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Abstract

We design germanium-based higher-order topological cavities for terahertz applications
by breaking the symmetry of a two-dimensional photonic crystal following the Su-Schrieffer-
Heeger model. Calculations demonstrate the parity inversion of the electric field in
differently deformed unit cells. The interface between domains of opposite topology
presents edge and corner modes. The former are chiral, locking light propagation to
its helicity. The latter prove that Ge-based structures can be used as high-order topo-
logical photonic crystals. These findings can accelerate the development of Si-photonic
components working in a spectral range of high technological interest.
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1 Introduction9

The comprehension and exploitation of the topological properties of matter led to the emer-10

gence of research on topological insulators [1] and their photonic analogs, known as topo-11

logical photonic crystals (TPC). [2,3] TPCs have been shown to be promising for the fabrica-12

tion of photonic integrated circuits thanks to exceptional features, e.g., directional and chiral13

light propagation, [4–6] strong resistance to sharp bends, [7] and mathematical protection14
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from defect-induced scattering. [8] These properties are indeed expected to facilitate the im-15

plementation of advanced photonic components such as directional, polarization-dependent16

waveguides, [9–11] resonators, [12] drop-filters [13] and topological lasers. [7,14,15]17

Lately, higher-order topology has been gaining attention in photonics research. In con-18

trast to conventional topological insulators, higher-order topological insulators (HOTI) present19

conductive states that are more than one dimension lower than the insulating state. [16, 17]20

This has led to the concept of special two-dimensional (2D) TPCs, which can feature unusual21

zero-dimensional (0D) corner states in addition to the conductive one-dimensional (1D) hinge22

modes. The potential to exploit HOTIs to fully confine the electromagnetic field at a 0D cor-23

ner and topologically protect it from undesired losses is fundamentally intriguing and strongly24

appealing for applications, particularly because it might drastically boost lasing emission and25

improve spectral purity. [14]26

Although crystals with a trivial photonic band structure have already found applications in27

the terahertz (THz), [18,19] the extension of HOTIs into such frequency range has been very28

limited thus far. The interest in this spectral regime comes from the inherent capacity to stream29

high-frequency wide-bandwidth data; [20] a characteristic that offers significant prospects for30

the advancement of wireless communication networks beyond existing 5G standards. [21,22]31

In addition to telecommunications, THz waves can have far-reaching consequences in various32

fields, including quantum information, [21–23] non-destructive imaging, [24, 25] biological33

sensing and diagnostics, [26, 27] security and defense. [28, 29] The development of efficient34

THz photonic components and devices is thus a compelling task where TPC and HOTIs can35

provide a leap forward with novel and yet untapped capabilities.36

Another crucial factor in achieving this ambitious goal is the choice of materials platform37

that can favor an industrial takeover while being, at the same time, suitable for the THz regime.38

Germanium stands out as a solution to these two problems since it offers a transparency win-39

dow that is spectrally broad, [30,31] while being already present in microelectronic and pho-40

tonic foundries. Ge-based high-quality photonic crystals (PC) can be indeed created using41

conventional lithography and vertical etching of thin Ge-on-Si films [32–34] or by exploiting42

self-assembly of Ge crystals directly on top of patterned Si substrates. [35] This can result in43

high-volume production and opens the route toward monolithic integration of THz photonic44

components into Si chips.45

So far, literature reports have shown that Ge-on-Si heterostructures host promising, albeit46

non-topological, photonic properties in the near-infrared region of the electromagnetic spec-47

trum. [36–38] To unfold the Ge potential in exhibiting HOTI states in the THz regime, we48

employ the finite elements method (FEM) to investigate photonic and topological properties49

including the emerge of a photonic band gap (PBG) and the topology-induced spatial confine-50

ment and directional propagation of light. In this work, we will concentrate on the model51

system offered by the self-assembly of micron-sized Ge-on-Si rods. Their typical in-plane ar-52

rangement can seemingly mimic 2D TPCs with a square geometry [14,39–43] and their distinct53

optical properties [44–48] can possibly expedite the practical realization of future, integrated54

