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Abstract1

An Ising machine is any hardware specifically designed for finding the ground state of the2

Ising model. Relevant examples are coherent Ising machines and quantum annealers.3

In this paper, we propose a new machine learning model that is based on the Ising struc-4

ture and can be efficiently trained using gradient descent. We provide a mathematical5

characterization of the training process, which is based upon optimizing a loss function6

whose partial derivatives are not explicitly calculated but estimated by the Ising machine7

itself. Moreover, we present some experimental results on the training and execution of8

the proposed learning model. These results point out new possibilities offered by Ising9

machines for different learning tasks. In particular, in the quantum realm, the quantum10

resources are used for both the execution and the training of the model, providing a11

promising perspective in quantum machine learning.12
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1 Introduction31

Machine learning models are algorithms that provide predictions about observed phenomena32

by extracting information from a set of collected data (the training set). In particular, para-33

metric models capture all relevant information within a finite set of parameters, with the set34

being independent of the number of training instances [1]. A celebrated example is repre-35

sented by artificial neural networks [2–4]. In the context of quantum computers, a common36

approach to machine learning is to employ variational quantum circuits, which can be trained37

by backpropagation as done with classical feedforward neural networks [5–8]. In addition38

to gate-based quantum computing, quantum annealing has also been considered to develop39

machine learning algorithms [9–11]. In any case, a crucial point in quantum machine learn-40

ing is the implementation of quantum procedures for model training as alternatives to classical41

methods. An example in this sense is the quantum support vector machine, trained by running42

the HHL quantum algorithm [12], which, however, presents the shortcoming of an impractical43

implementation on the currently available quantum devices. Therefore, a general challenge in44

quantum machine learning is to define learning schemes that can be efficiently implemented45

on quantum machines of the Noisy Intermediate-Scale Quantum (NISQ) era [13]. This is the46

motivation behind the present proposal of a learning model for quantum annealers in which47

the quantum resources are used both in the model execution and in the training process. The48

obtained theoretical and experimental results apply also to classical implementations of the49

model. Indeed, the key aspect of the training and execution of the proposed learning mech-50

anism is the computation of the ground state of the Ising model, which can, in principle, be51

solved using classical or quantum procedures.52

An Ising machine can be considered a specific-purpose computer designed to return the53

absolute or approximate ground state of the Ising model. The latter is described by the energy54

function of a spin glass system under the action of an external field, namely,55

E(z) =
N
∑

i=1

θizi +
∑

(i, j)

Γi jziz j , with z ∈ {−1, 1}N ,θi ∈ R, and Γi j ∈ R, (1)

where the sum
∑

(i, j) is taken over the pairs of connected spins, counting each pair only once.56

The ground state is the spin configuration z∗ ∈ {−1,1}N that minimizes the function (1).57

Therefore, in practice, an Ising machine solves a combinatorial optimization problem that can58

be represented as a quadratic unconstrained binary optimization (QUBO) problem, which is59

an NP-hard problem, by means of the change of variables x i =
zi+1

2 ∈ {0,1}. In particular, an60

Ising machine can be an analog computer that evolves toward the Ising ground state due to a61

physical process like thermal or quantum annealing. Alternatively, it can also be implemented62

on a digital computer in terms of simulated annealing.63

Ising machines are conceptually related to Boltzmann machines in the sense that they are64

both defined in terms of the Ising model, with couplings among spins and the action of an65

external field. In the case of a Boltzmann machine, the coefficients θ and Γ of the energy66

function (1) are tuned so that, by sampling the spin configuration over the state of the system67

at thermal equilibrium (at a finite temperature T), a probability distribution resembling an68

input distribution defined on the training set [14] is generated.69
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In detail, the output distribution of a Boltzmann machine is given by70

pT (z) = Z−1 exp
�

−
E(z)
kB T

�

, (2)

where Z :=
∑

z exp
�

−E(z)
kB T

�

is the partition function and kB is the Boltzmann constant. Usually,71

only a subset of spins is sampled, the so-called visible nodes, and the output distribution is given72

by the marginal distribution of (2). Instead, in the ideal case, the output of an Ising machine73

is deterministic and corresponds to the absolute minimum of (1). However, in a realistic74

scenario in which the Ising machine operates by thermal annealing, the output is probabilistic75

and distributed according to (2) with a value of T as low as possible.76

The difference between Boltzmann and Ising machines lies in the fact that Boltzmann77

machines are parametric generative models. In contrast, Ising machines are considered as78

solvers of combinatorial optimization problems [15–17]. However, in this paper, we propose79

a supervised learning model for Ising machines whose training is inspired by the training of80

Boltzmann machines. A peculiar aspect of a Boltzmann machine is that it can be trained by81

gradient descent of a loss function L depending on the weights θ and Γ , like the average neg-82

ative log-likelihood between the input distribution and the generated distribution, iteratively83

changing the parameters by a step in the opposite direction of the gradient. However, the par-84

tial derivatives of L are not explicitly calculated but are estimated by sampling the network85

units. For instance, let us consider the update rule Γi j → Γi j+δΓi j , which updates the coupling86

terms toward the minimum of the average negative log-likelihood. The update step (δΓi j) is87

given by [14]:88

δΓi j = −η
�

〈ziz j〉 −
∑

v

pdata(v)〈ziz j〉v

�

i, j = 1, ..., N , (3)

where η > 0 is the learning rate (user-specified), the sum is taken over the visible nodes v,89

pdata is the input distribution, 〈 〉 is the Boltzmann average, and 〈 〉v is the Boltzmann average90

with clamped visible nodes. In other words, both the training and the execution of a Boltz-91

mann machine are performed by sampling the units of the network at thermal equilibrium. A92

quantum version of the Boltzmann machine has also been proposed [18], and the simulations93

have shown that the presence of a transverse field Hamiltonian improves the training process94

with respect to the classical model, generating distributions that are closer to the input one in95

terms of the Kullback-Liebler divergence.96

This paper adopts a similar viewpoint for training an Ising machine. After defining a para-97

metric predictive model based on the ground state of the Ising model, we prove that it can be98

trained by gradient descent of a mean squared error loss function, executing the model itself99

to obtain the gradient estimates. In particular, the structure of the model does not require100

that the Ising machine returns the true ground state with infinite precision, and a suboptimal101

output works for training and executing the predictive model. In addition, our results apply to102

both classical and quantum machines. However, in the second case, the impact may be more103

significant since the quantum annealing resources are also exploited for the training process.104

