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Abstract

Objective collapse theories propose a solution to the quantum measurement problem by
predicting deviations from Schrödinger’s equation that can be tested experimentally. A
class of objective theories based on spontaneous unitarity violation was recently intro-
duced, in which the stochastic field required for obtaining Born’s rule does not depend
on the state of the system being measured. Here, we classify possible models for the
stochastic field dynamics in theories of spontaneous unitarity violation. We show that
for correlated stochastic dynamics, the field must be defined on a closed manifold. In
two or more dimensions, it is then always possible to find stochastic dynamics yield-
ing Born’s rule, independent of the state being measured or the correlation time of the
stochastic field. We show that the models defined this way are all isomorphic to the
definition on a two-sphere, which we propose to be a minimal physical model for the
stochastic field in models of spontaneous unitarity violation.
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1 Introduction

Quantum mechanics has been proven to be highly accurate in describing the dynamics of
microscopic systems [1, 2]. The dynamics of macroscopic objects as a whole, however, is de-
scribed by classical physics. The qualitative distinction between these regimes leads to a prob-
lem that becomes visible when measuring microscopic objects using macroscopic measurement
machines [3–6]. Even though the measurement machine consists of quantum particles, we
cannot describe its observed behaviour using quantum mechanics. Precisely what causes the
quantum-classical crossover and how the measurement device turns a superposed initial state
into a single classical outcome is still unknown. These questions are collectively known as the
quantum measurement problem, and it continues to be a topic of active research [1,7–11]. Be-
sides the formulation of explicit models for the quantum-classical crossover [7,8,12,13], there
has recently been a focus on constructing new experiments aimed at probing the crossover
regime [9–11,14,15].

Theoretical approaches to solving the quantum measurement problem can broadly be di-
vided into interpretations and objective collapse theories. Interpretations assume that Schrö-
dinger’s equation holds at all scales and then attempt to explain why we only perceive single
classical states for macroscopic objects [1]. On the other hand, objective collapse theories
–which are the focus of the current work– propose objectively distinct dynamics for the micro-
scopic and macroscopic worlds, connected by a smooth transition in the mesoscopic region [7,
12, 16]. The transition is facilitated by a modification to Schrödinger’s equation that leads to
the “quantum state reduction” or collapse of superpositions into classical states. Although the
modified dynamics applies to all objects, its effect is instantaneous for macroscopic objects but
takes an almost infinitely long time to become significant in microscopic systems. At meso-
scopic scales, it must then occur within measurable times. Currently, this mesoscopic regime
is on the verge of being probed by state-of-the-art experimental efforts [1,14,15,17–23].

All viable objective collapse theories must reproduce known experimental results correctly.
This implies that their time evolution must include at least a stochastic, non-unitary term as
well as a non-unitary and non-linear element [8, 24], because a fully deterministic theory
cannot yield probabilistic measurement outcomes, while a fully linear theory cannot reproduce
the observed stability and statistics of measurement outcomes. The non-unitary and non-
linear element is thus required to introduce stable fixed points in the dynamics, while the
combination of non-unitary stochastic and non-linear terms allows for the correct statistics to
be realized [24]. All objective collapse theories moreover predict an instantaneous reduction
of quantum superpositions into a classical measurement outcome and ensure Born’s rule in the
macroscopic limit [25,26]. Despite this similarity in behaviour at the macro-scale, predictions
of objective collapse theories may differ wildly in the mesoscopic region, and this provides
opportunity for experimentally distinguishing between them [17,18,27].

Mathematically, one major distinction between different objective collapse theories is how
stochasticity is introduced in their dynamics. In many models, the time evolution of the quan-
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tum state itself is assumed to be stochastic [1,12,13,28]. Constructing the theory this way al-
lows for the explicit exclusion of faster-than-light communication and the automatic obtaining
of Born’s rule. It comes at the cost, however, of the stochastic contribution not being indepen-
dent of the quantum state being measured [29]. It was recently shown that it is also possible
to construct models in which the stochastic and non-linear contributions to the dynamics are
decoupled, so that the stochastic term may represent a physical field that is independent of the
state being measured [30]. These Spontaneous Unitarity Violation (SUV) models still allow
for obtaining Born’s rule [24, 30]. The exclusion of faster-than-light communication has not
been demonstrated yet and is an important consideration for future work. However, it has
been shown that this is possible for certain non-linear models [31].

Here, we derive constraints on the form of the stochastic terms that can appear in SUV
models based on the requirement that the late-time probability distribution of measurement
outcomes adheres to Born’s rule. Since the stochastic term represents a physical field in these
theories, identifying its possible symmetries and dimensionality narrows the possibilities for
its physical origin.

