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Abstract

We study the null asymptotic structure of Einstein–Maxwell theory in three-dimensional (3D)
spacetimes. Although devoid of bulk gravitational degrees of freedom, the system admits a
massless photon and can therefore accommodate electromagnetic radiation. We derive fall-off
conditions for the Maxwell field that contain both Coulombic and radiative modes with non-
vanishing news. The latter produces non-integrability and fluxes in the asymptotic surface
charges, and gives rise to a non-trivial 3D Bondi mass loss formula. The resulting solution space
is thus analogous to a dimensional reduction of 4D pure gravity, with the role of gravitational
radiation played by its electromagnetic cousin. We use this simplified setup to investigate choices
of charge brackets in detail, and compute in particular the recently introduced Koszul bracket.
When the latter is applied to Wald–Zoupas charges, which are conserved in the absence of news,
it leads to the field-dependent central extension found earlier in [1]. We also consider (Anti-)de
Sitter asymptotics to further exhibit the analogy between this model and 4D gravity with leaky
boundary conditions.
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1 Introduction and summary

Despite its key role in physics, the behaviour of quantum gauge field theories at large distances
and low energies remains poorly understood. Indeed, the bulk degrees of freedom of gauge theories
can be quantized with standard Hamiltonian methods [2], but their physical boundary states are
exceedingly sensitive to choices of fall-off conditions and thus require a separate treatment. This
subtlety is especially striking in cases that contain propagating modes (as opposed to topological
field theories), where the global symmetries of boundary states—i.e. asymptotic symmetries—suffer
from radiative ambiguities. The present work is therefore devoted to a detailed classical investigation
of such issues in a simple gauge system: gravitation coupled to electrodynamics in three spacetime
dimensions (3D). In this introduction, we first motivate the subject, then present an overview of
our main results along with a plan of the paper.

Motivations. The difficulties in quantizing the infrared sector of gauge theories are best exem-
plified by gravitation, whose general covariance requires that conserved quantities (say energy or
momentum) be defined in terms of asymptotic fluxes as opposed to local current densities [3, 4].
This is an old, general and standard result whose counterpart for 4D gravitational radiation in-
volves the infinite-dimensional Bondi–Metzner–Sachs (BMS) group at null infinity, first introduced
half a century ago [5–11]. Such constructions are indeed well known by now, but the full scope
of their implications has only recently become apparent thanks to new insights on holography in
Minkowskian spacetimes [12–15] and the discovery of deep links between asymptotic symmetries and
the infrared sector of gauge theories [16–19]. Following these ideas, asymptotic symmetries were
studied in numerous contexts, notably including electrodynamics and Yang–Mills theory [20–25].
A common aspect of all these works is that one’s choice of fall-off conditions for field components
determines the phase space of available field configurations, which in turn influences the soft sector
of the theory and the resulting symmetries.

The present paper is devoted to the asymptotic symmetries of 3D gravity coupled to a Maxwell
field. This setup was first studied in [1], but we shall argue that a crucial sector of radiative field
configurations was overlooked in that reference. Indeed, our investigation is precisely motivated
by the (much more involved) issue of radiative ambiguities in the asymptotic symmetries of 4D
general relativity. In that case, the presence of gravitational waves implies that the radiative phase
space at null infinity is an open system [26–28], which has important technical and conceptual
implications. The first is that asymptotic charges are not conserved in time but obey instead flux-
balance relations, such as the Bondi mass loss relating the decrease of mass to the radiation crossing
null infinity. The second is that charges are generally non-integrable, as the associated symmetries
fail to be Hamiltonian due to the presence of symplectic fluxes. This hinders the study of the
corresponding asymptotic charge algebras, since no canonical bracket can a priori be defined.

In fact, a tentative solution to this puzzle was put forward by Barnich and Troessaert [12–14],
yielding e.g. an asymptotic charge algebra extended by a suggestive field-dependent cocycle [14].
But the prescription of [14] is ultimately ambiguous, since it relies on an arbitrary splitting between
integrable terms and non-integrable fluxes when defining the very notion of ‘charge’. It is therefore
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essential to elucidate the origin and the extent of this arbitrariness, the goal being to eventually
isolate unambiguous boundary symmetries. In the specific case of reference [14], the split ambiguity
can actually be fixed by the Wald–Zoupas (WZ) prescription [29–31] that singles out the integrable
charge by requiring conservation in the absence of radiation. However, it is unclear if an analogous
way out exists in general radiative cases. Radiative asymptotic symmetries are thus crucial for
quantum gravity and gauge theories as a whole, and for Minkowskian holography in particular
[13, 32–39]. Note that similar questions can also be raised in (Anti)-de Sitter [(A)dS] spacetimes,
where radiation and holography with porous boundary conditions were recently studied in [40–57].

Our focus on a 3D toy model is motivated by the desire to simplify matters, while still retaining
the essential features of realistic radiative systems. Indeed, pure 3D gravity is a topological field
theory (no propagating degrees of freedom) that has often served as a fruitful testbed for asymptotic
symmetries, starting with the seminal work [58] on the boundary Virasoro algebra of AdS3. The
analogous symmetry of 3D Minkowskian spacetimes is the BMS3 algebra [59–61]. In both AdS
and flat cases, the absence of radiation allows one to delve deep into holographic territory on a
purely group-theoretic basis. For instance, unitary representations of asymptotic symmetries [62–
68] and their relation to bulk metrics through coadjoint orbits and geometric actions [69–78] are
well established in both situations, as is the Cardy-ology of black holes and cosmological solutions
[79–81]. No such control is available in the 4D realm, where the study of coadjoint orbits [82] and
geometric actions [83, 84] is in its infancy, and mostly limited to the sector without radiation.

Hence our interest in the 3D Einstein–Maxwell system: it is radiative (the electromagnetic field
has one local degree of freedom) but sits between 3D and 4D general relativity in terms of complexity,
as it shares the geometrical simplicity of the former while also describing radiative aspects relevant
to the latter. Its symmetries were studied in the aforementioned reference [1] (see also [85, 86]),
where the authors identified a non-integrable contribution to the charges, which they interpreted
as being sourced by electromagnetic ‘news’. However, this interpretation should be done with care,
as a slightly more general setup reveals a key subtlety. This is actually the gist of our work: we
generalize the analysis of [1] by considering weaker fall-offs for the Maxwell field. In particular,
while the fall-offs of [1] include logarithmic terms (as required for the 3D Coulomb solution) and
integer powers of the radius r, here we also allow for terms in half-integer powers of r. This is
because radiative fall-offs for the 3D Maxwell field in (retarded) Bondi coordinates (r, u, φ) and in
radial gauge take the form (see fig. 1)

Aφ = C
√
r + . . . , Au = E(ln r) +G+ . . . . (1.1)

Here C(u, φ) is an unconstrained function on I + and denotes the radiative electromagnetic data,
E(φ) is the electric charge aspect, G(u, φ) is another unconstrained function, and the dots are
subleading terms (which we will analyse in detail). With such relaxed fall-offs, 3D Einstein–Maxwell
theory with electromagnetic radiation becomes analogous to a dimensional reduction of 4D pure
gravity with gravitational radiation [59, 87]. In particular, both the symplectic structure and the
charges at null infinity involve the variational one-form CδN , where

N(u, φ) := ∂uC(u, φ) := Ċ(u, φ) (1.2)
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Figure 1: A Penrose diagram of 3D Minkowski spacetime, showing retarded Bondi coordinates
(r, u, φ) along with light-cones centred at the origin. Future null infinity is the region denoted I +,
where r →∞ at finite (u, φ). The presence of electromagnetic radiation (wiggly lines) reaching I +

is diagnosed by a non-zero news function (1.2). Adapted from [88, fig. 1].

is the electromagnetic news. For comparison, recall that the news in 4D gravity is a symmetric
tracefree rank-2 tensor Nab, while in 4D Maxwell theory it is a vector Na in terms of coordinates
xa on the celestial 2-sphere:

4D 3D

Einstein Nab /0

Maxwell Na N

This highlights again that 3D Maxwell exhibits the simplest form of news. Coupling it to Einstein
gravity makes it possible to study the interplay between this news and gravitational asymptotic
symmetries. In particular, the Bondi mass aspect M then satisfies a mass loss formula Ṁ = −2N2,
analogous to its celebrated 4D version with gravitational news replaced by its electromagnetic
counterpart. No such structure occurs in the analysis of [1], due to stronger fall-offs setting C = 0.

As stated above, the new boundary conditions presented here provide an ideal arena to study
all the subtleties related to radiation, such as non-integrability, flux-balance laws and ambiguities
in one’s choice of charge brackets. An additional goal is to contribute to the study of asymptotic
symmetries for general relativity coupled to matter fields. For 4D Einstein–Maxwell theory, asymp-
totic symmetries were already partly studied in [89, 90], where the first reference focusses on WZ
charges. Given our observations below on charge algebras and their field-dependent cocycles, it
would be interesting to also study the charge algebra in the 4D case. We hope to come back to this
in the future.
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Outline and summary of results. The paper is organized as follows. We start in section 2
by analysing pure Maxwell theory in 3D Minkowski spacetime. From the electromagnetic field
produced by a compact source, we deduce the fall-offs to be used later in Einstein–Maxwell theory
in Bondi coordinates. We then compute the 3D electromagnetic memory effect, which consists of
a net change of angular velocity caused by radiation on any charged test mass near null infinity.
In contrast to the 4D case [91], this is not directly related to a change of U(1) asymptotic charges;
the mismatch ultimately stems from the difference between Coulombic and radiative falls-off in any
spacetime dimension other than four.

Section 3 is devoted to the solution space of Einstein–Maxwell theory with vanishing cosmological
constant. We explain there how the field equations are solved following the Bondi hierarchy, deferring
the details to appendix A. The upshot is that the solution space contains, among others, two
functions M(u, φ) and L(u, φ). These are respectively the mass and angular momentum aspects
in the metric, subject to the evolution equations (3.10), the first of which is the Bondi mass loss
sourced by the electromagnetic news (1.2). In addition, the solution space contains two completely
unconstrained functions on I +, namely the electromagnetic shear C(u, φ) and a function G(u, φ)

as in (1.1). Only G was present in [1], where it gave rise to non-integrable asymptotic charges and
was thus identified as ‘news’. We will show instead that G(u, φ) should be considered as sourcing a
‘spurious flux’, while the ‘true news’ is the quantity Ċ sourcing the Bondi mass loss through a flux
of energy momentum at I +.

Note that the phase space thus obtained contains two free functions on I +, namely C(u, φ)

and G(u, φ). This may seem perplexing given that the theory admits a single degree of freedom.
Actually, an analogous situations occurs in 4D pure gravity, where one can relax boundary conditions
so that the solution space contains other undetermined functions of u on top of the two degrees
of freedom in the asymptotic shear Cab. This includes for instance the induced boundary metric
on I + [53, 54] or the trace of Cab in Newman–Unti gauge [54, 92], and it allows one to describe
physically relevant solutions with Cab = 0, such as Robinson–Trautman spacetimes [93–95]. The
metric on I + can similarly be relaxed in 3D pure gravity, resulting in a phase space with three
unspecified functions of u even though the bulk theory has no propagating degrees of freedom at
all [96, 97]. In the case of 3D Einstein–Maxwell theory, the known radiative configurations are such
that C 6= 0 and G = 0; in fact, G may be seen as a gauge redundancy. It is nevertheless possible
that the theory admits interesting solutions with C = 0 but G 6= 0, so we will initially keep both
fields non-zero in our analysis of symmetries and charges.

In section 4, we turn to the characterization of asymptotic symmetries. These are labelled
by an asymptotic Killing vector field ξ and a U(1) gauge parameter ε on I +, spanning a semi-
direct sum bms3 + C∞(I +). A striking aspect of this construction is that the U(1) parameter at
leading order has an arbitrary dependence on retarded time u, whose origin is the free u-dependent
function G in the solution space (1.1). Indeed, one can see from the transformation laws (4.4)
that setting G = 0 fixes the arbitrary time dependence, reducing the aforementioned algebra to
a semi-direct sum bms3 + C∞(S1). Irrespective of this feature, we find that the (integrands of
variations of) asymptotic charges are given by (4.10) and exhibit two non-integrable terms arising
from supertranslations. The first such term is NδC, involving the radiative data of (1.1) and the
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news (1.2); the second is GδE, where E is the electric charge aspect in (1.1). These non-integrable
contributions imply that a splitting prescription is required for the choice of integrable parts and
the bracket of surface charges. This is the (expected) key subtlety anticipated in the motivations
above.

Section 5 is therefore devoted to the study of the choice of bracket. We start with the Barnich–
Troessaert (BT) prescription [14] in the case G 6= 0, whereupon the charge algebra reproduces
that of asymptotic symmetries with a field-dependent central extension (really a 2-cocycle) given
in (5.6) below. In the case G = 0, which must be treated with care since it makes the U(1) gauge
parameter field-dependent, we define WZ charges that are conserved when the news (1.2) vanishes.
The resulting charge algebra features once again a field-dependent 2-cocycle. Both such extensions
were previously found in [1], so they are unaffected by our weaker choice of fall-offs.

The presence of field-dependent cocycles is expected to affect the unitary representations of
charge algebras, hence quantum theories having these algebras as symmetries. It is therefore impor-
tant to ask whether field-dependent cocycles are a generic feature, or if they can be removed with
suitable choices of integrable splits or brackets. To this end, we first discuss the so-called Noether
split and bracket introduced in [98, 99]; the ensuing algebra closes with a vanishing cocycle (even
the central extension of [60] is absent!), but integrable charges fail to be conserved in the absence of
radiation. We therefore turn to the Koszul bracket1 introduced in [100], whose key advantage is to
be independent of the choice of split between integrable and flux pieces. The Koszul bracket gives a
surprising result: when G 6= 0, the cocycle in the charge algebra is non-zero but field-independent,
as in pure 3D gravity [60]; but setting G = 0 yields the same field-dependent cocycle as with the
BT bracket of WZ charges. Moreover, this last cocycle turns out to be non-zero even in the absence
of electromagnetic news, suggesting that field-dependent extensions are a genuine feature of 3D
Einstein–Maxwell theory.

