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We provide bounds on temporal fluctuations around the infinite-time average of out-of-time-
ordered and time-ordered correlators of many-body quantum systems without energy gap degenera-
cies. For physical initial states, our bounds predict the exponential decay of the temporal fluctuations
as a function of the system size. We numerically verify this prediction for chaotic and interacting
integrable spin-1/2 chains, which satisfy the assumption of our bounds. On the other hand, we
show analytically and numerically that for the XX model, which is a noninteracting system with
gap degeneracies, the temporal fluctuations decay polynomially with system size for operators that
are local in the fermion representation and decrease exponentially in the system size for non-local
operators. Our results demonstrate that the decay of the temporal fluctuations of correlators cannot
be used as a reliable metric of chaos or lack thereof.

I. INTRODUCTION

The spreading of local observables under unitary time evolution has been used as a measure of information scram-
bling in quantum systems out-of-equilibrium and has spurred a lot of interest across various areas of physics. A central
quantity used to assess this spreading is the out-of-time ordered commutator (OTOC) between two operators, Ŵ (t)

and V̂ (0), where one is fixed at time t = 0 and the other evolves in time, that is,

C(t) = −1

2
〈[Ŵ (t), V̂ ]2〉 (1)

= 1−<[〈Ŵ †(t)V †(0)W (t)V (0)〉],

where <[.] indicates the real part of the out-of-time-ordered correlation function 〈Ŵ †(t)V †(0)W (t)V (0)〉. Initially, the
commutator is small or zero, and the spreading of the operator in time is manifested in the growth of the commutator.

The OTOC was introduced more than half a century ago in the semiclassical analysis of superconductivity [1],
and recently attracted a lot of attention in high energy physics [2–9], random unitary circuits [10–13], diffusive
dynamics [14–17], many-body localization [18–21], quantum phase transitions [22–25], integrable models [26], quantum
chaos [27–48], and instability [49–54]. The interest in this quantity has inspired a number of experimental studies [55–
67].

For chaotic systems with a well-defined semiclassical limit, the initial growth of the OTOC with time is exponential,
with a rate determined by the positive Lyapunov exponents of the corresponding classical system [1]. As such, OTOCs
are natural candidates to explore the chaotic features of a given system. However, this initial exponential growth
happens also in integrable models due to instability [49–54], as experimentally confirmed in [67]. There have also
been examples of interacting-integrable systems without a well-defined semiclassical limit, where the OTOC exhibits
a diffusive front broadening as in nonintegrable models [16, 17], and of chaotic models with local conserved quantities,
where the OTOC grows algebraically [11, 15, 68–70]. Recently, it was also shown that for a class of many-body local
circuits, exponential OTOC decay is not a good indicator of chaos [71].

While the short-time behavior of the OTOC does not categorically distinguish between integrable and chaotic
quantum systems, one may wonder whether its long-time behavior could. In [36], the authors used the size of the
temporal fluctuations after the saturation of the OTOC as a way to differentiate between chaos and integrability.

Motivated by [36] and various other studies on the temporal fluctuations of observables [72–79] and OTOCs [40, 41],
we investigate how the magnitude of the temporal fluctuations of time-ordered correlation functions and out-of-time-
ordered correlation functions depend on the system size L. We obtain analytical bounds that show that for systems
without energy gap degeneracies (chaotic or not), the fluctuations decay at least exponentially with the system
size. We confirm this result numerically by considering three spin-1/2 models in one-dimensional (1D) lattices: a
chaotic model with first- and second-neighboring couplings, the integrable interacting XXZ model, and the integrable
noninteracting XX model. In the first two cases, energy gap degeneracies are absent, so the scaling of the fluctuations
with L cannot set them apart and the fluctuations decay exponentially with L. For the XX model, where energy gap
degeneracies are present, the decay can be polynomial or exponential depending on the local operators used in the
correlators.

The paper is structured as follows. In Sec. II, we introduce the correlators that we study and the general bounds
for the decay of their temporal fluctuations as a function of system size. In Sec. III, we present the models and initial
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states that we consider. In Sec. IV, we study numerically the decay of the fluctuations with L and verify that our
bounds are tight. In Sec. V, we present analytical results for the XX model, for which the general bounds do not
apply. In Sec. VI, we summarize our main results and outline possible research directions. Derivations and supporting
material are provided in the appendices.

II. CORRELATORS AND BOUNDS ON THEIR TEMPORAL FLUCTUATIONS

We consider the time-ordered correlation function,

FA2 (t) = 〈Ψ0|Â (t) Â|Ψ0〉, (2)

and the out-of-time-ordered correlation function,

FA4 (t) = 〈Ψ0|Â (t) Â Â (t) Â|Ψ0〉, (3)

where |Ψ0〉 is an initial state, Â is a local operator, which in our case is Hermitian and unitary, Â (t) = eiĤtÂe−iĤt,

and Ĥ is the Hamiltonian of the system.
We investigate the infinite-time average of the correlators,

FA2,4 = lim
T→∞

1

T

∫ T

0

dt FA2,4 (t) , (4)

and the magnitude of their temporal fluctuations around this value,

∆2
FA2,4
≡
∣∣∣FA2,4(t)− FA2,4

∣∣∣2. (5)

A. Bounds on Fluctuations

To obtain general bounds on the temporal fluctuations of FA2,4, we generalize the results of Refs. [74–76] for the

fluctuations in an observable 〈Â (t)〉. Our results for FA2 are complementary to those in Ref. [41], where a bound on
the fluctuations of FA2 was obtained for thermal initial states and for systems exhibiting weak ETH, as well as to
those in Refs. [80, 81], where the fluctuations of k-time-ordered correlation functions were bounded on average (see
also [82] for studies on temporal fluctuations of nonequilibrium currents).