In this sense, the purpose is similar to that of the parameter-shift rule, which is used in gate-105

based quantum computing to train a parametric quantum circuit without explicitly calculating106

the partial derivatives [19].107

The paper is structured as follows: in Section 2, we introduce generalities and elemen-108

tary notions about the Ising model and Ising machines, with a particular focus on quantum109

annealing; Section 3 deals with the proposed parametric learning model, to be executed by110

an Ising machine, and the main theoretical result of the paper, i.e., the proof that the model111

can be trained by running the Ising machine itself; in Section 4, an empirical evaluation of the112

proposed machine learning method is provided; in Section 5, we discuss the perspectives of113

the proposal, and we draw our conclusions on the proposed parametric model.114
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2 Ising machines115

This section introduces the formal definition of the Ising model and the concept of using specific116

Ising machines to solve the corresponding groundstate problem. Afterward, we briefly describe117

the two Ising machines employed in this work, namely simulated and quantum annealing.118

The Ising model is a mathematical description extensively utilized in the study of ferromag-119

netism. Renowned for its versatility and simplicity, it stands as a fundamental paradigm in the120

domain of statistical mechanics [20]. In its general formulation, the Ising model is defined on121

a graph (V, E), wherein each vertex represents a discrete variable zi ∈ {−1, 1}. These variables122

correspond to spins, with associated biases θi ∈ R denoting the inclination of each spin toward123

one of the two available values. Furthermore, the weighted edges Γi j ∈ R connecting two spins124

i and j define the coupling dynamics between the spins, indicating their preference to align125

or oppose each other in value. This graph structure is illustrated in Figure 1. The total energy126

of a spin configuration z ∈ {−1,1}|V | is expressed as127

E(θ , Γ ,z) =
|V |
∑

i=1

θizi +
∑

(i, j)∈E

Γi jziz j = θz+ zT Γz, (4)

where the biases θ1, ...,θ|V | ∈ R and the couplings Γi j ∈ R ∀(i, j) ∈ E are conveniently consoli-128

dated into the vector θ and the matrix Γ (with Γi j = 0 when (i, j) ̸∈ E), respectively. Realisti-129

cally, the values of the parameters are bounded. Hence, it is possible to assume that biases and130

couplings take values into compact intervals of R. Within the realm of statistical physics, these131

quantities are typically referred to as the external magnetic field strength and spin interactions132

due to their fundamental roles in the physical manifestation of the Ising model.133

An Ising machine can be defined as a non-von Neumann computer for solving combinato-134

rial optimization problems [21]. More precisely, its input is represented by the energy function135

of the Ising model (4), with biases and coupling terms properly initialized. The machine effec-136

tively operates by minimizing the energy function and providing the optimal spin configuration137

z∗ as the output. Actually, the quest to determine the ground state of an Ising model is of sig-138

nificant importance, as any problem within the NP complexity class can be formulated as an139

Ising problem with only a polynomial increase in complexity [22]. An elementary and abstract140

definition of an Ising machine, motivated by the general approach adopted in this paper, is the141

following:142

Definition 1. Given the energy function defined in (4), an (abstract) Ising machine is any map143

(θ , Γ ) 7→ z∗ := argminzE(θ , Γ , z).144

Additionally, we can also consider the minimum value of the energy E0(θ , Γ ) := E(θ , Γ ,z∗) as145

the output of an Ising machine. This ground state energy of the Ising model is obtained by146

substituting the spin configuration z∗ = argminzE(θ , Γ ,z) into (4). In this context, the Ising147

machine consistently yields a numerical result with a negative sign. An illustration of an Ising148

machine that finds the ground state of a small Ising model is shown in Figure 1.149

Relevant examples of Ising machines as specific-purpose hardware devices are quantum150

annealers [23] or coherent Ising machines with optical processors [24–27]. However, an Ising151

machine can also be simulated on a classical digital computer. In this respect, simulated an-152

nealing is a standard approach and addresses the Ising model as a combinatorial optimization153

problem. In more detail, simulated annealing is a probabilistic metaheuristic inspired by the154

analogical notion of controlling the cooling process observed in physical materials [28]. The155

algorithm employs stochastic acceptance criteria, resembling a Boltzmann probability, to navi-156

gate the solution space and escape local optima. Over time, usually indicated by a temperature157

parameter T that mimics the cooling process, less favorable moves are increasingly rejected.158
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Figure 1: Ising model and Ising machine: On the left, an illustration of the graph structure
of an Ising model characterized by a fully connected graph, with |V |= 5 spins z, correspond-
ing biases θ , and couplings Γ . An Ising machine maps the Ising model to the right-hand side
of the figure, returning a {−1,+1} assignment (illustrated as white/black nodes) to each
binary variable zi . The output is the spin configuration z∗ and the corresponding minimal
energy E0(θ , Γ ).