In this study, we restrict attention solely to quantum state reduction starting from an initial
superposition of two states. Notice that any successful objective collapse theory must be able to
describe the quantum state reduction of an initial superposition over two pointer states (distin-
guished, for example, by their centre of mass positions). We focus on these processes because
all possible SUV models reduce to one of only two forms when applied to the evolution of a
two-state system. We thus identify general constraints on the stochastic field appearing in any
theory of SUV. More stringent constraints on the stochastic field of specific models may perhaps
be obtained by considering different initial conditions, which we leave for future research. We
find that the requirement of Born’s rule being obtained in the presence of correlated stochas-
ticity and regardless of system size, requires a unique form of the two-state SUV dynamics,
and we fully constrain the stochastic field parameters appearing in that form.

2 Two-state collapse dynamics

Consider the time evolution of the general two-component wave function parameterised on
the Bloch sphere:

|ψt 〉 = cos (θt/2) |0〉+ sin (θt/2) |1〉 . (1)

Here, the states |0〉 and |1〉 represent entangled (product) states of a microscopic quantum
system in an eigenstate of the observable being measured and a macroscopic measurement
device indicating the corresponding measurement outcome. In the generic description of a
strong measurement [25], this is the state obtained right after coupling pointer states of a
measurement machine to the quantum system being measured. Collapse, or measurement,
should reduce the system to either |0〉 or |1〉 with respective probabilities cos2(θ0/2) and
sin2(θ0/2). This quantum states reduction should take place over immeasurably short times
for truly macroscopic measurement machines, while taking indefinitely long times if the mea-
surement device is made microscopic. Notice that we ignored the relative phase between
between components of |ψt 〉, which is generically present, as well as the dynamics of the
overall norm and phase. As has been previously shown [24, 32, 33], these do not influence
the time evolution of θt , even for general (not necessarily unitary) models of quantum state
evolution.

Here, we focus on models of Spontaneous Unitarity Violation (SUV), in which the stochastic
contribution to the state dynamics is driven by a physical field evolving independently from the
quantum state [29]. Within this setting, imposing that there are only two fixed points in the
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dynamics (i.e. two possible measurement outcomes), and that the probabilities of reaching
either fixed point correspond to Born’s rule (i.e. are given by the squared amplitude of the
corresponding component in the initial wave fuction) severely constrains the possible form
of the evolution. In fact, up to unitary transformations, the only allowed forms for the non-
unitary evolution of a two-state system are [24,30]:

θ̇t = −J N sin(θt )(cos(θt + a1)−λ1(t )), (2)

or θ̇t = −J N sin(θt ) cos(θt + a2 −λ2(t )). (3)

Here N indicates the system size (the volume, mass, or number of constituent particles of
the measurement machine), which explicitly indicates the origin of the collapse dynamics
stemming from a process of spontaneous symmetry breaking involving states with distinct
values of an emergent order parameter [8, 29, 34]. The coupling constant J determines the
speed of the collapse process, and θ represents the angle with the z-axis on the Bloch sphere
as before. The variables λ1,2(t ) and a1,2 denote time-dependent stochastic variables and
constant parameters respectively. The allowed probability distribution functions (pdf) and
dynamics of λ1,2 and values of a1,2 are constrained by the requirement that there is no inherent
preference (independent of the initial state) for either the θ = 0 or the θ = π measurement
outcome. This means that θ̇ (θ ,λ) = −θ̇ (π−θ ,λ′) for some value λ′ appearing with the same
probability as λ. We thus find that necessarily a1 = 0 and λ1 has a probability distribution
function that is even, while the pdf of λ2 must be symmetric around λ2 = a2. Without loss of
generality, we can then also consider an even pdf for λ2 and set a2 to be zero.

Notice that Eqs. (2) and (3) neglect the usual unitary part of the evolution described by the
quantum mechanical Hamiltonian. As shown previously [24], the statistics of measurement
outcomes is not influenced by the unitary part of the dynamics and we thus set it to zero
without loss of generality. Moreover, by studying the dynamics directly on the Bloch sphere,
we avoid the need for normalisation of the wave function. Notice that normalisation can be
included at the level of the state dynamics [29], but that this leaves Eqs. (2) and (3) invariant.
These thus represent the only possible forms of the quantum state reduction process consistent
with having stable end states corresponding to single pointer states (the states |0〉 and |1〉),
having no possible other end states (no attractive fixed points other than θ = 0 or θ = π), and
containing an independent physical field driving the stochastic evolution (i.e. λ1,2 evolving
independently of θ , and not being multiplied by any θ -dependent factor besides the overall,
geometric factor sin(θ ) which constrains the evolution to the Bloch sphere) [24,29,30].