The Hamiltonian associated with the evolution of the correlators has eigenvalues En and eigenstates |En〉. It is

a Hermitian operator that can be written as Ĥ =
∑
nEnP̂n, where P̂n =

∑Kn
q=1 |Enq 〉〈Enq | is a projector onto the

degenerate subspace with Kn equal eigenvalues En, and all En’s in the sum for Ĥ are distinct by construction.

1. Fluctuations of the time-ordered correlation function

Using the projectors, the time-ordered correlation function in Eq. (2) becomes

FA2 (t) =
∑
n,m

ei(En−Em)t 〈Ψ0| P̂nÂP̂mÂ |Ψ0〉 . (6)

Since all En’s are distinct, the infinite-time average is

FA2 =
∑
n

〈Ψ0| P̂nÂP̂nÂ |Ψ0〉 , (7)

and the fluctuations around FA2 are given by

∆2
FA2

=
∑
n 6=m

∑
k 6=l

ei(En−Em)te−i(Ek−El)t (8)

×〈Ψ0| P̂nÂP̂mÂ |Ψ0〉 〈Ψ0| Â†P̂lÂ†P̂k |Ψ0〉 . (9)
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We now assume that the energy gaps are non-degenerate, which means that if the gaps En−Em = Ek−El for any
given n,m, k, l, then either n = m and k = l or n = k and k = l. Since n = m and k = l are excluded from the sums
in Eq. (9), we obtain the following expression for the infinite-time averaged fluctuations in Eq. (5),

∆2
FA2

=
∑
n 6=m

〈Ψ0| P̂nÂP̂mÂ |Ψ0〉 〈Ψ0| Â†P̂mÂ†P̂n |Ψ0〉

≤
∑
n,m

〈Ψ0| P̂nÂP̂mÂ |Ψ0〉 〈Ψ0| Â†P̂mÂ†P̂n |Ψ0〉

= tr
(
ÂωAÂ

†ω
)
,

(10)

where we defined,

ωA =
∑
n

P̂nÂ |Ψ0〉 〈Ψ0| Â†P̂n (11)

ω =
∑
n

P̂n |Ψ0〉 〈Ψ0| P̂n. (12)

Using the Cauchy-Schwarz inequality, Eq.(10) gets bounded as (see Appendix A),

∆2
FA2
≤
∥∥∥Â∥∥∥4√tr(ω2), (13)

where ‖A‖ is the matrix norm corresponding to the largest eigenvalue of Â. The quantity tr(ω2) corresponds to the
inverse participation ratio (IPR) of the initial state in the basis of the eigenstates of the Hamiltonian,

tr(ω2) = IPR0 =
∑
nq,q

|C(0)
nq |4, (14)

where C
(0)
nq = 〈Enq |Ψ0〉. The bound for the autocorrelation function is softer compared to the bound for the observable

obtained in Ref. [76], as reflected in the square root of the IPR.
The result in Eq. (13) implies that for Hamiltonians with non-degenerate energy gaps and initial conditions that

have weight on exponentially many eigenstates of the Hamiltonian (which may happen when the Hamiltonian describes
a many-body quantum system), the fluctuations decay exponentially with the system size. It is important to stress
that, similarly to Refs. [74, 76], the obtained bound does not require the system to be chaotic or the spectrum to be
non-degenerate.

2. Fluctuations of the out-of-time-ordered correlation function

To bound the fluctuations of FA4 (t), we first introduce the following simplified notation,

Tnmkl ≡
〈

Ψ0

∣∣∣P̂nÂP̂mÂP̂kÂP̂lÂ∣∣∣Ψ0

〉
, (15)

Snmkl ≡ En − Em + Ek − El.

The infinite-time average of FA4 (t) is given by

FA4 =
∑′

nmkl
Tnmkl, (16)

and the fluctuations around the infinite-time average are

∆2
FA4

=
∑′

n,m,k,l

∑′

n′,m′,k′,l′
TnmklT

∗
n′m′k′l′

×δ (Snmkl − Sn′m′k′l′) , (17)

where δ(x) is a Kronecker delta and the prime indicates that all terms with Snmkl, Sn′m′k′l′ = 0 are not included in
the sums. The Kronecker delta implies that Snmkl = Sn′m′k′l′ 6= 0.
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Similarly to the fluctuations of FA2 (t), we assume that the nonzero Snmkl’s are unique up to trivial permutations
n ←→ k and m ←→ l that leave Snmkl invariant. In other words, for nonzero Snmkl, only the following Snmkl are
equal,

Snmkl = Skmnl = Sklnm = Snlkm.

Using this assumption, we can reduce the constraint into four sums,

∆2
F 4
A

=
∑′

n,m,k,l
TnmklT

∗
nmkl +

∑′

n,m,k,l
TnmklT

∗
kmnl

+
∑′

n,m,k,l
TnmklT

∗
klnm +

∑′

n,m,k,l
TnmklT

∗
nlkm, (18)

where the prime over the sum includes all constraints on (nmkl) that ensure no double counting between the permu-
tations.

To obtain the bound for ∆2
FA4

, we show (see Appendix A) that the first term on the right-hand-side of Eq. (18) is

dominating, and write it in the form ∑
n,m,k,l

TnmklT
∗
nmkl = tr(ωÂωAAAÂ

†), (19)

where ω is defined in Eq. (11), and

ωAAA =
∑
m,k,l

P̂mÂP̂kÂP̂lÂ |Ψ0〉 〈Ψ0| Â†P̂lÂ†P̂kÂ†P̂m. (20)

As shown in Appendix A, we can bound the fluctuations as

∆2
FA4
≤ 4

∥∥∥Â∥∥∥8√tr(ω2). (21)

This is similar to the result in Eq. (13) and implies again that if IPR0 is proportional to the dimension of the Hilbert
space of a many-body quantum system, then the fluctuations decay exponentially with the system size.