In practice, simulated annealing employs random search and local exploration to converge159

toward near-optimal or optimal solutions. However, although the algorithm is easy to imple-160

ment and robust from a theoretical point of view, it may present a slow convergence rate [29].161

A promising alternative path is the development of analog platforms like coherent Ising ma-162

chines. They represent optical parametric oscillator (OPO) networks in which the collective163

mode of oscillation beyond a certain threshold corresponds to an optimal solution for a given164

large-scale Ising model [24–27]. The learning scheme proposed here is agnostic and can be165

implemented on this kind of Ising machines. Nevertheless, in the experimental part we have166

considered only simulated and quantum annealing.167

Quantum annealing is a type of heuristic search used to solve optimization problems [23,168

30–32]. The procedure is implemented by the time evolution of a quantum system toward169

the ground state of a problem Hamiltonian. More precisely, let us consider the time-dependent170

Hamiltonian171

H(t) = γ(t)HD +HP t ≥ 0, (5)

where HP is the problem Hamiltonian, HD is the transverse field Hamiltonian, and γ : R+→ R172

is a decreasing function. Roughly speaking, HD gives the kinetic term inducing the exploration173

of the solution landscape by means of quantum fluctuations, and γ attenuates the kinetic term174

driving the system toward the ground state of HP . Quantum annealing can be physically real-175

ized by considering a network of qubits arranged on the vertices of a graph (V, E), with |V |= n176

and whose edges E represent the couplings among the qubits. In detail, the problem Hamilto-177

nian is defined as the following self-adjoint operator on the n-qubit Hilbert space H= (C2)⊗n:178

HP =
∑

i∈V

θiσ
(i)
z +

∑

(i, j)∈E

Γi jσ
(i)
z σ

( j)
z , (6)

with real coefficients θi , Γi j , which are identified again as biases and couplings due to their179

similar role in the Ising model. In the computational basis, the 2n×2n matrix σ(i)z acts locally180

as the Pauli matrix181

σz =

�

1 0
0 −1

�

(7)

on the i-th tensor factor and as the 2× 2 identity matrix on the other tensor factors. In fact,182

the eigenvectors of HP form the computational basis of H, and the corresponding eigenvalues183

are the values of the classical energy function (4). On the other hand, for the transverse field184

Hamiltonian a typical form, is185

HD =
∑

i∈V

θiσ
(i)
x , (8)
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where the local operator σ(i)x is defined in a similar way to σ(i)z in terms of the Pauli matrix

σx =

�

0 1
1 0

�

.

HD does not commute with HP and provides the unbiased superposition of all the conceivable186

solutions as the system initial state. Eventually, it is worth highlighting that quantum annealing187

is related to adiabatic quantum computing (AQC) as the solution of a given problem can be188

encoded into the ground state of a problem Hamiltonian. However, the two notions do not189

coincide. Indeed, in quantum annealing, the quantum system is not assumed to be isolated;190

therefore, it can be characterized by a non-unitary evolution. Another difference is that, in191

quantum annealing, the entire computation is not required to take place in the instantaneous192

ground state of the time-varying Hamiltonian like in AQC [32].193

3 The proposed model194

This section formally introduces the proposed parametric model, followed by an in-depth dis-195

cussion on the training using gradient descent and the estimation of the relevant partial deriva-196

tives of a quadratic loss function. The final part presents some practical considerations required197

to operate and train the model in real-world scenarios.198

3.1 Definition199

In the context of supervised learning, the goal of an algorithm is to approximate a function200

f : X → Y given a training set {(x1, f (x1)), ..., (xN , f (xN ))}, which is a collection of elements in201

the set X with the corresponding values of f . An approximation of f can be obtained through202

a parametric function after an optimal choice of its parameters, generalizing the information203

encoded into the training set. In fact, the notion of a parametric model is closely related to204

the existence of a parametric function that can be used to approximate the target function.205

Definition 2. Let X and Y be non-empty sets respectively called input domain and output
domain. A (deterministic) parametric model is a function

x 7→ y = F(x |Γ ) x ∈ X , y ∈ Y,

with Γ being a set of real parameters.206

In practice, given a training set of input-output pairs, the task consists in finding the parameters
Γ such that the model assigns the correct or approximately correct output, with high probabil-
ity, to any previously unseen input. The parameters are typically determined by optimizing a
loss function such as

L(Γ ) = 1
N

N
∑

i=1

d(yi , F(x i|Γ )),

where d is a metric defined over Y , and the procedure is commonly referred to as training.207

A preliminary depiction of the general problem considered in this paper is the following:208

given a real-valued function f : X → R, with X ⊂ Rn and n ∈ N, the objective consists in209

training a predictive model F that approximates the original function f within the supervised210

learning framework. This function approximation task encompasses a wide range of conven-211

tional machine learning endeavors such as regression and classification. In particular, the212

proposed parametric model is defined over the concept of Ising machines as introduced in213

Section 2. The input information is encoded into the biases θ of an Ising model, while the214

6
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adjustable parameters are represented by the couplings Γ of (4). The Ising machine is then215

used to find the ground state of the Ising model, and the corresponding ground state energy216

is used as the model output. Note that the ground state energy invariably assumes a negative217

value, and the magnitude of the input biases significantly influences its absolute magnitude.218

To account for this, we introduce an ancillary scaling factor denoted as λ and an energy offset219

indicated as ε. This yields the subsequent formulation of the model.220

Given an Ising machine, an input vector θ = (θ1, . . . ,θn) ∈ X ⊂ Rn, and the parameters221

{Γi j} with i, j = 1 . . . n (the nonzero Γi j are specified by the topology graph of the machine),222

one can define a parametric model F based on the ground state energy of an Ising model as223

