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Abstract

The non-minimal coupling of scalar fields to gravity has been claimed to violate energy
conditions, leading to exotic phenomena such as traversable wormholes, even in classical
theories. In this work we adopt the view that the non-minimal coupling can be viewed as
part of an effective field theory (EFT) in which the field value is controlled by the theory’s
cutoff. Under this assumption, the average null energy condition, whose violation is
necessary to allow traversable wormholes, is obeyed both classically and in the context of
quantum field theory. In addition, we establish a type of “smeared" null energy condition
in the non-minimally coupled theory, showing that the null energy averaged over a region
of spacetime obeys a state dependent bound, in that it depends on the allowed field
range. We finally motivate our EFT assumption by considering when the gravity plus
matter path integral remains semi-classically controlled.
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1 Introduction

Non-minimal coupling to gravity is a famous example where energy conditions are violated.
Terms in the Lagrangian of the form

δL= ξRφ2 (1)

allow violations of the Null Energy Condition (NEC) even at the classical level. Such terms have
been claimed to have dramatic physical consequences, such as the construction of traversable
wormholes in classical theories [1, 2]. However under the usual Wilsonian paradigm, terms
of non-minimal coupling can appear natural in low-energy effective actions of a UV theory
of quantum gravity and are common in models of inflation, with either positive or negative
coupling constant (see e.g. Ref. [3] and Ref. [4], among many others). How do we then
reconcile this with the apparent power of non-minimal coupling for generating troublesome
geometries?

In this paper, we take the philosophy that

• The physically relevant question is whether non-minimal coupling can lead to exotic
spacetime geometries. Since the non-minimal coupling term also modifies the Einstein
equations, we must analyze either suitably defined ‘effective’ energy conditions or work
in the ‘Einstein frame’, where the gravitational equations of motion take the standard
form.

• The non-minimal coupling should be treated as the first term in an effective field theory
(EFT) expansion that includes all terms in a higher-derivative and polynomial expansion
in φ. This EFT is sensible when there exists a cutoff on both large momenta as well as
large field values. Here we work in the simplest EFT setting where a single UV cutoff
Mcutoff controls all quantities,

k2
max ∼ φ

4/(n−2)
max ∼ M2

cutoff (2)

where k is the wavenumber and n is the spacetime dimension.

Using this philosophy we revisit the effects of non-minimal coupling at both the classical
and quantum levels. To be concrete, in this paper we focus on the simplest form of non-minimal
coupling, (1), however given the EFT framework mentioned directly above, this is most rele-
vant term in both a derivative and field value expansion. Thus it is important to understand
the effects of non-minimal coupling already at this first term. We will briefly comment on more
general curvature couplings, when appropriate, at various points in the paper.

2



SciPost Physics Submission

At the classical level, the ‘effective NEC’ can be violated by non-minimal coupling of either
sign, so in this sense, non-minimally coupled theories are quite unusual. However, the effec-
tive Averaged Null Energy Condition (ANEC), which must be violated for certain traversable
wormholes, is satisfied.

Despite these apparently exotic features, classically, non-minimal coupling can be elimi-
nated by a combined conformal transformation and field redefinition, as we review in Sec. 2,
roughly following [2]. The results of this section are not new. This field redefinition mixes the
gravitational field and the scalar field and it takes us to the Einstein frame, where the NEC is
obeyed. However, if the scalar field was initially free (aside from the gravitational coupling),
the field redefinition introduces a self-interaction. The upshot is that, at the classical level, a
non-minimally coupled theory can be mapped via a field redefinition to a completely standard
theory of interacting scalar fields minimally coupled to gravity, which obeys standard energy
conditions.

One can still ask whether exotic spacetimes can occur in the original ‘Jordan frame’. In
general, both descriptions are equally valid, however with differing operators, or probes, de-
scribed by their respective fundamental fields. The question of which metric is the physical
one depends on the probe one is interested in measuring. Some probes will follow geodesics
of the Einstein frame, while others will follow geodesics of the Jordan frame. A key point,
however, is that our EFT assumption enforces that the two metrics differ by a small amount.
In particular, they are related by

g̃µν ≈ e−
2

n−2 (8πGNξ)φ2
gµν . (3)

Within the EFT framework, when M2
cutoff is Planckian or sub-Planckian, the quantity in the

exponent is small and the two metrics are close. More generally, given the above assumption,
we claim that the EFT can be treated in both the Einstein and Jordan frames with a clear map
of probes between the frames.

In sections 3 and 4, we move to the quantum regime. In these sections, we do the analysis
in the Jordan frame, where the non-minimal coupling is present. We demonstrate explicit
quantum states that violate NEC by an arbitrarily large amount. These are not novel, since
every quantum field theory allows for arbitrarily negative energy density at a point [5].

However, the non-minimally coupled (NMC) theory also violates smeared energy condi-
tions, such as the double smeared null energy condition (DSNEC), which are satisfied by free
theories. Similar results have been obtained for the energy density [6] and the effective energy
density [7]. These kinds of smeared energy conditions or quantum energy inequalities (QEIs)
are called state dependent as the bound depends on the state of interest. This is unlike the
respective QEIs in the case of the minimally coupled theories.1

Given the genericity of non-minimal couplings it is important to understand the circum-
stances upon which negative null energy density is truly unbounded. As an important result
of this work, we will show that the violations of smeared energy conditions can be controlled
by invoking our EFT philosophy. Specifically we demonstrate that the violation of smeared
energy conditions is driven by large field values: we require states with




φ2
�

very large. We
show that imposing a cutoff on the field value leads to a finite bound on the smeared null
energy. Considering the null energy T−− smeared over two null directions of length δ+ and
δ−, we establish a bound which can be schematically written as




T smear
−−

�

ψ
≥ −

Nn[γ]
(δ+)n/2−1(δ−)n/2+1

−
#|ξ|φ2

max

(δ−)2
= −

Ñn[γ,ξ, φ̃2
max]

(δ+)n/2−1(δ−)n/2+1
(4)

1In the case of the quantum strong energy inequality the state dependence appears also in the minimally coupled
case with a state independent bound obtained only in the strictly massless case.
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Here n is the space-time dimension,ψ is the class of states of bounded field values, andφ2
max is

the maximum value
�

�




φ2
��

� can obtain within that class. Nn and Ñn are dimensionless parame-
ters depending on the details of the smearing function, the dimensionless mass, γ= δ+δ−m2,
and the dimensionless field cutoff φ̃2

max := (δ+δ−)
n−2

2 φ2
max (measured in units of the invariant

smearing length). The above bound is for a single scalar field; at the level of analysis multiple
scalar fields simply add, leading to an overall factor of the number of fields in the bound.

In Sec. 5, we generalize our classical construction of going to the Einstein frame to the
quantum level. While we do not rigorously treat the corrections arising from the redefinition of
the path integral measure, we provide arguments that a free NMC field can be mapped, through
successive field redefinitions, to a minimally coupled field with a tower of self-interactions.
We demonstrate explicitly how the potential V (φ) differs between the two frames. While the
stress tensors in either frame are distinct operators, within the domain of the EFT quantum
corrections are controlled and there is a clear map between these operators.

Lastly, we justify our EFT philosophy by considering the gravity + matter path integral in
the original Jordan frame and ask when it is well-approximated by semi-classical computations.
Focussing on positive coupling, ξ > 0, and making use of constrained instanton techniques, we
establish that the gravitational theory becomes strongly coupled in this regime of large field
values. This result provides a justification for our EFT requirement for ξ≥ 0. We do not have
a similar argument for ξ ≤ 0, although we offer an alternative (albeit less rigorous) signal
of semi-classical breakdown for this case.2 It would be of interest, particularly for models of
inflation requiring large field values, to know what values of the non-minimal coupling can
arise from a consistent UV theory and if this coupling can be constrained.

Conventions

Unless otherwise specified, we work in n spacetime dimensions, assume ħh = c = 1 and
use metric signature (−,+, . . . ,+). The D’Alembertian operator with respect to the metric g is
defined as □g := −gµν∇µ∇ν. The Riemann curvature tensor of g is

R(X , Y )Z =∇X∇Y Z −∇Y∇X Z −∇[X ,Y ]Z , (5)

and the Ricci tensor Rµν is its (1, 3)-contraction. The Einstein Equation is Gµν = 8πGN Tµν. The
convention used for the metric, the Riemann tensor and the Einstein Equation is the (+,+,+)
according to Misner, Thorne and Wheeler [9].

When considering null subspaces in Minkowski we will denote, w.l.o.g., null coordinates3

x± = t ± x1 and transverse coordinates, y⃗ = (x2, . . . , xn):

ds2 = −d t2 +
n
∑

i=1

(d x i)2 = −d x+d x− +
n
∑

a=2

(d ya)2. (6)

Null derivatives will be denoted as ∂± := 1
2 (∂t ± ∂1). In momentum space this implies the

following notation k± := 1
2(k0 ± k1); the inner product with coordinates remains unchanged,

kµxµ = k0 t + ki x
i = k+x+ + k−x− + ka ya.

For the Fourier transform we use the following convention

f̃ (k) =

∫

Rn

dn x f (x)eikx =

∫

d td x1 dn−2 y⃗ f (x)eikx . (7)

2Ref. [8] presents an argument demanding ξ≥ 0 under additional assumptions.
3Note importantly a discrepancy in integration measures d td x1 = 1

2 d x+d x−. In the interest of compari-
son to previous results and to be clear on this front, we will always denote integrations with respect to null-
coordinates by d2 x± := d x+d x−. Similarly integrations in momentum space will follow a similar notation:
d2k± := dk+dk− =

1
2 dk0dk1.
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2 Classical energy conditions

In this section we review the status of classical energy conditions in non-minimally coupled
theories. We further present the transformation that brings the non-minimally coupled action
(Jordan frame) to the minimally coupled one (Einstein frame).