III. MODELS AND INITIAL STATES

In this section, we describe the models and initial states that we use to numerically confirm in Sec. IV that the
bounds derived above are tight. We consider three spin-1/2 chains as described next.

(i) The XX model,

ĤXX =

L−1∑
i=1

J
(
Ŝxi Ŝ

x
i+1 + Ŝyi Ŝ

y
i+1

)
+ hbŜ

z
1 , (22)

where Ŝx,y,zi = σx,y,zi /2 are spin-1/2 operators operating on site i and σx,y,zi are Pauli matrices, L is the size of the
system, J is the coupling strength, and hb is a border defect, which we introduce to break parity and spin-reversal
symmetries [83], without breaking the integrability of the model. Throughout the work, we set J = 1 and hb = 0.1.
This model can be exactly mapped to noninteracting fermions using the Jordan-Wigner transformation.

(ii) The XXZ model,

ĤXXZ = ĤXX + Jz

L−1∑
i=1

Ŝzi Ŝ
z
i+1, (23)

which is integrable via the Bethe ansatz [84]. We set the anisotropy parameter to Jz = 0.48 to avoid additional
symmetries that appear for J = Jz and at the roots of unit, such as Jz = J/2 [85].

(iii) The XXZ model in Eq. (23) with additional next-nearest neighbor (NNN) couplings,

ĤNNN = ĤXXZ

+ λ

L−2∑
i=1

[
J
(
Ŝxi Ŝ

x
i+2 + Ŝyi Ŝ

y
i+2

)
+ JzŜ

z
i Ŝ

z
i+2

]
.

(24)
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FIG. 1. Dynamics of the correlators FZ
2,4 (t) in the top row (a)-(c) and FX

2,4 (t) in bottom row (d)-(f) evaluated numerically for

the Haar state initial condition and three spin-1/2 models. Solid lines correspond to FX,Z
4 (t) and dashed lines to FX,Z

2 (t). For
FZ
4 (t), a number of system sizes are considered, where the larger sizes are indicated with darker colors [legend in (b) is for

(a)-(c) and legend in (e) for (d)-(f)]. For FZ
2 (t), the system size is L = 18 and for FX

2 (t), it is L = 16. The XX model from
Eq. (22) is depicted in the left column [(a), (d)], the XXZ model from Eq. (23) in the middle column [(b), (e)], and the chaotic
NNN model from Eq. (24) in the right column [(c), (f)].

We choose λ = 1, which guarantees that the system is chaotic.
We use open-boundary conditions for the three models to break translational symmetry. All of them conserve the

total magnetization in the z-direction, Ŝztot =
∑
i Ŝ

z
i . We work within the Ŝztot = 0 subspace, which has the Hilbert

space dimension D =
(
L
L/2

)
.

Interacting Hamiltonians without symmetries, like those defined in Eqs. (23) and (24), typically satisfy the condition
of non-degenerate energy gaps, which is needed for the bounds in Eq. (13) and Eq. (21). This contrasts with
noninteracting models, or systems that can be mapped to free fermions, such as the XX model in Eq. (22), which
have a large number of gap degeneracies even when the spectrum is non-degenerate.

A. Initial States

In this work, we use three initial states: a random state drawn from the Haar measure, which we refer to as the
Haar state, the Néel state |Ψ0〉 = | ↑↓↑↓ . . . ↑↓〉, and the domain-wall state |Ψ0〉 = | ↑↑↑ . . . ↓↓↓〉, where half of the
chain has the spins pointing up in the z-direction and the other half is pointing down. The Haar state corresponds
to an infinite-temperature state with energy in the middle of the many-body spectrum. The Néel and domain-wall
states are pure states widely used in experiments, whose energies depend on the model considered (see Appendix B).

IV. NUMERICAL RESULTS

In this section, we show that when the bound that we derived in Sec. II applies, it is tight. We numerically
investigate the evolution and temporal fluctuations of the time-ordered and out-of-time-ordered correlation functions
for

Â = σxL/2 and Â = σzL/2. (25)

The corresponding correlators are denoted by FX2,4 and FZ2,4, respectively.
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FIG. 2. Variance of the temporal fluctuations of FX,Z
4 (t) (circles) and FX,Z

2 (t) (diamonds) for the Haar state initial condition
as a function of system size, L. Filled symbols represent ∆2

FZ2,4
and empty symbols correspond to ∆2

FX2,4
. The models are (a)

the XX defined in Eq. (22), (b) the XXZ from Eq. (23), and (c) the NNN in Eq. (24).

We consider the three models presented above and take a random state from the Haar measure as our initial state.
The results do not change qualitatively for the other initial states listed in Sec. III A, but they differ in details (see
Appendix B).

Since we are interested in the long-time dynamics, we use exact diagonalization, which limits the accessible system’s
size to L ≤ 18.

A. Results

Before analyzing the temporal fluctuations, we present in Fig. 1, the evolution of FZ2,4(t) [(a)-(c)] and FX2,4(t) [(d)-
(f)] from time t = 0 up to their saturation; for the XX, XXZ, and NNN models; for various system sizes. With the
exception of FZ2,4(t) for the XX model [Fig. 1(a)], the correlation functions saturate to a very small value and exhibit

small temporal fluctuations that decrease as the system size increases. The fluctuations of FX2,4(t) are noticeably

smaller than those of FZ2,4(t). This is likely caused by the conservation of the total z-magnetization in the studied

models, which is also known to slow down the decay in time of FZ4 (t) [70].