With either of the equations (2) or (3), the probability of obtaining a particular outcome in
any given realisation of the dynamics depends on the probability distribution and dynamics of
the stochastic variable λ1,2(t ). Assuming this variable arises from an as-yet unknown physical
process, its effectively stochastic dynamics is characterised by a correlation time τ, which
cannot be identically zero. The average half-time τc of the quantum state reduction towards
the poles of the Bloch sphere, meanwhile, is determined by the overall factor NJ , rendering it
inversely proportional to system size. The ratio of these two intrinsic time scales defines three
possible regimes for the collapse dynamics.

• Macroscopic regime: τc ≪ τ. The term λ is approximately constant during quantum
state reduction.

• Mesoscopic regime: τc ∼ τ.

• Microscopic regime: τc ≫ τ. The term λ fluctuates strongly during collapse.

Here, the names of the regimes refer to the size N∝ 1/τc of the measurement device. Effec-
tively instantaneous collapse into classical measurement outcomes, as envisioned for devices
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used in everyday quantum measurement, occurs in the macroscopic regime. In this regime,
the collapse dynamics is much faster than any other time scale, including that characterising
the stochastic variable, and λ may be approximated to be constant. In contrast, if both the
object to be measured and the “measurement device” are microscopic quantum systems, we
are in the microscopic regime and all evolution should be extremely well-approximated by the
unitary Schrödinger equation. The value of J should thus be such that the collapse time in this
regime is larger than any observable time scale. The third, mesoscopic, regime interpolates
between these extremes. It has not been probed in any experiments to date [9–11,14,15]. It
is the regime where new physics might be found, and where objective collapse theories can be
distinguished from one another.

3 Macroscopic regime

The dynamics of Eqs. (2) and (3) must reproduce existing experiments, and thus yield mea-
surement outcomes adhering to Born’s rule in the macroscopic regime. That is, an ensemble of
infinitely many evolutions starting from the same initial state but being propagated according
to Eq. (2) or (3) using different λ1,2, should only contain evolutions ending up in either |0〉 or
|1〉, and the proportion of evolutions reaching |0〉 should be cos2(θ0/2).

Assuming the stochastic variable λ1,2 to be constant during the nearly instantaneous col-
lapse dynamics in the macroscopic regime, its value is taken from an equilibrium probability
distribution. If the initial value of cos(θ0) is larger than λ1 in Eq. (2), the derivative θ̇ will be
negative. The value of θt will then decrease over time, while the value of cos(θt ) increases
and θ̇ becomes even more negative. This continues until the value θ = 0 is reached (asymp-
totically), which indicates the completion of the collapse process and realisation of a single
classical pointer state. As the initial parameter values completely determine the measurement
outcome, the probability of obtaining the outcome |0〉 in any individual quantum measurement
can be written as:

P |0〉1 (θ0) =

∫ h1

l1

ρeql,1(λ)Θ(cos(θ0)−λ)dλ. (4)

Here, Θ is the Heaviside step function, while ρeql,1(λ) is the equilibrium probability distribu-
tion function for λ1, defined on the domain [l1, h1].

Starting instead from Eq. (3), we can make the same argument of the state evolving uni-
formly towards either θ = 0 or θ = π for any given initial value of cos(θ0 −λ2) as long as
λ2 ∈ [−π/2,π/2]. Assuming this, and using the Heavyside step function to restrain the limits
on the integral, we thus write:

P |0〉1 (θ0) =

∫ cos(θ0)

l1

ρeql,1(λ)dλ, (5)

P |0〉2 (θ0) =

∫ h2

θ0−π/2
ρeql,2(λ)dλ. (6)

Imposing P |0〉1,2 to vanish as θ0 goes toπ, fixes the remaining limits on the integrals to be l1 = −1
and h2 = π/2. Considering the probabilities for measuring |1〉 similarly fixes h1 = 1 and
l2 = −π/2. Substituting those limits and demanding that the probabilities in Eqs. (5) and (6)
equal Born’s rule for general θ0 yields the necessary forms for the probability distribution
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functions:

ρeql,1(λ) =
sin(arccos(λ))

2
p

1−λ2
=

1

2
, (7)

ρeql,2(λ) =
1

2
sin(π/2−λ). (8)

We thus finally find the SUV dynamics for two-component superpositions to be described by:

θ̇ = −J N sin(θ )(cos(θ )−λ1) (9)

or θ̇ = −J N sin(θ ) cos(θ −λ2), (10)

with the pdf of the stochastic variables λ1,2 given in the limit of infinite correlation time by
a normalised flat distribution between −1 and 1 for λ1, and by 1/2 cos(λ) on the domain
[−π/2,π/2] for λ2. Notice these are still just Eqs. (2) and (3) with the parameters a1,2 set to
zero and the forms of the pdf for the stochastic variables λ1,2 specified.