HOTI devices.55

2 Results and discussion56

Figure 1a shows the layout of a typical microstructure consisting of Ge-on-Si microcrystals. To57

determine the photonic bandstructure of the 2D lattice as close as possible to the experimental58

ones, [37]we simulated a unit cell composed of a pseudo-octagonal Ge microcrystal, featuring59

both {100} and {111} facets surrounded by vacuum. The lattice parameter is a = 2 µm to60

ensure experimental feasibility with conventional fabrication processes. [37] The size d of the61
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Figure 1: a) Sketch of the model photonic crystal (PC) based on a Ge (orange) on
Si (grey) heterostructure (not to scale). [37] The lattice parameter is a. b) Scheme
of the simulated unit cell of the PC. c) Simulated bandstructure of the PC calculated
using finite element method for a Ge crystal size d = 0.3a (left) and d = 0.6a
(right). Inset: Irreducible Brillouin Zone of the square lattice with high simmetry
points indicated. d) Size of the photonic bandgap (PBG) calculated in the X point of
the bandstructure (red shaded area) and gap/midgap ratio (black dots) as a function
of d.

Ge microcrystal was varied in the FEM calculations between 0.1a and 0.9a. The refractive62

index of Ge has been extracted from the literature [49] and is n ∼ 4, corresponding to the63

value measured in the THz region of the electromagnetic spectrum, where the extinction coef-64

ficient is zero and n itself can be considered constant for the purposes of the calculations. The65

geometry of the unit cell, together with the structure parameters, is reported in Figure 1b.66

We perfomed a FEM simulation of the system eigenfrequencies with Comsol Multiphysics67

[50], using Floquet periodicity and varying the size d of the microcrystal to gather information68

on the optimal geometric parameters of the PC. The simulation was performed for the out-69

of-plane electric field configuration, also known as transverse magnetic (TM) modes. The70

simulation sweeps the wavevector k along high symmetry directions in the irreducible Brillouin71

Zone (IBZ), yielding the photonic bandstructure that is reported in Figure 1c for two values72

of d, namely d = 0.3a and d = 0.6a, corresponding to a microcrystal lateral size of 600 nm73

and 1200 nm, respectively. The calculated bandstructures for every value of d are reported in74

the Supplementary Material. The bandstructures present a large PBG in the THz region of the75

electromagnetic spectrum.76

The bandstructures have similar shapes for different values of d, but its increase shifts the77

energy bands toward lower frequencies and apparently shrinks the amplitude of the PBG as78

shown in Figure 1d, which reports the size of the PBG at the X high-symmetry point of the79

IBZ as a function of d. The size of the gap increases with d and then decreases until it is80

almost negligible. This behavior is expected in 2D PCs dominated by a high refractive index81

material. [51] To compare the size of the PBG between the different structures, we normalized82

the bandgap to the midgap frequency. This renormalization method allows us to compare the83

relative amplitude of the PBG in structures with different geometries. [51] The calculation of84

the gap/midgap ratio in our case yields that the structure with the largest bandgap is that85

with d = 0.3a. Unless otherwise noted, hereafter we refer to this specific value of d (results86

obtained for d = 0.6a are nonetheless reported in the Supplementary Material).87
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Figure 2: Scheme of the unit cell, simulated photonic bandstructure, and electromag-
netic field distribution for the compressed (a,d,g), equidistant (b,e) and expanded
(c,f,h) PCs when the lateral size of the Ge crystal d equals 0.3 times the lattice pa-
rameter a. The out-of-plane component of the electromagnetic field (TM mode) is
computed at the X point of the IBZ. The parity of the wavefunction acts as a pseu-
dospin, and the symmetry inversion (indicated by the + and −) between the com-
pressed and the expanded crystals is the fingerprint of a topological phase transition.

It should be noted that the photonic properties of the simulated system depend on the spe-88

cific value of the lattice parameter a. However, the scaling invariance allows one to rigidly shift89

the energy of the PBG towards lower (higher) frequencies just by fabricating larger (smaller)90

unit cells. This powerful property provides great flexibility because it allows structures with a91