2.1 The non-minimally coupled scalar field

The classical gravitational action integral for a non-minimally coupled scalar is

S =

∫

dn x
p

−g
�

(R− 2Λ)
16πGN

−
1
2
(∇φ)2 −

1
2
ξRφ2 − V (φ)

�

, (8)

where (∇φ)2 = gµν(∇µφ)(∇νφ), V (φ) is the potential, and ξ a dimensionless coupling con-
stant.4 The conformal coupling in n-dimensions is

ξc =
n− 2

4(n− 1)
(9)

so for four-dimensions ξc = 1/6.
For the massive, free scalar which will be studied in this work, we have V (φ) = m2φ2/2.

The stress-energy tensor is obtained by varying the action (8):

Tµν = (∇µφ)(∇νφ)−
1
2

gµν(m
2φ2 + (∇φ)2) + ξ(−gµν□g −∇µ∇ν + Gµν)φ

2 . (10)

What is interesting to note here is that the stress-energy tensor differs from minimal coupling
even for vanishing curvature, Gµν = 0. In this case the additional terms proportional to ξ can
be viewed as “improvement terms" to the canonical stress-tensor. ‘On shell’, φ obeys the field
equation

�

□g +m2 + ξR
�

φ = 0 . (11)

Using the identity

φ□gφ =
1
2
□gφ

2 − (∇φ)2 , (12)

we can write

Tµν = (1− 2ξ)(∇µφ)(∇νφ)−
1
2
(1− 4ξ)gµν(m

2φ2 + ξRφ2 + (∇φ)2)

−2ξ
�

φ∇µ∇νφ +
1
2

Rµνφ
2
�

. (13)

We are interested in the null energy which classically is

ρn ≡ Tµνℓ
µℓν = (1− 2ξ)(ℓµ∇µφ)(ℓν∇νφ)− 2ξ

�

φ(ℓµℓν∇µ∇νφ) +
1
2

Rµνℓ
µℓνφ2

�

. (14)

where ℓµ is a null vector.
Alternatively, we can define an effective stress tensor by separating the curvature terms from

the field terms in the Einstein equation. So using the Einstein Equation and Eq. (10) we have

Gµν = 8πGN T eff
µν , (15)

4The 1
2ξRφ2 coupling can be thought of as the first term in a field expansion of a generic class of curvature

couplings of the form A[φ]R.
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where

T eff
µν =

1
1− 8πGNξφ2

�

(∇µφ)(∇νφ)−
1
2

gµν

�

m2φ2 + (∇φ)2 +
Λ

4πGN

�

+ξ(−gµν□g −∇µ∇ν)φ2
�

. (16)

The null energy density for the effective stress tensor is

ρeff
n =

1
1− 8πGNξφ2

�

(ℓµ∇µφ)(ℓν∇νφ)− ξ(ℓµℓν∇µ∇ν)φ2
�

. (17)

For the purposes of constraining classical spacetimes allowed by the Einstein equation, it is
useful to state energy conditions in terms of the effective stress tensor, as it is the quantity
directly connected to the geometry.

It is evident from the form of Eqs. (15) and (16) that, for ξ > 0, the field φ experiences a
critical value at (8πGNξ)−1/2 by which stress-tensor changes sign. A change of sign of the co-
efficient of the stress-tensor means the change of the sign of the Einstein equation. Depending
on the definition, this can also be considered as the change of the sign of the effective Newton
constant. This is an important observation as we will see significant violations of effective
average null energy conditions occur only when the field value is unbounded.

2.2 NEC and ANEC

In this section we examine the null energy conditions for the classical non-minimally coupled
scalar and in particular the NEC and ANEC partly following [2].

The null energy for the non-minimally coupled scalar admits negative values even for flat
spacetimes as is evident from Eqs. (14) and (17). But the situation is different for ANEC.
Integrating Eq. (14) on an entire null geodesic γ parametrized by λ for vanishing curvature
gives

∫

ρndλ=

∫

(ℓµ∇µφ)(ℓν∇νφ)dλ− ξ
∫

ℓµℓν∇µ∇ν(φ2)dλ . (18)

The first term is non-negative and the second a total derivative. Assuming that the field has
asymptotically vanishing derivatives, the ANEC is obeyed.

Turning to the effective stress-energy tensor we notice that the effective NEC can also be
violated as evident by Eq. (17). On γ we have

ρeff
n =

1
1− 8πGNξφ2

�

�

dφ
dλ

�2

− ξ
d2(φ2)

dλ2

�

. (19)

From this form we can find the cases that violate the NEC. For ξ < 0 any local maximum of
φ2 violates the NEC. For ξ > 0 and small field values 8πξGNφ

2 < 1 any local minimum of φ2

is a violation while for large field values 8πξGNφ
2 > 1 any local maximum is a violation.

The “effective ANEC" integral for the effective stress-tensor is
∫

γ

ρeff
n dλ=

∫

γ

dλ
1

1− 8πGNξφ2

�

�

dφ
dλ

�2

− ξ
d2(φ2)

dλ2

�

. (20)

Integrating by parts the last term
∫

γ

ρeff
n dλ=

∫

γ

dλ
1− 8πξGN (1− 4ξ)φ2

(1− 8πGNξφ2)2

�

dφ
dλ

�2

, (21)
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where we discarded the boundary terms, assuming a smooth geodesic. Then it is obvious
that the effective ANEC integrand is non-negative for ξ < 0 and ξ > 1/4. For 0 < ξ < 1/4
it is positive for small field values, 8πξ(1 − 4ξ)GNφ

2 < 1, and negative for large values.
Of particular interest is the case where 8πGNξφ

2 is close to 1 and the integrand negative
because then we can have large effective ANEC violations. As mentioned above, this can lead
to traversal and causality violating wormholes [1, 2, 10]. Interestingly, one can check that
the positivity of the effective ANEC integrand is equivalent to a modified “Jordan frame NEC"
proposed in [11].

2.3 Einstein and Jordan frames

The gravitational action integral for a non-minimally coupled scalar Eq. (8) can be brought to
minimally coupled form by a conformal transformation along with a field redefinition

g̃µν = Ω
2 gµν , φ̃ = F(φ) , (22)

where F is a real function. The conformal factor, Ω, has a functional dependence on the scalar
field Ω(φ(x)). This transformation brings Eq. (8) to an action with canonical kinetic terms for
the metric and the scalar field, plus a new potential:

S =

∫

dn x
p

− g̃

�

R̃
16πGN

−
1
2
(∇̃φ̃)2 − Ṽ (φ̃)

�

, Ṽ (φ̃) = Ω−n(φ)
�

Λ

8πGN
+ V (φ)

�

,

(23)
where we regard φ = F−1(φ̃) above. While above we have focussed on the simplest form
of non-minimal coupling, 1

2ξRφ2, in Appendix A, we show this that such a transformation
applies to a more general class of couplings of the form A[φ]R. As a simple example, for
massless free scalars in asymptotically flat spacetimes, the conformal transformation gives an
action with Ṽ (φ̃) = 0. We will revisit the details of this field redefinition in the context of the
quantum theory in section 5.

The frame where we have non-minimal coupling is called Jordan frame while the frame
where we have minimal coupling Einstein frame. The conformally transformed action (23)
leads to a stress-energy tensor

T̃µν = (∇̃µφ̃)(∇̃νφ̃)−
1
2

g̃µν(2Ṽ (φ̃) + (∇̃φ̃)2) . (24)

Importantly all information about the conformation transformation appears in the Ṽ (φ̃) of the
stress-tensor. Then the null energy is

ρ̃n = (ℓ
µ∇̃µφ̃)(ℓν∇̃νφ̃) , (25)

thus always obeying the NEC classically. The two frames are evidently not equivalent in terms
of classical energy conditions as the NEC in the Einstein frame is obeyed while in the Jordan
frame there are violations.

Extending this argument from classical to quantum field theory is not straightforward. One
primary result of this paper is establishing when the above manipulations remain sensible in
the quantum theory: this analysis will be performed in section 5.

Some authors (e.g. [12]) have argued that the fact that the field obeys the NEC in the
Einstein frame means that this is the physical one. In particular, the stability of the classical
system in the Jordan frame is questioned due to the violation of energy conditions. The equiv-
alence of the two frames is also questioned with a detailed discussion and literature search
presented in [13].

7
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As discussed in the introduction, we take the position that the physically relevant question
is whether non-minimal coupling can lead to exotic spacetime geometries. For example, are
wormholes allowed classically in the Jordan frame while not allowed in the Einstein one? Short
wormholes, those allowing for causality violations, can only be constructed and sustained
when the achronal ANEC is violated [10]. As we showed, the self-consistent, effective, ANEC
is only violated when we have large field values, an unphysical effect if we view non-minimal
coupling as an EFT.

Long wormholes such as the one in Ref. [14] do not require the violation of the achronal
ANEC as there are no achronal null geodesics passing through their throat. While there is no
relevant theorem, it is obvious that the violation of effective ANEC is needed to sustain long
wormholes. Considering only cases where the connected areas are asymptotically flat, the
divergence of null geodesics passing through the throat requires the violation of average null
convergence condition and thus the effective ANEC. This point requires further consideration,
but so far it seems that it is impossible to construct traversable wormholes in the Jordan frame
without unphysical field values. In that sense the two frames can be considered equivalent.

3 An example of large negative null energy density in quantum
field theory

Before we prove the form of a general energy inequality, it is useful to see how a non-minimal
coupling can generate potentially troublesome energy densities in quantum field theory. In
fact, this is simple to illustrate even for free theories in Minkowski space: the flat-space limit
of (10) retains a dependence on the coupling ξ. This contribution to Tµν is natural in the
free theory where we can view it as an improvement term to the canonical stress tensor. As
a corollary, what follows in the next two sections can also be regarded as a illustration of the
failure of energy conditions under the addition of improvement terms to the stress tensor.

For this example, we will focus on the null stress tensor, T−− = ℓ
µ
−ℓ
ν
−Tµν, in a massless

theory in flat-space. Much in this section follows the example given in Ref. [6], however gen-
eralized to the null stress tensor and with an extended discussion. In a Minkowski background
we are free to renormalise the flat-space limit of (10) by normal ordering with respect to Fock
modes5:

T−−(x) =: ∂−φ∂−φ : (x)− ξ
�

: ∂ 2
−φφ : (x) + 2 : ∂−φ∂−φ : (x)+ : φ∂ 2

−φ : (x)
�

. (26)

We will null quantize φ as

φ(x+, x−, y⃗⊥) =

∫ ∞

0

dk−
2π
p

k−

∫

dn−2p⊥
(2π)n−2

�

ak−,p⃗⊥ eik−x−+i
p2
⊥

4k−
x−+i p⃗⊥· y⃗⊥ + h.c.