The behavior of FZ4 (t) after saturation for the XX model [Fig. 1(a)] stands out. While for the other models, FZ4 (t)
fluctuates around zero at long times, for the XX model, it approaches 1, as discussed also in Ref. [26]. In contrast,
FZ2 (t) for the XX model [Fig. 1(a)] does decay to zero, even though it exhibits larger fluctuations than for the XXZ
[Fig. 1(b)] and NNN [Fig. 1(c)] models. In Sec. V, we elucidate the behavior of FZ2,4(t) for the XX model by analytical
arguments.

The saturation of FX4 (t) for the XX model [Fig. 1(d)] is preceded by quasi-periodic oscillations, which are absent
for the chaotic NNN model [Fig. 1(f)]. Smaller oscillations at intermediate times are also visible for the XXZ model,
although they happen at a plateau [Fig. 1(e)]. Interestingly, a plateau that gets longer as L increases also appears for
FZ4 (t) in the XXZ model [Fig. 1(b)]. Contrary to FX4 (t), the time-ordered correlation function FX2 (t) decays fast to
a small value without oscillations for all three models.

With the general picture of the behavior of FX,Z2,4 (t) provided in Fig. 1, we study the dependence of the temporal

fluctuations, ∆FX,Z2,4
as a function of system size. Fig. 2 shows this dependence for the Haar state (for a comparison

with the results for the Néel and domain wall states, see Appendix B), and confirms that the bound derived in Sec. II
is tight. Namely, that ∆FX,Z2,4

decays exponentially with system size for the interacting-integrable [Fig. 2(b)] and

chaotic [Fig. 2(c)] systems. For a given chain length, even the magnitude of the fluctuations is comparable for both
models.

The behavior for the XX model [Fig. 2(a)] is distinct. While both ∆2
FX2

and ∆2
FX4

decay exponentially with L, ∆2
FZ2,4

decreases slower than exponentially. As stated in Sec. II, this model has gap degeneracies, so the proof of Sec. II does
not apply to it. Nevertheless, since it can be mapped to free fermions, in the next section, we provide numerical and

analytical results for the dependence of ∆2
FZ2,4

on L, as well as for the infinite-time averages FZ2,4.
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V. XX MODEL

Since the XX model maps exactly to noninteracting fermions, its infinite-time average, FZ2,4, and temporal fluctu-

ations, ∆2
FZ2,4

, can be computed analytically. The numerical analysis of the previous section can also be extended to

much larger system sizes, because the complexity of the calculations increases only polynomially with system size.

We compute FZ2 (t) and FZ4 (t) by writing them in terms of fermionic creation, ĉ†L/2, and annihilation, ĉL/2, operators

acting on site L/2, that is,

σzL/2 = 2ĉ†L/2ĉL/2 − 1. (26)

For quadratic Hamiltonians, the time-evolution of the creation and annihilation operators is given by

ĉ†i (t) =
∑
l

u∗il (t) ĉ
†
l ,

ĉi (t) =
∑
k

uik (t) ĉk,
(27)

where uik (t) =
〈
i
∣∣e−ihst∣∣ k〉 is the single-particle propagator and hs the single-particle Hamiltonian.

After expressing FZ2,4 (t) in terms of fermionic operators, we calculate the correlations using Wick’s theorem (see
Appendix C). For generic initial states, the final expression is cumbersome, however, it considerably simplifies at
infinite temperature, yielding

FZ2 (t) =
∣∣uL/2,L/2 (t)

∣∣2 , (28)

and

FZ4 (t) = 4
(∣∣uL/2,L/2 (t)

∣∣4 − ∣∣uL/2,L/2 (t)
∣∣2)+ 1. (29)

We can then obtain the infinite time-average,

FZ2 =
∑
α,β

ei(εβ−εα)t
∣∣〈L

2 |α
〉∣∣2 ∣∣〈L

2 |β
〉∣∣2 =

∑
α

∣∣〈L
2 |α
〉∣∣4 , (30)

where |α〉 and εα are the eigenstates and eigenvalues of hs. In the last equality, we assumed that the single-particle

spectrum is non-degenerate, which is true for the XX model with the border impurity. We see that FZ2 is the IPR of
the initial state corresponding to a single particle at the center of the chain, L/2, and projected in the basis of the

single-particle eigenstates of hs. For delocalized single-particle initial states, we have that FZ2 ∝ L−1.

Using FZ2 , we write the temporal fluctuations of FZ2 (t) as

FZ2 (t)− FZ2 =
∑
α 6=β

|〈α|i〉|2 |〈β|i〉|2 ei(εβ−εα)t, (31)

and obtain the variance

∆2
FZ2

=
∣∣∣FZ2 − FZ2 ∣∣∣2 =

∑
α6=β

|〈α|i〉|4 |〈β|i〉|4 ∼ 1

L2
. (32)

A similar derivation follows for the temporal fluctuations of FZ4 (t). The infinite-time average of the out-of-time
ordered correlation function is given by

FZ4 = 1 + 4
∑
α 6=β

∣∣〈L
2 |α
〉∣∣4 ∣∣〈L

2 |β
〉∣∣4

− 4
∑
α

∣∣〈L
2 |α
〉∣∣4 ∼ 1− 4

L
+O

(
L−2

)
, (33)

a result that was first discussed in Ref. [26]. Since FZ4 (t) is dominated by the second term in the parenthesis of
Eq. (29), its temporal fluctuations decay with system size similarly to what happens for FZ2 (t) [cf. Eq. (28)].
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FIG. 3. (a) Infinite-time average FZ
4 and (b) temporal fluctuations after saturation, ∆FZ2,4

, as a function of system size; for the

XX model and an initial state at infinite temperature. Solid lines represent the numerical data and dashed lines, the analytical
results.

