), we obtain

(1 + (−1)m)
α2(m, 1)

m+ 2
=

m−1∑
j=1

(
m− 1

j − 1

)
(−1)j−1α2(j, 1)

j + 2
. (A.13)

Note that the left-hand side only involves α2(m, 1) for even m.

Determining the solution. First, apply the linear recurrence relation (A.11) and (A.13)
for odd and even m respectively, we are able to determine α2(m, 1) uniquely with initial value
α2(1, 1) = ν(P ). Then, we have α3(1, n) = α3(n, 1) = n+2

3
α2(n, 1) from (A.12). Finally, a

general α3(m,n) is achieved via (A.6) and the boundary values α3(1, n) obtained from the
above procedure.
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B Noncommutative Chern number

The goal of this appendix is to provide a sketch of proof for the “smooth version” of the
generalized real-space Chern number formula5 (cf. Eq. (2.10) in the main text)

Σ

fg
2πiTr[(PfP )m, (PgP )n] = ν(P )

∮
Σ

fmdgn . (B.1)

P is the spectral projector for a gapped quadratic Hamiltonian on the two dimensional infinite
lattice. The gap condition implies an exponential decaying form of P , i.e. |Pjk| < Ce−|j−k|/ξ

with ξ the correlation length. As introduced in the main text, f and g are two functions on
the two dimensional infinite lattice that are smooth over scale much larger than the correlation
length. We further require f and g to have stable asymptotics far away from the center (for the
reason that will be clear momentarily), i.e. f(r, θ) = f(θ), g(r, θ) = g(θ) when (r, θ) is outside
the contour Σ. On the l.h.s., f and g are understood as diagonal matrices with elements given
by the values of the functions.

To derive (B.1), we consider a version involving three smooth functions and a “bulk integral”
on the r.h.s. and then reduce to the above form via Stokes’ theorem. More specifically, we show

2πiTr
(
Pf0P

[
(Pf1P )

m, (Pf2P )
n
])

= ν(P )

∫
f0 df

m
1 ∧ dfn2 , (B.2)

where f0,1,2 are three slow varying functions satisfying |(L∇)nf0,1,2| ≲ O(1) with L ≫ ξ, i.e.
the typical scale L on which f0,1,2 vary is much larger than the correlation length ξ.

Proof sketch of (B.2). The idea is to use the gradient expansion and show that the error is
higher order in ξ/L. Let us start with the m = n = 1 case,

2πiTr
(
Pf0P [Pf1P, Pf2P ]

)
= ν(P )

∫
f0 df1 ∧ df2. (B.3)

We divide the two dimensional lattice into patches of size ∆x by ∆y, with the linear size much
larger than the correlation length but much much smaller than L, i.e. ξ ≪ ∆x ∼ ∆y ≪ L. To
be concrete, we choose ∆x = ∆y ∼

√
Lξ. Accordingly, the trace over all lattice sites can be

divided into a sum over the restrictions to individual patches, i.e., Tr =
∑

patchTrpatch, where
Trpatch(·) :=

∑
j∈patch⟨j| · |j⟩.

Now, for each patch, we can approximate the restricted trace of the following operators by
a global trace with a negligible error

0 ∆x

∆y

2πiTrpatch

[
P

x

∆x
P, P

y

∆y
P

]
= 2πiTr

[
PΠ∆x

x P, PΠ∆y
y P

]︸ ︷︷ ︸
=ν(P )

+O
(√

ξ/L
)

(B.4)

5Many of the discussions in this appendix are inspired by private conversations with Alexei Kitaev, and
are also related to the applications of the powerful mathematical tools from noncommutative geometry to the
quantum Hall systems [15,14]. See also Ref. [32] for a more recent overview.
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where Π∆x,∆y
x,y are smooth versions of the half space projectors

Π∆x
x =


1 x > ∆x

x/∆x 0 < x < ∆x

0 x < 0

Π∆y
y =


1 y > ∆y

y/∆y 0 < y < ∆y

0 y < 0

(B.5)

which agree with the l.h.s. of (B.4) inside the patch.
To estimate the error, recall that the projector P is local, therefore the discrepancy of the

two traces only occurs near the boundary (yellow region) of patch, i.e., in a band of width ξ (the
correlation length). Within this band, the difference of the diagonal matrix elements on the two
sides is of order 1/(∆x∆y). Hence, the total error is of order ξ(∆x+∆y)/(∆x∆y) ∼ O

(√
ξ/L

)
.