�

(27)

with commutators

[ak−,p⃗⊥ , a†
k′−,p⃗′⊥

] = (2π)n−1δ(k− − k′−)δ
n−2(p⃗⊥ − p⃗′⊥) . (28)

The vacuum, |Ω〉, is annihilated by ak−,p⃗⊥ and so normal-ordering places all a’s to the right. It

will be useful to write T−− = T (0)−− +δT−− where T (0)−− = T−−|ξ=0 is the canonical stress-tensor
and δT−− is the improvement term proportional to ξ.

5This is equivalent to Hadamard renormalizing T−− using the Minkowski vacuum as the reference state. We
will discuss general renormalization schemes in section 4.1.
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3.1 One-particle states with negative null energy

We now consider the following 1-particle state

|hα−,α⊥〉 := a†
hα− ,α⊥
|Ω〉, a†

hα− ,α⊥
=

∫ ∞

0

dk−
2π
p

k−

∫

dn−2p⊥
(2π)n−2

hα−,α⊥(k−, p⃗⊥)a
†
k−,p⃗⊥

(29)

where

hα−,α⊥(k−, p⃗⊥) = γ

p

k−
�3

2α− − k−
�

α
3/2
− α

n−2
2
⊥

e−k−/α−−|p⃗⊥|/α⊥ (30)

for positive parameters α− and α⊥, and the normalization

γ=
2

n+1
2 (2π)

n−1
2

p

5Vn−3Γ (n− 2)
, Vn−3 = volume of unit Sn−3 =

2π
n−2

2

Γ ( n−2
2 )

(31)

chosen such that
[ahα− ,α⊥

, a†
hα− ,α⊥

] = 1. (32)

These states are similar to the ones considered in Ref. [6] for the energy density. From here on
we will simply notate hα−,α⊥ ≡ hα (and similarly for the oscillators and the state) unless there
is a need to specifically demarcate α− from α⊥.

The expectation value of T−− at the spacetime origin, x = 0, is simple to find. The co-
efficients in (30) have been chosen so that 〈T (0)−−(x = 0)〉hα vanishes and only the ξ terms
contribute:

〈T−−(0)〉hα =2ξ

∫ ∞

0

dk−dk′−
(2π)2 k− k′−

∫

dn−2p⊥dn−2p′⊥
(2π)2(n−2)

(k− − k′−)
2 hα(k−, p⃗⊥)hα(k

′
−, p⃗′⊥)

=−
12Vn−3Γ (n− 2)

5πn−2
ξα2
−α

n−2
⊥ . (33)

Let us focus foremostly on the case where ξ > 0 (we will make remarks about the opposite
case below). Then the expectation value is negative and with a magnitude controlled by the
arbitrary parameters α− and α⊥. This is consistent with lack of pointwise lower bounds on
null energy in QFT [5]. We should expect instead that averaged over an appropriate neigh-
borhood, T−− is better behaved.

Continuity of the expectation value implies that there exists a finite neighborhood U containing
x = 0 such that

〈T−−(x)〉hα ≤ −
6Vn−3Γ (n− 2)

5πn−2
ξα2
−α

n−2
⊥ , ∀ x ∈ U . (34)

Furthermore noting
�

�〈T−−(x)〉hα
�

�≤
�

�〈T (0)−−(x)〉hα
�

�+
�

�〈δT−−(x)〉hα
�

� (35)

where the above terms can be separately bounded above by pulling the absolute value into the
momentum integrals, we can put the null energy density in the window

−
6Vn−3Γ (n− 2)

5πn−2
ξα2
−α

n−2
⊥ ≥〈T−−(x)〉hα

≥ −
8Vn−3Γ (n− 2)

5πn−1

�

c0 + cξ ξ
�

α2
−α

n−2
⊥ , ∀ x ∈ U , (36)

9
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where c0 and cξ are O(1) numerical constants6 independent of dimension and α−,⊥:

c0 ≈ 0.672 , cξ ≈ 5.786 . (38)

The above result implies that while 〈T−−(x)〉hα is bounded below (this lower bound above in
fact applies for all spacetime points), it must be sufficiently negative for some neighborhood
U about x = 0. Let us briefly comment on the spacetime extent of this neighborhood and its
relation to the state parameters (α−,α⊥). Our rough intuition is the size of neighborhoods
satisfying (34) should decrease as α− or α⊥ increase. To see that this is indeed true we note
the following scaling properties of hα−,α⊥:

hλα−,α⊥(k−, p⃗⊥) =hα−,α⊥(k−/λ, p⃗⊥) (Boost)

hλα−,λα⊥(k−, p⃗⊥) =λ
− d−2

2 hα−,α⊥(k−/λ, p⃗⊥/λ) (Dilatation) (39)

which imply, respectively,

〈hλα−,α⊥ |T−−(x
−, x+, y⃗⊥)|hλα−,α⊥〉=λ

2 〈hα−,α⊥ |T−−(λx−,λ−1 x+, y⃗⊥)|hα−,α⊥〉

〈hλα−,λα⊥ |T−−(x
−, x+, y⃗⊥)|hλα−,λα⊥〉=λ

d 〈hα−,α⊥ |T−−(λx−,λx+,λ y⃗⊥)|hα−,α⊥〉. (40)

In particular the second relation implies that

−λd 6Vn−3Γ (n− 2)
5πn−2

ξα2
−α

n−2
⊥ ≥〈T−−(x)〉hλα

≥ −λd 8Vn−3Γ (n− 2)
5πn−1

�

c0 + cξ ξ
�

α2
−α

n−2
⊥ , ∀ x ∈ λ−1U .

(41)

That is, one can push the window in which 〈T−−〉hα lies to lower negative values by scaling
(α−,α⊥) at the cost of inversely scaling the size of the neighborhood on which (36) holds.
This is illustrated in figure 1. However we now show that we can push the null-energy density

Figure 1: 〈T−−〉h(1)
λα

in n = 4 dimensions at the point (x−, x+ = y⃗⊥ = 0) plotted (in units

of α2
−α

2
⊥) along x−. The coupling has been set to the conformal value ξ = 1

6 . As the
parameters of the state are scaled up, the minimum at x− = 0 is made more negative;
correspondingly, the window in x− in which 〈T−−〉hλα is negative also shrinks.

arbitrarily low by considering multi-particle states.

6More precisely:

c0 =

�∫ ∞

0

dκ
p
κ |3/2−κ|e−κ

�2

, cξ =

∫ ∞

0

dκ1dκ2
(κ1 −κ2)2p
κ1κ2

|3/2− κ1||3/2−κ2|e−κ1−κ2 . (37)

10
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3.2 Multi-particle states

Now we consider the state

| (hα)
N 〉 :=

1
p

N !

�

a†
hα

�N
|Ω〉 . (42)

The null energy, being quadratic in creation and annihilation operators, then scales with N :

〈(hα)
N |T−−(x)| (hα)

N 〉= N〈hα|T−−(x)|hα〉. (43)

This is true for all x and so it follows that given the same parameters (α−,α⊥) the same
neighborhood, U , and same constants, c0,ξ, as in (36)

−N
6Vn−3Γ (n− 2)

5πn−2
ξα2
−α

n−2
⊥ ≥〈T−−(x)〉(hα)N

≥ −N
8Vn−3Γ (n− 2)

5πn−1

�

c0 + cξ ξ
�

α2
−α

n−2
⊥ , ∀ x ∈ U .

(44)

Now suppose that we fix a spacetime neighborhood, Ū , around x = 0. Then there exist a series
of N -particle states with parameters (ᾱ−, ᾱ⊥) such that

−N
6Vn−3Γ (n− 2)

5πn−2
ξᾱ2
−ᾱ

n−2
⊥ ≥〈T−−(x)〉(hᾱ)N

≥ −N
8Vn−3Γ (n− 2)

5πn−1

�

c0 + cξ ξ
�

ᾱ2
−ᾱ

n−2
⊥ , ∀ x ∈ Ū ,

(45)

for any N . For any ρ̄ > 0 we can choose the particle number

N̄ =

¢

5πn−2

6ξVn−3Γ (n− 2)
ρ̄

ᾱ2
−ᾱ

n−2
⊥

¥

(46)

(where ⌈. . .⌉ is the ceiling function) then we will have

−ρ̄ ≥ 〈T−−(x)〉(hᾱ)N ≥ −(c0 + cξξ)
�

4
3π
ρ̄

ξ
+

8Vn−3Γ (n− 2)
5πn−1

α2
−α

n−2
⊥

�

∀ x ∈ Ū . (47)

What we have found is that given a spacetime region of arbitrary size, and an arbitrary ρ̄,
we can find a finite-particle-number state such that 〈T−−〉 is upper-bounded by −ρ̄. Thus,
in contrast to the canonical stress tensor, implies the non-existence of a lower bound on the
smeared null energy for the improved T−−. As we will show later, this conclusion is not special
to the improved stress tensor in Minkowski space: it generically extended to non-minimally
coupled scalar fields. However the need for large particle number has implications for other
observables besides the energy density.

Lastly let us briefly point out that though we have assumed ξ > 0 above, the case where
ξ < 0 can also exhibit pathologies in these same class of multi-particle states. In particular,
plotting 〈T−−〉hλα in this case, we see that for sufficiently large values of |ξ| the null-energy
density at x+ = y⃗⊥ = 0 can dip into negative regions. These regions can be enhanced, via the
same arguments above, to being arbitrarily negative by increasing the particle number.