PBG in resonance with a desired frequency, e.g., the emission frequency of a quantum cascade92

structure. There are reports in the literature [52,53] showing Ge/SiGe MQWs with interband93

emission at ∼ 30 THz, a value that can already be reached with the PC described in Figure 1,94

e.g. for d = 0.8a. The structure can be further optimized by setting d = 0.3a, where the PBG95

is the largest, and increasing the lattice parameter a by a factor ∼ 2.96

The 2D lattice composed of the semiconductor microcrystals can be seen as the periodic97

repetition of two different unit cells. The two structures can be considered the extreme case98

of a photonic extension of a 2D Su-Schrieffer-Heeger (SSH) lattice, [40, 54, 55] where a unit99

cell composed of four elements equidistant from both the center and the vertex of the cell is100

distorted, as shown in Figure 2. The first unit cell has a microcrystal with lateral size d at101

the center of the cell, as shown in Figure 1b or Figure 2a, and will from now on be referred102

to as compressed. The other structure consists of four quarters of a microcrystal with a width103
d
2 placed at the corners of the cell, as shown in Figure 2c. We will refer to this structure as104

expanded. The equidistant unit cell structure is reported in Figure 2b.105

The bandstructures of the described lattices are reported in Figure 2d-f. The one of the equidis-106

tant PC (reported in Figure 2e) is gapless and shows a pseudo-Dirac point at the M and X107

high-symmetry points. The deformation of the unit cell opens a gap, as expected in the SSH108

model, and yields two identical photonic bandstructures for the compressed and expanded PCs.109
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Figure 3: a) Schematics of a supercell consisting of a line interface between a com-
pressed and expanded PCs. b) Calculated bandstructure of the supercell along the x
direction. The bandstructure presents bulk bands (grey) with two sizeable gaps in
which localized modes are present (red and blue curves). The modes are confined
at the interface of the two regions of the PCs. The arrows overlaid on the electro-
magnetic field distribution underline the directionality of the propagation. c) Spatial
distribution of the out-of-plane component of the electromagnetic field (Ez) in the
supercell as a function of the lateral size of Ge d. The supercells are stacked horizon-
tally as d increases from 0.1a to 0.9a, where a is the lattice parameter.

It is important to highlight that in a SSH model the band dispersion does not change with110

the inversion of the intra- and inter-cellular distances between the elements composing the111

unit cell, but the symmetry of the eigenfunctions is different, as they possess opposite par-112

ity. [40, 55] To gather further insights on the bandstructure of the expanded and compressed113

PCs, we calculated the out-of-plane electric field distribution Ez (TM mode) for such unit cells.114

Particularly, we investigate the Ez distribution at the X point of the bandstructure, where the115

PBG opens up. The Ez distribution maps are reported in Figure 2g,i. Here, the compressed PC116

presents an even Ez distribution in the lower band and an odd distribution in the high-energy117

band. The opposite occurs in the expanded structure. This parity inversion confirms the equiv-118

alence of the two PC structures to a 2D SSH model. Therefore, the compressed and expanded119

PC belongs to distinct topological phases, where the parity of the bands can be considered as120

the topological invariant. In particular, the compressed structure is an ordinary insulator, while121

the expanded is topologically nontrivial.122

The clearest evidence of the presence of a topological transition is the emergence of spa-123

tially confined guided modes at the boundary between two domains with different band topol-124

ogy. [5, 7, 56–58] Figure 3a reports the schematic of an interface between the two PCs char-125

acterized by distinct topological invariants. For its characterization we designed a so-called126

supercell composed of a ribbon of 20 unit cells where the top (bottom) 10 unit cells are com-127

pressed (expanded). In other words, the top half of the supercell is an ordinary insulator, while128

the bottom half is topologically nontrivial. The FEM simulation of this structure is performed129

with periodic conditions along the x direction, and the eigenfrequencies are calculated as a130

function of kx , from −πa to
π

a . A perfectly matched layer is used as the boundary condition131

for the top and bottom of the ribbon to simulate an infinite PC. The resulting bandstructure is132

shown in Figure 3b. It presents a large number of bulk modes and two energy gaps, the larger133

of which covers the interval between 41 and 65 THz, while a second, non complete one is at134

around 75 THz. For the scope of this work, we focus on the full PBG at lower energy. The135

bandgap frequencies are the same as those calculated for the bulk unit cells along the Γ − X136

direction (see Figure 2). The presence of a single mode in the PBG, located at ∼ 45 THz, is a137
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fingerprint of the interface of two phases with a different topological invariant. Such a mode is138

spatially localized at the interface of the two domains, as is shown by the plot of Ez (see Figure139

3b), with the electric field mostly penetrating the high-index structure. The arrows overlaid140

on the Ez map are the local Poynting vectors that represents the direction of propagation of the141

electromagnetic wave. The representation of the Poynting vector allows us to underline the142

presence of unidirectional propagating modes, that can be selectively coupled through helical143

excitation. [3,5,56] Figure 3c shows that when d is varied the imbalance between the air and144

