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Abstract

Recent advances in cold atom platforms, providing experimental accessibility to real-
time dynamics, have renewed interest in the motion of superfluid vortices in two-dimen-
sional domains. Motivated by this development, we study the dynamics of a vortex in a
two-dimensional incompressible superfluid inside an elliptical boundary. Employing the
Joukowsky conformal map from a circle to an ellipse, we derive an analytical expression
for the complex potential describing the hydrodynamic flow around the vortex. We in-
tegrate the resulting equations of motion, finding that the vortex moves along a nearly
(but not exactly) elliptical trajectory. In addition, we obtain a simple closed expression
for the vortex self-energy, which serves as the Hamiltonian of the system.
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1 Introduction

Quantized vortices are fundamental excitations of superfluids, including liquid 4He-II [1], di-
lute one- and two-component Bose-Einstein condensates (BECs), and two-component fermionic
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mixtures [2,3]. At low temperatures, these systems become nearly ideal fluids with negligible
compressibility, viscosity, and dissipation. As a result, superfluid vortices obey the dynami-
cal equations of classical hydrodynamics [4, 5] augmented with the condition of quantized
vorticity [6,7].

When vortices form in a thin two-dimensional film, their dynamics simplifies greatly be-
cause the extra degree of freedom connected to vortex bending freezes out. Hence the point-
vortex model applies; it describes a vortex as a point-like object that obeys first order equations
of motion, with the x and y coordinates of each vortex as canonically conjugate variables.

In the 1960s, experiments with rotating superfluid He-II [8,9] stimulated theoretical stud-
ies of equilibrium two-dimensional vortex states in cylinders [10] and annuli [11]. Over the
past few years, some of us have studied the dynamics of quantized vortices on nonplanar
2D surfaces, including cylinders [12], cones and planar sectors [13], toroidal surfaces (and
their genus-1 generalizations) [14], and ellipsoidal geometries (and their genus-0 generaliza-
tions) [15].

These works relied on the complex potential formalism that exploits the properties of con-
formal transformations. In the following, we briefly review this method, referring to Ref. [13]
for a more detailed explanation. It is useful to describe a superfluid system at low temperature
with a macroscopic condensate wave function Ψ(r ) =

p

n(r )eiΦ(r ) in terms of two real fields,
the number density n(r ) and the phase Φ(r ). The latter determines the two-dimensional su-
perfluid velocity through v = ħh∇Φ/M , with M the atomic mass. The flow is then irrotational,
∇× v = 0, everywhere except at the phase singularities associated with the vortex cores.

Most cold-atom experiments are performed in the Thomas-Fermi (TF) regime [16], where
local changes in the density become small. In this case, the continuity equation for particle
conservation, ∂t n+∇ · (nv) = 0, implies that the flow is also incompressible, with ∇ · v = 0.
As a consequence, a two-dimensional flow may also be described by the stream function χ(r ),
in terms of which the superfluid velocity in the x y plane becomes v = (ħh/M)ẑ ×∇χ.

We now have two distinct representations of the hydrodynamic velocity v . When written
out in detail, the cartesian components of v satisfy the Cauchy-Riemann equations. Hence
χ and Φ can be the real and imaginary parts of an analytic function of a complex variable
z = x + i y . In this way, we construct the complex potential defined as

F(z) = χ(r ) + iΦ(r ), (1)

with r the two-dimensional position vector. The Cauchy-Riemann conditions give the follow-
ing compact representation of the hydrodynamic flow velocity:

vy + ivx =
ħh
M

dF(z)
dz

. (2)

Early experiments on rotating 4He-II used circular containers with rotationally invariant
walls. For such a geometry, surface roughness at the wall triggers the nucleation of vortices,
which then migrate into the bulk of the superfluid. In contrast, a rotating elliptical boundary
pushes the superfluid, imparting angular momentum even though the flow remains irrotational
for slow rotations. As the rotation rate increases, however, isolated vortices eventually appear
within the container [17]. These predictions stimulated experimental studies of vortex states
in rotating superfluid 4He-II for three elliptical containers with different eccentricities [18].
The results agreed within 10% of theoretical predictions, confirming that the equilibrium of a
superfluid rotating at angular velocity Ω with angular momentum L minimizes the free energy
E −ΩL.