To confirm these analytical estimates numerically, we compute FZ2 (t) and FZ4 (t) using Eq. (28) and Eq. (29) for a
number of system sizes. Figure 3(a) shows that the infinite-time average decays as L−1, and Fig. 3(b) shows that the
temporal fluctuations around that average decay as L−2, in perfect alignment with the analytical estimates.

The calculation of the temporal fluctuations of FX2,4(t) is considerably harder, because both correlators expressed
in terms of fermionic operators are non-local, so one has to perform Wick’s contraction of the order of L operators.
While this can be done numerically, we were not able to obtain analytical estimates, which would help to explain the
exponential decay of the fluctuations with the system size.

VI. DISCUSSION

We rigorously showed that for any quantum system with a bounded local Hilbert space dimension and non-
degenerate energy gaps, the temporal fluctuations around the saturation value of time-ordered and out-of-time-ordered
correlation functions are bounded by the square root of the inverse participation ratio of the initial state. Since most
physical initial states are composed of exponentially (in the system size L) many eigenstates of the Hamiltonian,
this implies that for such initial states, the temporal fluctuations decay at least exponentially with L. Our results
are general and do not depend on the dimensionality of the system. Moreover, while they strictly apply only for
systems with bounded local Hilbert space dimension, they should also hold for bosonic systems with a bounded local
occupation (see e.g. [86] and references therein).

We verified numerically that the bounds on the fluctuations are tight and that the fluctuations decay exponentially
for the interacting integrable XXZ spin-1/2 chain and for its chaotic version with next-nearest-neighbor couplings.
Our results demonstrate that the decay of the temporal fluctuations of correlators as a function of the system size
cannot serve as a reliable metric of chaoticity. This has to be contrasted with the decay of temporal fluctuations
when the initial state is one eigenstate of the Hamiltonian. For such initial states, the fluctuations are related to the
off-diagonal matrix elements, which do show different decay with system size for chaotic and integrable systems [87].

The only distinguishing behavior that we identified was for the 1D XX model, which is exactly mappable to
noninteracting fermions. Since this model has degenerate energy gaps, the bounds that we obtained on the decay of
the fluctuations do not apply; however, they can be calculated both analytically and numerically. We find that for this
system, the temporal fluctuations of the time-ordered and out-of-time-ordered correlation functions in the z-direction,
FZ2,4(t), decay as L−2. On the other hand, we observed numerically that the temporal fluctuations of FX2,4(t) decay
exponentially with system size. We argue that, in this case, the exponential decay stems from the non-locality of
FX2,4(t), when written in terms of fermionic annihilation and creation operators. It remains to put this claim on more
solid ground. It would also be interesting to investigate if there are scenarios in which different power-law decays of
the fluctuations are possible.

ACKNOWLEDGMENTS

This research was supported by a grant from the United States-Israel Binational Foundation (BSF, Grant No.
2019644), Jerusalem, Israel, and the United States National Science Foundation (NSF, Grant No. DMR-1936006).



9

LFS thanks Vinitha Balachandran, Marcos Rigol, and Dario Poletti for valuable discussions.

Appendix A: Proofs of the general bounds

In this section, we provide detailed proofs of the bounds in Eqs. (13) and (21) of the main text.
We showed in Eq. (10) that ∆2

FA2
can be bound by

∆2
FA2
≤ tr

(
ÂωAÂ

†ω
)
, (A1)

where ω and ωA are defined in Eq. (11). Using the Cauchy-Schwarz inequality,

tr
(
V †W

)
≤
√

tr (V †V )
√

tr (W †W ), (A2)

setting V = ÂωA and W = Â†ω, and using the cyclic property of the trace, we further bound Eq. (10) as follows,

∆2
FA2
≤
√

tr
(
Â†Âω2

A

)√
tr
(
ÂÂ†ω2

)
≤ ‖Â‖2

√
tr (ω2

A)
√

tr (ω2),

(A3)

where we used that for two positive matrices A and B, tr(AB) ≤ ‖A‖ tr(B). We can bound tr(ω2
A) by

tr(ω2
A) =

∑
n

tr
(
P̂nÂ |Ψ0〉 〈Ψ0| Â†P̂nÂ |Ψ0〉 〈Ψ0| Â†P̂n

)
≤
∥∥∥Â |Ψ0〉 〈Ψ0| Â†

∥∥∥∑
n

tr
(
P̂nÂ |Ψ0〉 〈Ψ0| Â†

)
≤
∥∥∥Â |Ψ0〉 〈Ψ0| Â†

∥∥∥ 〈Ψ0| Â†Â |Ψ0〉 ≤
∥∥∥Â∥∥∥4 . (A4)

This gives

∆2
FA2
≤
∥∥∥Â∥∥∥4√tr(ω2). (A5)

For the fluctuations of FA4 , we start with Eq. (18). We designate a given permutation of (nmkl) by σ (nmkl), and
notice that it is bijective. Then, using the Cauchy-Schwarz inequality, we have∣∣∣∑′

nmkl
TnmklT

∗
σ(nmkl)

∣∣∣ ≤√∑′

nmkl
TnmklT ∗nmkl

∑′

nmkl
Tσ(nmkl)T

∗
σ(nmkl) ≤

∑
nmkl

TnmklT
∗
nmkl, (A6)

where in the last inequality we renamed the indexes of the second term in the square root. We also removed the
constraints on the sum, using the fact that all elements of the sum are now positive. This allows us to write

∆2
FA4
≤ 4

∑
n,m,k,l

TnmklT
∗
nmkl.