In section 6, we switch on a cosmological constant (with arbitrary sign). Einstein–Maxwell theory
in AdS3 was previously studied in [86] in Bondi gauge, and in [101, 102] in the Fefferman–Graham
gauge that admits no well-defined flat limit. In Bondi gauge, introducing Λ 6= 0 is straightforward
and the flat limit is well-defined [61]. Working in (A)dS3 then deepens the analogy between the
present 3D model with electromagnetic radiation and pure 4D gravity with gravitational radiation.
For instance, we find that Λ 6= 0 allows no half-integer powers of r in the fall-offs, analogously to the
absence of logarithmic terms in (A)dS4 [53, 54]. Furthermore, when Λ 6= 0, initial conditions on a
cut of I + need to be specified for only finitely many components of the Maxwell field, while Λ = 0

involves an infinite tower of data subject to evolution equations. This is similar to what happens
in 4D pure gravity when studying the role of subleading tensors in the angular metric. We finally
conclude in section 7 with some perspectives for future work.

1We thank Adrien Fiorucci for encouraging us to study the Koszul bracket, and for sharing preliminary results
based on joint work with Glenn Barnich and Romain Ruzziconi [100].
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2 Pure Maxwell theory in 3D

This section sets the stage by spelling out basic facts on 3D pure electrodynamics. We first solve
Maxwell’s equations for a compact source to motivate fall-off conditions in Lorenz gauge, before
finding the analogous fall-offs in Bondi gauge. We then briefly comment on electromagnetic memory
effects and point out the difference of their behavior with respect to the 4D case.

2.1 Electromagnetic field from compact sources

Consider 3D Minkowski spacetime, choose some inertial coordinates xµ = (t,x), and let jµ(x, t) be
some current density that is compactly supported in space. The current acts as a source for an
electromagnetic field Aµ such that ∂µFµν = −jν , which yields �Aµ = −jµ in the Lorenz gauge
(∂µAµ = 0). Our goal is to find the asymptotics of Aµ in Bondi coordinates.

The first step is to solve Maxwell’s equation �Aµ = −jµ. Using the (retarded) Green’s function
of the 3D d’Alembert operator, the solution reads

Aµ(x, t) =
1

2π

∫
d2y

∫ t−|x−y|

−∞
ds

jµ(y, s)√
(t− s)2 − |x− y|2

. (2.1)

In contrast to the more familiar 4D case, the Green’s function that gives (2.1) is not localized on a
light-cone emanating from the source. This may be viewed as a violation of the Huygens principle
in 3D [103], and it ultimately results in (logarithmic) infrared divergences that are absent in 4D.
Indeed, consider (2.1) for a point charge. If the latter is static (say at the origin r = 0), its current
density is j0(y, s) = qδ(2)(y) and j1 = j2 = 0. Plugging this in (2.1) yields A1 = A2 = 0, but A0

involves an integral that diverges owing to the infinite lower bound on s. The key point, though, is
that this divergence is a constant that depends on none of the spacetime coordinates. To see this,
fix the radius r = |x| and replace the lower integration bound in (2.1) by some cutoff time −T such
that T � r and T � |t− r|. Then

A0(r, t) =
q

2π

∫ t−r

−T

ds√
(t− s)2 − r2

=
q

2π
ln
(

2
T + t

r

)
= − q

2π
ln(r) +

q

2π
ln(2T ) +O(T−1) (2.2)

in the limit T → +∞, where the divergent term ln(2T ) is indeed independent of both r and t. Thus
the Coulombic electrostatic potential in 3D is

A0(r) = − q

2π
ln r (2.3)

up to an irrelevant additive constant, as was in fact expected from the Green’s function of the 2D
Laplacian. Note that the same behaviour holds near future null infinity (see fig. 1), where r → ∞
and t→∞ with u = t− r finite.

In 4D, Coulombic and radiative fall-offs coincide. This is not so in 3D, where the Coulombic
potential (2.3) has little to do with its radiative counterpart. One can again verify this from (2.1),
now letting jµ be the current density of a moving point charge so that jµ(y, s) = qvµ(s)δ(2)(y−X(s)),
where v0 := 1 and vi := ∂Xi/∂s in terms of some timelike worldline X(s) = (X1(s), X2(s)). For
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simplicity, we shall assume that the velocity v = (v1, v2) of the source is small compared with the
speed of light. Then the vector potential behaves as

Ai(x, t) ∼
q

2π

∫ t−r

−∞

vi(s) ds√
(t− s)2 − r2

(2.4)

at leading order in |v|, and in the limit where r and t are large but t− r is finite. To make further
progress, Fourier-transform the velocity as

vj(s) =

∫ +∞

−∞
dω ṽj(ω) eiωs, (2.5)

where ṽj(ω) = O(ω) as ω → 0 since v(s) is the time derivative of the position X(s). Plugging (2.5)
in the potential (2.4) and using the saddle-point approximation at large ωr then yields

Ai(x, t) ∼
q

2π

√
π

2r

∫ +∞

−∞
dω

ṽi(ω)√
ω

eiωu+iπ/4. (2.6)

As for the scalar potential given by (2.1), it still satisfies (2.3) at leading order. Note the stark
contrast between the Coulombic O(ln r) fall-off of the latter, and the radiative O(r−1/2) fall-off in
(2.6). The difference may be seen as a remnant of the saddle-point approximation, which only holds
at ω 6= 0 and was therefore not valid in the Coulombic case.

Equations (2.3) and (2.6) were written in inertial coordinates and in Lorenz gauge, but moving
to Bondi coordinates is a simple matter: using as usual x+ iy = r eiφ and t = u+ r, the Minkowski
spacetime metric becomes

ds2 = −du2 − 2dudr + r2dφ2 (pure Minkowski) (2.7)

and Bondi components of the electromagnetic potential are related to its inertial components by

Au = A0 = O(ln r), Aφ = xAy − yAx = O(r1/2), Ar = A0 +
1

r
Aix

i = O(ln r). (2.8)

This is already close to the fall-offs announced in (1.1); the only difference is that Lorenz gauge
and radial gauge differ. To move from the former to the latter, perform a gauge transformation
A→ A+ dε that sets Ar + ∂rε = 0. This fixes ε up to a (u, φ)-dependent integration function that
we set to zero so as to leave the components Au and Aφ unaffected. Note that ε is guaranteed to
only depend on r at leading order, since the leading part of Ar is the Coulombic field (2.1); as for
subleading terms, one can actually check that the radiative scalar potential in Lorenz gauge satisfies
A0 ∼ − q

2π ln(r)− 1
rAix

i +O(r−3/2), so that Ar in (2.8) is independent of (u, φ) at least up to order
r−3/2. This guarantees that the gauge transformation moving from Lorenz gauge to radial gauge
can indeed be chosen so as to leave Au and Aφ untouched, at least at leading order.

2.2 Fall-offs in Bondi gauge

Having determined the electromagnetic fall-offs that will be used throughout the paper, we now
investigate them in detail and solve Maxwell’s equations in Bondi coordinates, near null infinity,
and in radial gauge Ar = 0. We stress that essentially identical results will hold even in the presence
of gravitation (see section 3.2), so this is a key prerequisite for all that follows.
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Fall-offs. We start with the detailed form of the fall-off conditions (1.1) for the Maxwell field:

Au = E ln r︸ ︷︷ ︸
Coulombic

+ G +
∑

m∈N/2

dme∑
n=0

Am,nu

(ln r)n

rm
, (2.9a)

Aφ = A`φ ln r +A0
φ +

∑
m∈N/2

dme∑
n=0

Am,nφ

(ln r)n

rm
+ C
√
r︸ ︷︷ ︸

radiative

. (2.9b)

Here the sum over m includes both integer and half-integer powers of r, d·e denotes the ceiling
function,2 and each component of the form A×× is a priori an arbitrary function of (u, φ). Note the
leading Coulombic data (electric charge aspect) E(u, φ) in (2.9a): this mimics the Coulomb solution
(2.3) and the fall-off in (2.8), but now includes an angular dependence to account for the possibility
of Lorentz boosts (and ultimately superrotations, as we shall see). Also note how Aφ in (2.9b)
has an overleading term C

√
r with respect to Au, containing a field suggestively called C(u, φ) in

analogy with the Bondi shear of 4D gravity. Indeed, C will turn out to incorporate radiative degrees
of freedom as in (2.8), and its time derivative (1.2) will be the electromagnetic news.

A remark is in order regarding the field G(u, φ) in (2.9a). Namely, the argument in ln r must
be dimensionless, so an implicit radial constant r0 was set to unity; the first two terms in (2.9a)
should thus be understood as E ln(r/r0) +G. One could be tempted to absorb G in the definition
of r0 by rescaling the radial coordinate, but we will keep G(u, φ) as a separate, independent field
because it will ultimately appear in asymptotic charges.

Equations of motion. Starting with the fall-offs (2.9), one can solve the vacuum Maxwell equa-
tions∇µFµν = 0, which are always valid away from sources. The radial Maxwell equation∇µFµr = 0

then determines the scalar potential Am>0,n
u in terms of the vector potential Aφ. More precisely,

solving recursively in 1/r, one gets the leading-order behaviour

∇µFµr = O(r−3) ⇒

{
A

1/2,1
u = 0,

A
1/2,0
u = 2C ′,

(2.10)

while subleading components are relegated to appendix A.1. As for the angular Maxwell equation
∇µFµφ = 0, it determines the time evolution of the coefficients of Aφ. Again solving recursively in
1/r, one finds

∇µFµφ = O(r−2) ⇒



Ȧ`φ = E′,

Ȧ0
φ = E′ +G′,

Ȧ
1/2,1
φ = 0,

Ȧ
1/2,0
φ =

3

2

(
1

4
C + C ′′

)
.

(2.11)

2Note that nothing requires for now that the sums over n in (2.9) stop at n = dme. One could a priori consider
expansions more general than (2.9). However, Maxwell’s equations turn out to impose Am,n>dmeu,φ = 0. We chose to
include this piece of information as a defining property in (2.9).
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These equations, along with (2.10), show that the whole dynamics is fixed by C(u, φ) along with
the Coulombic data E(u, φ) and the function G(u, φ). Finally turning to the remaining Maxwell
equation, one obtains

lim
r→∞

(r∇µFµu) = 0 ⇒ Ė = 0. (2.12)

Thus the Coulombic data is forced by dynamics to be time-independent: E = E(φ). This is in fact
the only contribution in the temporal Maxwell equation. Indeed, since ∇µFµr = 0 = ∇µFµφ has
already been solved, one can deduce from the identity ∇µ∇νFµν = 0 that ∂r(r∇µFµu) = 0, which
means there is a single term in the radial expansion. Note that the solutions (2.10), (2.11) and
(2.12) are all linear in the Maxwell fields, while the corresponding solutions in Einstein–Maxwell
theory are non-linear due to gravitational backreaction (see appendix A).

Gauge-invariant fields. With the fall-offs (2.9), the components of the Faraday tensor are

B := Frφ =
C

2
√
r

+
A`φ
r

+O(r−3/2), (2.13a)

Er := Fur = −E
r

+
C ′

r3/2
+O(r−2), (2.13b)

Eφ := Fuφ = N
√
r + E′ +O(r−1/2), (2.13c)

where N is the news (1.2). We stress again that the radiative and Coulombic data in the radial
electric field (2.13b) do not appear at the same order, differently from what happens in 4D. The
fact that the boundary conditions (2.9) include both Coulombic and radiative data can then also
be seen from the Newman–Penrose formalism. Indeed, consider the triad of vectors

` := ∂r, n := −∂u +
1

2
∂r, m :=

1

r
∂φ (2.14)

such that gµν = `µnν + `νnµ + mµmν be the inverse of the Minkowski metric (2.7) in Bondi
coordinates. The triad is thus null and normalized, and contracting its elements with the Faraday
tensor (2.13) yields the Maxwellian Newman–Penrose scalars

Φ0 := Fµν`
µmν =

C

2r3/2
+O(r−2), (2.15a)

Φ1 := Fµνn
µ`ν =

E

r
+O(r−3/2), (2.15b)

Φ2 := Fµνn
µmν = − N√

r
+O(r−1), (2.15c)

where Φ1 and Φ2 respectively identify Coulombic and radiative data.
For future use in the Einstein equations, let us compute the (symmetrized) electromagnetic

energy-momentum tensor

Tµν = 2FµαFν
α − 1

2
gµνF

αβFαβ. (2.16)
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Its components Tuu and Tuφ, written in Bondi coordinates, respectively measure energy fluxes and
angular-momentum fluxes. In the case at hand, gµν is the Minkowski metric (2.7) and one finds

Tuu =
2N2

r
+O(r−3/2), Tuφ = −2NE√

r
+

2

r

(
NC ′ − EE′

)
+O(r−3/2). (2.17)

Note how the energy density Tuu involves the square of the news; this will eventually yield a Bondi
mass loss formula for the dynamical metric. Also note that the angular momentum density Tuφ
depends not only on the radiative field C, but also on the Coulombic data E. The same property
holds in 4D Maxwell theory, and is usually considered as a puzzle since one naïvely expects no
Coulombic data to contribute to the radiation of angular momentum [89, 104, 105]. Another puzzle,
albeit one that is specific to 3D, is that Tuφ integrated on the asymptotic circle appears to be
divergent owing to the measure rdφ. A resolution of both puzzles will come from the asymptotic
charge (5.12a), which is finite and has a purely radiative flux sourced by the news.

2.3 Electromagnetic memory

We close this section with a short discussion of the electromagnetic ‘kick’ memory effect [91], partly
to illustrate how 3D and 4D differ. Consider a particle with mass m and charge q whose path in
spacetime traces some worldline with proper 3-velocity v. The particle is subjected to some external
electromagnetic field Fµν , whereupon its proper acceleration is given by the Lorentz force

v̇µ =
q

m
Fµν v

ν . (2.18)

To see how this leads to memory, write the proper velocity as v = α∂u + β∂r + (γ/r)∂ϕ. Using the
Faraday tensor (2.13), the equations of motion (2.18) become

α̇ ∼ −E
r
α, β̇ ∼ − Ċ√

r
γ, γ̇ ∼ − Ċ√

r
α (2.19)

at leading order in 1/r. Thus, the angular acceleration γ̇ is determined by the news, as in 4D [91];
but in contrast to 4D, the effect is suppressed by a factor 1/

√
r. For a non-relativistic particle with

α ∼ 1, a finite burst of radiation thus yields a net change of angular velocity given by

∆γ ∼ −∆C√
r
, (2.20)

where the right-hand side involves the integral of electromagnetic news:

∆C(φ) := C(u = +∞, φ)− C(u = −∞, φ) =

∫
duN(u, φ). (2.21)

The velocity change (2.20) is non-zero at finite r, but it decays as r → ∞. As a consequence,
the memory effect (2.20) is unrelated to the leading surface charges of Maxwell theory, which
typically involve integrals of the Coulombic (as opposed to radiative) data E(φ) over the celestial
circle: see (4.10) below. We will see nevertheless that subleading electromagnetic charges involve
contributions of the form C ′/

√
r (see (4.11) below). One may view this as yet another manifestation

of the mismatch between radiative and Coulombic fall-offs in 3D. By contrast, 4D electromagnetic
memory involves a net change in angular velocity that is finite at infinity [91] and may be seen as
a vacuum transition under leading asymptotic symmetries.
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3 Setup for Einstein–Maxwell theory

In this section, we gather the ingredients needed to study asymptotic symmetries in Einstein–
Maxwell theory. Starting from the Lagrangian, we compute the Noether current and the equations
of motion, which we then solve with the fall-offs (2.9) in order to characterize the solution space.
We conclude with a digression on simple zero-mode configurations.