Ge fractions affects the confinement of the edge mode, so that the field is almost perfectly145

localized within the two interfacial unit cells only for d ranging from 0.2a to 0.5a.146

The demonstration of the presence of optical modes at the interface between domains147

suggests a possible application of Ge-on-Si photonic architectures as on-chip THz waveguides148

in topological circuits. We can further extend our results by designing a 2D device that could149

also exploit the generation of higher-order topological modes at the intersection between such150

hinge modes. Figure 4a introduces a resonator composed of a square of the expanded PC having151

a side of 9-unit cells, surrounded by a cladding frame consisting of 4-unit cells of the compressed152

PC defining an interface that supports the mode described in Figure 3. The solutions of the153

eigenvalue analysis for the resonator are separated in four well-defined frequency regions, as154

shown in Figure 4b,c. The nature of these modes can be determined by analyzing the electric155

field distribution, as shown in Figure 4d-g. The electromagnetic field maps for solutions for156

frequencies < 41 THz (see Figure 4d) and > 65 THz (see Figure 4g) clearly demonstrate157

the bulk nature of the modes, that permeate vast regions of the PC. In the frequency range158

pertaining to the PBG two well separated sets of solutions are present at ∼ 47 THz and at 55159

THz. First, we focus on the four degenerate modes at 55 THz that dominate the energy density160

spectrum reported in Figure 4c. The map of the electric field distribution, reported in Figure161

4f, shows that these are extremely localized 0D corner modes. Their existance demonstrates162

that the structure described in this work is a higher-order TPC characterized by a bulk-edge-163

corner correspondence. [59] Moreover, localized corner modes are extremely interesting for164

their strong confinement properties and can be exploited for their possible applications to165

devices that need high-quality factor resonators such as light emitters, sensors, and non-linear166

systems. [40,41,60,61]167

We now focus on the lower energy modes, found at frequency around 47 THz. The electro-168

magnetic field distribution shows that these are edge modes confined at the interface between169

the trivial and topological PC structures. Their study can give further insight on the topological170

properties of the PC and how they influence the propagation of light at the interface between171

the two topologically-distinct domains. As described above, a characteristic property of TPCs172

is the directional propagation of light, which is related to its degree of circular polarization. To173

demonstrate this feature, we simulated the propagation of circularly polarized light by using174

an array of opportunely spaced phased dipoles localized at the interface between the topologi-175

cally distinct regions. [62] The overlay of the Poynting vector on the electromagnetic field map,176

shown in Figure 4h-i, demonstrates how the propagation is strongly directional and locked to177

the degree of circular polarization, allowing chiral propagation at the interface of the PCs in178

the THz range.179

3 Conclusions180

We demonstrated the possibility of achieving higher-order topological effects in the THz regime181

in a PC composed of group IV heteroepitaxial microstructures. Such a HOTIs can be utilized182

for the development of elemental components of photonic circuitries such as resonators and183

waveguides. By combining Ge-based heterostructures with the intrinsic scalability of PCs one184

6



SciPost Physics Submission

Figure 4: a) Schematics of a resonator composed of a square interface between an
expanded PC surrounded by a compressed PC (d = 0.3a). The interface is marked
with a red dashed line. b) Eigenfrequency values of the resonator as a function of
the solution number. Four groups can be identified that correspond to bulk modes
(low- and high-energy, grey), edge (red), and corner (blue) modes. c) Normalized
field intensity as a function of the frequency, highlighting the bulk, edge and corner
modes. d-g) Distribution of the out-of-plane component of the electric field at four
significant frequencies corresponding to a low-energy bulk mode (d), edge mode (e),
corner mode (f), and a high-energy bulk mode (g). h,i) Electromagnetic field Ez dis-
tribution at the bottom left corner of the resonator, when the resonator is excited with
left (h) and right (i) circularly polarized light. The arrows at the interface between
the topologically distinct regions are the Poynting vectors, highlighting a direct cor-
respondence between light polarization and the direction of propagation.
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can obtain devices working in a wide range of frequencies, possibly from mid-infrared to the185

THz. Furthermore, the capacity to embed THz emitters in the microstructures in the form of186

Ge/SiGe quantum wells might open a pathway to realize integrated, topological lasers with187

a small footprint and high throughput that operate within technologically relevant spectral188

regions.189
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