Reference [17] focused on the energy and angular momentum of a vortex in an elliptical
boundary, with no consideration of the associated vortex dynamics, which was experimen-
tally inaccessible at that time. More recently, the creation of cold-atom Bose-Einstein conden-
sates (BECs) has allowed direct real-time studies of vortex dynamics [19–21]. In this context,
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we study here the motion of two-dimensional superfluid vortices inside a stationary elliptical
boundary. An additional motivation is the recent experimental accessibility of such configura-
tions using digital micromirror devices (DMDs) [22–28].

One of us previously used elliptic coordinates to study the energy and angular momentum
of a single vortex inside an elliptical boundary, leading to an infinite series [17]. Here, we solve
the same problem with a complex potential that yields closed forms for the same quantities.
More precisely, we combine earlier results for a single vortex in a planar annulus with the
Joukowsky transformation to derive the complex potential for a vortex inside an elliptical
boundary, from which the dynamics, energy, and angular momentum readily follow.

The complex potential for a single vortex inside a circular boundary needs only a single
image vortex outside the boundary. Hence it is natural to consider the possibility of one or
more images for a vortex inside an elliptical boundary. In an earlier work [29], Majic used
elliptic coordinates to solve the problem of a two-dimensional point charge inside an elliptical
conducting boundary, resulting in an infinite set of images outside the boundary. We shall show
that our closed form is completely equivalent. As an alternative approach to our combined
conformal transformations, Ref. [30] gives a direct transformation from a disk to an ellipse,
but it requires complicated analytical expressions that do not seem intuitive.

The paper is organized as follows: Section 2 presents the Joukowsky transformation and
its analytic properties that play an important role in our analysis. We develop in Sec. 3 the
point-vortex model for a single superfluid vortex inside a two-dimensional elliptical boundary.
In a planar annulus, a single vortex has a well-studied closed form for its complex potential
involving the Jacobi theta function ϑ1(z) [11]. The introduction of the Joukowsky map from
a circular to an elliptical boundary requires modified boundary conditions that we discuss in
detail. In this way, we obtain a closed analytical expression for the complex potential, leading
to the equations of motion for a vortex in an elliptical boundary. Their numerical solution
gives the vortex trajectories, which are approximately but not exactly elliptic. To conclude
the section, we find the self-energy of a single vortex inside an elliptical domain, providing
a closed formula for this quantity that Ref. [17] previously expressed as an infinite series.
The associated constant-energy curves confirm the nested structure of self-similar approximate
ellipses. The resulting Hamiltonian equations of motion agree with those found earlier with
the complex potential. Finally, in Sec. 4, we draw conclusions and suggest possible future
perspectives of our work.

2 Joukowsky transformation

The Joukowsky transformation [31] usually appears in connection with airfoil design, which
can be quite intricate [32]. Here, however, we use its simpler property of mapping concentric
circles into a family of confocal ellipses. Combining the Joukowsky map (which has the impor-
tant property of being conformal) with the previous study of a vortex in an annulus [11] is the
key to derive our closed form for the complex potential of a vortex in an elliptical boundary.

Consider an elliptical boundary with semiaxes a > b and focal distance c =
p

a2 − b2.
With no loss of generality, we set c = 1 (meaning that all the lengths are given in terms of c)
so that b =

p
a2 − 1. In this way, the major semiaxis a completely specifies the shape of the

ellipse.
To describe the two-dimensional superfluid inside an elliptical boundary we use a complex

plane parametrized by the coordinate w = x + i y , with the vortex at the complex position
w0 = x0 + i y0, as shown in the right panel of Fig. 1. The left panel of the same figure shows
instead an auxiliary complex plane, defined by the coordinate z = X + iY .
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Figure 1: Left: complex z-plane with a point z0 specified by both cartesian (X0, Y0)
and polar coordinates (ρ0,θ0). Right: complex w-plane with a point w0, specified by
cartesian coordinates (x0, y0) inside an ellipse with major/minor semi-axes a/b and
focal distance c = 1.

Consider the Joukowsky transformation [31]

w= w(z) =
1
2

�

z +
1
z

�

(3)

mapping the z-plane onto the w-plane. A transformation is conformal on a given domain if
and only if it is analytic, and its derivative is everywhere non-zero. Thus the Joukowsky map
is conformal on the whole z-plane, except at the two points z = ±1 (because its derivative
vanishes there), as well as at z = 0 and z→∞ (where it has simple poles). The action of this
map can be understood using polar coordinates for the variable z = ρeiθ , as sketched in the
left panel of Fig. 1:

x =
ρ +ρ−1

2
cosθ = a cosθ , y =

ρ −ρ−1

2
sinθ = b sinθ , (4)