For small values of |ξ| it is still possible to find regions of negative null energy density by
generalizing Eq. (30) by a complex parameter ζ:

h(ζ)α−,α⊥
(k−, p⃗⊥) = γζ

p

k−(ζα− − k−)

α
3/2
− α

n−2
2
⊥

e−k−/α−−|p⃗⊥|/α⊥ (48)

11
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Figure 2: 〈T−−〉hλα in n = 4 dimensions at the point (x−, x+ = y⃗⊥ = 0) plotted (in units
of α2

−α
2
⊥) along x−. The coupling has been set to ξ= − 1

4 . Though 〈T−−〉hλ,α
is positive at

x− = 0, there exist regions of negative null energy which can be amplified by large particle
number.

and tuning ζ appropriately. Here γζ chosen such that a†

h(ζ)α− ,α⊥

and ah(ζ)α− ,α⊥
(defined analogously

to Eq. (29)) obey normalized commutation relations à la Eq. (32). This is illustrated in figure
3. Again, once a region of negative null energy density exists it can be enhanced to arbitrary
magnitude by increasing the particle number. The existence of states of arbitrarily negative
null energy density, regardless of the sign of coupling, is consistent with the results of Section
4.

3.3 Large negative null energies require large field values

The pointwise expectation value of : φ2 : in these class of states |h(ζ)α−,α⊥
〉 (again, defined by

functions Eq. (48)) also scales with N :

〈: φ2(x) :〉�
h(ζ)α

�N = N〈: φ2(x) :〉h(ζ)α (49)

Engineering states with large negative null energy by increasing the particle number has the
effect of amplifying fluctuations of the field values.

Let us suppose there existed a bound on field values in an effective field theory:
�

�〈: φ2(x) :〉ψ
�

�≤ φ2
max , (50)

for any state, ψ, and any point in spacetime. We will try to motivate such a bound in section
5. This implies a maximum particle number for h-states and thus a lower bound on negative

null-energy. To illustrate this, let us focus on ξ > 0 and use h(ζ)α−,α⊥

�

�

�

ζ=3/2
≡ hα−,α⊥ as defined

by Eq. (30). It is sufficient to look at the expectation value of : φ2 : at x = 0:

〈: φ2(0) :〉(hα)N = N〈: φ2(0) :〉hα = N
8
5
Γ (d − 2)Vd−3

πd−2
αd−2
⊥ . (51)

This implies a maximum particle number

Nmax ≤
5
8

πd−2

Γ (d − 2)Vd−3

φ2
max

αd−2
⊥

, (52)

12
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Figure 3: 〈T−−〉h(ζ)
λα

in n = 4 dimensions at the point (x−, x+ = y⃗⊥ = 0) plotted (in units

of α2
−α

2
⊥) along x−. The coupling has been set to ξ = − 1

200 . By tuning ζ, in this case
to ζ = 3

4 ei π3 , we can find regions of negative null energy density. (Top) The null energy
plotted in its full range. (Bottom) A magnified view illustrating the region of negative
null energy density.

for which effective field theory applies. It is easy to see how this cutoff on field values excludes
badly behaved negative null energy densities. I.e. let us fix a spacetime neighborhood, Ū ,
about x = 0. There is then a set of state parameters {ᾱ−, ᾱ⊥}, such that (34) is true. For any ρ̄
such that 〈T−−〉(hα)N in this state is upperbounded by −ρ̄ for all points in Ū , the combinations
of (52) and (46) imply

ρ̄ <
3
4
α2
− ξφ

2
max . (53)

Furthermore, such a maximum particle number implies that the null energy density is lower-
bounded (via (45)) by

〈T−−(x)〉(hα)N ≥ −(c0 + cξξ)
α2
−

π
φ2

max (54)

for all points, x . Similar conclusions are easily reached for the case of ξ < 0 within the general
class of |h(ζ)α−,α⊥

〉 states. The upshot of this section is that although we can find a class of states
possessing arbitrarily large negative null energy over arbitrarily large regions, such states also
display large field values. In particular, restricting to a subclass of states with bounded field
values also provides a lower bound on the null energy density in that subclass. Below we
will broaden the scope of these indications as well as make them more precise: namely, we
will show that for all Hadamard states the null energy density possesses a lower bound that is
linked to the field value in that states.

13
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4 Null energy inequalities for non-minimal coupling

Building off our general expectation that large negative null energy densities are linked to
large field values, in this section we will derive a null energy inequality for the non-minimally
coupled scalar. We note that the derivation is for a difference QEIs unlike the absolute one
that was possible for the minimally coupled field. Importantly, the strongest bound we will be
able to derive is state-dependent: i.e. it depends explicitly on the expectation value of φ2 in the
state of interest. This formalizes the expectations we established above in our multi-particle
state example. The existence of a state-dependent bound for the null energy matches similar
results for the energy density [6] and effective energy density [7]. After the general derivation
we discuss the flat-space limit: the inequality of focus here will be the DSNEC introduced in
Ref. [15]. Subsequently we will derive the ANEC in this case. Finally we will derive a bound
similar to the smeared null energy condition (SNEC) [16].

4.1 Quantization

To begin we give a brief introduction to the Hadamard renormalization of free-fields which will
be necessary technology for deriving QEIs in curved spacetimes. The quantization procedure
will follow the algebraic quantization method described in detail in Ref. [17,18].

Eq. (8) with V (φ) = m2φ2/2 gives the classical gravitational action for the massive non-
minimally coupled free scalar field with Eq. (11) as its equation of motion. To quantize the
theory, we introduce an unital ∗-algebra A(M) on our globally hyperbolic, time-oriented man-
ifold M . The algebra is generated by elements of the form φ( f ) where f belongs to the space
of compactly supported, smooth, complex-valued functions on M , D(M). Intuitively we can
view φ( f ) as a field operator smeared with the test function, f . The smeared field operators
have to obey the following relations

• Linearity: φ(α f + βh) = αφ( f ) + βφ(h) ∀ α ,β ∈ C and ∀ f , h ∈ D(M) .

• Hermiticity: φ( f )∗ = φ( f̄ ) ∀ f ∈ D(M) .

• Field equation: φ
��

□g +m2 + ξR
�

f
�

= 0 , ∀ f ∈ D(M) .

• Canonical Commutation Relations: [φ( f ),φ(h)] = iE( f , h)1 ∀ f , h ∈ D(M) , where E
is the difference of the advanced and retarded Green’s function for the non-minimally
coupled Klein-Gordon operator.

A state of the theory is a linear functional ω : A → C, which is normalized, ω(1) = 1, and
positive ω(A∗A) ≥ 0 ∀A ∈ A(M). For a given state, ω, the 2-point function is a bi-linear
map Wω between D(M) × D(M) and C defined by Wω( f , h) = ω(φ( f )φ(h)). Not all the
states, ω, have physically desirable properties. Additionally, unlike Minkowski space, general
spacetimes do not have a preferred vacuum state. Therefore, it is common to choose a class of
states known as Hadamard states (see Ref. [19] for a review) which have a two-point function
singularity structure close to that of the Minkowski vacuum. For instance in n= 4 dimensions:

Wω(x , x ′) =
U(x , x ′)

4π2σ(x , x ′)
+ V (x , x ′) log

� σ

2ℓ2

�

+ smooth , (55)

where U and V are real and symmetric smooth functions constructed from the metric and the
couplings, σ is the squared geodesic distance, and ℓ is a particular length scale. As a conse-
quence of this definition, the difference between the two-point function of any two Hadamard
states is smooth. This property will be used to derive the difference QEIs, which provide lower
bounds on the expectation value of the averaged stress-energy tensor in a Hadamard state

14
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ψ normal ordered relative to a reference Hadamard state ψ0. Alternatively, we can use the
Hadamard parametrix H(k)(x) which encodes the singularity structure of Hadamard states,
to derive absolute QEIs. H(k)(x) represents the terms up to order k of the infinite Hadamard
series. In this case, we do not require a reference state. As this method is not used here we
refer the reader to Ref. [20,21] for more details.

To quantize the stress-energy tensor of the non-minimally coupled scalar field given in
Eq. (13), we define the point-split energy operator

Tsplit
µν′
(x , x ′) = (1− 2ξ)∇(x)µ ⊗∇

(x ′)
ν′
−

1
2
(1− 4ξ) gµν′(x , x ′)

��

m2 + ξR
�

1⊗ 1

−gλρ
′
(x , x ′)∇(x)

λ
⊗∇(x

′)
ρ′

�

− 2ξ
�

1⊗s∇(x
′)

µ ∇
(x ′)
ν +

1
2

Rµν1⊗ 1
�

, (56)

where ⊗s is the symmetrised tensor product and gµν′(x , x ′) is the parallel propagator along
the unique geodesic connecting x and x ′. Let’s consider a Hadamard state ψ with a two-point
function Wψ. To construct the expectation value of the renormalised stress-energy tensor in
the state ψ as defined in Ref. [22,23], 〈T ren

µν 〉ψ(x), we first subtract the Hadamard parametrix
to remove the singularities of the two-point function and take the coincidence limit7

〈Tfin
µν〉ψ(x) = lim

x ′→x
g ν′

ν (x , x ′)Tsplit
µν′
(Wψ −H(k))(x , x ′) . (57)

It can be shown that 〈Tfin
µν〉ψ(x) is not covariantly conserved, and therefore it is not an appro-

priate stress-energy tensor. We can recover this property by subtracting a local quantity Qgµν
to 〈Tfin

µν〉ψ(x). Now we impose

〈T ren
µν 〉ψ − 〈T

ren
µν 〉ψ0

=
�

g ν′

ν T
split
µν′
(Wψ −Wψ0

)
�

, (58)

for any two Hadamard states ψ and ψ0. This condition implies that any remaining renormal-
isation must be a state-independent local curvature term Cµν. Finally, we have

〈T ren
µν 〉ψ(x) = 〈T

fin
µν〉ψ −Q(x)gµν(x) + Cµν(x) . (59)

The expectation value of the stress tensor in a stateω normal ordered relative to a reference
Hadamard state ω0

〈: Tµν :〉ψ :=
�

g ν′

ν T
split
µν′
(Wψ −Wψ0

)
�

= 〈T ren
µν 〉ψ − 〈T

ren
µν 〉ψ0

, (60)

allows us to write the difference QEI

〈:ρn:( f )〉ψ = 〈: Tµνℓ
µℓν : ( f )〉ψ , (61)

where f is a test function.