As explained in [13] Appendix C.3, the first term of the r.h.s. of (B.4) is independent of the
regulator (∆x and ∆y), and equal to ν(P ).

Now, we use (B.4) to evaluate (B.3) patch by patch. Within a patch, the slow varying func-
tions f0,1,2 can be linearized with error subleading in ∆x/L. The leading non-zero contribution
comes from the constant part of f0 and the first-order derivatives of f1,2. We have

2πiTrpatch(Pf0P [Pf1P, Pf2P ]) = 2πi(f0(∂xf1∂yf2 − ∂yf1∂xf2) Trpatch([PxP, PyP ]) +O((ξ/L)
3
2 )

= 2πi(f0(∂xf1∂yf2 − ∂yf1∂xf2)

∫
patch

dx ∧ dy +O((ξ/L)
3
2 )

= 2πi

∫
patch

f0 df1 ∧ df2 +O((ξ/L)
3
2 )

(B.6)
Note that the first term of the r.h.s. is of order L−2∆x∆y = ξ/L, therefore we can ignore the
error O((ξ/L)3/2). Finally, summing over all the patches yields (B.3).

Generalizing to higher orders (B.2) is straightforward: we divide the trace into the same
grid and take only the linear terms in the gradient expansion of [(Pf1P )

m, (Pf2P )
n], resulting

the r.h.s. of (B.2).

Reduction to the boundary. To achieve (B.1) from (B.2), we take f0 = 1 and require f1 = f
and f2 = g to have stable asymptotics far way from the center, i.e. there exist a circle Σ of
radius R, out of which f and g are only function of angular variable

f(r, θ) = f(θ) , g(r, θ) = g(θ) at r > R. (B.7)

With this condition, the integrand df ∧ dg = 0 vanishes outside of Σ. Then after applying
Stokes’ theorem to the integral inside Σ, we have

2πiTr
[
(PfP )m, (PgP )n

]
= ν(P )

∫
inside Σ

d(fmdgn) = ν(P )

∮
Σ

fmdgn. (B.8)

The m = n = 1 case was also discussed in the context of the Girvin-MacDonald-Platzman
(GMP) algebra [33–35], where P is the projection to the lowest Landau level.6

Relate smooth to sharp edge. So far, we have discussed the scenario when functions f
and g are smooth enough so that the linear expansion is adequate. In this case, we have a

6We thank Shinsei Ryu for pointing out this to us.
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nice integral formula that computes the desired commutator using the asymptotics of f and g.
However, in order to apply it to the spatial projectors A and B, which are indicator functions
with sharp edges, we need extra arguments.

The idea is to design a process that blurs the projectors A and B to fA and gB with smoother
asymptotics, while keeping the trace of the commutator unchanged, i.e.,

AB

C

2πiTr
[
(PAP )m, (PBP )n

]
= 2πiTr

[
(PfAP )

m, (PgBP )
n
]
. (B.9)

The key observation is that when A+B = 1 is locally satisfied along the edge, the commutator
locally vanishes as [(PAP )m, (P (1−A)P )n] = 0. Therefore, as long as we preserve the condition
fA + gB = 1 along the edge in the process of deformation, we will have (B.9) satisfied. (One
might have concerned that near the center when A+B = 1 is not locally satisfied, the argument
could have failed. However, since any finite change does not contribute to the commutator, the
above argument is still valid.)

Now, we are in the position to evaluate the r.h.s. of (B.9) via a simple integral as follows

θ
A B

fA + gB = 1
r.h.s. = ν(P )

∫ 1

0

(1− gB)
mdgnB =

m!n!

(m+ n)!
ν(P ) (B.10)

which reproduces (2.9) with a factor of 2 dropped out from both sides.