where a = 1
2(ρ+ρ

−1) and b = 1
2(ρ−ρ−1), with ρ > 1. The Joukowsky transformation maps

a circle of radius ρ = a + b = (a − b)−1 in the region |z| > 1 of the z-plane into an ellipse in
the w-plane with focal distance c = 1 and semiaxes a, b =

p
a2 − 1. Note that the circle with

ρ→∞ maps into a large nearly circular ellipse, whereas the circle with ρ→ 1 maps onto a
closed circuit tightly enclosing the focal line (i.e., a degenerate ellipse with a→ 1 and b→ 0).
In this way, the exterior of the unit circle in the z-plane maps into the complete w-plane, apart
from the focal line.

The Joukowsky map is invariant under the transformation z↔ z−1, which is an inversion
in the unit circle. Thus the Joukowsky transformation also maps the interior of the unit circle
in the z-plane into the same region in the w-plane, namely the exterior of the focal line. In
particular, the complex point 1/z0 = ρ−1

0 e−iθ0 also maps into the point w0. This inversion
symmetry means that the inverse transformation z(w) is not unique. Instead it is characterized
by two distinct branches

z = z±(w) = w±
p

w2 − 1 (5)

that form two Riemann sheets. This structure arises because each disjoint region |z| < 1 and
|z|> 1 (inside and outside the unit circle) covers the whole w-plane. Note that z+(w)z−(w) = 1
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because of the inversion symmetry. There is a branch cut between w= ±1 (i.e., along the focal
line of the ellipse) and we define the square root as real along the portion x > 1 of the positive
x = Re w axis.

We can now make the connection between an annulus in the z-plane and an ellipse in the
w-plane, which is central in our analysis. Specifically, the vortex dynamics in an annulus is
straightforward: the rotational symmetry means that a single vortex precesses uniformly. A
combination with the conformal Joukowsky transformation readily yields the corresponding
vortex dynamics in the interior of an ellipse, even though the rotational symmetry is lost.

We consider a planar annulus with inner and outer radii R1 < R2. It is convenient to use
the geometric mean

p

R1R2 as the length scale, hence we set R2 = R= a+ b = a+
p

a2 − 1> 1
and R1 = R−1 = a−pa2 − 1< 1. The outer rim |z|= R transforms into the elliptical boundary,
while the circle |z|= 1 maps onto the flat ellipse that is a closed loop infinitesimally close to the
focal line of the ellipse w ∈ [−1,1]. The inner boundary R−1 of the annulus is the inversion-
symmetric partner of the outer annular boundary R. As can be easily verified, the inner rim
R−1 also maps into the elliptical boundary, as expected from the inversion symmetry.

In more detail, the Joukowsky transformation may be rewritten as 2wz = z2 + 1. It is a
polynomial of order 1 in w and of order 2 in z. Upon traversing the whole z-plane once, these
different powers generate a two-fold covering of the w-plane. Figure 2 shows the action of
the Joukowsky conformal map. Each elliptical curve in the w-plane comes from two circles
(identified by the same colour) in the z-plane: one of them lies in the yellow-shaded |z| > 1
region, and the other lies in the blue-shaded |z|< 1 region. The black outer elliptical boundary
corresponds to both the inner and outer rims of the annulus. The two regions in the z-plane
are separated by the black dashed |z|= 1 circle, which maps into the focal line of the ellipse.

It is worth stressing that a single vortex (red dot) at position w0 in the ellipse is mapped,
through the Joukowsky transformation, from two same-sign vortices, one in each of the two
annular regions. Assuming ρ0 > 1, the vortex at position z0 = ρ0eiθ0 lies in the yellow
|z| > 1 region, whereas the other vortex at z−1

0 = ρ−1
0 e−iθ0 lies inside the blue |z| < 1 re-

gion. Moreover, for a fixed polar angle θ0, the two vortices in the annulus lie on the straight
lines Y (X ) = ± tanθ0 X , while for the ellipse they lie on the x > 0 branch of the hyperbola

x2

cos2 θ0
− y2

sin2 θ0
= 1 (6)

in the w-plane, where we assume |θ0|< π/2. These loci of points are shown by the brown lines
in Fig. 2. Since the Joukowsky transformation maps both outer (|z| > 1) and inner (|z| < 1)
regions into the same elliptical region, we can consider only the outer region with |z|> 1 with
no loss of generality.