3.1 Lagrangian and Noether currents

Consider the Lagrangian density for 3D Einstein–Maxwell theory:

L =
1

2

√
−g
(
R− FµνFµν

)
. (3.1)

The equations of motion obtained by varying the corresponding action with respect to Aν and gµν

are the standard Maxwell and Einstein equations3

∇µFµν = 0, Eµν := Gµν − Tµν = 0, (3.2)

with Gµν the Einstein tensor and Tµν the energy-momentum tensor (2.16).
The pre-symplectic potential θ is identified as usual from the variation of the Lagrangian. More

precisely, one has δL = (EOM)δ(Aµ, gµν) + ∂µθ
µ with

θµ =
1

2

√
−g
(
gαβδΓµαβ − g

µαδΓβαβ − 4FµνδAν

)
. (3.3)

This is the starting point of the covariant phase space derivation of Noether charges associated with
gauge and diffeomorphism symmetries [106]. Indeed, any infinitesimal diffeomorphism ξ accompa-
nied by a gauge transformation ε transforms the metric and the electromagnetic potential according
to δξ,εgµν = £ξgµν and δξ,εAµ = £ξAµ + ∂µε. The corresponding transformation of the Lagrangian
is δξ,εL = £ξL = ∂µ(ξµL), and the ensuing off-shell Noether current is Jµ = θµ[δξ,ε] − ξµL, where
θ is given by (3.3). In the case at hand, one finds

Jµ =
√
−g ξν

(
Eµν + 2Aν∇αFµα

)
+

1

2

√
−g∇ν

(
∇νξµ −∇µξν − 4Fµν(ξαAα + ε)

)
. (3.4)

On-shell, the first term vanishes by virtue of the equations of motion (3.2). The remaining surface
term involves the integrand of the Noether charge, namely the ‘Komar–Maxwell aspect’

Kµν
ξ,ε =

1

2

√
−g
(
∇νξµ −∇µξν − 4Fµν(ξαAα + ε)

)
. (3.5)

The latter will be used below to compute asymptotic charges.

3.2 Fall-offs and radiative solution space

This section is the Einstein–Maxwell analogue of section 2.2. We specify gauge and fall-off condi-
tions, then explain the construction of the corresponding solution space.

3The tensor Eµν of the Einstein equation in (3.2) has nothing to do with the electric charge aspect E in (2.9a).
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Fall-offs and gauge conditions. In order to solve the field equations, one first has to pick gauge
and fall-off conditions for the metric and the Maxwell field. For the latter, we choose as before radial
gauge Ar = 0 and the fall-offs (2.9). For the metric, we work in Bondi coordinates and consider the
standard line element [107] that generalizes the pure Minkowski form (2.7):

ds2 = V e2βdu2 − 2e2βdu dr + r2(dφ− Udu)2, (3.6)

where (β, U, V ) a priori depend on all three coordinates (u, r, φ). The metric is thus written in
Bondi gauge, with the three gauge conditions grr = 0 = grφ and gφφ = r2.

Bondi hierarchy of field equations. Our goal is now to determine the perturbative large-
r behaviour of the functions (β, U, V ) thanks to the equations of motion (3.2). This is detailed
in appendix A. The construction follows the so-called Bondi hierarchy [6], where one first solves
hypersurface constraint equations (which are differential equations in r), before listing the true
evolution equations in retarded time u. This resolution of the field equations can be summarized
as follows.

First, the Einstein field equation Err = 0 determines the radial expansion of β in terms of the
components of Aφ. The constraint Erφ = 0 then fixes the radial expansion of U in terms of Aφ and
Au, up to a radial integration constant that is ultimately identified with the angular momentum
aspect L(u, φ). The radial Maxwell equation ∇µFµr = 0 then yields the coefficients Am>0,n

u in terms
of (E,Aφ). Finally, the remaining hypersurface constraint Eru = 0 determines the radial expansion
of V up to a radial integration constant, namely the mass aspect M(u, φ). The angular component
∇µFµφ = 0 of the Maxwell equation is then a true evolution equation that determines the time
evolution of Aφ, aside from that of the leading term C, while the equation ∇µFµu = 0 sets Ė = 0 as
in the earlier Minkowski-space result (2.12). Finally, Euφ = 0 and Euu = 0 determine the evolution
of angular momentum and mass [see (3.10) below], whereupon Eφφ = 0 is trivially satisfied.

A remark: in the solution for β and U , we have set to zero the two radial integration constants
β0(u, φ) and U0(u, φ) appearing at order r0. These functions parametrize the induced boundary
metric on I + and can be included in the solution space of 3D vacuum gravity [97]. It would be
interesting to investigate the effects of these boundary fields in the case of Einstein–Maxwell theory,
but this goes beyond our scope here.

Solution space. At the end of the day, with the gauge and fall-off conditions (2.9)–(3.6), the
non-vanishing components of the metric in Bondi gauge are

guu = 2E2(ln r) + 2M +O(r−1/2), (3.7a)

gur = −1 +
C2

2r
+O(r−3/2), (3.7b)

guφ =
8

3

√
r CE + 2(ln r)EA`φ + L+O(r−1/2), (3.7c)

gφφ = r2. (3.7d)

14



The components of the Faraday tensor are still given by (2.13), as in Minkowski space. The fact that
electromagnetic aspects of the problem are so weakly affected by gravity may be viewed as a conse-
quence of the absence of local gravitational degrees of freedom. Note, for comparison with reference
[1], that the dictionary between our notations and those of [1] is obtained with the replacements

E → −λ, A`φ → α, C → 0, M → θ

2
, L→ 1

2
N[1] − λα. (3.8)

We stress again that the electromagnetic radiative data C vanishes identically in [1].
As in section 2.2, gauge-invariant fields can readily be deduced from the results (2.13) and (3.7).

Thus the (uu) and (uφ) components of the stress-energy tensor are given again by (2.17), and
manifestly affect the metric at leading order in 1/r since the components (3.7) only reduce to the
standard ones of pure gravity [13] when E = C = 0. As for the Newman–Penrose formalism, the
triad (2.14) should now be replaced by the one appropriate for the metric in Bondi gauge (3.6):

` = ∂r, n = −e−2β

(
∂u +

V

2
∂r + U∂φ

)
, m =

1

r
∂φ. (3.9)

The corresponding Newman–Penrose Maxwell scalars have once again the expansion (2.15), as in
Minkowski space at leading order.

An important feature of the solution space concerns the nature of the free data on I +. Indeed,
the functions C(u, φ) and G(u, φ) in (2.9) do not satisfy any evolution equation in u: their time
evolution on I + is unconstrained. As mentioned in the introduction, the presence of two free
functions where one expects a single one (since 3D Maxwell theory has a single local degree of
freedom) may seem puzzling. From the energy flux (2.17) however, it is clear that C(u, φ) is the
electromagnetic shear; by contrast, G is a residual gauge degree of freedom akin to those that can be
unfrozen in 4D pure gravity [53, 54] or in vacuum 3D gravity with a free boundary metric [96, 97].
Aside from this free data on I +, the solution space contains an infinite amount of data satisfying
evolution equations in u: the mass M(u, φ), the angular momentum L(u, φ), the charge aspect
E(φ), and the components of Aφ other than C. In particular, the mass and angular momentum
aspects, i.e. the terms of order r0 in (3.7a) and (3.7c), satisfy the evolution equations

Ṁ = −2N2, L̇ = M ′ + EE′ +
1

2

(
CN ′ − 3C ′N

)
. (3.10)

The time derivative (1.2), naturally identified as the news, is indeed the quantity appearing in the
flux of energy-momentum tensor rTuu = 2N2 + O(r−1/2) given by (2.17). It is illuminating that
the evolution of the mass aspect in (3.10) takes a form similar to the 4D Bondi mass loss of pure
gravity:4 it is sourced by the electromagnetic news and exhibits that 3D Einstein–Maxwell theory
with radiative fall-offs is analogous to a dimensional reduction of 4D pure gravity. At the difference
with the 4D case however, one should note that the fluxes on the right-hand side of the evolution
equations (3.10) do not involve any soft term linear in the news.

4The evolution of angular momentum does as well, with the addition of a Coulombic term, but the comparison
with the 4D equations is perhaps less striking.
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The analogy with 4D pure gravity is further strengthened by the computation of the on-shell
symplectic potential (3.3). Its radial and temporal components are indeed given by

θr =
1

4
δ
[
4(ln r)E2 + 2E2 + 2M − CN

]
+NδC + EδG︸ ︷︷ ︸

non-exact

+O(r−1/2), (3.11a)

θu =
CδC

r
+O(r−3/2), (3.11b)

where θr contains a non-exact symplectic flux with two contributions: the first, NδC, is the 3D
analogue of the term NabδC

ab in 4D pure gravity; the second, EδG, is sourced by the extra free
field G(u, φ) in the solution space. This is the origin of the spurious flux identified in [1], which will
appear in the asymptotic charges. For the time being, we keep both sources of flux non-vanishing;
we will set G to zero only later, when studying surface charges.

3.3 Zero-mode solutions and angular momentum

Having characterized the solution space, it is illustrative to study ‘zero-mode solutions’, i.e. con-
figurations in which all fields on I + are constant parameters. In pure AdS3 gravity with Brown–
Henneaux boundary conditions [58], such zero-modes span a 2D parameter space indexed by mass
and angular momentum, containing in particular black holes [108], conical deficits and excesses, and
certain spacetimes with closed time-like curves (see e.g. the phase diagram in [65, fig. 8.5]). The flat
limit of these vacuum solutions respectively results in flat-space cosmologies, conical deficits and
conical excesses, while solutions with closed time-like curves are washed out [61].

The solution space built above contains purely gravitational data (i.e. data that is also present
in the vacuum case), namely the mass M and the angular momentum L. In addition, it includes an
infinite amount of Maxwell data: the shear C, the spurious field G, the Coulombic electric charge
aspect E, and all the components in the radial expansion of Aφ. When searching for zero-mode
solutions, it is natural to switch this all off except for the electric charge E. One thus seeks exact
solutions labelled by three constant parameters: the mass M , the angular momentum L, and the
electric charge E. We will indeed see in section 4.2 that these are the parameters conjugate to time
translations, rotations, and global U(1) transformations respectively.

One property of such zero-mode configurations deserves special attention.5 Namely, when all
the Maxwell data is switched off except the charge E, the (appended) equation of motion (A.15)
imposes EL = 0, implying that the solution cannot have both non-zero angular momentum L and
non-zero electric charge E. One might be tempted to conclude that a spinning charged solution is
necessarily radiative, but this is not so, since a consistent solution space can be obtained even when
C = 0 [1]. Instead, all (A.15) requires is that solutions having both L 6= 0 and E 6= 0 include other
modes of Aφ; to the best of our knowledge, there is no closed-form expression for such solutions.

The same conclusion can be reached using a flat limit of charged Bañados–Teitelboim–Zanelli
(BTZ) solutions in AdS3. Momentarily letting Λ = −1/`2, an exact solution to the field equations

5What follows is a digression on angular momentum that has few implications for the rest of the paper. The
hasty reader may thus go straight to section 4.
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∇µFµν = 0 = Gµν + Λgµν − Tµν is indeed given in coordinates (t, r, φ) by [109]

Aµdxµ =
Q√

2(1− L2/`2)
(ln r)

(
dt− Ldφ

)
, (3.12a)

ds2 =

(
Nr

r2

ρ2
+ ρ2N2

φ

)
dt2 −N−1

r dr2 + 2ρ2Nφ dt dφ+ ρ2dφ2, (3.12b)

where the radial coordinates r and ρ are related by

ρ2 = r2 +
L2

1− L2/`2
(
M +Q2(ln r)

)
(3.13)

and the shift components are

Nr = −r
2

`2
+M +Q2(ln r), Nφ = − L

ρ2(1− L2/`2)

(
M +Q2(ln r)

)
. (3.14)

The free parameters in (3.12) are (M,L,Q), respectively fixing the mass, the angular momentum
and the charge of the black hole. In the neutral limit Q = 0, the metric (3.12b) reduces to that
of a BTZ black hole [108, 110], whose ‘standard’ metric is obtained when using ρ as the radial
coordinate. Taking instead the flat limit `→∞ yields a solution of (3.2) with

Aµdxµ =
Q√

2
(ln r)

(
dt− Ldφ

)
, (3.15a)

ds2 = Nr dt2 −N−1
r dr2 − 2LNr dt dφ+ (r2 + L2Nr)dφ

2, (3.15b)

and Nr = M + Q2(ln r). In order to put this line element in Bondi gauge (3.6), we introduce the
new coordinate u = t+ f(r)− Lφ with ∂rf(r) = N−1

r , whereupon

Aµdxµ =
Q√

2
(ln r)

(
du−N−1

r dr
)
, ds2 = Nr du2 − 2dudr + r2dφ2. (3.16)

Here the component Ar can be trivially gauged away since it only depends on r. As a result,
in Bondi gauge, the flat limit of a charged BTZ black hole has no angular momentum, and is
parametrized only by the mass M and the electric charge Q. The angular momentum L has indeed
been reabsorbed from (3.15) in the change of coordinates that puts the metric in Bondi gauge.

This result may seem surprising at first: had we set Q = 0 from the outset, the angular momen-
tum would have been reabsorbed just as well, seemingly contradicting the existence of flat-space
cosmologies with non-zero angular momentum. But in fact, the simplification agrees with the fact
that all solutions of 3D gravity are locally isometric to a maximally symmetric spacetime, implying
the existence of a diffeomorphism that indeed changes angular momentum. To see this, start from
the flat-space zero-mode metric with mass M ,

ds2 = Mdu2 − 2du dr + r2dφ2, (3.17)
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and change coordinates according to6

u 7→ u+
1

M

(
Lφ− r +

√
r2 − L2

M

)
, r 7→

√
r2 − L2

M
, φ 7→ φ− 1√

M
arctanh

(
r
√
M

L

)
.