Using the definitions of ω in Eq. (11) and ωAAA in Eq. (20), which are positive operators, we have∑
n,m,k,l

TnmklT
∗
nmkl = trωÂ ωAAAÂ

†.

Using the Cauchy–Schwarz inequality combined with the cyclic property of the trace,

tr(ωÂωAAAÂ
†) ≤

√
tr
(
ω2ÂÂ†

)
tr
(
ω2
AAAÂ

†Â
)
≤
∥∥∥Â∥∥∥2√tr(ω2)tr(ω2

AAA). (A7)
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We now proceed by bounding tr(ω2
AAA), which is given by

tr(ω2
AAA) =

∑
m,k,l

∑
k′,l′

tr
[(
P̂l′Â

†P̂k′Â
†P̂mÂP̂kÂP̂lÂ |Ψ0〉 〈Ψ0| Â†P̂lÂ†P̂kÂ†P̂mÂP̂k′ÂP̂l′

)
Â |Ψ0〉 〈Ψ0| Â†

]
. (A8)

Since Â |Ψ0〉 〈Ψ0| Â† and the matrix to the left of it are positive, we can write

tr(ω2
AAA) ≤

∥∥∥Â∥∥∥2 ∑
m,k,l

∑
k′,l′

tr
[
P̂l′Â

†P̂k′Â
†P̂mÂP̂kÂP̂lÂ |Ψ0〉 〈Ψ0| Â†P̂lÂ†P̂kÂ†P̂mÂP̂k′ÂP̂l′

]
, (A9)

and eliminate the sum over l′ using the cyclic property of the trace and the fact that
∑
m Pm = I. Therefore,

tr(ω2
AAA) ≤

∥∥∥Â∥∥∥2 ∑
m,k,l

∑
k′

tr
[
P̂k′Â

†P̂mÂP̂kÂP̂lÂ |Ψ0〉 〈Ψ0| Â†P̂lÂ†P̂kÂ†P̂mÂP̂k′ÂÂ†
]
. (A10)

We can now proceed along the same lines as before until we get

tr(ω2
AAA) ≤

∥∥∥Â∥∥∥12 . (A11)

Combining the expressions, we obtain

∆2
FA4
≤ 4

∥∥∥Â∥∥∥8√tr(ω2). (A12)

Appendix B: Dependence on the initial state

Here, we compare the results for the variance of the temporal fluctuations obtained for the Haar state as the initial
state with those for the Néel and the domain-wall states. The expectation of the Hamiltonian, E0 = 〈Ψ0|H |Ψ0〉 of
these two states depends on the model according to [88],

Néel state: E0 =
Jz
4

[−(L− 1) + λ(L− 2))] ,

Domain wall state: E0 =
Jz
4

[(L− 3) + λ(L− 6))] .

For the XX model, where Jz, λ = 0, the energies of all three states are in the middle of the spectrum, E0 = 0. For
the XXZ model with large L and for our choices of parameters, |E0| ∼ JL/8, where E0 is negative (positive) for the
Néel (domain wall) state. For the NNN model, the energy of the Néel state is close to the middle of the spectrum,
E0 ∼ 0, where chaos is strong and the eigenstates are very delocalized, while the energy of the domain wall state for
large L is closer to the positive edge of the spectrum, E0 ∼ JL/4.

In Fig. 4, we plot ∆2
FX,Z2,4

for the three different initial states. Their results are qualitatively similar, but there are

subtle differences associated with the position of the energy of the initial state in the spectrum. While for the Haar
state [Fig. 4(a),(d)], there is practically no difference in the values of ∆2

FX,Z4

for the interacting-integrable and the

chaotic model, the fluctuations for the Néel state [Fig. 4(b),(e)] are smaller for the chaotic model, since in this case,
|Ψ0〉 is in the middle of the spectrum, being thus more delocalized than for the XXZ model. A similar explanation can
be given for the smaller fluctuations associated with the Néel state for the NNN model [Fig. 4(b),(e)] when compared
with those for the domain wall state under the same model [Fig. 4(c),(f)].

With respect to the XX model, the magnitude of the fluctuations is analogous for all three initial states. The
difference lies in the operator considered, as already discussed in Fig. 2(a), that is, ∆2

FZ4
decreases slower than

exponentially [Fig. 4(a)-(c)] and ∆2
FX4

decays exponentially with L [Fig. 4(d)-(f)].

Appendix C: Detailed derivations for the XX model

1. Out-of-time-order correlation function

In the following, we present the detailed derivation of FZ4 (t) defined in Eq. (29) of the main text,

FZ4 (t) =
〈
Ŵ (t) V̂ (0) Ŵ (t) V̂ (0)

〉
, (C1)
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FIG. 4. System-size scaling of the variance of the temporal fluctuations of FZ
4 (t) [FX

4 (t)] for the (a) [(d)] Haar, (b) [(e)] Néel,
and (c) [(f)] domain-wall states for the XX [Eq. (22)], XXZ [Eq. (23)], and NNN [Eq. (24)] models.

where Ŵ (t) = σzi (t) and V̂ = σzj . We rewrite Ŵ and V̂ in terms of fermionic operators as

σzi (t) = 2n̂i (t)− 1 and σzj = 2n̂j − 1. (C2)

where n̂i (t) = ĉ†i (t) ĉi (t) and n̂j = ĉ†j ĉj , so that

FZ4 (t) = 〈(2n̂i (t)− 1) (2n̂j − 1) (2n̂i (t)− 1) (2n̂j − 1)〉
= 〈(4n̂i (t) n̂j − 2n̂i (t)− 2n̂j + 1) (4n̂i (t) n̂j − 2n̂i (t)− 2n̂j + 1)〉 . (C3)

Expanding the previous expression, some terms trivially cancel and it gets reduced to

FZ4 (t) = 〈16n̂i (t) n̂j n̂i (t) n̂j − 8n̂i (t) n̂j n̂i (t)− 8n̂j n̂i (t) n̂j − 4n̂i (t) n̂j + 4n̂j n̂i (t)〉+ 1, (C4)

where we used n̂2i (t) = n̂i (t) and n̂2j = n̂j .