3 Superfluid vortices on an elliptical domain

In this section, we combine the complex potential for a single vortex in an annulus [11, 12]
with the Joukowsky transformation to find the complex potential for a single vortex in an
elliptical domain. In doing so, we make use of the following property of conformal transfor-
mations between physical flow patterns, as presented in Ref. [33]: “in flow patterns related
by a conformal map, circulation integrals around corresponding curves are the same".

3.1 Complex potential and flow field

Consider a (positive) vortex at position w0 inside an ellipse with major semiaxis a and minor
semiaxis b =

p
a2 − 1. The dimensionless circulation (in units of ħh/M) around the ellipti-

cal boundary is Γext = +2π, while the one along the flat ellipse (surrounding the focal line)
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Figure 2: The Joukowsky transformation maps concentric circles into confocal el-
lipses. Curves with the same colour are related by the conformal transformation:
the same ellipse comes from two corresponding circles with inverse-symmetric radii.
The black-dashed unit circle is mapped into the degenerate flat ellipse surrounding
the focal line. Yellow and blue-shaded regions in the left panel represent, respec-
tively, the two Riemann sheets |z| > 1 and |z| < 1 within the annulus: each of these
regions maps into the interior of the ellipse in the w-plane (right panel). Moreover,
the Joukowsky transformation maps both point vortices at positions z0 and z−1

0 in
the annulus into a single vortex at position w0 in the ellipse. The locus of points with
polar coordinates ±θ0 inside the annulus, i.e. a semi-line in the z-plane, is mapped
to a single branch of hyperbola in the w-plane (brown curves).

is ΓFE = 0. The analogous complex potential on the z-plane for a vortex in an annulus at
z0 = w0 +
q

w2
0 − 1 must lead to the same circulations along the corresponding boundaries.

Hence the complex potential on the z-plane must feature a circulation Γ (R) = 2π on the outer
boundary of the annulus (with R = a + b) and Γ (1) = 0 on the unit circle. Moreover, the
flat ellipse in the w-plane tightly encircles the branch-cut extending between the two foci. To
ensure that the flow on the ellipse remains continuous across the branch cut, we must require
Fannulus

�

eiθ
�

= Fannulus

�

e−iθ
�

on the unit circle (parametrized by the polar angle θ).
The complex potential for a single (positive) vortex at position z0 inside an annulus of radii

R−1 < 1< R reads [11,12]

Fannulus,single(z; z0) = ln





ϑ1

�

− i
2 ln
�

z
z0

�

, q
�

ϑ1

�

− i
2 ln
� zz∗0

R2

�

, q
�



 , (7)

where ϑ1(z, q) denotes the first Jacobi theta function, and its nome q ≡ R1/R2 = R−2 < 1 can be
rewritten in terms of the parameters of the ellipse as q = (a− b)2. In particular, this potential
yields a flow with circulation on the outer boundary only: i.e. Γ (R) = 2π, and Γ (R−1) = 0.

As we argue below, the correct complex potential in the z-plane requires an additional
term:

Fannulus(z; z0) = Fannulus,single(z; z0) + Fannulus,single

�

z−1; z0

�

. (8)

By construction, this potential is symmetric under the exchange z ↔ z−1. To understand
the physical meaning of this complex potential, we use the quasiperiodicity of the Jacobi ϑ1
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function1 to show that (apart for an irrelevant constant) Eq. (8) may be conveniently re-written
as

Fannulus(z; z0) = Fannulus,single(z; z0) + Fannulus,single

�

z; z−1
0

�− ln(z). (9)

The first two terms in the latter equation correspond to the flows generated by a positive
vortex at z0 and by its positive symmetric partner located at z−1

0 . Each of these terms induces
2π circulation at the outer boundary |z| = R, and 0 at the inner one |z| = R−1. The last
term in the equation represents a negative vortex at the origin of the z-plane, which removes
2π circulation everywhere. As a result, the combination of the three terms yields Γ (R) = 2π
and Γ (R−1) = −2π. Furthermore, the unit circle contains two vortices with opposite sign, so
that the circulation along it vanishes, namely Γ (1) = 0. This behaviour reflects the built-in
symmetry z↔ z−1, ensuring that Fannulus

�

eiθ
�

= Fannulus

�

e−iθ
�

. Summarizing, the complex
potential (8) satisfies all the requested conditions [the circulations Γ (R) = +2π, Γ (1) = 0
and the symmetry which guarantees continuity across the flat ellipse] in the simply connected
region 1 ≤ |z| ≤ R. In this way, the Joukowsky map projects the latter region in a one-to-one
fashion onto the whole ellipse, with no ambiguity.