F(θ |Γ ,λ,ε) := λ min
z∈{−1,1}n

E(θ , Γ ,z) + ε

= λE0(θ , Γ ) + ε , (9)

where λ ∈ R and ε ∈ R are additional tunable parameters that do not influence the Ising224

model energy. The model definition reveals a general neural approach in the sense that data225

are represented by the biases of the spins, which can be associated with neurons, and the226

parameters are the weights attached to the connections between spins (neurons). It is worth227

noting that, for the model execution, there is no requirement that the Ising machine returns the228

true ground state. More precisely, the fact that an approximated ground state does not match229

the exact solution of the combinatorial problem underlying the minimization is not a severe230

drawback for the learning process. Indeed, assuming that the deviation of the energy output231

from E0 is systematic (e.g., due to the finite precision of the Ising machine), this deviation232

becomes a characteristic of the model itself, and the training procedure accordingly provides233

optimized parameters. Despite its simplicity, the model presents interesting training properties234

that we mathematically characterize in the next section.235

3.2 Training process236

Training the proposed parametric model for the approximation of a real-valued function entails237

minimizing the empirical risk across a provided dataset, denoted as D, encompassing input-238

output pairs derived from the original function. To this aim, we employ the conventional239

approach of optimizing the model parameters to minimize the mean squared error (MSE)240

between the predicted output and the actual data values.241

Given the training setD = {(θ (a), y(a))}a=1,...,N , with y(a) = f (θ (a)), where f : X → R, with242

X ⊂ Rn, is an unknown function to approximate, the model (9) can be trained by minimizing243

the MSE loss function244

L(Γ ,λ,ε) =
1
N

N
∑

a=1

[F(θ (a)|Γ ,λ,ε)− y(a)]2. (10)

Our objective is to address this minimization task employing a gradient descent approach,245

iteratively updating the parameters Γ , λ, and ε by taking steps in the direction opposite to the246

gradient of the loss function L:247

δΓ = −η∇ΓL, δλ= −η
∂L
∂ λ

, δε= −η
∂L
∂ ε

, (11)

where η > 0 is the learning rate, which controls the optimization step size. Let us remark248

that each parameter is assumed to take values into a compact interval in R; consequently, the249

parameter space is a hyperrectangle. On one hand, the partial derivatives of L with respect to250

λ and ε are well-defined and trivial to calculate. On the other hand, the following theorem,251

which provides the update rules for the optimization of L by gradient descent, implies that252

the gradient ∇ΓL is defined almost everywhere in the parameter hyperrectangle.253
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Theorem 3. Let F be the parametric model defined in (9), D = {(θ (a), y(a))}a=1,...,N be a training254

set for F, L be the MSE loss function defined in (10), and η > 0 be the learning rate. Then,255

the partial derivatives of F with respect to the couplings Γ are defined almost everywhere in the256

parameter space, and the update rules for Γ , λ, ε for the gradient descent of L are:257

Γ
(k+1)
i j = Γ (k)i j −η

2λ(k)

N

N
∑

a=1

[λ(k)E0(θ
(a), Γ (k)) + ε(k) − y(a)]z∗i z∗j , (12)

258

λ(k+1) = λ(k) −η
2
N

N
∑

a=1

�

λ(k)E0(θ
(a), Γ (k)) + ε(k) − y(a)

�





n
∑

i=1

θ
(a)
i z∗i +

∑

(i, j)∈E

Γ
(k)
i j z∗i z∗j



 , (13)

259

ε(k+1) = ε(k) −η
2
N

N
∑

a=1

[λ(k)E0(θ
(a), Γ (k)) + ε(k) − y(a)], (14)

where Γ (k), λ(k), ε(k) are the values of the parameters within the k-th iteration of the gradient260

descent, and z∗ = argminzE(θ
(a), Γ (k), z).261

Proof. By direct calculation, the partial derivative of F with respect to Γi j is262

∂ F(θ |Γ ,λ,ε)
∂ Γi j

= λ
∂

∂ Γi j

 

n
∑

i=1

θiz
∗
i +

∑

(i, j)

Γi jz
∗
i z∗j ,

!

= λz∗i z∗j , (15)

where z∗i and z∗j are the i-th and j-th components of z∗ = argminzE(θ , Γ ,z), respectively. Since263

the optimal spin configuration z∗ also depends on Γ (and θ), we should consider the derivatives264

∂ z∗l /∂ Γi j for l = 1, ..., n in the final step outlined in (15). However, it must be noted that the265

function z∗l = z∗l (θ , Γ ) is piecewise constant. Hence, its derivative is zero almost everywhere in266

its domain, and the remaining points, corresponding to spin flips of z∗l , turn out to be points of267

non-differentiability of z∗l (θ , Γ ). Substituting (15) into (11), we obtain the following update268

step (δΓi j) for the MSE loss function (10):269

δΓi j = −η
∂L
∂ Γi j

= −η
2
N

N
∑

a=1

[F(θ (a)|Γ ,λ,ε)− y(a)]
∂ F
∂ Γi j

(16)

= −η
2λ
N

N
∑

a=1

[F(θ (a)|Γ ,λ,ε)− y(a)]z∗i z∗j

= −η
2λ
N

N
∑

a=1

�

λE0(θ
(a), Γ ) + ε− y(a)

�

z∗i z∗j . (17)

Therefore, the parameter update rule for the (k+ 1)-th iteration turns out to be270

Γ
(k+1)
i j = Γ (k)i j −η

2λ(k)

N

N
∑

a=1

[λ(k)E0(θ
(a), Γ (k)) + ε(k) − y(a)]z∗i z∗j , (18)

wherein we have omitted the explicit dependence of z∗i and z∗j on a and k for the sake of271

brevity of notation. The update rules for λ and ε can be derived analogously. Specifically, the272

partial derivatives of F with respect to λ and ε are273

∂ F(θ |Γ ,λ,ε)
∂ λ

=
n
∑

i=1

θiz
∗
i +

∑

(i, j)