C The commutator of restricted spectral projectors

The generalized real-space Chen number formulas inquire the commutativity between the real-
space projectors after the projection. However, for the entanglement Hamiltonian on a region
Ω, what appears is the spectral projector restricted to such region, i.e. PΩ = ΩPΩ. In this
appendix, we derive the following formula (cf. Eq. (3.1) in the main text) for such restricted
spectral projectors,

AB

C

12πiTr (PABC [P
m
AB, P

n
BC ]) = 6

(
1

m+ n+ 1
− m!n!

(m+ n+ 1)!

)
ν(P ) , (C.1)

as a corollary of the generalized Chern number formulas (2.8) and (2.9). Here A + B + C is
a sufficiently large (comparing to the correlation length) but finite disk. We emphasize the
finiteness of the disk because, in contrast to the generalized Chern number formulas in the
main text, the contributions are not localized near the center in the above formula. The key
step of the derivation is to rearrange the terms such that the contributions are relocated to the
center.

The formula is trivially satisfied for m = 0 or n = 0. We only need to consider the case for
m,n ∈ Z+. We start with an expansion of the matrices inside the trace on the l.h.s. of (C.1)

P (A+B) ... P (A+B)︸ ︷︷ ︸
m

PB P (B + C) ... P (B + C)︸ ︷︷ ︸
n

− P (B + C) ... P (B + C)︸ ︷︷ ︸
n

PB P (A+B) ... P (A+B)︸ ︷︷ ︸
m

(C.2)
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1. We separate out the terms in (C.2) that do not contain C, i.e.

(P (A+B))m(PB)n+1 − (PB)n+1(P (A+B))m. (C.3)

Its trace is zero for the finite disk A+B + C by cyclic permutation. The rest terms are

(P (A+B))mPB
(
(P (B+C))n−(PB)n

)
−
(
(P (B+C))n−(PB)n

)
PB(P (A+B))m. (C.4)

2. The next step is to cyclically permute both terms once and add an extra P via P = P 2

to the right end of both terms,

(P (A+B))m−1PB
(
P (B + C))n − (PB)n

)
P (A+B)P

− P (A+B)
(
(P (B + C))n − (PB)n

)
PB(P (A+B))m−1P

(C.5)

Note that the B (with a underline and in red color) terms from the first and second line
cancel as they are related by cyclic permutations. The additional P was added for later
convenience.

3. The rest terms are now supported locally near the center where A,B,C join because all
terms will contain at least one copy of A, B, C. Therefore, we can now take the large
disk limit and replace (A+B) and (B+C) by (1−C) and (1−A) respectively. We have

(P (1− C))m−1PB
(
P (1− A))n − (PB)n

)
PAP

− PA
(
(P (1− A))n − (PB)n

)
PB(P (1− C))m−1P .

(C.6)

4. We fully expand the above formula and obtain two series of terms. One is from (P (1−A))n
and is in the form of

(PC)m
′
PB(PA)n

′+1P − (PA)n
′+1PB(PC)m

′
P (C.7)

with multiplicity (−1)m
′+n′(m−1

m′

)(
n
n′

)
. The other is from (PB)n and is in the form of

(PC)m
′
(PB)n+1PAP − PA(PB)n+1(PC)m

′
P (C.8)

with multiplicity −(−1)m
′(m−1

m′

)
.

5. The trace of both types of terms are computable using (2.8) and (2.9) (with the caution
that the powers should be positive while applying (2.8). For the case with power zero,
e.g. m′ = 0 in (C.8), (2.9) is applied instead of (2.8)). The upshot is that

12πiTr (PABC [P
m
AB, P

n
BC ]) = −6ν(P )

[ m−1∑
m′=0

n∑
n′=0

(−1)m
′+n′

(
m− 1

m′

)(
n

n′

)
m′!(n′ + 1)!

(m′ + n′ + 2)!

−
m−1∑
m′=0

(−1)m
′
(
m− 1

m′

)
m′!(n+ 1)!

(m′ + n+ 2)!

]
= −6ν(P )

(
m!n!

(m+ n+ 1)!
− 1

m+ n+ 1

)
(C.9)

which proves (C.1).
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