The panels on the left side of Fig. 3 show the stream function χ(r ) = Re Fannulus(z; z0),
the phase field Φ(r ) = Im Fannulus(z; z0) and the superfluid velocity field v(r ) [obtained from
Eq. (2)] of this two-vortex configuration on the annulus in the z-plane.

As a final step, it is convenient to introduce the compact notation

Z≡ Z(w) = w+
p

w2 − 1, Z0 ≡ Z(w0). (10)

As a result, the complex potential for a single vortex inside the ellipse in the w-plane has the
following analytical expression:

Fellipse(w; w0) = Fannulus (z(w) = Z; z0(w0) = Z0)

= ln





ϑ1

�

− i
2 ln
�

Z
Z0

�

, q
�

ϑ1

�− i
2 ln
�

qZZ∗0
�

, q
�



+ ln





ϑ1

�

− i
2 ln
�

1
ZZ0

�

, q
�

ϑ1

�

− i
2 ln
�

q
Z∗0
Z

�

, q
�



 .
(11)

The result (11) satisfies the correct boundary conditions of the superfluid flow in the w-plane
of the ellipse as it is clear in the panels on the right of Fig. 3, showing the stream function,
phase field and superfluid velocity field based on the complex potential (11).

We recall that a single vortex inside an annulus requires an infinite set of image vor-
tices [11] to ensure that the superfluid flow is tangent at both the boundaries. The same
situation holds for a single vortex inside an elliptical domain, as it is clear from our previ-
ous reasoning, based on the combination of the complex potential for an annulus with the
Joukowsky transformation. In particular, we have verified that the infinite set of image vor-
tices generated (outside the elliptical container) by Eq. (11) agrees with the set of images
found in Ref. [29]. Our derivation, however, seems simpler and more straightforward, since it
involves only the three Eqs. (7), (8), and (11).

1ϑ1(z ±πτ, q) = −q−1e∓2izϑ1(z, q), where the parameter τ is related to the nome q by q ≡ eiπτ.
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Figure 3: Left column: stream function, phase and velocity field associated with two
vortices at positions z0, z−1

0 inside the planar annulus. The annulus has outer and
inner radii R = 2, R−1 = 1/2, the dashed line representing the unit circle. The polar
coordinates for the vortex at complex position z0 = ρ0eiθ0 are ρ0 = 1.35, θ0 = π/4.
Right column: stream function, phase and velocity field associated with a single vor-
tex at w0 inside the ellipse. The ellipse has eccentricity b/a = (R2−1)/(R2+1) = 0.6,
and the cartesian coordinates of the vortex at position w0 are x0 ≈ 0.74, y0 ≈ 0.22.
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3.2 Vortex trajectories

The velocity of the vortex at position z0 inside the ellipse follows directly from Eq. (11) as:

iẇ∗0 = ẏ0 + i ẋ0 =
ħh
M

lim
w→w0

�

F ′ellipse(w; w0)−
1

w−w0

�

=
ħh
M

(

− w0

2(w2
0 − 1)

+
i

2
q

w2
0 − 1

�

ϑ′1 (i lnZ0, q)

ϑ1 (i lnZ0, q)
+

+
ϑ′1
�− i

2 ln
�

q |Z0|2
�

, q
�

ϑ1

�− i
2 ln
�

q |Z0|2
�

, q
� −
ϑ′1
�

− i
2 ln
�

q
Z∗0
Z0

�

, q
�

ϑ1

�

− i
2 ln
�

q
Z∗0
Z0

�

, q
�











.

(12)

We integrate the complex dynamical equation (12) to find the closed vortex trajectories
for various initial positions along the positive horizontal axis, as shown in Fig. 4. The resulting
family clearly differs from the confocal ellipses shown on the right side of Fig. 2. Instead
they resemble nested self-similar ellipses. This result is not surprising because the elliptical
boundary is a quadrupolar distortion of a circular boundary. Hence the closed trajectories in
the elliptical boundary should resemble a family of circles with quadrupolar distortions.

-1.0 -0.5 0.5 1.0

-0.5

0.5

Figure 4: Trajectories of a single vortex inside an elliptical boundary for various
initial positions on the positive horizontal axis. The thick black line denotes the outer
boundary (b/a = 0.6) and the black dots denote the focal points. These trajectories
are obtained from numerical solution of the equations of motion (12).