Γi jz
∗
i z∗j ,

∂ F(θ |Γ ,λ,ε)
∂ ε

= 1. (19)

Then, the claims (13) and (14) follow.274
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Algorithm 1: Model training

Input: dataset D = {(θ (a), y (a))}a=1,...,N , learning rate η, optimization steps Nepochs
Output: trained model Fmodel(θ )

1 Initialize the parameters Γ ;
2 for step k in Nepochs do
3 for (θ (a), y (a)) in D do
4 run the Ising machine to obtain E0(θ (a), Γ (k)) and z∗;
5 end
6 update Γ (k),λ(k),ε(k) according to (12) - (13) - (14);
7 end
8 return Fmodel(θ ) = F(θ |Γ Nepochs ,λNepochs ,εNepochs) ;

INPUT MODEL TRAINING OUTPUT

Figure 2: Model training: Illustration of the training process for the proposed model. In
particular, given a dataset D = {(θ (a), y (a))}a=1,...,N , an Ising model is instantiated for each
sample by setting the biases to θ (a) and using the couplings Γ as free parameters. Then,
for each model, an Ising machine is run in order to obtain the spin configuration z∗ and
the corresponding model minimal energy E0. Finally, the collected values are used to up-
date the couplings Γ and the two additional parameters λ and ε according to the rules
presented in Theorem 3. This procedure is repeated Nepochs times until the trained model
Fmodel(θ ) = F(θ |Γ Nepochs ,λNepochs ,εNepochs) is returned.

In this way, the model parameters can be optimized for a certain number of steps Nepochs. The275

complete training process is described as pseudocode in Algorithm 1 and illustrated as a flow276

diagram in Figure 2. In particular, for each training step k, the model is evaluated on each277

(θ (a), y(a)) pair in the training set D and the parameters are updated according to Theorem 3.278

The trained model is defined by the final iteration as279

Fmodel(θ ) = F(θ |Γ Nepochs ,λNepochs ,εNepochs) . (20)

Therefore, the training process bears similarities to that of a neural network but with a note-280

worthy distinction. Indeed, in our model, the conventional backpropagation step for calcu-281

lating the partial derivatives is replaced by the Ising machine computation of E0 and z∗. In282

particular, we propose the usage of quantum annealing as a well-suited Ising machine, which283

serves a dual purpose: executing the model according to (9) and facilitating the model training284

through the iterative assessment of the loss function gradient. In detail, the spin configuration285

z∗, retrieved from the annealer and representing the ground state of the qubit network, can286

9
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be used to compute the parameter adjustments according to (12), (13) and (14). Instead, the287

corresponding energy value is used to compute the model prediction.288

This ability to utilize the output of the Ising machine to train and evaluate the model289

constitutes the major distinction to other Ising machine-based models [33,34] that require an290

explicit calculation of the corresponding derivatives to update the model parameters.291

A model trained in this manner possesses the capability to predict inputs beyond those292

present in D. Analogously to other machine learning models, this rests upon the expectation293

that, if the model is trained on an extensive dataset, it can assimilate and generalize from those294

examples, ultimately serving as an approximation of the original function within a certain295

value range. Moreover, although the Ising energy (4) depends only linearly on the input296

vector θ , determining the minimum energy entails a complex interplay between the input297

and the model parameters Γ . Consequently, an open theoretical question regarding the class298

of functions that can be approximated through the proposed methodology arises. In other299

words, given an Ising model, what is its expressibility in terms of ground state energies by300

varying only the qubit couplings? From a practical perspective, the limitations of the quantum301

annealer architecture (number of qubits, topology connectivity, value bounds for θ and Γ )302

impose additional obvious constraints.303

3.3 Hidden spins304

In the proposed model, assuming a complete topology graph, the number of tunable parame-305

ters Γi j scales quadratically with respect to the input dimension n. In practice, the number of306

model parameters is intrinsically fixed by the input dimensionality, akin to a neural network307

featuring only input and output layers. In the neural network scenario, to enhance the model308

expressiveness, the number of parameters is typically augmented by introducing additional309

hidden layers. In a similar way, we consider additional hidden spins, represented by addi-310

tional nodes in the topology graph. These additional spins increase the number of couplings311

and, therefore, the number of parameters of the model. This is accomplished by adding a312

preprocessing step,313

hpre : Rn→ Rntotal , (21)

mapping the original input vector θ from the feature space Rn to a higher-dimensional space314

characterized by ntotal = n+ nhidden dimensions, with nhidden representing the number of addi-315

tional hidden spins. An illustration of this preprocessing step and the increase in the number316

of coupling parameters is given in Figure 3.317

Figure 3: Hidden spins: Two exemplary Ising models with full connectivity. This compar-
ison shows the increase in trainable coupling parameters (graph edges) when the original
input θ is mapped to a higher dimensional space using a preprocessing step hpre.
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The preprocessing step does not affect the training process. Indeed, the model can still318

be trained as described in Section 3.2. Instead, the choice of the preprocessing function ex-319

erts a significant influence on the model’s performance. For instance, let us consider a trivial320

preprocessing procedure that appends zero values to the input vector in order to reach the321

desired dimension. Although this approach would increase the number of model parameters,322

the hidden spins would be indistinguishable from each other, resulting in a very similar learn-323

ing behavior and making them redundant. In contrast, initializing the additional dimensions324

with random values would mitigate this issue, but these values may overshadow the original325

input, especially if nhidden ≫ n. In this work, we propose and evaluate a first simple scheme326

to initialize additional spins based on a constant real-valued offset. This offset initialization327

approach is defined as328

θ ∈ Rn→ hoffset(θ ) =









θ

θ + 1 · d
...