4.2 A worldvolume QEI

The null energy of Eq. (14) is written as a quantum field φ( f ) for any test function f

ρn( f ) = Tµν (ℓ
µℓν( f )) = (1− 2ξ)(∇µφ∇µφ)(ℓµℓν f )

−2ξ
�

(φ∇(µ∇ν)φ)(ℓµℓν f ) +φ2(Rµνℓ
µℓν f )

�

, (62)

where Tµν is the quantized stress-tensor.

7We will denote the coincidence limit of a generic bi-distribution, B(x , x ′), as [[B(x ′)]] = lim
x→x ′

B(x , x ′).
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Leibniz’s rule is the 10th axiom of those set by Hollands and Wald [22] for the construction
of algebra elements that qualify as local and covariant Wick powers. In our case, we will use
the following form

1
2
(∇µ∇ν(φ2))( f ℓµℓν) = (∇µφ∇νφ)( f ℓµℓν) + (φ∇(µ∇ν)φ)( f ℓµℓν) , (63)

where the left hand side is understood distributionally so
�

∇µ∇ν(φ2)
�

(ℓµℓν f ) = φ2(∇µ∇ν(ℓµℓν f )) . (64)

Then Eq. (62) becomes

ρn( f ) = (∇µφ∇νφ)(ℓµℓν f )− ξφ2
�

∇µ∇ν(ℓµℓν f ) +
1
2

Rµν(ℓ
µℓν f )

�

. (65)

We are interested in expectation values of the quantized null energy in stateψ, normal ordered
relative to a reference Hadamard state ψ0

〈:ρn:( f )〉ψ = 〈ρn( f )〉ψ − 〈ρn( f )〉ψ0
. (66)

Following Ref. [21]we define a small sampling domain Σ. This is an open subset of (M, g)
that is contained in a globally hyperbolic convex normal neighbourhood of M and may be
covered by a single hyperbolic coordinate chart, {xµ}. The latter requires that ∂ /∂ x0 is future
pointing and timelike and that there exists a constant c > 0 such that

c|u0| ≥

√

√

√

√

3
∑

j=0

u2
j (67)

holds for the components of every causal covector, u, at each point of Σ. That statement
means that the coordinate speed of light is bounded. Now we may express the hyperbolic
chart {xµ} by a map κ where Σ → Rn, κ(p) = (x0(p), x1(p), . . . , xn−1(p)). Any function g
on Σ determines a function gκ = g ◦ κ−1 on Σκ = κ(Σ). In particular, the inclusion map
ι : Σ →M induces a smooth map ικ : Σκ →M. We have ϑ : Σ × Σ →M ×M the map
ϑ(x , x ′) = (ι ⊗ ι)(x , x ′). Here h = ι∗g is a Lorentzian metric on Σ and hκ is the determinant
of the matrix κ∗h. Then the bundle N+ of non-zero future pointing null covectors on (M, g)
pulls back under ικ so that

ι∗κN
+ ⊂ Σκ ×D , (68)

where D ⊂ Rn is the set of all ua that satisfy Eq. (67).
Now let f be any real-valued test function compactly supported in the small sampling

domain Σ. Let the Hadamard reference state ψ0 have a 2-point function, W0. Using Eq. (65)
the expectation values of the null energy density in Hadamard state ψ and normal-ordered
relative to ψ0, can be written as

∫

Σ

dvol(x) f 2(x)〈:Tµνℓµℓν:〉ψ =
∫

Σ

dvol f (x)2
��

ρ̂n:Wψ:
��

− ξ〈:φ2:(Q[ f ])〉ψ , (69)

where

ρ̂n = ℓµ∇µ ⊗ ℓν∇ν , (70a)

Q[ f ] = ∇µ∇ν(ℓµℓν f 2) +
1
2

Rµνℓ
µℓν f 2 . (70b)

16



SciPost Physics Submission

The operator ρ̂n is symmetric and positive definite so we can use the following inequality to
bound it [7,21]

∫

Σ

dvol f 2(x) [[Q⊗Q:W :]]≥ −2

∫

D

dnα

(2π)n
((Q⊗Q)W0)κ( f̄α, fα)> −∞ , (71)

where
fα(x) = eiαx f (x) . (72)

Then we can state the following theorem

Theorem 4.1. Let f be any real-valued test function compactly supported in a small sampling
domain. Let ℓµ be a null vector field defined in the neighbourhood of support of f . Then, for all
Hadamard states ψ

〈:ρn:( f 2)〉ψ ≥ −2

∫

D

dnα

(2π)n
((Q⊗Q)W0)κ( f̄α, fα)− ξ〈:φ2:(Q[ f ])〉ψ , (73)

where W0 is the two-point function of the reference Hadamard state ψ0 and Q = ℓµ∇µ.

This QEI precisely expresses the connection between negative null-energy densities and
large fluctuating field values. Namely: the state-dependence of the QEI indicates the possibility
of finding states with arbitrarily negative null-energy densities on the small sampling domain,
but only at the expense of having a largely fluctuating scalar field. The above QEI is similar
in nature with the derived QEIs for the non-minimally coupled scalar for the energy density
[6] and the effective energy density [7]. One important difference is that unlike those two
inequalities, the QEI derived holds for any value of the coupling constant ξ.

We emphasize at this point that the QEI of Eq.(73) holds for any curved manifold assuming
that we have a known reference state with two-point function W0. While there is no lower
bound for unbounded 〈:φ2:〉ψ, adopting the EFT framework Eq.(73) bounds the null-energy
from below by the maximum value of the Wick square. The ANEC could also be derived for
a curved background with bounded curvature following the methods of [24] and [25]. Thus
one of the main results of this work holds for general curvature8.

We should also note that this bound is non-trivial. Let’s assume a general
state-dependent QEI of the form

〈:ρ:( f 2)〉ψ ≥ −〈Q( f )〉ψ , (74)

where ρ is some contraction of the stress-energy tensor and Q( f ) an operator which is allowed
to be unbounded. A trivial bound would be one where, for example Q( f ) = −ρ( f ). In Ref. [6]
it was shown that a state-dependent bound is non trivial if there exist constants c and c′ such
that

〈ρ( f )〉ψ ≥ c + c′
�

�〈Q( f )〉ψ
�

� , (75)

for all states ψ in the class unless f is identically zero. As it was shown in Refs. [6] and [7]
a bound where the state dependence is isolated in the form of the Wick square the bound is
non-trivial. Thus the bound of Eq. (73) is a non-trivial bound.

Finally, as this bound is derived by discarding positive terms we do not expect it to be
optimal. There are no examples in more than two dimensions where the QEI bounds are
saturated.

8The details of the curvature corrections and the covariance of the DSNEC are important and the topic of future
work.
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4.3 DSNEC and ANEC

Our above result, (73), applies generally for non-minimally coupled scalar fields in a curved
background smeared over a smooth sampling domain. It is also useful for us to discuss this
bound in n-dimensional Minkowski spacetime and make comparisons to the DSNEC proven
in [15]. As discussed above, we can equivalently view this as a bound on “improved stress
tensors" in a free massive scalar field theory.

We will, as usual in this context, renormalize with the Minkowski vacuum state as the
reference Hadamard state. Note that while the expression of the null energy operator remains
unchanged with the introduction of a mass, the vacuum state ψ0 changes from massless to
massive Minkowski vacuum. We have

∫

Σ

dvol(x) f 2(x)〈:Tµνℓµℓν:〉ψ ≥ −2

∫

D

dnα

(2π)n
((Q⊗Q)W0)κ( f̄α, fα)

−ξ
∫

Σ

dvol(x)〈:φ2:〉ψ∇µ∇ν(ℓµℓν f 2) . (76)

To derive DSNEC we want to restrict the domain Σ to the two null dimensions x±. To do so
we write the smearing function as

f (x+, x−, y⃗)2 = f (x+, x−)2δn−2( y⃗) . (77)

Using the results of Ref. [15], Eq. (76) becomes
∫

d2 x± f (x±)2〈:T−−:〉ψ ≥ −
8

πn/2−2Γ
� n−2

2

�

∫

D

d2α±
(2π)2

∫

d2k±
(2π)2

| f̃ (k±)|2

×ζ2
−

�

4ζ+ζ− −m2
�

n−4
2 Θ

�

4ζ+ζ− −m2
�

Θ(ζ−)

�

�

�

�

ζ±=k±−α±

−ξ
∫

d2 x±〈:φ2:〉ψ∂ 2
− ( f (x

±)2) . (78)

Now we restrict the domain D to the boosted domains Dη = {αη = eηα++ e−ηα− ≥ 0}. Then
we have
∫

d2 x± f (x±)2〈:T−−:〉ψ ≥ −
e2η(4π)

1−n
2

Γ
� n+1

2

�

∫

d2k±
(2π)2

| f̃ (k±)|2 kη(k
2
η −m2)

n−1
2 Θ(kη −m)

−ξ
∫

d2 x±〈:φ2:〉ψ∂ 2
−( f (x

±)2) , (79)

where kη = eηk++ e−ηk−. At this point, the state-dependent term, 〈:φ2:〉ψ, prevents one from
writing down a DSNEC in its standard form à la [15]. This is expected: we have already seen
in section 3 there exist states which can violate such smeared inequalities. As emphasized in
that section, such states also have large field values. We can make progress if we focus on the
class of states obeying

�

�〈:φ2:〉ψ
�

�≤ φ2
max (80)

where φmax is a finite constant. We will motivate such a bound below in section 5 by regarding
the such states as part of an effective field theory. In this case, it is immediate that we can write
Eq. (79) as
∫

d2 x± f (x±)2〈:T−−:〉ψ ≥ −min
η∈R

e2η(4π)
1−n

2

Γ
� n+1

2

�

∫

d2k±
(2π)2

| f̃ (k±)|2 kη(k
2
η −m2)

n−1
2 Θ(kη −m)