In detail, however, the situation is more complicated. For a circular boundary, the rota-
tional symmetry ensures conservation of angular momentum, so that all vortex trajectories
are circles. In contrast, an elliptical boundary does not conserve angular momentum because
the boundary is invariant only under a finite rotation by ±π. If we use an angular Fourier ex-
pansion for the trajectory, only even harmonics can occur, and the nonlinear dynamical equa-
tions couple the various Fourier amplitudes. As a result, the orbits are not strictly ellipses.
More quantitatively, for a given trajectory we extract the maximum value of the coordinates
(xmax, ymax) and the period T . Figure 5 shows (x0/xmax)2 + (y0/ymax)2 evaluated along the
five closed trajectories in Fig. 4, characterized by xmax = 0.25 (blue curve), 0.50 (purple),
0.75 (green), 1.0 (red), 1.15 (orange). The quantity (x0/xmax)2 + (y0/ymax)2 deviates from
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the value 1 that it would have for a pure ellipse, displaying a periodic, anharmonic depen-
dence on the polar angle θ0 ∈ [0,2π]. As follows from its definition, the maximum value of 1
is reached at (±xmax, 0) and (0,±ymax). The minimum value and the corresponding deviation
from 1 differ for each case. Starting from the smallest trajectory (blue curve), the amplitude
of the oscillation increases (purple and green), until it reaches its maximum for the trajec-
tory with xmax = 1 (red), which is the one passing through the foci of the ellipse. Then, for
1< xmax < a (orange curve), deviations from 1 progressively decrease due to the influence of
the elliptic boundary.

0.0 0.5 1.0 1.5 2.0

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Figure 5: Quantity (x0/xmax)2+(y0/ymax)2 as a function of the polar angle θ0 along
a closed vortex trajectory. The different curves refer to the five trajectories in Fig. 4,
with corresponding colours. Each case shows a periodic deviation from the value 1
that is expected for a pure ellipse.

The numerical evaluation of the period T for each trajectory then gives the mean precession
frequency 〈Ω〉= 2π/T . Figure 6 shows 〈Ω〉 as a function of the initial position along the posi-
tive horizontal axis, for three values of the aspect ratio of the container. As the aspect ratio ap-
proaches 1, the mean precession frequency converges to the red solid curve, which corresponds
to the result for a single vortex inside a disk of radius a, namely Ω(x0) = (ħh/M)(a2 − x2

0)
−1.

Importantly, the mean angular velocity is always positive, hence a positive vortex can only
move in the counterclockwise direction, independent of its initial position. This result is simi-
lar to the circular boundary, while it differs from the case of a vortex inside an annulus, where
the precession frequency can be both positive and negative, depending on its position relative
to the inner and outer boundaries. Physically, this latter behaviour reflects the influence of the
nearest image, which lies beyond the closest boundary.

3.3 Total energy for a single vortex

In our model, the energy is purely kinetic, so that the self-energy of the vortex at position
r0 = (x0, y0) is E0 =

1
2 nM
∫

E d2r|v(r )|2, where the integral is restricted to the surface of the

elliptical domain E =
¦

(x , y) ∈ R2 : x2

a2 +
y2

b2 ≤ 1
©

and v(r ) = (ħh/M)ẑ ×∇χ(r ) is the velocity
field associated with the vortex in the elliptical boundary. Use the stream function to rewrite
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Figure 6: Dependence of the mean precession frequency on the initial position along
the positive horizontal axis for three different aspect ratios b/a of the elliptical
boundary. The red solid curve is the result for a circular boundary of radius a.

the energy as

E0 =
ħhn
2

∫

E
d2r
�

−vx
∂ χ

∂ y
+ vy

∂ χ

∂ x

�

=
ħhn
2

�∮

∂ E
d l · vχ −
∫

E
d2rχ|∇× v |
�

, (13)

where the contour ∂ E is the elliptical boundary x2

a2 +
y2

b2 = 1, taken in the positive sense (coun-
terclockwise). Since the stream function takes the constant value χ(∂ E) at the boundary ∂ E
and there is only a single positive vortex inside the ellipse, the line integral is easily evaluated
as:

∮

∂ E
d l · v χ = 2πħh

M
χ(∂ E). (14)

The remaining surface integral depends on a specific model for the vortex core, described
as a circle of radius ac . It can be decomposed as follows:

∫

E
d2r ζχ =

∫

E
d2r ζ (χ −χ0) +

∫

core

d2r ζχ0, (15)

where ζ = |∇× v | = (2πħh/M)δ(2)(r − r0) is the vorticity and χ0 = ln(|r − r0|/ac). For sim-
plicity, we assume an empty core surrounded by irrotational flow for r > ac , so that the second
term in Eq. (15) vanishes. By construction, the regularized stream function χreg = χ − χ0 in
the first term is bounded near the vortex core. In this way, Eq. (15) becomes

∫

E
d2r ζχ =

2πħh
M

lim
r→r0

�

χ(r )− ln
� |r − r0|

ac

��

≡ 2πħh
M
χreg(r0). (16)

A combination of Eqs. (14) and (16) leads to the following form for the self-energy:

E0(r0) =
πħh2n

M

�

χ(∂ E)−χreg(r0)
�

. (17)

The boundary term χ(∂ E) is nothing but the real part of the complex potential (8) evaluated at
the elliptic boundary: the latter is parametrized by x = a cosθ , y = b sinθ , with θ = [−π,π].

11



SciPost Physics Submission

Exploiting the definition and properties of elliptic theta functions [34], the constant boundary
value of the stream function turns out to be:

χ(∂ E) = Re
�

F∂ Eellipse(θ ; w0)
�

=
1
2

ln
�

q |Z0|2
�

�

�

�

�

w0=x0+i y0

. (18)

The regularized stream function can be computed as:

χreg(r0) =Re
§

lim
w→w0

�

Fellipse(w; w0)− ln
�

w−w0

ac

��ª

�

�

�

�

w0=x0+i y0

=− ln

�

2
i

ϑ1

�− i
2 ln
�

q |Z0|2
�

, q
�

acϑ
′
1(0, q)

�

−Re



ln





q

w2
0 − 1

ϑ1

�

− i
2 ln
�

q
Z∗0
Z0

�

, q
�

ϑ1 (i lnZ0, q)







 .

(19)

The derivation here is quite intricate and we skip it since it provides little physical insight.
Inserting the results (18) and (19) into Eq. (17), and omitting an irrelevant additive constant
− ln
�

2ac
p

q
�

, the final self-energy in cartesian coordinates becomes:

E0(x0, y0)

πħh2n/M
= ln

�

4q
i
|Z0|
ϑ1

�− i
2 ln
�

q |Z0|2
�

, q
�

ϑ′1(0, q)

�

+Re ln





q

w2
0 − 1

ϑ1

�

− i
2 ln
�

q
Z∗0
Z0

�

, q
�

ϑ1 (i lnZ0, q)



 .

(20)
Since our system conserves energy, the associated vortex dynamics obeys Hamilton’s equations.
Hence the trajectories shown in Fig. 4 are curves of constant energy.

3.4 Comparison with total energy expressed in elliptic coordinates

Reference [17] introduced elliptic coordinates (ξ,η)with a conformal transformation w= coshζ
where w= x + i y and ζ= ξ+ iη. In this way, we have

x = coshξ cosη, y = sinhξ sinη, (21)

with ξ ≥ 0, −π ≤ η < π. The elliptical domain, in particular, is obtained for 0 ≤ ξ ≤ Ξ, with
tanhΞ = b/a. A comparison with Eq. (4) shows that the elliptic coordinate η is the same as
the polar angle θ used for the annulus: in the following we simply replace η with θ .

A straightforward extension of results in [17] gives the self-energy for a vortex with elliptic
coordinates (ξ0,θ0)

E0(ξ0,θ0)

πħh2n/M
= −2

∞
∑

m=1

e−mΞ

m

�

cosh2 mξ0 cos2 mθ0

cosh mΞ
+

sinh2 mξ0 sin2 mθ0

sinh mΞ

�

. (22)

Here, the energy appears as an infinite series involving both hyperbolic and trigonometric func-
tions. Although less compact than Eq. (20) expressed in terms of the Jacobian theta function
ϑ1 in cartesian coordinates, it provides some valuables insights.