(3.18)

Using this in (3.17) yields the new metric

ds2 = Mdu2 − 2dudr + 2Ldu dφ+ r2dφ2, (3.19)

which is now a flat-space zero-mode with both massM and angular momentum L. Crucially though,
the transformation (3.18) is a ‘large’ diffeomorphism that affects asymptotic charges. The steps
leading from (3.12) to (3.16) similarly involved a large diffeomorphism to bring the flat limit of the
charged BTZ black hole in Bondi gauge, thereby explaining why angular momentum is ultimately
absent from (3.16).

4 Asymptotic symmetries and charges

The solution space of a theory is a covariant version of its phase space [111]. In the case at hand,
we have just obtained the covariant phase space of 3D Einstein–Maxwell theory containing both
radiative and Coulombic data. We now investigate its (asymptotic) symmetries and derive the
associated charges. As we shall see, the presence of radiation entails non-integrable terms whose
influence on the charge algebra will be studied at length in section 5.

4.1 Symmetry generators and transformation laws

We start with the derivation of the asymptotic Killing vectors ξµ = (ξu, ξr, ξφ), seen as generators
of diffeomorphisms that preserve the gauge and fall-off conditions used in writing the metric (3.6).
In particular, any such diffeomorphism must preserve the Bondi gauge choices grr = 0 = grφ and
gφφ = r2. Computing the relevant Lie derivatives thus imposes the following conditions:

£ξgrr = 0 ⇒ ξu = f, (4.1a)

£ξgrφ = 0 ⇒ ξφ = g − f ′
∫ ∞
r

e2β

r̃2
dr̃ = g +

f ′

r
+O(r−2), (4.1b)

£ξgφφ = 0 ⇒ ξr = r
(
Uf ′ − (ξφ)′

)
= −rg′ + f ′′ +O(r−1/2), (4.1c)

where f = f(u, φ) and g = g(u, φ) are free functions at this stage. An additional constraint is that
ξµ needs to preserve the fall-offs (3.6). Namely, the condition gur = −1 + O(r−1) requires ḟ = g′,
and preserving guφ = O(

√
r) imposes ġ = 0. In short,

f = T + ug′, Ṫ = 0 = ġ, (4.2)

6We do not discuss the range of the coordinates since we are only interested in producing a new solution.
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where T (φ) and g(φ) are arbitrary functions on the celestial circle, respectively generating super-
translations and superrotations [13]. The remaining fall-off guu = O(ln r) is automatically preserved.

Note that asymptotic Killing vector fields need not preserve the gauge and fall-off conditions
used in the Maxwell field (2.9), since any change due to a diffeomorphism can be reabsorbed by
a suitable gauge transformation. In particular, one needs to ensure that the radial gauge Ar = 0

is preserved when acting on A with the allowed symmetries δξ,εAµ = £ξAµ + ∂µε. Requiring
£ξAr + ∂rε = 0 with ξ given by (4.1)–(4.2) thus leads to the gauge parameter

ε = α(u, φ) + f ′
∫ ∞
r

e2βAφ
r̃2

dr̃ = α(u, φ) +
2√
r
f ′C +O(r−1). (4.3)

Here α(u, φ) is a free function on I +, generating ‘large gauge transformations’ of the Maxwell
field.7 We stress that its time dependence is unconstrained (which will come back to haunt us when
defining charges). The remaining fall-off conditions in (2.9) are automatically satisfied. Asymptotic
symmetry generators are thus labelled by a bms3 vector field (T, g) and a function α on I +. We
shall return to this structure shortly.

Transformation laws. The asymptotic symmetries obtained here were found off-shell, i.e. re-
gardless of the equations of motion. In practice, their action on covariant phase space is obtained
by computing Lie derivatives and gauge transformations of the solution space of section 3.2. The
resulting transformation laws of the various fields of interest can then be organized as follows. First,
the transformations of the mass and angular momentum aspects read

δξM = fṀ + gM ′ + 2g′M − g′′′︸ ︷︷ ︸
coadjoint bms3

− g′E2︸ ︷︷ ︸
Maxwell

, (4.4a)

δξL = fL̇+ gL′ + 2g′L+ 2f ′M − f ′′′︸ ︷︷ ︸
⊃ coadjoint bms3

−2g′EA`φ −
1

4
g′′C2 +

1

2
f ′CN︸ ︷︷ ︸

Maxwell

, (4.4b)

where one recognizes the coadjoint representation of the bms3 algebra with central charges c1 = 0,
c2 6= 0 [60], supplemented by corrections due to the time dependence of M,L and the presence of
electromagnetic boundary data. Second, the transformations of the electromagnetic shear and news
read

δξ,εC =
(
f∂u + g∂φ +

1

2
g′
)
C, δξ,εN =

(
f∂u + g∂φ +

3

2
g′
)
N, (4.5)

exhibiting the fact that C and N are bms3 primary fields with respective weights 1/2 and 3/2

under superrotations. Note the half-integer labels due to half-integer powers in the fall-offs (2.9),
reminiscent of the half-integer superrotation weights that are ubiquitous in 4D gravity [82, 112].
Finally, the transformation laws of the remaining leading components of the Maxwell field are most

7This function α(u, φ) has nothing to do with the u component of the proper velocity in section 2.3.
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instructive when imposing the equations of motion. The logarithmic terms then transform as

δξ,εA
`
φ =

(
f∂u + g∂φ + g′

)
A`φ + f ′E ≈

(
fE + gA`φ

)′
, (4.6a)

δξ,εE =
(
f∂u + g∂φ + g′

)
E ≈

(
gE
)′
, (4.6b)

so they are both bms3 primary fields with unit weight under superrotations, and they involve no
U(1) gauge parameter. By contrast, the O(1) terms transform as

δξ,εA
0
φ =

(
f∂u + g∂φ + g′

)
A0
φ − g′A`φ + f ′G+ α′ ≈

(
fG+ gA0

φ

)′
+ fE′ − g′A`φ + α′, (4.7a)

δξ,εG =
(
f∂u + g∂φ + g′

)
G− g′E + α̇, (4.7b)

so they also have unit weight under superrotations, but they now involve the large gauge transfor-
mation α, including its time derivative in δG. We will see in section 5 that this time derivative
plays an important role in the reduced phase space where G is set to zero.

Asymptotic symmetry algebra. It is straightforward to compute the Lie bracket of asymptotic
symmetries, seen as vector fields on phase space. (The Poisson brackets of the corresponding
canonical charges are a whole other problem, treated separately in section 5.) Indeed, in terms
of the ‘modified bracket’ of [13], designed to take into account field-dependent parameters, the
asymptotic symmetry generators satisfy the commutation relations

[
δξ1,ε1 , δξ2,ε2

]
= −δξ12,ε12 where

ξ12 :=
[
ξ1, ξ2

]
∗ :=

[
ξ1, ξ2

]
− δξ1ξ2 + δξ2ξ1, ε12 := £ξ1ε2 − δξ1,ε1ε2 − (1↔ 2). (4.8)

In the case at hand, all symmetry generators are field-independent, so the δ pieces of (4.8) all vanish.
The Lie bracket of asymptotic symmetry generators thus reads

f12 = f1g
′
2 + g1f

′
2 − δξ1f2 − (1↔ 2), (4.9a)

g12 = g1g
′
2 − δξ1g2 − (1↔ 2), (4.9b)

α12 = f1α̇2 + g1α
′
2 − δξ1,ε1α2 − (1↔ 2), (4.9c)

showing that the asymptotic symmetry algebra is a semi-direct sum bms3 +C∞(I +), where bms3

acts by Carrollian conformal transformations on functions on I +. This is the same result as in [1],
which is thus unaffected by our choice of relaxed boundary conditions including C. However, the
presence of C does affect asymptotic charges, as we now show.

4.2 Asymptotic charges introduced

Let ξ be an asymptotic Killing vector field and let ε be an asymptotic U(1) gauge parameter, both
as described above. They generate symmetries of the radiative phase space and should therefore
define ‘canonical generators’, meaning functions on phase space—or charges—that produce the
corresponding transformations in terms of the Poisson bracket. The functional differential of these
charges can be computed thanks to the Iyer–Wald formula [113], starting from the symplectic
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potential (3.3) and the Komar–Maxwell aspect (3.5). The upshot is the following variational one-
form in field space:8

/δQξ = δKur
ξ −Kur

δξ + ξuθr − ξrθu

◦
= f

(
δM + 2NδC︸ ︷︷ ︸

non-integrable

)
+ gδ

(
L+

1

4
(C2)′ − E

(
A`φ + 2A0

φ

))
− 2
(
α+ fG

)
δE︸ ︷︷ ︸

non-integrable

+O(r−1/2). (4.10)

The same charge is found with the Barnich–Brandt formalism [114], so there is no ambiguity for now.
An aside on notation: for compactness, we will always work with charge ‘aspects’ such as (4.10), as
opposed to actual charges. The latter are celestial integrals of the former, so this convention allows
us to omit the integral sign

∮
S1 throughout. Since integrations by parts in ∂φ will nevertheless be

needed, the symbol ◦= stands for equalities where all boundary terms in ∂φ have been discarded.
The notation thus allows us to integrate by parts without having to carry the integral sign.

Several comments are in order regarding the charge variation (4.10). First, the asymptotic
charge limr→∞ /δQξ is finite. This is already a non-trivial result since (i) the fall-offs (2.9) are
weaker than those of [1] due to the radiative field C, and (ii) the integrated angular momentum
defined from the energy-momentum tensor (2.17) is itself divergent (recall that a measure factor
r is required when computing the integral). Second, assuming for now that δf = δg = δα = 0

(i.e. all asymptotic symmetry generators are field-independent), the charge (4.10) contains two
non-integrable contributions, one of which (fGδE) is unrelated to electromagnetic radiation. The
charge thus requires a more careful study, deferred to the next section, in order to understand (i)
how to extract its integrable part, (ii) whether the integrable part is conserved or not, and (iii) how
to compute the charge algebra.

Finally, a comment on the 3D electromagnetic memory effect. We saw in (2.20) that the change
in angular velocity is sourced by the radiative field C, but it is clear from the charge (4.10) that
this memory term is unrelated to charges of large U(1) gauge transformations, since the latter only
involve the Coulombic data E. There is thus no relation between memory and leading charges.
However, one can push the radial expansion of the charge variation one order further to find

/δQε = −2εδ
(√
−gF ur

)
= −2αδE +

2√
r

(
αδC ′ − 2f ′CδE

)
+O(r−1), (4.11)

where the r−1/2 term now involves a pairing αδC ′ that is reminiscent of the change of velocity
(2.20). One can then invert the operator ∂φ (say in the space of functions with vanishing mean)
and interpret the memory effect (2.20) as a transition between vacua whose subleading U(1) charges
differ. A similar link between memory and vacuum transitions exists in 4D, except that it crucially
involves leading surface charges [91]. Thus, 3D electromagnetic memory is related to surface charges,
but the link between them is less tight than in the 4D infrared triangle [17]. To the best of our
knowledge, this is the first explicit (yet very simple) example of such a mismatch. It begs the
question of the possible matching between asymptotic symmetries, memories and soft theorems in
3D (as opposed to 4D). We hope to come back to this issue in future work.

8For compactness, we denote the charge simply by Qξ although it depends on both ξ and the U(1) parameter ε.
The notation /δQξ represents a one-form in field space that may or may not be (and generally is not) exact.
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5 Brackets and charge algebras

We now turn to a detailed analysis of the charges (4.10) and their brackets, i.e. the corresponding
charge algebras. This involves several deep problems. The first is that charges are not integrable
in the presence of the free data C and G, so a prescription is required to choose their integrable
part and compute the bracket. The second is that (4.10) contains two sources of non-integrability,
and it is unclear if both should be called ‘fluxes’ since only the contribution of shear and news
(NδC) is identified as radiation. The study of the charge therefore requires a proper treatment of
the remaining ‘spurious flux’ (GδE).

To explore these issues, we will start by reviewing the commonly used Barnich–Troessaert (BT)
bracket [14] and pointing out its (known) split ambiguities. We will then fix these, at least partly,
by the Wald–Zoupas (WZ) prescription, before briefly discussing the so-called Noether bracket [98]
and finally turning to the Koszul bracket [100].

Several possibilities and ambiguities will thus be covered, but the main conclusion is as follows:
the most reasonable approach seems to be to set G = 0 and use the Koszul bracket [100]. A virtue
of this prescription is to yield a charge algebra that does not depend on the split between integrable
part and flux, while the condition G = 0 ensures one can define charges that are conserved in
the absence of news. With these properties, both physically and mathematically well-motivated,
the resulting algebra exhibits a field-dependent cocycle (and is therefore strictly speaking a Lie
algebroid). In summary:

Setting G = 0, consider the integrable charges Qξ in (5.12a).
These are Wald–Zoupas charges satisfying Q̇ξ = 0 in the absence of news.
Then using the Koszul bracket (5.27), which is crucially split-independent,

charges represent the symmetry algebra with the field-dependent cocycle (5.15).

Let us now explore the various possibilities in detail.

5.1 Barnich–Troessaert bracket

The first proposal for charge brackets in the presence of fluxes was given by Barnich and Troessaert
in [14]. The computation of the eponymous bracket requires a split of the charge between an
integrable part δQξ and a flux piece Ξξ[δ], both of which are variational one-forms on field space
(with the integrable piece being the one that is exact). Such splits will play a key role throughout
this section. In the case at hand, the most obvious split of the charge variation (4.10) is

/δQξ
◦
= δQξ + Ξξ[δ] +O(r−1/2), (5.1)
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with an integrable piece and a flux respectively given by9

Qξ = fM + g

(
L+

1

4
(C2)′ − E

(
A`φ + 2A0

φ

))
− 2αE (integrable charge), (5.2a)

Ξξ[δ] = 2f
(
NδC −GδE

)
(flux). (5.2b)

Several comments are in order about this split. First, it reproduces the choice made in [1] when
C = 0. Its integrable part (5.2a) exhibits the familiar supertranslation charge aspect fM , the U(1)

charge aspect −2αE, and the superrotation charge aspect gL supplemented by contributions due
to electromagnetic boundary data. Second, note that we are being agnostic at this stage about
the difference between the two non-integrable contributions NδC and GδE, treating them as fluxes
on equal footing. Finally, note for future reference that the very validity of the split relies on the
assumption that the asymptotic symmetry parameters (f, g, α) are all field-independent; we will
come back to this subtle point when setting G = 0 to define WZ charges in section 5.2.