−|ξ|φ2
max

∫

d2 x±
�

�∂ 2
−( f (x

±)2)
�

� . (81)
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For the massless case, and when the test function factorizes as

| f̃ (k+, k−)|2 = | f̃ (k+)|2| f̃−(k−)|2 , (82)

we can perform an η optimization [15] which gives
∫

d2 x± f (x±)2〈:T−−:〉ψ ≥ −Pn〈|k+|n〉
n−2
2n 〈|k−|n〉

n+2
2n

−|ξ|φ2
max

∫

d2 x±
�

�∂ 2
−( f (x

±)2)
�

� , (83)

where 〈|k±|p〉 :=
∫

dpk±| f̃±|2|k±|p are the moments and Pn is a constant that only depends
on the number of spacetime dimensions. In the case of even dimensions, the integrals can be
inverse Fourier transformed to integrals in position space and we have

∫

d2 x± f (x±)2〈:T−−:〉ψ ≥ −Pn

�∫

d x+( f (n/2)+ (x+))2
�

n−2
2n
�∫

d x−( f (n/2)− (x−))2
�

n+2
2n

−|ξ|φ2
max

∫

d2 x±
�

�∂ 2
−( f (x

±)2)
�

� . (84)

Starting out from the massive case of Eq. (81) we can scale out the support of the smearing
function f in the two null directions, δ±

f (x+, x−) =
1

p
δ+δ−

F(x+/δ+, x−/δ−) , (85)

where F(s+, s−) is a function of dimensionless variables dropping off quickly for |s±| ≫ 1 and
normalized to

∫

d2s±F(s+, s−)2 = 1. We can write Eq. (79) as
∫

d2 x±

δ+δ−
F(x+/δ+, x−/δ−)2〈T−−〉ψ ≥ −

Nn[γ]

(δ+)
n−2

2 (δ−)
n+2

2

−
C
(δ−)2

|ξ|φ2
max , (86)

where C is a numerical factor depending on the smearing and Nn is dimensionless function of
the dimensionless mass, γ2 := δ+δ−m2 (see [15] for an explicit expression) or

∫

d2 x±

δ+δ−
F(x+/δ+, x−/δ−)2〈T−−〉ψ ≥ −

Ñn[γ,ξ, φ̃2
max]

(δ+)
n−2

2 (δ−)
n+2

2

. (87)

Above Ñn is a new function including a dependence on the dimensionless maximum field
value, φ̃2

max = (δ
+δ−)

n−2
2 φ2

max, and is given by the minimization of the integrals

Ñn = min
η̃∈R

e2η̃

(4π)
n−1

2 Γ
� n+1

2

�

∫

d2ρ±
(2π)2

|F̃(ρ+,ρ−)|2ρη̃(ρ2
η̃ − γ

2)
n−1

2 Θ(ρη̃ − γ)

+|ξ|φ̃2
max

∫

d2s±
�

�∂ 2
s−
�

F(s±)2
��

� , (88)

where we’ve denoted eη̃ :=
q

δ−

δ+ eη and ρ± := δ±k± as well as ρη̃ = eη̃ρ+ + e−η̃ρ−. Lastly,
F̃(ρ±) :=

∫

d2s eiρ±s±F(s±) is the dimensionless Fourier-transform of F .
Now we can show that using Eq. (87) we recover ANEC. We want to take the limit δ+→ 0

and δ−→∞ while holding δ+δ− ≡ α2 fixed. To recover the ANEC limit we require that the
smearing function satisfies

lim
δ+→0

lim
δ−→∞

1
δ+

F(x+/δ+, x−/δ−)2 = Aδ(x+ − β) , (89)
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where A and β are real numbers. Then the first term of Eq.(87) goes as δ+/(Aαn) while the
second term goes as δ+/(Aα4). Both terms go to zero as δ+→ 0. So we have

∫ ∞

−∞
d x−〈T−−(x+ = β , x−, y⃗ = 0)〉ψ ≥ 0 . (90)

We see that, as in the classical case discussed in Sec. 2.2 we recover ANEC for any coupling in
Minkowski spacetime. In the classical case we can do that, for bounded field values, for any
spacetime curvature using the effective null energy.

4.4 SNEC

We can additionally show that our bound implies a form of SNEC [16]. We impose the fol-
lowing cutoff: we take δ+ → 0 while δ+δ− → ℓ2

UV. We require that the smearing function
factorizes, f (x+, x−) =

�

F+(x+/δ+)/
p
δ+
�

f (x−) and

lim
δ+→0

F+(x+/δ+)2/δ+ = δ(x+ − β) =
1
δ+
δ(x+/δ+ − β/δ+) . (91)

Then
∫

d x− f−(x
−)2〈T−−(x+ = β , x−)〉ψ ≥ −

Nn[γ,ξ, φ̃2
max]

ℓn−2
UV (δ−)2

. (92)

In Ref. [26] the SNEC for the minimally coupled scalar was used to prove a Penrose-type
singularity theorem. This can be done directly using the methods of Ref. [27] if the energy
condition is of the form

∫

d x− f−(x
−)2〈T−−〉ψ ≥ −Qm∥ f

(m)
− ∥

2 −Q0∥ f−∥2 , (93)

where ∥ · ∥2 is the L2 norm and m is a positive integer that denotes the number of derivatives.
Here Qm and Q0 are non-negative constants.

To derive such a bound we specialize to the case of the massless scalar field where we can
use Eq. (83). To take the first term in the SNEC limit we can either bound the ± momenta
independently or impose a covariant cutoff (k−)max(k+)max ≪ ℓ−2

UV as described in Ref. [15].
Both assumptions lead to the same bound. For the second term of Eq. (83), the SNEC limit is
straightforward so we have

∫

d x− f−(x
−)2〈T−−〉ψ ≥ −

pn

ℓn−2
UV

∫

d x−(∂− f (x−))2 −
|ξ|φ̃2

max

ℓn−2
UV

∫

d x−
�

�(∂ 2
−( f (x

−)2))
�

� , (94)

where we used the fact that the smearing function factorizes and the limit of Eq. (91). Here
pn = 4(n− 2)−1π−n/2Γ ((n− 2)/2)−1. To write the bound in the form of Eq. (93) we use the
inequality

∫

d x−( f ′−)
2 ≤

1

2ℓ2
UV

∥ f−∥2 +
ℓ2

UV

2
∥ f ′′− ∥

2 . (95)

Then we have
∫

d x− f−(x
−)2〈T−−〉ψ ≥ −Q2∥ f

(2)
− ∥

2 −Q0∥ f−∥2 , (96)

where

Q0 =
1
ℓn

UV

� pn

2
+ 2|ξ|φ̃2

max

�

, Q2 =
1

ℓn−4
UV

� pn

2
+ 2|ξ|φ̃2

max

�

. (97)
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Here we also used the triangle inequality and the classical inequality

ab ≤ ϵa2 +
1
4ϵ

b2 , (98)

for a = | f |, b = | f ′′| and ϵ := (2ℓ2
UV)
−1.

Then the results of Ref. [26] that proved a singularity theorem and of Ref. [28] that proved
the generalized area theorem using SNEC, can be applied to the non-minimally coupled theory
with modified coefficients. If we take the EFT approach as before, and consider
φ2

max ∼ M n−2
cutoff ∼ ℓ

−(n−2)
UV , then φ̃max is of order 1. Of course a different bound might be

imposed for φmax as in Ref. [29].

5 Non-minimal coupling as an effective field theory

Above we have shown that the non-minimally coupled scalar theory has a null-energy density
which is bounded below by a state-dependent term: the smeared value of the scalar field. In
particular, this implies that smeared null-energy can be arbitrarily negative but only in states
with large scalar field two-point functions. For the class of states obeying

�

�〈: φ2 :〉ψ
�

� < φ2
max

we can derive a state-independent QEI that admits a DSNEC form and has the potential to be
utilized in a singularity theorem. We interpret this statement as the suggestion that the non-
minimally coupled theory should be regarded as an effective field theory (EFT) of states with
not only bounded momenta but also bounded scalar field values. In this section we further
this argument presenting several points of evidence for this interpretation and suggest that
φ2

max ≲ (8πGN |ξ|)−1.
We will present arguments in two complementary manners. In Sec. 2.3 we discussed the

conformal transformation and field redefinition that connects the Einstein and Jordan frames.
At the classical level, the stress tensors of these frames are different: the Jordan frame stress
tensor is NEC violating while the Einstein frame stress tensor is NEC satisfying. Which opera-
tor is relevant is depends on which frame one considers physical. However, classically the two
stress tensors are related by a straight-forward map. The above statements remain sensible in
the quantum theory when interpreted as an EFT with bounded field values. Namely, the stress
tensors of two frames, while different quantum operators, as easily related and with controlled
quantum corrections. Contrastingly, we will argue that the quantum theory experiences break-
downs in its perturbative and semi-classical control in both frames when we allow for large
field values. In the Einstein frame this breakdown happens in the scalar sector through a tower
of irrelevant interactions that become important when φ2 ∼ (8πGNξ)−1; in the Jordan frame
it occurs in the gravitational sector where the gravity path-integral becomes strongly coupled
and looses its saddle-point approximation.

5.1 The Einstein frame

Let us begin with change of frame at the level of the action. These manipulations are valid in
the classical or quantum theory, when viewed as taking place within the path-integral. Later
in this section, we will consider additional corrections that arise in the quantum theory due to
change in path integral measure.

The conformal transformation and field redefinition

g̃µν = Ω
2(φ(x))gµν , φ̃(x) = F(φ(x)) (99)

bringing the non-minimally coupled action to (23) is given by

Ω(φ) =
�

1− 8πGNξφ
2
�

1
n−2 (100)
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with F satisfying

F ′(φ) =
�

1− 8πGNξφ
2
�−1

√

√

1− 8πGN ξ

�

1−
ξ

ξc

�

φ2 (101)

where ξc is the conformal coupling. This leads to an effective potential given by

Ṽ (φ̃) =
�

1− 8πGN ξφ
2
�

n
2−n

�

Λ

8πGN
+ V (φ)

�

, φ = F−1(φ̃) . (102)

This mapping is possible for a generic class of curvature coupings of the form A[φ]R (see
Appendix A) however above we have written it explicitly for the simplest non-minimal cou-
pling, (8), which can be seen as the first term in a derivative and polynomial expansion in the
effective field theory for φ. Classically, the Einstein frame stress-tensor is

T̃ classical
µν = (∇̃µφ̃)(∇̃νφ̃)−

1
2

g̃µν(2Ṽ (φ̃) + (∇̃φ̃)2) . (103)

The potential is generally non-polynomial in φ̃. To explicitly illustrate this, let us take the free
conformally coupled scalar (ξ= ξc), where we can solve (101) exactly:

F(φ) =
arctanh

�p

8πGNξcφ
�

p

8πGNξc

. (104)

In n= 4 dimensions the effective potential is then

Ṽ (φ̃) =
Λ

8πGN
cosh4

�
Æ

8πGNξφ̃
�

+
m2

16πGNξ
sinh2

�
Æ

32πGNξφ̃
�

. (105)

More generally, for arbitrary ξ, we must proceed through a power series expansion:

φ̃ = φ
�

1+
1
6

�

1+
ξ

ξc

�

(8πGNξφ
2) + . . .