θ + (l − 1) · d









∈ Rntotal , (22)

where d ∈ Rn, l ∈ Z+, and ntotal = ln (i.e., ntotal is a multiple of n). This corresponds to a329

repeated concatenation of the original input θ with an increasing real-valued offset d.330

4 Empirical evaluation331

This section provides an initial proof of concept of the model’s capabilities. Indeed, this is332

neither a benchmarking exercise nor an in-depth analysis of the model’s expressiveness but a333

demonstration of possible use cases and applications of the model. A detailed performance334

evaluation of the model, entailing the necessary statistical repetitions and the comparison to335

alternative models, is left for future work. To simplify the usage of the model, a Python package336

that automates the repeated calls to the Ising machines during the training of the model and337

also facilitates the cross-usage with other common Python machine learning packages (such338

as PyTorch) was published on Github [35]. As a first experiment, the model has been trained339

on randomly sampled datasets to demonstrate the trainability of the model itself according340

to the update rules of Theorem 3. Then, as real-world demonstrations, the model has been341

trained for the function approximation task and also as a binary classifier for the bars and342

stripes dataset.343

4.1 Experimental setup344

As discussed in Section 3, the model supports different Ising machines. In this work, we have345

considered simulated annealing and quantum annealing, both provided by the D-Wave Ocean346

Software SDK [36]. While the former represents a software implementation of simulated347

annealing, the latter directly accesses the superconducting annealing hardware supplied by D-348

Wave. In particular, the Advantage_system5.4 has been used here. More in detail, the quantum349

annealing hardware in question is characterized by 5760 qubits and is based on the Pegasus350

topology, with an inter-qubit connectivity of 15. To control the hardware, D-Wave provides351

the Ocean SDK, which includes multiple software packages facilitating the handling of the an-352

nealing hardware. Among them, it is worth mentioning the minorminer package, which has353

been used to embed the problems into the annealer topology. In practice, to achieve the de-354

sired connectivity (all-to-all in this case), multiple physical qubits are chained together to form355

logical qubits; the drawback lies in the reduced number of available qubits. In particular, in356

each run, the embedding has been computed once for a fully connected graph of the required357
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size and reused in the subsequent calls to the annealer; for this aim, the FixedEmbeddingCom-358

posite class of the Ocean SDK has been employed. Regarding the actual annealing process, the359

default setup has been used, namely, automatic rescaling of bias and coupling terms to fit the360

available hardware ranges, chain strength settings according to uniform_torque_compensation,361

an annealing time of 20µs, and a twelve-point annealing schedule. To account for the high362

number of calls to the annealing hardware throughout training and save hardware access time,363

a number of reads (sampling shots) equal to 1 has been used for each annealing process. For364

more information, refer to Zenodo [37], where the set of notebooks used have been made365

available.366

Concerning the model parameters, in all experiments, the couplings Γ (0)i j have been initial-367

ized to zero and updated according to (12). Instead, λ and ε have been kept fixed through-368

out the training process and considered as hyperparameters to facilitate the learning process.369

Specifically, the selection of the λ value has been done manually to ensure that the model370

output was reasonably well-aligned with the range of values of the training data. By contrast,371

the ε value has been set according to the outcomes of a first round of sampling. In detail, the372

following rule has been used:373

ε=
1
N

N
∑

a=1

�

y(a) − F(θ (a)|Γ (0),λ, 0)
�

=
1
N

N
∑

a=1

�

y(a) +λ
n
∑

i=1

|θ (a)i |

�

, (23)

with the last equivalence being valid only if Γ (0)i j = 0 for i, j ∈ {1, . . . , n}.374

4.2 Random data375

To demonstrate the trainability of the model, 30 distinct datasets, each comprising N = 20376

data points with input dimension n = 10, have been considered. In particular, the input377

and target output values have been randomly sampled from a uniform distribution over the378

interval [−1, 1]. In addition, in this experiment, the simulated annealing algorithm bundled379

in the Ocean SDK has been employed as the Ising machine for estimating the ground state and380

the corresponding energy value. Hence, no quantum annealing hardware has been used in this381

case. The parameters used for simulated annealing can be found directly in the source code382

at [37]. Instead, regarding the parameters of the proposed model, λ has been set to 1, and383

ε has been set according to (23) (taking a different value for each dataset). For the training384

process, Nepochs = 50 epochs have been executed, with η = 0.2. The MSE loss progression385

through the training is shown in Figure 4, where the error bars represent the standard deviation386

across the datasets.387

Although this particular example lacks practical significance, it serves as a simple demon-388

stration that the proposed Ising-machine-based parametric model can be effectively trained389

by utilizing its own output according to the update rules presented in Theorem 3. Further-390

more, it highlights the fact that the discontinuity observed in the derivative of the optimal391

spin configuration z∗, as discussed in the proof of Theorem 3, does not hinder the model’s392

ability to minimize the loss function. In essence, the assumption made in (15) regarding the393

computation of the partial derivatives proves to be sufficiently accurate.394

4.3 Function approximation395

In this second experiment, datasets comprising N = 20 data points sampled from polynomial396

functions have been considered. Due to the limited quantum annealing time available on the397

D-Wave hardware, the analysis has been limited to two straightforward cases, and no statistical398

repetition has been performed. Although this shortage prohibits any general conclusion on the399

model’s performance, it serves as a first demonstration of the possibility of using the model400
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Figure 4: MSE loss on random data: Mean squared error, averaged over 30 randomly
generated training sets of size N = 20. The MSE loss is tracked as a function of the number of
epochs (with Nepochs = 50). The Ising machine in this experiment is the simulated annealing
algorithm bundled in the Ocean SDK. The decreasing trend of the loss demonstrates the
trainability of the model.