Splits of charges between integrable pieces and fluxes form the starting point of the charge
algebra. Indeed, the BT bracket of charges is defined as [14]{

Qξ1 , Qξ2
}
BT := δξ2Qξ1 + Ξξ2 [δξ1 ] (5.3)

and satisfies the key property that the charge algebra reproduces the algebra of asymptotic symmetry
generators, possibly up to a 2-cocycle K:{

Qξ1 , Qξ2
}
BT = Q[ξ1,ξ2]∗ +Kξ1,ξ2 . (5.4)

In the case at hand, one can use (5.2) along with the transformation laws (4.4)–(4.7) to sepa-
rately evaluate the two contributions on the right-hand side of (5.3). Using again equalities up to
integration by parts on the celestial angle, one finds

δξ2Qξ1
◦
= Q[ξ1,ξ2]∗ − (f1g

′′′
2 − f2g

′′′
1 )− (f1g

′
2 − f2g

′
1)E2 + 2(f1α̇2 − f2α̇1)E

− 2g1E
(
f2G

)′ − 2f1f2N
2 − 2g1f2C

′N − g′1f2CN, (5.5a)

Ξξ2 [δξ1 ]
◦
= 2f2

(
Nδξ1C −Gδξ1E

)
◦
= 2g1E

(
f2G

)′
+ 2f1f2N

2 + 2g1f2C
′N + g′1f2CN, (5.5b)

where the bracket of asymptotic symmetry generators in (5.5a) is given by (4.9). This confirms
that the charge algebra satisfies the expected relation (5.4), with the centreless bracket (4.9) and a
cocycle that turns out to be

Kξ1,ξ2
◦
= − (T1g

′′′
2 − T2g

′′′
1 )︸ ︷︷ ︸

standard bms3

− (f1g
′
2 − f2g

′
1)E2 + 2(f1α̇2 − f2α̇1)E︸ ︷︷ ︸

field-dependent piece

. (5.6)

Here one may recognize the standard central extension pairing superrotations and supertranslations
in bms3 [60], and the E-dependent cocycle is identical to that of [1]. This field-dependence is

9Technically, the charge (5.2a) is the integrated version of an exact (i.e. integrable) one-form in field space, but
the ‘integrable’ terminology is more standard so we stick to it.
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reminiscent of that of the BMS4 charge algebra [14]. A key difference, however, is that the cocycle
of 4D gravity involves the gravitational shear, while here it is due to the Coulombic data E.

The presence of field-dependent central extensions is typically expected to affect physics—e.g.
through representations (say coadjoint and their unitary quantization) and the ensuing holographic
dual. Accordingly, it is essential to understand one’s leeway in writing down a cocycle such as (5.6).
How is it affected by the choice of split (5.1)? Are there choices that cancel the field dependence?
The remainder of this entire section is devoted to such questions.

Split ambiguities of charge algebras. To probe how the BT cocycle is affected by the split
(5.1), one can redefine the latter by shifting the integrable piece as

δQξ + Ξξ[δ] = δ(Qξ + Sξ)︸ ︷︷ ︸
δQ̃ξ

+ Ξξ[δ]− δSξ︸ ︷︷ ︸
Ξ̃ξ[δ]

. (5.7)

Here Sξ is any ‘shift’ functional on solution space that is linear in the asymptotic symmetry param-
eters (f, g, α). Changing the split in this way furnishes a new BT bracket (5.3):{

Q̃ξ1 , Q̃ξ2
}
BT = δξ2Q̃ξ1 + Ξ̃ξ2 [δξ1 ] = Q̃[ξ1,ξ2]∗ +Kξ1,ξ2 − Sξ1,ξ2︸ ︷︷ ︸

shifted cocycle K̃ξ1,ξ2

(5.8)

where the shift of the cocycle is given by Sξ1,ξ2 := δξ1Sξ2 − δξ2Sξ1 + S[ξ1,ξ2]∗ . The latter can be
deduced from the transformation laws (4.4) once the shift Sξ is given. For example, consider the
following list of shifts:

Sξ = fEG ⇒ Sξ1,ξ2
◦
= −(f1α̇2 − f2α̇1)E + (f1g

′
2 − f2g

′
1)E2, (5.9a)

Sξ = fM ⇒ Sξ1,ξ2
◦
= (f1g

′′′
2 − f2g

′′′
1 ) + (f1g

′
2 − f2g

′
1)E2, (5.9b)

Sξ = TM ⇒ Sξ1,ξ2
◦
= (T1g

′′′
2 − T2g

′′′
1 ) + (T1g

′
2 − T2g

′
1)
(
E2 + 2uN2

)
. (5.9c)

Note that the last expression involves the pure supertranslation T (φ) defined by (4.2). Each of
these changes the value of the cocycle (5.6).

The effect of cocycle shifts such as (5.9) can be dramatic, possibly even cancelling any field-
dependence. To see this, take the initial split (5.2) and the cocycle (5.6) as starting points. Then
shift the integrable charge (5.2a) by Sξ = f

(
M−2EG

)
as in (5.7). Using (5.9a)–(5.9b), the resulting

charge algebra takes the form (5.4) with a cocycle that differs from (5.6) and reduces, instead, to
K̃ξ1,ξ2

◦
= −2(T1g

′′′
2 −T2g

′′′
1 ). This is no longer field-dependent, and even coincides with the standard

bms3 central extension [60]. All the field-dependence of (5.6) has been compensated by a mere
redefinition of the charges! However, one should keep in mind that the resulting integrable charge
in (5.7) is no longer conserved in the absence of news, even in the case G = 0. In this sense, asking
for field-independent cocycles may be overly restrictive. Let us therefore study more closely the
conservation criteria that can be imposed on integrable charges, regardless of whether the ensuing
cocycles are field-dependent or not.
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5.2 Wald–Zoupas splits

Following the WZ prescription [29–31], it is natural to single out the integrable part of the charge
in (5.1) by the requirement that it be conserved on suitable vacuum configurations. This was
investigated in 4D Einstein–Maxwell theory in [89], where the radiative vacuum can be defined
unambiguously in terms of gravitational and electromagnetic news. In the present case, however,
one has to face the issue of the presence of the two fields C and G. Only the former has a clear
physical interpretation in terms of electromagnetic radiation and gives rise to news N = Ċ. The
vacuum condition that should be used to construct WZ charges is thus unclear: should one leave G
arbitrary, or instead set G = 0? Here we explore both options in turn.

Wald–Zoupas split with G 6= 0. If one insists on keeping G arbitrary (and generally non-zero),
an immediate issue arises: the U(1) symmetry generator (4.3) and the charge (4.10) contain a
function α(u, φ) whose dependence on u is arbitrary, so that it cannot appear in WZ charges (which
would prevent any possibility of conservation). A way out is to exclude the contribution of α from
the definition of integrable charges, and define ‘vacua’ as being solutions with vanishing news. This
is indeed a consistent choice of vacuum, since the news’ transformation (4.5) is homogeneous. Thus,
starting from (5.2a), one may consider the shifted charge Q̃ξ = Qξ + 2E(gA0

φ + α) such that the
α-dependent piece in (4.10) is, by definition, part of the flux Ξξ in (5.1). Then the derivative ∂uQ̃ξ
is proportional to the news, so ∂uQ̃ξ = 0 when N = 0. This is a consistent choice and it can be used
in the BT bracket (5.3), leading in particular to a complicated field-dependent cocycle (which we do
not display but can be easily computed). The price to pay is that all electromagnetic charges vanish,
by construction. This is arguably unnatural in a theory that purports to include electrically charged
configurations. Let us therefore explore an alternative route that constrains the time evolution of
α by setting G = 0.

Wald–Zoupas split with G = 0. Setting G = 0 is physically acceptable since it does not
prevent the solution space from describing radiation or electric charge. As can be seen in (4.7b), a
consistency requirement with G = 0 is to fix the time dependence of the U(1) gauge parameter to

α(u, φ) = ug′E + α0(φ). (5.10)

Such a constrained time dependence only leaves out one arbitrary function α0(φ), reducing the
algebra bms3+C∞(I +) mentioned below (4.9) to its time-independent subalgebra, bms3+C∞(S1).
The relevant brackets, however, are subtle: they become field-dependent even without dealing with
surface charges. Indeed, the modified bracket (4.8) now yields

α0,12 = g1α
′
0,2 + f1g

′
2E − (1↔ 2), (5.11)

which agrees with [1, eq. (5.1)] and replaces (4.9c). The algebra bms3 + C∞(S1) is thus endowed
with an ‘exotic’ field-dependent bracket.

This complication extends to surface charges: since the relation (5.10) is field-dependent, it
cannot be blindly inserted in (5.2a). Instead, one must go back to the variational expression (5.1)
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and properly integrate the term αδE. Doing so leads to a new split (5.1) with

Qξ = fM + g
(
L+

1

4
(C2)′ − E

(
A`φ + 2A0

φ

))
−
(
ug′E + 2α0

)
E (integrable charge), (5.12a)

Ξξ[δ] = 2fNδC (flux), (5.12b)

where the integrable part satisfies a WZ conservation property.10 This is because its time derivative

Q̇ξ
◦
= −2NδξC

◦
= −2fN2 + g(CN ′ − C ′N) =: Fξ (5.13)

vanishes in the absence of news. Note that defining a bracket of fluxes11 as
{
Fξ1 , Fξ2

}
:= δξ2Fξ1

yields

δξ2Fξ1
◦
= F[ξ1,ξ2]∗ − ∂u

(
2f1f2N

2 + 2g1f2NC
′ + g′1f2NC

)
, (5.14)

which implies that integrated fluxes on I + represent the symmetry algebra, provided both field
configurations at I +

+ and I +
− (the endpoints of future null infinity) are vacua with N = 0. Such flux

brackets are useful for celestial holography and soft theorems [37, 115], but they will also provide a
useful extra criterion to be satisfied (or violated) by choices of splits (5.1). We will therefore return
to flux brackets shortly.

With the condition G = 0 and the WZ split (5.12), the BT bracket represents the asymptotic
symmetry algebra in the sense of (5.4), now with the aforementioned field-dependent bracket (5.11)
and a new field-dependent cocycle

Kξ1,ξ2 = − (T1g
′′′
2 − T2g

′′′
1 )︸ ︷︷ ︸

standard bms3

+ (T1g
′
2 − T2g

′
1)E2︸ ︷︷ ︸

field-dependent piece

. (5.15)

This coincides with the earlier result (5.6) upon imposing α̇ = g′E. The same cocycle will occur
with the Koszul bracket in section 5.4, so we highlight it here to stress that it is a genuine split-
independent feature of 3D Einstein–Maxwell theory.

Again, the actual form of the cocycle is not robust under changes of the split (5.1). For WZ
charges, any shift (5.7) by a quantity which is conserved in the absence of news is allowed, since
it leaves conservation unaffected. Consider for example the shift (5.9c) by TM , which is time-
independent when N = 0. Then the WZ split (5.12) changes into

Qξ = (f + T )M + g
(
L+ 1

4(C2)′ − E
(
A`φ + 2A0

φ

))
−
(
ug′E + 2α0

)
E (integrable), (5.16a)

Ξξ[δ] = 2fNδC − TδM (flux). (5.16b)

10One can also view the integrable part as arising from the WZ formula δQξ + Ξξ[δ] + ξyϑ, where ϑ is a WZ
potential [29–31]. Choosing ϑ = (NδC)∂r yields ξyϑ

∣∣
S1
∞

= 2(ξrϑu − ξuϑr) = −2ξuϑr = −2fNδC on the celestial
circle, so the WZ potential cancels the flux piece (5.12b) and leaves out the WZ charge (5.12a).

11The same word ‘flux’ refers to two different objects: non-integrable pieces in charge variations as in (5.1), and
time derivatives of integrable charges as in (5.13). In practice, there should be no confusion since the meaning of the
word is always clear from context.
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With this new split, the time derivative of integrable charges is

Q̇ξ
◦
= −2(f + T )N2 + g(CN ′ − C ′N) =: Fξ, (5.17)

and vanishes as expected if N = 0. The corresponding cocycle in (5.4) is now

Kξ1,ξ2 = −2 (T1g
′′′
2 − T2g

′′′
1 )︸ ︷︷ ︸

standard bms3

− 2uN2(T1g
′
2 − T2g

′
1)︸ ︷︷ ︸

field-dependent piece

, (5.18)

which is remarkable: the cocycle is still field-dependent, but it becomes field-independent in the
absence of news. This is nearly all one could hope for, but there is a catch: in contrast to the
earlier fluxes (5.13), the new fluxes (5.17) fail to represent the symmetry algebra in the sense of
(5.14). We conclude, at least in the present case, that the following three requirements cannot be
met simultaneously :

(i) having integrable charges that are conserved in the absence of news;

(ii) having cocycles that are field-independent in the absence of news;

(iii) having fluxes that represent the symmetry algebra in the absence of news, as in (5.14).

Changing slicings. In the derivation of asymptotic symmetries in section 4, the parameters
(f, g, α) are functions of (u, φ) and appear as radial integration constants. They can therefore be
redefined in an arbitrary manner, possibly even a field-dependent one. This freedom is known as a
‘change of slicing’, and was studied at length in [96, 97, 116–118]. It can be used e.g. to reabsorb
‘spurious fluxes’ or ‘fake news’ appearing because of overly loose boundary conditions. For example,
in [97] the authors studied vacuum 3D gravity with a free boundary metric on I +, where Iyer–Wald
charges generally involve many non-integrable contributions despite the absence of local degrees of
freedom; field-dependent redefinitions of the symmetry generators (i.e. changes of slicing) can then
be used to cancel the spurious non-integrability.