In the following, we expand the expectation value and work on each of the terms above. But before doing that, let

us express the time evolution of ĉ†i (t) and ĉi (t) as

ĉ†i (t) =
∑
l

u∗il (t) ĉ
†
l

ĉi (t) =
∑
k

uik (t) ĉk,
(C5)

where uik (t) =
〈
i
∣∣e−ihst∣∣ k〉 is the single-particle propagator and hs the single-particle Hamiltonian.

Using Eq.(C5), we then express the first term of Eq.(C4) as

〈n̂i (t) n̂j n̂i (t) n̂j〉 =
∑
klpq

uik (t)u∗il (t)uip (t)u∗iq (t)
〈
ĉ†l ĉk ĉ

†
j ĉj ĉ

†
q ĉpĉ

†
j ĉj

〉
(C6)

Using Wick’s theorem, we expand the expectation value in terms of nonzero pairwise contractions. After that, re-
introducing the time dependence gives,
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〈n̂i (t) n̂j n̂i (t) n̂j〉 = 〈n̂i (t)〉
{
〈n̂j〉

[
〈n̂i (t)〉 〈n̂j〉+

〈
ĉ†i (t) ĉj

〉〈
ĉi (t) ĉ†j

〉]
+
〈
ĉ†j ĉi (t)

〉 [〈
ĉj ĉ
†
i (t)

〉
〈n̂j〉 −

〈
ĉ†i (t) ĉj

〉
+ 〈n̂j〉

〈
ĉ†i (t) ĉj

〉]
+ 〈n̂j〉

[〈
ĉj ĉ
†
i (t)

〉〈
ĉi (t) ĉ†j

〉
+ 〈n̂i (t)〉 − 〈n̂j〉 〈n̂i (t)〉

]}
+

〈
ĉ†i (t) ĉj

〉{〈
ĉi (t) ĉ†j

〉 [
〈n̂i (t)〉 〈n̂j〉+

〈
ĉ†i (t) ĉj

〉〈
ĉi (t) ĉ†j

〉]
− (1− 〈n̂i (t)〉)

[〈
ĉ†j ĉi (t)

〉
〈n̂j〉+ 〈n̂j〉

〈
ĉi (t) ĉ†j

〉]
−
〈
ĉi (t) ĉ†j

〉 [
−
〈
ĉ†j ĉi (t)

〉〈
ĉ†i (t) ĉj

〉
+ 〈n̂j〉 〈n̂i (t)〉

]}
+ 〈n̂i (t)〉

{〈
ĉi (t) ĉ†j

〉 [〈
ĉj ĉ
†
i (t)

〉
〈n̂j〉 −

〈
ĉ†i (t) ĉj

〉
+ 〈n̂j〉

〈
ĉ†i (t) ĉj

〉]
+ (1− 〈n̂i (t)〉)

[
〈n̂j〉2 + 〈n̂j〉 − 〈n̂j〉2

]
−
〈
ĉi (t) ĉ†j

〉 [
〈n̂j〉

〈
ĉ†i (t) ĉj

〉
+ 〈n̂j〉

〈
ĉj ĉ
†
i (t)

〉]}
+

〈
ĉ†i (t) ĉj

〉{〈
ĉi (t) ĉ†j

〉 [〈
ĉj ĉ
†
i (t)

〉〈
ĉi (t) ĉ†j

〉
+ 〈n̂i (t)〉 − 〈n̂j〉 〈n̂i (t)〉

]
(1− 〈n̂i (t)〉)

[
〈n̂j〉

〈
ĉi (t) ĉ†j

〉
−
〈
ĉ†j ĉi (t)

〉
+
〈
ĉ†j ĉi (t)

〉
〈n̂j〉

]
+
〈
ĉi (t) ĉ†j

〉 [
〈n̂j〉 〈n̂i (t)〉+

〈
ĉ†j ĉi (t)

〉〈
ĉj ĉ
†
i (t)

〉]}

(C7)

Analogously, for the second and third terms in Eq.(C4),

〈n̂i (t) n̂j n̂i (t)〉 = 〈n̂i (t)〉2 〈n̂j〉+ 〈n̂i (t)〉
〈
ĉ†j ĉi (t)

〉〈
ĉj ĉ
†
i (t)

〉
+ 〈n̂i (t)〉

〈
ĉ†i (t) ĉj

〉〈
ĉi (t) ĉ†j

〉
−
〈
ĉ†i (t) ĉj

〉〈
ĉ†j ĉi (t)

〉
+ 〈n̂i (t)〉

〈
ĉ†i (t) ĉj

〉〈
ĉ†j ĉi (t)

〉
+ 〈n̂i (t)〉

〈
ĉi (t) ĉ†j

〉〈
ĉj ĉ
†
i (t)

〉
+ 〈n̂i (t)〉 〈n̂j〉 − 〈n̂i (t)〉2 〈n̂j〉 ,

(C8)

and,

〈n̂j n̂i (t) n̂j〉 = 〈n̂j〉2 〈n̂i (t)〉+ 〈n̂j〉
〈
ĉ†i (t) ĉj

〉〈
ĉi (t) ĉ†j

〉
+ 〈n̂j〉

〈
ĉ†j ĉi (t)

〉〈
ĉj ĉ
†
i (t)

〉
−
〈
ĉ†j ĉi (t)

〉〈
ĉ†i (t) ĉj

〉
+ 〈n̂j〉

〈
ĉ†j ĉi (t)

〉〈
ĉ†i (t) ĉj

〉
+ 〈n̂j〉

〈
ĉj ĉ
†
i (t)

〉〈
ĉi (t) ĉ†j

〉
+ 〈n̂j〉 〈n̂i (t)〉 − 〈n̂j〉2 〈n̂i (t)〉 .