to approximate simple functions. Specifically, the following two polynomial functions of first401

and second degree, respectively, have been considered:402

flin(x) = 2x − 6, (24)

fquad(x) = 1.2 (x − 0.5)2 − 2 . (25)

In both cases, the coefficients have been chosen manually and arbitrarily, and the input domain403

has been restricted to the interval [0, 1]. As the input dimensionality is n= 1, additional nhidden404

hidden spins (see Section 3.3) have been considered. In particular, two different total sizes405

ntotal = {50,150} have been analyzed in order to study the effect of the number of hidden spins406

on the model learning. Additionally, the spins have been initialized using the offset technique407

described in Section 3.3. Regarding the model parameters, fixed values have been manually408

chosen for the scaling factor λ, whereas the offset ε has again been set according to (23). All409

model parameters used for the two total sizes considered are summarized in Table 1. In this410

case, simulated and quantum annealing have been employed as Ising machines and compared.411

The simulated annealing parameters are the same as those used in Section 4.2.412

Table 1: Parameters used to train the model for the function approximation task.

ntotal d λ ε Nepochs η

flin
50 0.8/50 −0.3 −9.30 200 0.02

150 0.8/150 −0.1 17.63 200 0.02

fquad
50 1/50 −0.05 −2.70 200 0.25

150 1/150 −0.0167 −4.23 200 0.25

The MSE loss throughout the training epochs for the two functions is shown in Figure 5.413

In the case of the linear function (Figure 5a), the model demonstrates a significant reduction414

in the mean squared error (MSE), over nearly three orders of magnitude, after approximately415

200 optimization steps. Instead, in the case of the quadratic function (Figure 5b), the initial416

loss was already low, indicating that the offset method chosen for the hidden layers was ap-417

propriate for this dataset. Nevertheless, the model has managed to decrease the loss by nearly418
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Figure 5: MSE loss in function approximation: Evolution of mean squared error loss
during training for linear (a) and quadratic (b) functions. The results achieved by both
simulated annealing (SA) and quantum annealing (QA) are shown, with the numeric value
following the method name representing the total number of hidden spins ntotal. SA and
QA perform similarly with equal sizes, with the fluctuations of QA being caused by the very
low number of reads (1). For flin, a larger number of hidden spins corresponds to better
performance of QA.
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(a) flin(x) = 2x − 6.
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(b) fquad(x) = 1.2 (x − 0.5)2 − 2.

Figure 6: Trained model output: Output of the trained model Fmodel compared to the
original function (black line). In both cases (linear and quadratic), for both ntotal values, the
model demonstrates the ability to approximate the function with a good accuracy, performing
slightly worse for flin, especially toward the edges of the considered interval.

additional three orders of magnitude. It is also worth noting that, in both cases, for equal419

model sizes, the results achieved using the quantum annealing hardware align closely with420

those obtained employing the simulated annealing algorithm. Specifically, the fluctuations in421

the quantum annealing loss are caused by the very low number of reads (1), resulting in non-422

optimal solutions occasionally returned by the annealer. Finally, the higher number of hidden423

spins (150) has shown significant advantages only for the linear function.424

Instead, Figure 6 displays the output of the trained models compared to the original func-425
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Bars Stripes No BAS

Figure 7: Bars and stripes (BAS) dataset: Illustration of exemplary 3× 3 BAS and non-
BAS data samples. The last two samples cannot be uniquely classified as bars or stripes and,
therefore, are not part of the BAS dataset.

tions. It is clear that the model has successfully learned to approximate the target functions.426

Specifically, as expected from the low final loss value, the model closely aligns with the original427

function in the case of the quadratic function. Instead, in the linear case, the model perfor-428

mance deteriorates significantly toward the interval edges, and the output values exhibit a429

tendency toward a shape resembling an even-degree polynomial, especially for the case with430

less hidden spins (ntotal = 50). This behavior stems from the initialization method chosen for431

the hidden spins and the symmetry properties of the Ising model. At extreme bias values, lo-432

cated near the interval boundaries, the biases exert a dominant influence on the energy term433

in Equation (4), causing F(θ ) → ∞ as |θ | → ±∞. Consequently, the behavior resembles434

that of even polynomials, thus explaining the outliers in Figure 6a. Using more hidden spins435

(ntotal = 150) reduces this effect by providing more trainable parameters to the model. It is436

also worth mentioning that different initialization methods for the hidden spins (e.g., taking437

the inverse values) influence this behavior.438

4.4 Bars and stripes439

In this last experiment, the proposed model has been applied to a different machine learning440

task: binary classification. For this purpose, the well-known bars and stripes (BAS) dataset441

has been used. In detail, the dataset consists of square matrices with binary entries such that442

the values in the rows/columns are identical within each row/column; the resulting patterns443

can be identified as bars/stripes, giving the dataset its name. Actually, the cases in which all444

entries of the matrix are the same have been left out as the label is not unique. Some exam-445

ples are shown in Figure 7. Regarding the classification task, it consists in assigning a label446

l ∈ {bars, stripes} to each matrix, corresponding to the pattern it represents. In particular, the447

dataset was created by randomly deciding the label of each data point and randomly assigning448

one of the two binary values to each row/column. This procedure has been repeated N times,449

without accounting for duplicates.450

In order to apply the proposed model to the BAS dataset, the input matrices have been451

flattened row-wise, and the binary values have been directly provided as input to the model.452