How does this freedom affect the present discussion? In the charge variation (4.10), the two
non-integrable contributions fNδC and fGδE stand on different footings: the former cannot be
reabsorbed by a change of slicing, but the latter can, namely by redefining the U(1) parameter as

α = α̃− fG. (5.19)

One may view this as an indication that the news represents physical flux, while G is a spurious
flux that can be removed. Assuming then that the new parameter α̃ is field-independent (δα̃ = 0),
the charge (4.10) splits into

Qξ = fM + g

(
L+

1

4
(C2)′ − E

(
A`φ + 2A0

φ

))
− 2α̃E (integrable charge), (5.20a)

Ξξ[δ] = 2fNδC (flux). (5.20b)

Note that α̃ here is generally time-dependent. Despite this, it satisfies the field-dependent commu-
tation relations (5.11) of the time-independent case (with α0 replaced by α̃). As for the BT bracket
(5.3), it satisfies again the algebra (5.4) with the same cocycle (5.15) as in the case G = 0.
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The prescription (5.20) thus leads to integrable charges in the absence of news, with the same
algebra as WZ charges in the time-independent phase space with G = 0. However, this does not
solve the issue of the arbitrary time dependence in α̃. Indeed, the time evolution of the integrable
part (5.20a) now reads

Q̇ξ
◦
= Fξ

∣∣
(5.13) + 2E

(
g
(
E +G

)′
+ g′E − ˙̃α

)
, (5.21)

whose right-hand side is non-zero even without news. One may imagine cancelling the problematic
second term by imposing the time evolution constraint ˙̃α = g

(
E +G

)′
+ g′E, but this reintroduces

a field-dependence in α̃, hence new sources of non-integrability and spurious fluxes... In this sense,
changes of slicing do not cure the ambiguities present in the initial bare charge variation (4.10). In
particular, while they allow for the removal of the spurious flux, they do not provide an unambiguous
prescription for the time evolution of charges.

5.3 Noether split and bracket

For completeness, and in order to illustrate the proposal of [98] on a concrete example, let us study
the so-called Noether split and the associated bracket. For this, we consider again the general case
where G 6= 0 and the time dependence of the gauge parameter α in (4.3) is completely arbitrary.
The Noether split consists in fixing the ambiguity in (5.1) by choosing the integrable part to be the
Noether charge. The latter actually coincides with the Komar–Maxwell charge (3.5) for Einstein–
Maxwell theory. Thus, the split is chosen using the r-independent parts of the Noether charge and
flux,

Kur
ξ
◦
= −2fE2(ln r) +Qξ +O(r−1/2), (5.22a)

−Kur
δξ + ξuθr − ξrθu ◦= +2fE2(ln r) + Ξξ[δ] +O(r−1/2), (5.22b)

which explicitly yields

Qξ = f

(
1

2
CN − E

(
E + 2G

))
+ g

(
L+

5

4
(C2)′ − E

(
A`φ + 2A0

φ

))
− 2αE (integrable), (5.23a)

Ξξ[δ] = f
(
δM +

3

2
NδC − 1

2
CδN + 2Eδ

(
E +G

))
− gδ(C2)′ (flux). (5.23b)

With this split, the BT bracket (5.3) satisfies the charge algebra (5.4), with a homogeneous part
given by (4.9) and a field-dependent cocycle12

Kξ1,ξ2 = 2(f1g
′
2 − f2g

′
1)
(
E2 + CN

)
. (5.24)

This is remarkably simple, given the complicated shift that maps the initial split (5.2) on the Noether
split (5.23). Note in particular that all Virasoro-type central extensions [involving third derivatives
as in (5.6), (5.15) or (5.18)] have now disappeared.

12A clarification: what we call Kξ is the Noether charge (Komar) aspect (3.5), while Kξ1,ξ2 is a cocycle in the
charge algebra (5.4). The two objects are completely different, despite their similar notations.
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The simplification of cocycles is in fact a built-in property of brackets of charges with the split
(5.23), and it can be pushed further. Indeed, one can check that the cocycle (5.24) involves the
on-shell Lagrangian density, in the sense that Kξ1,ξ2 = limr→∞(ξr1ξ

u
2 − ξu1 ξr2)L. This is in fact a

special case of a general result shown in [98]. Namely, when using the Noether charge Kξ and the
‘Noetherian flux’ defined as Ξξ[δ] = −Kδξ − ξy θ, the algebra (5.4) given by the BT bracket (5.3)
produces a cocycle

Kξ1,ξ2 =
(
ξ1y ξ2yL

)∣∣
S1
∞

+ aξ1,ξ2 = lim
r→∞

(
ξr1ξ

u
2 − ξu1 ξr2

)
L+ aξ1,ξ2 , (5.25)

where L is the Lagrangian density and aξ1,ξ2 accounts for possible anomalies [30], which happen to
be absent in the present setup. This leads to the so-called Noether bracket, defined in terms of the
BT bracket (5.3) as {

Qξ1 , Qξ2
}
N :=

{
Qξ1 , Qξ2

}
BT −

(
ξ1y ξ2yL

)∣∣
S1
∞
− aξ1,ξ2 . (5.26)

Using the charge algebra (5.4) with the cocycle (5.25), it is then immediate to show that the Noether
bracket satisfies

{
Qξ1 , Qξ2

}
N = Q[ξ1,ξ2]∗ . This represents the symmetry algebra with a vanishing

cocycle! Of course, the simplification was bound to work, since (5.26) is just a BT bracket whose
cocycle has been included in the very definition of the bracket. What crucially makes this possible
is the explicit expression (5.25) of the cocycle, valid only for the Noether split.

Although the Noether split has the advantage of being unambiguously defined since it relies on
the Noether charge, its drawback is to single out an integrable charge (5.23a) that is not conserved
in the absence of news. An immediate way to see this is to note that no condition was imposed on
the gauge parameter α(u, φ). Alternatively, fixing G = 0 and the time dependence of α through
(5.10) gives integrable Noether charges that slightly differ from (5.23a), but still satisfy Q̇ξ 6= 0 in
the absence of news. The details are omitted here. Accordingly, we will not consider the Noether
split any further, and now turn instead to one last choice of bracket.

5.4 Koszul bracket

Let us consider a proposal put forward and investigated by Barnich, Fiorucci, and Ruzziconi [100],
to which we shall refer as the Koszul bracket. Given a split (5.1) between integrable part and flux,
this bracket is defined as{

Qξ1 , Qξ2
}
K :=

{
Qξ1 , Qξ2

}
BT −

∫
γ

(
δξ1Ξξ2 [δ]− δξ2Ξξ1 [δ] + Ξ[ξ1,ξ2]∗ [δ]

)
. (5.27)

Here the first term is the BT bracket (5.3), while the second term involves the integral, along a
path γ, of a one-form in field space defined from the flux Ξξ[δ]. The path is such that its endpoint
is the point in field space where the bracket (5.27) is meant to be evaluated. The starting point
is arbitrary, and the specific choice of path is irrelevant thanks to the δ-exactness of the integrand
in (5.27). We will assume henceforth that some starting point has been chosen once and for all,
independently of ξ1, ξ2.

We will neither derive nor investigate the properties of the Koszul bracket; suffice it to say that
it is crucially independent of the choice of split (5.1). This is because the quantity Sξ1,ξ2 , produced
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by the BT bracket under split changes (5.7), is exactly compensated by changes of the integral along
γ in (5.27) when shifting Ξξ[δ]→ Ξξ[δ]− δSξ. However, split-independence of (5.27) does not mean
that the Koszul bracket only captures information about the genuine physical flux. Indeed, we will
see that it is still sensitive to reductions of the solution space (e.g. by setting G = 0) and to changes
of slicing.

We have already computed the BT bracket for the charges (5.2) and (5.12), respectively valid in
the solution spaces with G 6= 0 and G = 0. The former leads to the cocycle (5.6), while the latter
leads to (5.15), both of which are field-dependent. One can therefore ask how the second term in
(5.27) affects the cocycle in these two cases. The answer turns out to be(

δξ1Ξξ2 [δ]− δξ2Ξξ1 [δ] + Ξ[ξ1,ξ2]∗ [δ]
)∣∣∣

(5.2b)
= −δ

(
(f1g

′
2 − f2g

′
1)E2 − 2(f1α̇2 − f2α̇1)E

)
, (5.28a)(

δξ1Ξξ2 [δ]− δξ2Ξξ1 [δ] + Ξ[ξ1,ξ2]∗ [δ]
)∣∣∣

(5.12b)
= 0, (5.28b)

showing that the change of cocycle due to (5.27) is entirely produced by the contribution of the
spurious flux −2fGδE: it is non-zero in (5.28a) where G 6= 0, but vanishes in (5.28b) where G = 0.
In particular, the correction (5.28a) exactly compensates the field-dependent part of the earlier
cocycle (5.6), which thus reduces to the standard bms3 central extension [60]. The Koszul bracket
(5.27) entirely cancels the field-dependence of the cocycle when G 6= 0.13 By contrast, the cocycle
change (5.28b) vanishes for WZ charges in the solution space where G = 0, so the earlier field-
dependent cocycle (5.15) is unaffected.14 A third, mixed alternative is to consider the solution
space G 6= 0 with the change of slicing (5.19) and flux (5.20b), whereupon (5.28b) holds again and
yields again the earlier cocycle (5.15). In short, the cocycle in the Koszul bracket (5.27) only cares
about whether G is present or not in the flux Ξξ[δ], and not about whether it was removed by a
change of slicing or by the restriction G = 0.

This result exhibits the sensitivity of the Koszul bracket to the choice of slicing and to the ‘size’
of the solution space, despite its independence from the split (5.1). In particular, when G 6= 0, the
Koszul bracket with fluxes (5.2b) yields a field-independent cocycle, while the change of slicing (5.19)
reintroduces the field-dependent cocycle (5.15). The latter also appears for WZ charges with G = 0,
whose algebra is unchanged by the Koszul bracket. This seems to indicate that the field-dependent
cocycle (5.15) is a genuine feature of 3D Einstein–Maxwell theory, as was indeed suggested in [1].
It also begs, even more pressingly, the question of the interpretation of the field G(u, φ), which is
ultimately responsible for most ambiguities of Einstein–Maxwell charge algebras.

13This holds up to a trivial central extension due to the field space integral in (5.27) [100].
14Note that setting G = 0 after having computed (5.28a) does not return the result (5.28b), since one cannot

change the phase space after having computed the bracket.
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6 Turning on Λ 6= 0

In order to deepen the analogy between our analysis and 4D pure gravity [53, 54], let us extend the
setup to include a non-zero cosmological constant Λ 6= 0. The Bondi gauge is then well-adapted
(at least in the vacuum case) for the flat limit Λ → 0 [61, 97]. We therefore begin by solving
the Einstein equations with cosmological constant Eµν := Gµν + Λgµν − Tµν = 0, again with the
fall-offs (2.9), then discuss asymptotic symmetries and their charges. Differences and similarities
with the flat-space case Λ = 0 are pointed out throughout. We refer again to appendix A for some
computational details.

6.1 Solution space and analogy with the 4D vacuum case

Here we solve the Einstein–Maxwell equations of motion with Λ 6= 0, then highlight the similarity
between the resulting solution space and that of 4D Einstein gravity.

Solution space. Thanks to the Bondi gauge conditions grr = 0 = grφ, the hypersurface equations
Err = 0, Erφ = 0 and ∇µFµr = 0 do not depend on Λ. As a result, they lead to the same solutions
(A.3), (A.6) and (A.8) for β, U and Am>0,n

u as in the flat case (recall that we have set β0 = 0 = U0).
The first striking feature due to Λ 6= 0 comes from the angular Maxwell equation, which now reads

∇µFµφ = −1

4

√
rΛC − Λ

4
√
r

(
(ln r)A

1/2,1
φ +

3

2
C3 +A

1/2,0
φ − 4A

1/2,1
φ

)
+O(r−1) = 0. (6.1)

Note the leading term of this equation: it sets C = 0 on shell. The first subleading term then
fixes A1/2,1

φ = 0, hence A1/2,0
φ = 0. Continuing with the expansion at subleading orders, one also

finds A3/2,0
φ = A

3/2,1
φ = A

3/2,2
φ = 0, etc., which in turn implies [from (A.8)] that A1/2,0

u = A
3/2,0
u =

A
3/2,1
u = 0, etc. At the end of the day, the solution space with Λ 6= 0 contains no half-integer powers

of r, and the fall-offs (2.9) simply require m ∈ N and C = 0.
The second interesting feature of Λ 6= 0 appears in the dynamical angular Maxwell equation.

Indeed, expanding (6.1) further yields the equations15

Ȧ`φ = E′ + ΛA1,1
φ , (6.2a)

Ȧ0
φ = E′ +G′ + ΛA1,0

φ , (6.2b)

3Ȧ1,1
φ = 4Λ

((
A`φ
)3

+A2,1
φ

)
, (6.2c)

3Ȧ1,0
φ =

2Λ

3

(
6A2,0

φ − 2A2,1
φ +

(
A`φ
)3)− 4MA`φ + C2E′ + 2LE − 7E(C2)′ + 2

(
A`φ
)′′
. (6.2d)

When Λ = 0, these are evolution equations for the components of Aφ (apart from C, which is
unconstrained), whose initial data is free and must be specified at some time u0. There is an
infinite tower of such equations, one for each Am,nφ in (2.9). But when Λ 6= 0, the meaning of these

15Note that we keep writing C even though C = 0 when Λ 6= 0. This ensures we can still take the limit Λ = 0 and
recover expressions that are valid in the flat case with C 6= 0. One should merely keep in mind that ΛC = 0.
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equations changes radically due to the terms involving Λ on the right-hand side of (6.2). These
imply that, starting from A1,0

φ and A1,1
φ , all the coefficients Am,nφ are algebraically determined by A0

φ

and A`φ, which now become completely free data to be specified for all u. The temporal Maxwell
equation then modifies the flat-space equation (A.16) to Ė = −Λ

(
A`φ
)′, while G remains completely

free data as in the case Λ = 0. Finally, the evolution equations for mass and angular momentum
take the form

Ṁ = −2N2 − Λ2A`φ
(
2A1,0

φ +A1,1
φ

)
− Λ

(
L′ + 2A`φE

′ − E
(
A`φ
)′)

, (6.3a)

L̇ = M ′ + EE′ +
1

2

(
CN ′ − 3NC ′

)
+ ΛE

(
2A1,0

φ +A1,1
φ

)
− 2ΛA`φ

(
A`φ
)′
, (6.3b)

where again we have kept C 6= 0 for convenience in order to recover (3.10) in the flat limit. Note
here that one can replace A1,0

φ and A1,1
φ by their value given by (6.2) in order to obtain the evolution

of mass and angular momentum in terms of free data (A`φ, A
0
φ, G).