For example, Hamilton’s equations evaluated with the above energy in elliptic coordinates
yield the equations of motion for a single vortex, again involving infinite summations

ξ̇0 =
1

h2
0

∂ [E0/2πħhn]
∂ θ0

=
ħh

Mh2
0

∞
∑

m=1

e−mΞ sin(2mθ0)

�

cosh2 mξ0

cosh mΞ
− sinh2 mξ0

sinh mΞ

�

,

θ̇0 = −
1

h2
0

∂ [E0/2πħhn]
∂ ξ0

=
ħh

Mh2
0

∞
∑

m=1

e−mΞ sinh(2mξ0)

�

cos2 mθ0

cosh mΞ
+

sin2 mθ0

sinh mΞ

�

,

(23)
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with the metric factor:
h0(ξ0,θ0) =
q

sinh2 ξ0 + sin2 θ0. (24)

We see immediately that θ̇0 is necessarily positive, which means that the vortex always moves
in the positive (counterclockwise) direction. The “radial" velocity ξ̇0(t) involves a sum over
trigonometric functions sin 2mθ0 that are periodic over a half cycle of θ0. In contrast, the
second factor in large parentheses is a positive-definite combination of hyperbolic functions.
As a result, ξ0(t) exhibits periodic but anharmonic oscillations along the orbit. Note that a
constant ξ0 represents a confocal ellipse, as shown on the right side of Fig. 2. The periodic
oscillations in ξ0(t) modify the trajectories to the nested self-similar form seen in Fig. 4.

Equation (20) gives a closed form for the energy, expressed in complex cartesian coordi-
nates w= x+ i y . Substitution of the conformal transformation w= coshζ then gives a closed
form for the energy expressed in elliptic coordinates, which we do not write here. A detailed
analysis using the infinite product representation of the various ϑ functions eventually shows
that the two expressions are equivalent.

4 Conclusions and outlook

An earlier paper by one of us [17] studied the low-lying equilibrium states of rotating superfluid
He-II in an elliptical cylinder. For slow rotations, the rotating walls push the fluid inducing
pure irrotational flow. Above a critical angular velocity, however, a vortex appears at the
centre of the ellipse. The corresponding predictions for energy and angular momentum found
clear confirmation in subsequent experiments [18] for elliptic containers with three different
eccentricities.

The present work goes further, investigating the superfluid dynamics of a single vortex
in a stationary elliptical boundary. We followed the standard mathematical approach using a
complex potential that captures all the physical properties of the superfluid flow. An ellipse is
a quadrupolar deformation of a circle, hence one might expect similarities to the familiar case
of a vortex in a circular boundary, which requires only a single image to construct the complex
potential. In fact, the situation is more intricate. We use the Joukowsky transformation that
maps concentric circles into confocal ellipses. A thorough analysis of its analytical structure
showed that this conformal map links an annulus and an elliptical domain. As a result, we
relied on an earlier study of a single vortex in an annulus [11], where the complex potential
involves an infinite set of image vortices.

A combination of the conformal Joukowsky transformation and the appropriate values for
the circulation around both annular boundaries eventually gave Eq. (11) as the final complex
potential for the single vortex in an ellipse. The resulting superfluid flow, as shown in Fig. 3,
manifestly satisfies all the relevant boundary conditions. Moreover, a detailed study shows
that our very compact result agrees with the potential generated by the infinite set of image
vortices presented in a previous work in the field of electrostatics [29].

We then used the complex potential to study the resulting vortex dynamics. We integrated
the equations of motion for various initial positions to find the closed trajectories that are
shown in Fig. 4. Unlike the confocal ellipses associated with the Joukowsky transformation,
these trajectories form self-similar nearly elliptical orbits. Furthermore, Fig. 6 confirms that
all the trajectories have the same positive sense, similar to the motion in a circular boundary,
but different from that in an annulus.

Finally, we derived a closed formula in Eq. (20) for the self energy of a vortex in an elliptical
boundary. As expected for a Hamiltonian system, the contour lines of this energy coincide with
the vortex trajectories found previously by direct integration of the dynamical equations for
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the vortex. In addition, a generalization of Ref. [17] based on elliptic coordinates provided an
independent numerical confirmation of our results.

As a future extension of this work, one could investigate how a finite massive core af-
fects the vortex dynamics. The time-dependent variational Lagrangian method successfully
described massive vortices in a disk [35–37] and in an annulus [38]. In this situation, the
mass plays the role of a singular perturbation, since it breaks the familiar structure of first-
order dynamical equations of motion for massless vortices. Instead, the dynamical equations
for massive vortices become second order in time. Similar to electromagnetic problems, the
mass here is responsible for a cyclotron motion superimposed on the drift of a guiding centre.
There is also an upper bound for the mass filling the vortex cores, beyond which the trajec-
tories become unstable. It would be interesting to verify that a massive vortex in an elliptical
boundary exhibits similar behaviour. Another natural extension of our research would be to
study vortex lattices in elliptical containers, and their normal modes and instabilities.
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