The binary labels l ∈ {bars, stripes} have been encoded into y and decoded from the model453

output Fmodel according to454

y =

¨

0 , l = bars

10 , l = stripes
lmodel =

¨

bars , Fmodel ≤ 5

stripes , Fmodel > 5
, (26)

with the factor 10 being arbitrarily chosen (different values can be used, but the λ and ε455

parameters must be adjusted accordingly). For the training, a randomly generated dataset456

comprising N = 80 data points, with each data point representing a BAS matrix of size 12×12,457

has been used. In particular, the model has been trained for Nepochs = 8 epochs, with η= 0.02,458

and has been evaluated on a separate test set consisting of other 80 data points. Since no459

additional hidden spins have been employed, n = ntotal = 144 in this case. Concerning λ and460

ε, the former has been manually set to λ = −0.3, while the latter has been set to ε = −15.43461
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Figure 8: Results on BAS dataset: (a) Average model output value F(θ |Γ (k),λ,ε) across
all the data points with the same label l ∈ {bars, stripes}. The training (solid lines) and test
(dashed lines) sets are considered independently; the envelopes represent the standard de-
viations, and the dotted horizontal line corresponds to the classification threshold according
to (26). During training, the model learns to separate the two classes by increasing the en-
ergy for the stripes and decreasing it for the bars. (b) MSE loss for the training and test
sets throughout epochs. The decreasing losses denote successful training, but the test loss
stagnating after some epochs implies overfitting. (c) Accuracy for the training and test sets
throughout the training. The accuracy on the training set reaches almost 1, with only one
misclassified sample, while the accuracy on the test set also increases but saturates at about
75%.
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according to (23). Due to the large number of spins ntotal = 144, only the quantum annealing462

hardware was used to train the model.463

The results obtained are shown in Figure 8. Specifically, Figure 8a displays the model out-464

put during training for the training set and test set, respectively. The values shown are the465

average output values across all the data points with the same label, with the corresponding466

standard deviations indicated by the transparent envelopes. The dotted horizontal line repre-467

sents the classification threshold from (26). In practice, the average output value for the two468

labels diverges, approaching toward 0 and 10, respectively, as the number of epochs increases.469

This means that the model has learnt to increase the output value for stripe data points and470

lower it for samples labeled as bars. This generalizes also to the unseen examples of the test471

set, but the separation between the two classes is more marked for the training set. This effect472

is also visible in Figure 8b, where the MSE loss for the training set and test set is shown. In473

detail, the training loss decreases in a monotone way, while the test loss stagnates after a few474

epochs. This is a typical indicator of model overfitting, which could be addressed in different475

ways, among which increasing the number of training samples N in order to help the model476

generalize. A similar conclusion can be drawn considering the accuracy of the model shown477

in Figure 8c. The trained model is able to correctly classify 79 out of 80 training samples, but478

the accuracy on the test set saturates at only about 75%.479

In conclusion, this experiment has demonstrated the possibility of using the proposed480

model to address also binary classification tasks by choosing an appropriate encoding-decoding481

procedure for the model input and output. Indeed, the model has proven to be able to gener-482

alize to unseen examples while exhibiting overfitting effects, at least for the chosen dataset.483

4.5 Choice of hyperparameters484

Selecting appropriate values for the model’s hyperparameters is a common issue in machine485

learning. Multiple hyperparameters have been manually set in the experiments presented486

in this work. These include the learning rate η, the number of epochs Nepochs, the problem487

encoding (see 26), the Ising machine parameters like the number of samples per step for simu-488

lated annealing or the embedding procedure, the annealing time, and the number of reads for489

quantum annealing. Choosing appropriate values may reduce, for example, the fluctuations490

observed in Figure 6a. The values used here have been selected based on observations result-491

ing from trial and error runs; the analysis of different configurations and a more systematic492

approach to choosing appropriate values are left for future work.493

Among the model-related hyperparameters, the choice of the initialization strategy for the494

additional hidden spins has a significant impact. Specifically, when the input dimension is low,495

a large number of hidden spins nhidden≫ n may be necessary in order to have enough trainable496

model parameters. However, particular care must be put in choosing the corresponding new497

bias terms. Indeed, in preliminary experiments, it has been observed that initializing the biases498

in the wrong way may negatively affect the performance to the point that the model is unable499

to approximate the target function. Finding a suitable ansätze for different tasks is still an500

open question.501
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5 Conclusion502

In this paper, we have proposed a novel parametric learning model that leverages the inher-503

ent structure of the Ising model for training purposes. We have presented a straightforward504

optimization procedure based on gradient descent and we have provided the rules for com-505

puting all relevant derivatives of the mean squared error loss. Notably, if the Ising machine506

is realized by a quantum platform, our approach allows for the utilization of quantum re-507

sources for both the execution and the training of the model. Experimental results using a508

D-Wave quantum annealer have demonstrated the successful training of our model on simple509

proof-of-concept datasets, specifically for linear and quadratic function approximations and510

binary classification. This novel approach unveils the potential of employing Ising machines,511

particularly quantum annealers, for general learning tasks. In addition, it raises intriguing the-512

oretical and practical questions from both computer science and physics perspectives. From a513

theoretical standpoint, questions regarding the expressibility of the Ising model arise, as well514

as inquiries into the classes of functions that the model can represent. These questions are515

non-trivial due to the non-linear minimization step involved. From a practical point of view,516

given the broad definition of the model and its similarity to other classical parametric models,517

a wide range of machine learning tools and methods can be explored to enhance its training.518

Advanced gradient-based optimizers and general learning techniques such as mini-batching,519

early stopping, and dropout, among others, offer promising avenues for improvement.520

In addition to function approximation and binary classification, we aim to investigate the521

application of the model to other machine learning tasks, especially tasks in which the feature522

space is large, to reduce the necessity of additional hidden spins. This study might be extended523

with a comparison to other Ising machine-based models advancing the field of parametric524

machine learning models utilizing Ising machines.525
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