Let us summarize. Starting with the fall-offs (2.9) where C = 0 and m ∈ N, the solution space
for Λ 6= 0 is completely determined by (i) three arbitrary functions of (u, φ) in (A`φ, A

0
φ, G), along

with (ii) the initial value at u0 for the data (M,L,E), subject to evolution equations (6.3) in u.
There are thus two key differences with respect to Λ = 0. First, the free data on I + is different:
instead of (C,G)|Λ=0, it is now given by (A`φ, A

0
φ, G)|Λ6=0. Second, while Λ = 0 involves infinitely

many evolution equations for the data in Aφ, the case Λ 6= 0 only involves the three evolution
equations for (M,L,E).

Analogy with 4D gravity. The behaviour of 3D Einstein–Maxwell solution spaces at Λ = 0 and
Λ 6= 0 is deeply reminiscent of the 4D vacuum case. A precise analogy can indeed be established
thanks to the following three observations:

• First, the condition ΛC = 0 enforced by (6.1) is analogous to the condition obtained in 4D
from the leading-order angular Einstein equations (see [53] or [54, eq. (2.17a)]). There, the
constraint on the shear takes the form

Λe2β0Cab ∝ (∂u − ∂u ln
√
q)qab +D0

〈aU
0
b〉, (6.4)

where the leading transverse metric qab enters through its time dependence, while β0 and Ua0
are 4D versions of the integration constants that were discarded here.16 The shear Cab thus
depends on the induced metric on I + when Λ 6= 0, and it must actually vanish if U0 = 0

and if the time dependence of qab is frozen, since then ΛCab = 0. The analogy with 3D
Einstein–Maxwell is manifest and reinforces the interpretation of C as the 3D electromagnetic
analogue of the gravitational shear Cab. Furthermore, it would be interesting to study the
generalization of the condition ΛC = 0 with more relaxed 3D boundary conditions [96, 97],
where one precisely has U0 6= 0 and a time-dependent metric on the celestial circle.

16The notation D0
〈aU

0
b〉 refers to the symmetric, trace-free part of the tensor DaU0

b .
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• Next, note the analogy between square-root terms in the 3D Einstein–Maxwell system and
logarithmic terms in 4D gravity. We saw here that Λ 6= 0 forces such square root terms
to vanish. Similarly, subleading components of the angular Einstein equations in 4D imply
that all logarithmic terms vanish [54], including both logarithmic terms in the angular metric,
which can be introduced by hand through fall-offs [54, 119–121], and logarithmic terms that
appear when solving for Ua [107, 122].17

• The last part of the analogy involves the radial expansion of Aφ in 3D and that of the angular
metric in 4D. Indeed, the latter reads

gab = r2qab + rCab +
1

4
qabCcdC

cd +
∞∑
n=1

g
(n)
ab

rn
(6.5)

where we chose a regular, logarithm-free expansion. Then the leading angular Einstein equa-
tion constrains Cab as in (6.4), while the subleading terms in the angular equations are exactly
analogous to the angular Maxwell equations (6.2) since they take the form [53]

ġ
(n)
ab = Λg

(n+1)
ab + (. . . ). (6.6)

When Λ = 0, these are evolution equations for the coefficients g(n)
ab , whose value at some u0 is

required; there is an infinite tower of such equations. By contrast, when Λ 6= 0, the constraints
(6.6) determine algebraically, and recursively, all the components g(n>1)

ab in terms of g(1)
ab and

its time derivative. Then g(1)
ab , rather than Cab, is the free data that needs to be specified for

all u, exactly like A`φ and A0
φ become free data instead of C in the 3D Einstein–Maxwell case.

To go beyond this simple analogy, one may attempt to use it to gain insights in 4D vacuum
gravity. We saw in section 5 how the present 3D model allows one to study charges in the presence
of radiation, as a first step towards holography with radiating sources. Another direction is to seek
a w1+∞ symmetry of 3D Einstein–Maxwell theory. In 4D gravity, recent work has indeed shown the
existence of such a structure [125–127]; it can be related to the tower of metric fields (6.5) and their
evolution equations [128, 129]. Since 3D Einstein–Maxwell theory also admits such a hierarchy, with
the components of Aφ playing the role of the subleading tensors in (6.5), it is natural to ask whether
one can also exhibit an underlying higher-spin structure in that setup. We leave this investigation
for future work.

6.2 Asymptotic symmetries and charges

We close this section with a brief discussion of asymptotic symmetries and charges in the case
Λ 6= 0. Previous work along these lines can be found in [86] in Bondi gauge, and in [101, 102] in
Fefferman–Graham coordinates with Hamiltonian methods. We will work in Bondi coordinates and

17This absence of logarithmic terms when Λ 6= 0 in 4D is a manifestation of the Starobinsky–Fefferman–Graham
theorem [123, 124].
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implement once and for all the condition of vanishing square root terms in the fall-offs, in particular
setting C = 0. After going through the construction of the solution space, the metric is given by

guu = Λr2 + 2(ln r)
(
E2 − Λ

(
A`φ
)2)

+ 2M − Λ
(
A`φ
)2

+O(r−1), (6.7a)

gur = −1 +

(
A`φ
)2

r2
+O(r−3), (6.7b)

guφ = 2(ln r)EA`φ + L+O(r−1), (6.7c)

gφφ = r2, (6.7d)

where the mass and angular momentum satisfy the evolution equations (6.3) with C = 0. It is
manifest that these components reduce to those in (3.7) when Λ = 0.

The components of asymptotic Killing vectors are once again given by (4.1). Now, however, the
functions f and g satisfy ḟ = g′ and ġ = −Λf ′ instead of the flat-space relations (4.2). Their sum
and difference

√
−Λf ± g generate left- and right-moving conformal transformations. The ensuing

transformations of metric and electromagnetic field components are as follows. First, mass and
angular momentum transform as

δξM =
(
f∂u + g∂φ + 2g′

)
M − g′′′ − 2Λf ′L− g′E2 + ΛA`φ

(
f ′E + g′A`φ

)
, (6.8a)

δξL =
(
f∂u + g∂φ + 2g′

)
L− f ′′′ + 2f ′M − 2g′EA`φ − Λf ′

(
A`φ
)2
, (6.8b)

where one may recognize the coadjoint representation of the Virasoro algebra, written in terms of
M ∝ T + T̄ and L ∝ T − T̄ instead of left and right stress tensor components (T, T̄ ). This is
accompanied by new contributions due to the Maxwell field. The latter has leading logarithmic
components that transform as

δξ,εA
`
φ =

(
f∂u + g∂φ + g′

)
A`φ + f ′E, (6.9a)

δξ,εE =
(
f∂u + g∂φ + g′

)
E − Λf ′A`φ, (6.9b)

while its O(1) components transform in a way that involves the U(1) gauge parameter:

δξ,εA
0
φ =

(
f∂u + g∂φ + g′

)
A0
φ − g′A`φ + f ′G+ α′, (6.10a)

δξ,εG =
(
f∂u + g∂φ + g′

)
G− g′E − Λf ′A0

φ + α̇. (6.10b)

All these equations reduce to the flat-space transformations (4.4)–(4.7) when Λ = 0.
One can also study the algebra of asymptotic symmetry transformations. Under the modified

bracket (4.8), the algebra of the asymptotic Killing vectors is ξ12 =
[
ξ1, ξ2

]
∗, where one now has

f12 = f1g
′
2 + g1f

′
2 − δξ1f2 − (1↔ 2), (6.11a)

g12 = g1g
′
2 − Λf1f

′
2 − δξ1g2 − (1↔ 2), (6.11b)

α12 = f1α̇2 + g1α
′
2 − δξ1,ε1α2 − (1↔ 2) (6.11c)
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instead of the flat-space algebra (4.9). This is a semi-direct sum between two commuting copies
of the Witt algebra and an algebra of functions on the cylinder or the plane. The flat limit (Λ →
0) then behaves as an İnönü–Wigner contraction that maps the algebra (6.11) to the structure
bms3 + C∞(I +) mentioned in section 4.1.

The charge aspect corresponding to asymptotic symmetry generators satisfies once again (5.1),
albeit with a subleading correction O(r−1) instead of O(r−1/2). A simple choice of split is e.g.

Qξ = f
(
M +

Λ

2

(
A`φ
)2)

+ g
(
L− E

(
A`φ + 2A0

φ

))
− 2αE (integrable charge), (6.12a)

Ξξ[δ] = 2f
(
ΛA`φδA

0
φ −GδE

)
(flux), (6.12b)

which reduces to the flat-space split (5.2) with C = 0 when Λ = 0. Using this split, the BT bracket
(5.3) satisfies (5.4) with the homogeneous algebra (6.11) and the new field-dependent cocycle

Kξ1,ξ2 = −(f1g
′′′
2 − f2g

′′′
1 )− (f1g

′
2 − f2g

′
1)E2 + 2(f1α̇2 − f2α̇1)E

+ Λ
(
A`φ
)2

(f1g
′
2 − f2g

′
1)− 2Λ

(
EA0

φ +A`φG
)
(f1f

′
2 − f2f

′
1). (6.13)

The latter exhibits the standard Brown–Henneaux Virasoro extension [58], along with numerous
new electromagnetic contributions. It reduces again to its flat-space counterpart (5.6) when Λ = 0.

In short, the entire structure reproduces the results of [1] in the flat limit Λ = 0. More detailed
studies of the charges (6.12) and the WZ prescription are left for future work. This requires an
understanding of radiation in the case Λ 6= 0, which we expect to share features and subtleties of
the 4D vacuum case [52–57].

Let us conclude by returning to the Koszul bracket (5.27), now applied to surface charges (6.12)
with Λ 6= 0. As in section 5.4, the Koszul bracket changes the cocycle (6.13) by a term of the form(

δξ1Ξξ2 [δ]− δξ2Ξξ1 [δ] + Ξ[ξ1,ξ2]∗ [δ]
)∣∣∣

(6.12b)
= −δKξ1,ξ2 , (6.14)

where the variation δ only acts on the field-dependent terms in the cocycle (6.13). This is highly non-
trivial: the Koszul bracket apparently cancels the entire field-dependence of the earlier extension
(6.13), only leaving out its field-independent Brown–Henneaux piece! The same behaviour was
observed in (5.28a) in the flat-space solution space with G 6= 0. In short, the presence of extra
unconstrained boundary degrees of freedom leaves no trace in the Koszul bracket. The reason for
this is unclear to us; we hope to return to it in future work, along with a more detailed analysis of
the (A)dS3 Einstein–Maxwell solution space.

7 Perspectives

This work was devoted to a detailed analysis of the asymptotic structure of 3D Einstein–Maxwell
theory with radiative boundary conditions. It contributes in two specific ways to the already vast
literature on asymptotic symmetries. First, it provides a model where gravitational asymptotic sym-
metries interplay in a non-trivial manner with radiative matter fields. Second, and most important,
it does so in the simplest possible setup where all the subtleties related to radiative asymptotic
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symmetries are present, thereby providing the most complete toy model one can hope for. We
investigated this model along the following lines:

In section 2, we studied pure Maxwell theory in order to obtain the fall-offs (2.9) for Bondi-
gauge radiative and Coulombic data, then solve the vacuum Maxwell equations. This revealed a
key difference with previous work on 3D Einstein–Maxwell theory [1], namely that radiative data
behaves as

√
r. Equipped with these fall-offs and with the line element (3.6) in Bondi gauge, we

then solved the coupled equations of motion for Einstein–Maxwell theory in section 3. This enabled
us to characterize the solution space and identify, in particular, the mass and angular momentum
aspects with evolution equations (3.10). The latter confirm that 3D Einstein–Maxwell has radiative
features akin to those of 4D pure gravity, albeit in a dimensionally-reduced setup. This was in fact
expected, based on the prescient analysis of [59] where the first description of BMS3 symmetries
was done precisely through a dimensional reduction from the 4D theory. Here we supplemented
this analysis with a complete control over the matter sector (either seen as arising from dimensional
reduction, or put in by hand in 3D as we did).

Building on this setup, the core of our work in sections 4–5 consisted of an analysis of asymptotic
symmetries and their representations by surface charges. For this, we first characterized the residual
gauge transformations, spanning an algebra bms3 +C∞(I +) that consists of diffeomorphisms and
U(1) transformations. We then computed the charge variation (4.10) using the Iyer–Wald prescrip-
tion. This revealed, as expected, that electromagnetic radiation described by the shear C(u, φ) gives
rise to a non-integrable contribution, or flux. In addition, we found in agreement with [1] that the
field G(u, φ) also sources non-integrability. The latter is somewhat spurious, so we treated G as
a gauge mode to be set to zero. Doing so reduced the asymptotic symmetry algebra because the
U(1) gauge parameter acquires a fixed time dependence (5.10). It was then possible to construct
WZ charges (5.12) which are conserved in the absence of news N = Ċ. As regards the algebra of
such charges, we explored three alternatives for the bracket: the BT bracket, the Noether bracket,
and the recently introduced Koszul bracket. The latter essentially extends the BT bracket in such
a way that it does not depend on the split (5.1) between an integrable charge and a flux. Using
this bracket, we showed that WZ charges with G = 0 represent the symmetry algebra with a field-
dependent cocycle (5.17). This confirms the result of [1] while exhibiting both some of its robustness
and some of its delicate dependence on the various apparently arbitrary choices involved in radiative
surface charges.

In summary, our study has shown that 3D Einstein–Maxwell theory captures most of the sub-
tleties related to radiative asymptotic symmetries. In addition to serving as a toy model of 4D
gravity, it also reveals its own subtleties, the most striking of which is a field-dependent cocycle in
the charge algebra. Whether such a field-dependent cocycle also occurs in 4D Einstein–Maxwell
theory, say when using the Koszul bracket, is an open question which we keep for future work.

Having a complete control over the 3D setup, several interesting prospects are now in sight:

• 3D flat holography with radiation. A natural follow-up of our construction of the
Einstein–Maxwell solution space and its symmetries is to seek a candidate holographic de-
scription. The field-dependent cocycle (5.15) is expected to play a key role in that context,
since it affects the structure of the symmetry group, which in turn affects coadjoint orbits
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and unitary representations. In particular, it will be interesting to investigate how geomet-
ric actions for BMS3 [69, 70, 73, 76–78] (or dual theories such as the one built in [130]) are
modified by the coupling to electrodynamics. An alternative approach would be a 3D version
of celestial holography, built by recasting the scattering amplitudes of 3D Maxwell theory in
terms of conformal correlators on the celestial circle. Finally, it is natural to wonder how
results on flat-space entanglement [131–133] generalize in the presence of matter fields.