�

(106)

leading to an effective potential

Ṽ (φ̃) =
Λ

8πGN
+

1
2

�

m2 + 4ξΛ
�

φ̃2 +
1
6

�

m2
�

5−
ξ

ξc

�

+ 2Λξ
�

7− 2
ξ

ξc

��

(8πGNξ)φ̃
4 + . . .

(107)
in n= 4 dimensions. The perturbative parameter in this expansion is 8πGNξφ̃

2. To first order
in this perturbative parameter, this is a massive theory with a quartic interaction, λ4! φ̃

4, with
an effective mass and coupling

m2
eff = m2 + 4ξΛ , λ= 4

�

m2
�

5−
ξ

ξc

�

+ 2Λξ
�

7− 2
ξ

ξc

��

(8πGNξ) , (108)

respectively.
Regardless of the expansion of Ṽ , the classical Einstein frame stress-tensor, T classical

µν , will
obey the NEC. A theorem states that for free bosonic theories if the classical theory obeys a
pointwise energy condition then the quantum theory obeys the respective QEI with a state-
independent bound [30, 31]. Despite obeying the NEC, the classical Einstein frame theory
is self-interacting and thus evades the above theorem. We shouldn’t expect to have a state-
independent null QEI in this case.
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Quantum Corrections

We now consider the path-integral itself where we will argue within this EFT framework that
the field redefinition remains sensible. We will work in Euclidean signature and write the
path-integral of gravity coupled to matter schematically9 as

Zgrav+matter =

∫

DgµνDφ e−Iξ[φ,g,V ] , (109)

where

Iξ[φ, g, V ] =

∫

dn x
p

g
�

−
1

16πGN
(R− 2Λ) +

1
2
(∇φ)2 +

1
2

m2φ2 +
ξ

2
Rφ2 + V (φ)

�

. (110)

Inside the path-integral we realize the field redefinitions, Eq. (22), as a change of path-integral
variables (gµν,φ) → ( g̃µν, φ̃). As we have seen above the action changes to a minimally
coupled action (ξ→ ξ̃= 0) by design but with a new potential, Ṽ :

Zgrav+matter =

∫

D g̃µνDφ̃ e−I0[φ̃, g̃,Ṽ ]+log J[φ̃, g̃] . (111)

Importantly we also generate a Jacobian given by the functional determinant

J[φ̃, g̃] = det

 δgµν
δ g̃µν

δgµν
δφ̃

0 δφ

δφ̃

!

= det
δgµν
δ g̃µν

det
δφ

δφ̃
. (112)

Calculating J explicitly is sensitive to the regulation scheme; an explicit computation of the
Jacobian would be necessary to make the following details exact but this is beyond the scope of
this work.10 We can instead discuss schematically what terms could appear. If (apart from the
volume form) J is simply a function of φ̃, log J[φ̃, g̃] =

∫

dd x
p

g̃ log Ĵ[φ̃] then this Jacobian
can be absorbed into Ṽ [φ̃]which we can treat perturbatively as we did above, Eq. (107). If the
field redefinition were simply φ→ φ̃ this would be the expectation since the field redefinition
does not explicitly involve the metric. In this case, we might be able to treat the Einstein frame
as a perturbative λφ̃4 theory when the coupling constant is small.

However we also need to consider the redefinition of the metric. More generally, we
should expect J itself will induce additional non-minimal scalar-metric couplings, F1(φ̃)R̃,
F2(φ̃)R̃2,. . ., the leading term of which is the familiar φ̃2R̃. Dimensional analysis suggests that
higher derivative, higher polynomial, and higher curvature terms will be controlled by powers
of M−1

cutoff, the cutoff used in a regularization scheme to compute J . The natural scale for this
computation is Mcutoff ∼ MPlanck. Although φ̃2R̃ is possibly generated by a Jacobian, we expect
that through successive field redefinitions one can arrive at a theory with minimal coupling.
The expense of this is generating (and suitably redefining) all possible irrelevant couplings. This
is simply stating that in an EFT one should be able to make the leading kinetic terms (for both
the metric and the scalar field) canonical as long as one keeps all other possible couplings.
This EFT remains valid when the irrelevant couplings are suppressed by M−1

cutoff and puts a
natural upper bound on ξφ̃2 in states described by the theory.

We would be remiss if we did not mention the possibility of φ appearing as a psuedo-
Nambu-Goldstone mode of a spontaneously broken, approximate symmetry, which has been
much discussed in effective field theories of slow-roll inflation [33, 34]. When φ enjoys a
shift symmetry that is weakly broken, polynomial contributions to its effective potential are

9It should be understood that the path-integral measure, Dgµν, includes the quotient over gauge-orbits.
10However see [32] for an example calculation in a similar theory.
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naturally controlled by the scale of weakly broken shift symmetry.11 This is already evident in
Eq. (107) where the quartic term comes equipped with m2 and Λ, which control the broken
shift symmetry of φ in the Jordan frame. If these scales remain parametrically small this
provides a technically natural mechanism for controlling the polynomial contributions to both
Ṽ and log J while allowing super-Planckian field values.

We do not disallow this possibility. Instead we offer the more conservative conclusion:
when viewed as an EFT with field values bounded by

�

�8πGNξφ
2
�

� ≪ 1, the mapping from
Jordan frame to Einstein frame can also be done in the quantum theory. Quantum corrections
arising from the path integral measure may modify the explicit form of the Einstein frame
potential, but its expansion remains controlled.

5.2 The Jordan frame

We have argued above that moving from the Jordan frame to the Einstein frame is sensible in
an EFT where

�

�8πGNξφ
2
�

�≪ 1. Otherwise potential trouble arises in the scalar sector of the
Einstein frame theory as a tower of unsuppressed irrelevant interactions. Here we ask if an
analogous breakdown in the Euclidean path-integral in the original Jordan frame.

For positive ξ and fixed, positive, R, non-minimal coupling seems fairly innocuous: it be-
haves as an effective mass. Focussing on the scalar sector, it is then hard to see what trouble
arises for large field values. However what we will show below is that large field values in the
Jordan frame leads to a breakdown of the semi-classical approximation in the gravitational
sector. To be clear about the scope of this section, our following arguments will apply for the
ξ > 0; we will finish with speculative comments for the case ξ < 0.

To begin this discussion we will need to introduce some technology. Namely we would like
to explore the effect of changing the field value while also treating the gravitational and scalar
path-integrals semi-classically. However finding true saddle-point solutions with a non-zero
scalar background is not possible. Instead we will look for solutions subject to the constraint
of a non-zero scalar field. While not true saddles, these can be treated in the framework of
constrained instantons [36] in the following way 12. Inside the Euclidean path-integral, (109),
we insert “one" in the form of a delta function constraint and an integration over the constraint:

Zgrav+matter =

∫

DgµνDφ
∫

d(φ̄2)

∫

dλ e−
1
2λ
∫

dn x
p

g(φ2−φ̄2)e−Iξ[φ,g,V=0] . (113)

The constraint in question, given above as an integral of λ parallel to imaginary axis, enforces
that the zero mode of φ2 equals φ̄2 which we take to be constant.13 By subsequently integrat-
ing over φ̄2 we can collapse the constraint to obtain the original path-integral. Alternatively,
however, we can pull the φ̄2 integral to outside and view this as an integral over constrained
theories:

Zgrav+matter =

∫

d(φ̄2)Zcon[φ̄
2] , Zcon =

∫

DgµνDφ dλ e−
1
2λ
∫

dn x
p

g(φ2−φ̄2)−Iξ[φ,g,V=0]

(114)
and look for saddles of Zcon at fixed φ̄2. The saddle-point equations for gµν, φ, and λ are,

11For a friendly and comprehensive review of models of inflation and their realizations in string theory see [35]
and references there-in.

12For other applications of constrained saddles to cosmological spacetimes see [37–39]
13In order for this to be a sensible modulus over which to integrate, it will be necessary to give the theory an

initial positive cosmological constant (which could be small) and take the boundary conditions on the gravity path-
integral to be over compact manifolds with finite Euclidean volume. In practice, we will see that the mass will
induce positive background curvature in the constrained saddles.

24



SciPost Physics Submission

respectively,

(1− 8πGNξφ
2)Gµν +Λ gµν − 8πGN T (λ)µν =0

∇2φ + (λ+m2 + ξR)φ =0
∫

dn x
p

g
�

φ2 − φ̄2
�

=0 , (115)

with
T (λ)µν =∇µφ∇νφ −

1
2

gµν
�

(∇φ)2 +m2φ2 +λφ2 −λφ̄2
�

. (116)

We find a saddle-point solution14 with a constant φ = φ̄ background and constant R̄ as

R̄µν =
2

n− 2
Λ+ 4πGN m2φ̄2

1− 8πGN ξφ̄2
ḡµν

λ̄=−m2 − ξR̄ , (117)

where the trace of the Einstein equation was used. That is, the saddle-point Euclidean space-
time is a homogeneous space whose radius of curvature is

ℓ2
eff =

(n− 2)(n− 1)
2

�

�1− 8πGNξφ̄
2
�

�

�

�Λ+ 4πGN m2 φ̄2
�

�

, (118)

and whose sign of curvature is set by the sign of

Λeff ≡
Λ+ 4πGN m2 φ̄2

1− 8πGNξφ̄2
. (119)

We note that even for a theory with zero initial cosmological constant, Λ= 0, the constrained
saddle has positive curvature induced by the massive scalar. We also note that as φ̄2 ap-
proaches (8πGNξ)−1 from below, the effect is to “shrink" the classical spacetime. We will see
the effect of this on the semi-classical path-integral below.