(C9)

For the fourth and fifth terms of Eq.(C4), we have

〈n̂i (t) n̂j〉 = 〈n̂i (t)〉 〈n̂j〉+
〈
ĉ†i (t) ĉj

〉〈
ĉi (t) ĉ†j

〉
, (C10)

〈n̂j n̂i (t)〉 = 〈n̂j〉 〈n̂i (t)〉+
〈
ĉ†j ĉi (t)

〉〈
ĉj ĉ
†
i (t)

〉
. (C11)

It is convenient to rewrite all the expressions above using the Green’s function

Gij (t) =
〈
ĉ†i (t) ĉj

〉
. (C12)

While we can obtain a general equation for any initial state for which the Wick’s theorem holds, it is rather
cumbersome. In particular, for the infinite-temperature state considered in this work, it considerably simplifies, since
〈n̂j〉 = 〈n̂i (t)〉 = 1/2, and the remaining terms can be readily written in terms of Green’s functions as〈

ĉi (t) ĉ†j

〉
=
〈
ĉj ĉ
†
i (t)

〉∗
= G∗ij (t) , (C13)
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where we used the cyclic property of the trace and the fact that the density matrix acquires the simple form ρ = 1/D
with Hilbert space dimension D.

Using this simplifying property together together with Eqs.(C12)-(C13) in Eqs. (C7), (C8)-(C11), and in turn,
substituting everything back in Eq.(C4), gives

FZ4 (t) = 16
(

4 |Gij (t)|4 − |Gij (t)|2
)

+ 1. (C14)

The Green’s function at infinite temperature is given by

Gij (t) =
〈
ĉ†i (t) ĉj

〉
=
∑
l

u∗il (t)
〈
ĉ†l ĉj

〉
=
∑
l

u∗il (t)
1

2
δlj =

1

2
u∗ij (t) , (C15)

where we used Eq. (C5). Finally, substituting Eq. (C15) in Eq. (C14), we obtain the expression for FZ4 (t) at infinite
temperature, which we used in the main text,

FZ4 (t) = 4
(
|uij (t)|4 − |uij (t)|2

)
+ 1, (C16)

where uij (t) is the single-particle propagator. In the text, we set i = j = L/2.

2. Time-ordered correlation function

From the previous subsection, one can check that in terms of fermionic operators, the time-ordered correlation
function FZ2 (t) defined in Eq. (28) of the main text is given by

FZ2 (t) = 4 〈n̂i (t) n̂j〉 − 2 〈n̂i (t)〉 − 2 〈n̂j〉+ 1. (C17)

Applying Wick’s theorem, we get

FZ2 (t) = 4 〈n̂i (t)〉 〈n̂j〉+ 4
〈
ĉ†i (t) ĉj

〉〈
ĉi (t) ĉ†j

〉
− 2 〈n̂i (t)〉 − 2 〈n̂j〉+ 1, (C18)

which at infinite temperature is simply

FZ2 (t) = 4 |Gij (t)|2 = |uij (t)|2 . (C19)
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[33] I. Garćıa-Mata, M. Saraceno, R. A. Jalabert, A. J. Roncaglia, and D. A. Wisniacki, Chaos Signatures in the Short and

Long Time Behavior of the Out-of-Time Ordered Correlator, Phys. Rev. Lett. 121, 210601 (2018).
[34] S. Ray, S. Sinha, and K. Sengupta, Signature of chaos and delocalization in a periodically driven many-body system: An

out-of-time-order-correlation study, Phys. Rev. A 98, 053631 (2018).

https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1007/jhep04(2013)022
https://doi.org/10.1007/jhep04(2013)022
https://doi.org/10.1007/JHEP03(2014)067
https://online.kitp.ucsb.edu/online/entangled15/
https://online.kitp.ucsb.edu/online/entangled15/
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1007/jhep05(2017)118
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevB.103.L121111
https://doi.org/10.1103/PhysRevB.103.L121111
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1103/PhysRevX.8.031057
https://doi.org/10.1103/PhysRevB.98.220303
https://doi.org/10.1103/PhysRevB.104.104307
https://doi.org/https://doi.org/10.1002/andp.201600332
https://doi.org/https://doi.org/10.1002/andp.201600318
https://doi.org/https://doi.org/10.1002/andp.201600318
https://doi.org/10.1103/PhysRevB.96.020406
https://doi.org/10.1103/PhysRevB.98.035118
https://doi.org/10.1103/PhysRevLett.121.016801
https://doi.org/10.1103/PhysRevA.100.062113
https://doi.org/10.1103/PhysRevLett.123.140602
https://doi.org/10.1103/PhysRevLett.123.140602
https://doi.org/10.1103/PhysRevB.101.104415
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1088/1751-8113/40/28/S02
https://doi.org/10.1103/PhysRevLett.118.086801
https://doi.org/10.1103/PhysRevB.98.144304
https://doi.org/10.1007/jhep10(2017)138
https://doi.org/10.1007/jhep10(2017)138
https://doi.org/10.1103/PhysRevE.98.062218
https://doi.org/10.1103/PhysRevLett.121.124101
https://doi.org/10.1103/PhysRevLett.121.210601
https://doi.org/10.1103/PhysRevA.98.053631


15
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