• 3D Maxwell/scalar duality. Since the 3D Maxwell field is dual to a scalar, a natural
question is how this duality is implemented at the level of asymptotic charges. Indeed, such
a puzzle also appears for 4D scalars whose soft theorem [134, 135] a priori has no asymptotic
symmetry counterpart (scalars have no gauge symmetries). The puzzle is resolved by noting
that a 4D scalar is dual to a 2-form gauge theory with non-trivial asymptotic symmetries [136–
138]. In 3D Einstein–Maxwell theory, one faces the opposite situation, where the asymptotic
structure of the Maxwell field is known but that of its dual is not. An approach that settles
the issue in one stroke would be to study the Einstein–Maxwell-dilaton system. Relatedly,
3D Maxwell theory admits a gauge-invariant Chern–Simons mass term, presumably leading
to rich asymptotic symmetries. This could also be a setup to analyse the peculiar properties
of 3D quantum electrodynamics (QED3), including the effects of its one-loop Chern–Simons
mass term [139–142] on soft photons and asymptotic symmetries.

• 3D soft photons and memories. Since 3D (Einstein–)Maxwell theory possesses a propa-
gating massless photon, it admits a soft photon theorem [143] and, in principle, (sub)n-leading
soft photon theorems as well. Although such 3D soft photons have been mentioned in the
literature [144], their detailed investigation has been superficial so far. What makes the issue
especially attractive is that 3D Maxwell theory, being super-renormalizable, is badly infrared
divergent as a result [145]. In that sense, the infrared problem in QED3 is more violent than
in 4D. This has partly been addressed using Faddeev–Kulish dressing [146], but a full picture
of the infrared triangle [17] is still missing. We briefly mentioned this in sections 2.3 and
4.2 when pointing out that 3D electromagnetic memory fails to match with the leading U(1)

charge. A natural continuation of our work is thus to ask how the soft photon theorem relates
to memory and asymptotic symmetries.

• 4D Einstein–Maxwell. Perhaps the most natural follow-up of the present work is to study
the asymptotic structure of 4D Einstein–Maxwell theory. This has partly been explored in
[89, 90], although the emphasis was on WZ charges in the first reference, and on dimensional
reduction from 5D in the second one. The analysis can be vastly extended by studying the
detailed structure of the solution space, including flux-balance laws encoding the soft graviton
and soft photon theorems (or alternatively their memory counterpart). In fact, such a setup
is ideal to investigate the interplay between soft photons and soft gravitons, which to our
knowledge is an open question. In addition, one should compute the charge algebra using
the Koszul bracket in order to see whether it gives rise to a field-dependent cocycle as in the
present 3D model.
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• 4D Einstein–Rosen waves. As stressed throughout this work, the analogy between 3D
Einstein–Maxwell and 4D pure gravity can be understood through the prism of dimensional
reduction [59]. Interestingly, this dimensional reduction also reveals that the 3D theory ac-
tually describes a highly symmetric 4D system, namely cylindrical gravitational waves, or
so-called Einstein–Rosen waves [87]. Since we have worked out the detailed asymptotic struc-
ture of 3D Einstein–Maxwell theory, it would now be interesting to reinterpret these results
from the 4D vacuum point of view, where they could serve to investigate the radiative proper-
ties of Einstein–Rosen waves. This is potentially a setup where 4D holography in the presence
of radiation is more approachable than in the case of arbitrary asymptotically flat spacetimes.

• Hamiltonian approach. A general question that stems from our work is whether ambigu-
ities of surface charges can be fixed by avoiding the covariant formalism and using instead a
Hamiltonian approach. The latter has indeed been recently successful at either re-deriving
known 4D asymptotic symmetries [147–152] or unveiling new asymptotic structures altogether
[153–156]. In the present case, one might attempt to recover the field-dependent central ex-
tension (5.15) from a canonical analysis, where integrability issues would be absent by design.

Acknowledgements

We thank Glenn Barnich, Adrien Fiorucci and Romain Ruzziconi for key discussions on asymptotic
symmetries with fluxes, as well as Mathieu Beauvillain, Steve Carlip, Daniel Grumiller, Ali Seraj,
Shahin Sheikh-Jabbari and Simone Speziale for fruitful interactions. The work of J.B. was partially
supported by the Swiss National Science Foundation through the NCCR SwissMAP. The work of
S.M. is supported by the LABEX Lyon Institute of Origins (ANR-10-LABX-0066) within the Plan
France 2030 of the French government operated by the National Research Agency (ANR). The work
of B.O. is supported by the F.R.S.–FNRS and by the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 846244.

A Constructing the solution space

This appendix provides details on the construction of the Einstein–Maxwell solution space in sections
3.2 and 6.1. The construction follows the Bondi hierarchy [6], so that equations of motion are split
into (i) hypersurfacce constraints, (ii) genuine evolution equations, and (iii) trivial equations that
are automatically satisfied.

A.1 Hypersurface equations

Within the Einstein–Maxwell equations of motion (3.2), consider those that are purely spatial and
contain at least one radial index. We solve each of them in turn, using as initial inputs the Maxwell
fall-offs (2.9), the stress tensor (2.16) and the Bondi metric ansatz (3.6).
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Einstein equation (rr). Begin by considering the field equation

Err =
2

r2

(
r∂rβ − F 2

rφ

)
= 0. (A.1)

In radial gauge with Ar = 0, this determines β in terms Aφ (and no other Maxwell component),
with Aφ given by (2.9b). The equation is thus solved to order Err = O(r−5) by the expansion

β = β0 +
β1,0

r
+
β3/2,0

r3/2
+

1

r2

(
β2,0 + (ln r)β2,1

)
+

1

r5/2

(
β5/2,0 + (ln r)β5/2,1

)
+O(r−3), (A.2)

where β0(u, φ) is an integration constant that we henceforth set to zero, while the subleading terms
are

β1,0 = −1

4
C2, (A.3a)

β3/2,0 = −2

3
CA`φ, (A.3b)

β2,1 =
1

4
CA

1/2,1
φ , (A.3c)

β2,0 = −1

2

(
A`φ
)2

+
1

8
C
(
2A

1/2,0
φ − 3A

1/2,1
φ

)
, (A.3d)

β5/2,1 =
2

5

(
A`φA

1/2,1
φ + CA1,1

φ

)
, (A.3e)

β5/2,0 =
2

25

(
A`φ
(
5A

1/2,0
φ − 8A

1/2,1
φ

)
+ C

(
5A1,0

φ − 3A1,1
φ

))
. (A.3f)

Note that (A.3a) is reminiscent of the analogous link between shear and the function β in 4D gravity
in Bondi gauge.

Einstein equation (rφ). Still using the stress tensor (2.16) and the Bondi metric (3.6), consider
the Einstein equation

Erφ =
β′

r
− ∂rβ′ +

r

2
e−2β

(
(3− 2r∂rβ)∂rU + r∂2

rU
)
− 2e−2βFrφ(UFrφ + Fru) = 0. (A.4)

This is solved to order Erφ = O(r−3) by

U = U0 +
U3/2,0

r3/2
+

1

r2

(
U2,0 + (ln r)U2,1 + (ln r)2U2,2

)
+

1

r5/2

(
U5/2,0 + (ln r)U5/2,1

)
+O(r−3),

(A.5)
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where U0(u, φ) is undetermined while the subleading terms are

U3/2,0 = −8

3
CE, (A.6a)

U2,2 =
1

4
CA1/2,1

u , (A.6b)

U2,1 = −2A`φE +
1

2
C

(
A1/2,0
u − 3

2
A1/2,1
u − 2C ′

)
, (A.6c)

U2,0 = −L, (A.6d)

U5/2,1 = −8

5

(
EA

1/2,1
φ +A`φA

1/2,1
u + CA1,1

u

)
, (A.6e)

U5/2,0 = (lengthy). (A.6f)

Note that (A.4) is second-order in radial derivatives of U , so one gets two integration constants here.
The first is L(u, φ) in (A.6d), eventually identified with the bare angular momentum aspect. The
second is the aforementioned U0(u, φ) in (A.5), which is analogous to β0 in (A.2) since it specifies
the induced boundary metric on I +; we always set U0 = 0 from now on. Also note that we omit
writing the component (A.6f) because its form is long without being particularly illuminating; it is
included here merely for consistency, because the Einstein equation at order Erφ = O(r−3) does fix
the component U5/2,0.

Maxwell equation (r). Now turn to the radial Maxwell equation∇µFµr = 0, which only depends
on the metric through β and U . Owing to the Bondi metric (3.6), its explicit form is

r2∇µFµr = F ′φr + re−2β
(
∂r
(
r(UFrφ + Fru)

)
− 2r∂rβ(UFrφ + Fru)

)
= 0. (A.7)

This equation determines the subleading terms Am>0,n
u of the electrostatic potential in terms of Aφ

and the Coulombic data E. More precisely, solving recursively in 1/r, one gets the leading-order
behaviour

∇µFµr = O(r−3) ⇒

{
A

1/2,1
u = 0,

A
1/2,0
u = 2C ′

(A.8)

which coincides with the Minkowskian Maxwell equations (2.10). As for the subleading components,
they satisfy non-linear relations

∇µFµr = O(r−4) ⇒



A1,1
u = 0,

A1,0
u =

(
A`φ
)′ − 5

6
C2E,

A
3/2,2
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A
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u = −2

9

(
3CEA`φ +

(
A

1/2,1
φ

)′)
,

A
3/2,0
u = (lengthy).

(A.9)
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Note, as in (A.6f), that we omit to write the long and obscure expression of A3/2,0
u ; it is merely

mentioned here for consistency when solving Maxwell’s equation ∇µFµr = 0 at order r−4.
The identifications (A.9) should be contrasted with their pure electromagnetic analogue: with

the fall-offs (2.9), Maxwell’s equations without sources would yield the linear relations

∇µFµr = O(r−4) ⇒


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(
A`φ
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,

A
3/2,2
u = 0,

A
3/2,1
u = −2

9

(
A

1/2,1
φ

)′
,

A
3/2,0
u = −2

9

(
A

1/2,0
φ

)′
+

4

27

(
A

1/2,1
φ

)′
.

(A.10)

The non-linear contributions in (A.9) are due to gravitational backreaction on the Maxwell field.

Einstein equation (ru). Let us finally turn to the last hypersurface equation:

Eru =
1

r2

(
V F 2

rφ − rV ∂rβ +
r

2
∂rV + rU(r∂rβ − β)′ +

1

2
∂r(r

2U ′)− e2β
(
β′2 + β′′

))
+ e−2β

(
U2F 2

rφ − F 2
ur

)
+
r

4
e−2β

(
(2r∂rβ − 3)∂rU

2 − 2rU∂2
rU − r(∂rU)2

)
= 0. (A.11)

The solution is given to order Eru = O(r−3) by

V = (ln r)V0,1 + V0,0 +
V1/2,0

r1/2
+O(r−1), (A.12)

with

V0,1 = 2E2, (A.13a)

V0,0 = 2M, (A.13b)

V1/2,0 =
8

3

(
2EC ′ − CE′

)
. (A.13c)

The equation of motion (A.11) is first-order in radial derivatives of V , so it contains a single
integration constant M(u, φ) in (A.13b), which is eventually identified with the bare mass aspect.

A.2 Evolution equations

Now consider the dynamical part of the equations of motion (3.2), containing angular or time
components, but no radial component. Again, we treat each such equation in turn.

Maxwell equation (φ). Start with the Maxwell equation ∇µFµφ = 0, which determines the time
evolution of the coefficients of Aφ. Solving recursively in 1/r, one finds the leading-order evolution
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equations

∇µFµφ = O(r−2) ⇒



Ȧ`φ = E′,

Ȧ0
φ = E′ +G′,

Ȧ
1/2,1
φ = −3

4
CE2,

Ȧ
1/2,0
φ =

1

4

(
7CE2 − 3CM + 6C ′′

)
,

(A.14)

while at subleading order one has

∇µFµφ = O(r−5/2) ⇒

Ȧ
1,1
φ = 0,

Ȧ1,0
φ =

1

3

(
C2E′ − 4MA`φ + 2E

(
L− 7CC ′

)
+ 2
(
A`φ
)′′)

.
(A.15)

Maxwell equation (u). Turning to the remaining Maxwell equation, one gets

lim
r→∞

(r∇µFµu) = 0 ⇒ Ȧ`u = 0. (A.16)

This is in fact the only contribution in the temporal Maxwell equation. Indeed, using the fact that
∇µFµr = 0 = ∇µFµφ have already been solved, along with the form of the metric in Bondi gauge,
one deduces from ∇µ∇νFµν = 0 that ∂r(r∇µFµu) = 0, which means that there is a single term in
the radial expansion.

Einstein equations (uφ) and (uu). Finally, consider the Einstein evolution equations Euφ and
Euu. For the former, one finds

lim
r→∞

(rEuφ) = 0 ⇒ L̇ = M ′ + EE′ +
1

2

(
CN ′ − 3NC ′

)
, (A.17)

which yields the evolution equation of angular momentum in (3.10). Similarly, one has

lim
r→∞

(rEuu) = 0 ⇒ Ṁ = −2N2, (A.18)

which is the Bondi mass loss equation in (3.10).
The point of the Bondi hierarchy is the following: it turns out that all subleading equations in

Euφ and Euu are automatically satisfied on-shell by virtue of the previous equations. We now show
this using Bianchi identities.

A.3 Trivial equations

Using the Bianchi identity for the Einstein tensor, one can write

0 = 2
√
−g∇µGµν = 2

√
−g∇µ(Eµν + Tµν ) = 2∂µ(

√
−g Eµν ) +

√
−g Eρσ∂νgρσ + 2

√
−g∇µTµν . (A.19)

Since all three Maxwell equations have been solved at this stage, the stress tensor is conserved, and
the last term above drops. Since Erµ = 0 has already been solved as well, putting ν = r in (A.19)

42



and using guu = 0 = guφ yields Eφφ∂rgφφ = 0. Thus the Bianchi identity automatically implies
Eφφ = 0 when Erµ = 0 and when Maxwell’s equations are satisfied.

Finally, for ν = (φ, u), the Bianchi identity (A.19) gives ∂µ(
√
−g Eµφ) = 0 = ∂µ(

√
−g Eµu ). Since

by now Erφ = 0 = Eφφ, the first of these identities reduces to ∂r(rEuφ) = 0. This means that
there is a single non-trivial term at order r−1 in the Einstein equation Euφ; it turns out to be the
evolution equation (A.17) for angular momentum. Since in addition Eru = 0 = Euφ, the second
Bianchi identity above reduces to ∂r(rEuu) = 0. There is thus a single non-trivial term in Euu,
namely the evolution equation (A.18) for the mass aspect.
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