The on-shell action of this constrained solution

Iξ[φ̄, ḡ] = −vol[ ḡ]
�

1
n− 2

��

Λ

4πGN
+m2φ̄2

�

. (120)

where vol[ ḡ] is the Euclidean spacetime volume determined by ḡ. The nature of this volume
depends on the sign of Λeff. Let us focus on Λeff > 0 and investigate what happens as φ̄2

approaches (8πGNξ)−1 from below.
In this case ḡµν is the metric of a round n-sphere of radius ℓeff and has a volume

vol[ ḡ] = Vnℓ
n
eff , (121)

where we recall Vn =
2π

n+1
2

Γ( n+1
2 )

is the volume of a unit n-sphere. After some massaging, the

on-shell action is

Iξ[φ̄, ḡ] = −
Vn−2

4GN

�

(n− 1)(n− 2)
2

�
n−2

2 �

1− 8πGN ξφ̄
2
�n/2 �

Λ+ 4πGN m2 φ̄2
�

2−n
2 . (122)

We see that as φ̄2 approaches (8πGNξ)−1 the action approaches zero.

14The saddle-point value of λ depends implicitly on φ̄ through R̄. We will choose the λ contour to run through
λ̄+ iR and the independent integration over the imaginary axis correctly implements the constraint.
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Returning now to our original path-integral and approximating Zcon by its on-shell action

Zmatter+grav ≈
∫

d(φ̄2) e
Vn−2
4GN
(1−8πGNξφ̄

2)n/2(Λ+4πGN m2 φ̄2)(2−n)/2

× z1-loop[φ̄
2] , (123)

where z1-loop schematically contains the contributions from the Gaussian integrations about the
constrained saddle. As φ̄2 → (8πGNξ)−1, the contribution from the on-shell action becomes
unity and the path-integral is dominated by the one-loop contribution, z1-loop[φ̄2]. We regard
this as a manifestation of the breakdown of the semi-classical path-integral in the gravitational
sector. Additionally, from inspection of Eq. (110), GN/(1− 8πGNξφ

2) plays the role of an ef-
fective coupling constant for the gravitational sector: this is also the regime where fluctuations
about the constrained saddle-point, appearing in z1-loop, become strongly coupled.

In the regime beyond the critical value, (8πGNξ)−1, lay dragons. The naïve solution of the
saddle-point equations, Eq. (115), is a space with constant negative curvature as a result of the
negative effective cosmological constant, Λeff < 0. While this does not necessarily imply an
infinite Euclidean volume15 (and so the constant mode of φ2 may remain a sensible modulus),
the Cartan-Hadamard theorem implies that if such spaces are simply-connected they must be
non-compact (so if they have finite volume they must be cusped). At a conservative level,
without incorporating topology change effects, such solutions will not satisfy the boundary
conditions of the original gravity path-integral and so cannot be kept as saddles in Zcon. True
saddles may still exist for Zcon when φ̄2 > (8πGNξ)−1 but must incorporate new topology16

compared to the φ̄2 < (8πGNξ)−1 saddles.
Lastly, we will comment on the situation with negative coupling, ξ < 0. The analysis

of the constrained saddles still holds for this sign of coupling, giving a homogeneous space
of curvature set by Eq. (118) and an effective cosmological constant set by Eq. (119). For
a positive bare Λ > 0 the constrained saddle remains a compact space with an action set
by Eq. (122) for all values of φ̄2. It is at the level of the path-integral that the analysis
deviates. As φ̄2 grows, so does ℓ2

eff and the gravitational action moves to weaker coupling.
This suggests that the semi-classical analysis is better behaved for a large field values. However
a cursory analysis of Eq. (123) also displays the following pathologies: interpreting e−Iξ[φ̄, ḡ]

as the leading contribution to an unnormalised probability density for finding a field value
φ̄2, this theory is driven towards larger field values. A larger problem however is that this
probability density is not only unnormalised, it is non-normalisable: the integral over d(φ̄2)
in Eq. (123) diverges! The most natural resolution of this divergence is to impose a cutoff on
the upper end of this integral i.e. again to regard the theory as an effective field theory for
states with a cutoff on

�

�φ2
�

�. As opposed to the case with positive ξ, there is no natural reason
to associate this field cutoff with the Planck scale, however.

6 Conclusion

In this work we explored the effects of non-minimal coupling to null energy, in both classical
and quantum physics. The main motivation is to answer the question of whether or not the
non-minimal coupling with gravity is sufficient to allow exotic physics.

Superficially the answer is yes; non-minimal coupling allows violations of the null en-
ergy condition (NEC) even classically, while in quantum field theory (QFT) the construction
of states with infinite negative null energy is possible. Meanwhile, performing a conformal
transformation and a field redefinition we can go from the action of the non-minimally cou-

15Even the infinite volume solutions could be assigned a renormalised volume, e.g. [40].
16Namely a non-trivial fundamental group.
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pled scalar (Jordan frame) to the one with minimal coupling (Einstein frame) where none of
these problems are present.

Here we adopt the view that the physically relevant question is if the two frames lead to
similar spacetime geometries. In the effective field theory (EFT) framework we are using, the
metrics are necessarily close. Moreover, traversable wormholes are only possible if the effective
average null energy condition (ANEC) is violated. Classically the violation of the effective
ANEC is restricted to large field values, while semiclassically, the smeared null energy admits a
lower bound dependent on the cutoff. Bounded field values additionally lead to a semiclassical
proof of ANEC.17 Additionally, the transformation between the two frames leaves the Einstein
frame theory as an interacting QFT, for which there are no known state-independent bounds
in n > 2. Finally, path-integral considerations support the EFT treatment as large field values
lead to a breakdown of the effective theory, either through a tower of irrelevant interactions
in the Einstein frame, or a breakdown of the semi-classical path integral in the gravitational
sector.

A natural extension of this work is the study of energy conditions in self-interacting field
theories. That would allow for a more complete treatment of the lower bounds of the smeared
null energy in the Einstein frame. Quantum energy inequalities (QEIs) for self-interacting
fields are notoriously difficult to treat, with positive results only in two-dimensional models
[30,41,42], and in the case of the ANEC [43,44] in Minkowski space. However, a perturbative
study of the λφ4 model, the leading term that appears in the Einstein frame, seems promising.

Lastly we have focused on a particular type of state-dependent QEI where the
state-dependence takes the form of an expectation value. More general state-dependent in-
equalities may use more non-linear, entropic, features of a state. The quintessential example
of this is the quantum null energy condition (QNEC) which has been generally proven in a
Minkowski background [45, 46]. Given that the QNEC follows from the quantum focusing
conjecture [47], via Raychaudhuri’s equation, it is interesting to speculate whether QNEC
must be modified in the presence of non-minimal coupling (NMC) in the Jordan frame. Even
in a Minkowski background, where the residue of NMC can be viewed as an improvement
term to the free stress tensor, the NMC theory may evade the known proofs of QNEC which
either only apply to interacting theories [46], or rely on the form of the stress tensor as a boost
operator [45]. Given the ubiquity of NMC terms in Jordan frame effective actions, we view the
status of the QNEC in the presence of NMC as an interesting and potentially important open
question.
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A Field redefinition for general coupling

In this appendix we comment on a more general form of the non-minimal coupling and show
that it can be reduced to an Einstein frame with a suitable field redefinition. We will start with
an action

S =

∫

dn x
p

−g
�

(R− 2Λ)
16πGN

−
1
2
(∇φ)2 −A(φ)R− V (φ)

�

, (A.1)

where A is a function of φ, which we might regard as the first term of an EFT organized by the
usual derivative expansion. We now perform a simultaneous conformal transformation and
field redefinition

g̃µν = Ω
2(φ(x))gµν , φ̃(x) = F(φ(x)) (A.2)

with the aim of (i) making the coupling in front of the new Ricci scalar, R̃, appear solely as
1/(16πGN ), and (ii) making the kinetic term of φ̃ canonical. Focussing first on the transfor-
mation of R into R̃, we have

S =

∫

dn x
p

− g̃Ω2−n 1− 16πGNA
16πGN

�

R̃+ 2(n− 1)∇̃2 logΩ− (n− 2)(n− 1)(∇̃ logΩ)2
�

+ . . .

(A.3)
and so canonicalizing the Ricci term requires

Ω(φ) = (1− 16πGNA(φ))
1

n−2 . (A.4)

Upon imposing (A.4), the second term of (A.3) is a total derivative which we will drop, while
the third term will combine with kinetic term of φ̃ to give

S =

∫

dn x
p

− g̃





R̃
16πGN

−
1
2

�

1− 16πGN (A− 2
ξc
(A′)2)

�

(1− 16πGNA)2
g̃µν∂µφ∂νφ + . . .



 (A.5)

where ξc =
n−2

4(n−1) is the conformal coupling. Noting that ∂µφ =
�

F−1
�′
∂µφ̃, we can canoni-

calize the kinetic term for φ̃ by solving the differential equation

F ′(x) = (1− 16πGNA(x))−1

√

√

1− 16πGN (A−
2
ξc
(A′(x))2) . (A.6)

The result is a minimally coupled action with a canonical scalar kinetic term

S =

∫

dn x
p

− g̃

�

R̃
16πGN

−
1
2
(∇̃φ̃)2 − Ṽ (φ̃)

�

(A.7)

and with an effective potential

Ṽ (φ̃) = Ω(F−1(φ̃))−n
�

Λ

8πGN
+ V (F−1(φ̃))

�

, (A.8)

where Ω and F satisfy (A.4) and (A.6), respectively. Notice that all of the details of the cou-
pling, A(φ), have been moved to the potential, Ṽ . Thus, at least classically, the NEC is obeyed
in this general Einstein frame.
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