For both of the possible evolution equations, the stochastic variable is necessarily defined
on a bounded domain. If the stochastic variable represents a physical process, this implies
that the process must be defined on a bounded domain as well. It is then most natural to con-
sider processes on closed (periodic) manifolds, as opposed to open manifolds with arbitrary
boundary conditions. Moreover, although the stochastic variable is essentially constant during
collapse in the macroscopic regime, it must necessarily fluctuate between measurements in or-
der to allow for different measurement outcomes being realised in subsequent measurements.
The stochastic variable must therefore evolve (randomly) in time, and have a finite correlation
time. Finally, to ensure that subsequent measurements are independent of one another, the
future evolution of the stochastic variable should not depend on its past values. Taking the
limit in which the variable has no memory of its past at all, we consider the stochastic process
to be Markovian.

Combining these requirements, the stochastic variable can be interpreted as the (abstract)
position of a (Markovian) random walk with correlation time τ on a closed manifold. The
shape of the manifold on which the walk takes place fully determines the probability distribu-
tion function for its position. In the following sections, we consider which manifolds allow for
random walks that realise the pdf required for obtaining Born’s rule.

Random walk on a circle

The lowest-dimensional closed manifold to consider is the circle, with an angle η parameteris-
ing its single dimension. We will not consider more general shapes, since smooth deformations
of the circle and of the pdf for the coordinate η can always be made to cancel one another,
making all smoothly connected shapes equivalent.

For times short compared to the correlation time τ, a Markovian random walk will result in
a Gaussian pdf centered around the initial value of the angle. For times (infinitely) larger than
τ, the pdf ρeql,circ(η) becomes flat, indicating that each angle on the circle is equally likely
to be realised. This is a general feature of Markovian random walks on a closed manifold;
as there is no preferred point, each point on the manifold will become equally likely in the
infinite time limit.

To see whether the coordinate η can be used to define the random variables λ1,2 yielding
Born’s rule, we need to identify a function λ(η) such that the pdf for λ equals that of Eq. (7)
or (8). The pdf for the value of any function λ(η) is related to the pdf for its argument η
through [35]

ρ(λ(η)) |dλ/dη| = ρ(η). (11)
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Figure 1: Typical random walk on the unit sphere with initial position η0 = 0 and
φ0 = π/2. One thousand steps were taken with an arc length of 0.06. The colours
indicate the time evolution, going from dark to light.

Because the coordinate η is periodic, it is defined only modulo integer multiples of 2π
(its period). For λ1(η) to be invariant under additions of 2π, it necessarily needs to be a
trigonometric function, such as λ1 = cos(η), λ1 = sin(η), or polynomial combinations of
these. Using ρeql,circ(η) = 1/(2π) and Eq. (11), none of these trigonometric functions can
produce the pdf of Eq. (7). Similarly, because λ2 appears inside a cosine in Eq. (10), it should
be an angle, defined modulo 2π. This is realised if λ2 is a linear function of η, but it is not
possible to obtain the pdf of Eq. (8) that way.

We thus find that a Markovian random walk on the circle cannot generate the stochastic
variable required for obtaining Born’s rule. Additional degrees of freedom are required, which
can be provided by considering higher dimensional manifolds.

Random walk on a sphere

The surface of a sphere is the representative closed manifold to be considered in two dimen-
sions. We will discuss topologically distinct manifold such as the torus in Sec. 4. To param-
eterise the position of a random walk on the sphere we use the latitude and azimuth angles
η and φ. In the limit of times (infinitely) long compared to the correlation time τ, the prob-
ability distribution function for the random walk uniformly covers the sphere. This implies
ρeql,sphere(φ) = 1/(2π) and ρeql,sphere(η) = sin(η)/2 (see Supplemental Material for details).

As before, λ1 should be a trigonometric function of the angles η and φ, while λ2 is a
linear function of them. Choosing the specific forms λ1 = cos(η) and λ2 = η, the uniform
distribution of the random walk over the sphere combined with Eq.(11) results precisely in
the probability distribution functions of Eqs. (7) and (8).

A Markovian random walk on the sphere can therefore be used to generate stochastic
variables with the pdf required for obtaining Born’s rule in the macroscopic regime. We will
comment on random walks in higher dimensions and on topologically distinct manifolds in
Sec. 4, after considering the effect of the random walk if the collapse time is comparable to
the correlation time.
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4 Mesoscopic regime

If the collapse time is finite and larger than the correlation time, τc > τ, the value of the
stochastic variable will fluctuate significantly while the system collapses from a superposed
state to a classical outcome. Experimental verification for the statistics of obtained outcomes
is unavailable throughout a large part of this regime. It is easily verified, however, that any
deviation of the late-time probabilities from Born’s rule would allow faster-than-light commu-
nication, because if two observers share a known entangled state and a prior agreement of
who measures first, the latter observations reproduce the measurement statistics of the earlier
ones. We therefore require Born’s rule also in this regime.

We again take the random walk on a sphere as the process defining the evolution of the
stochastic variable. To find its probability distribution given a previous value, we use the fact
that it must be Gaussian in the distance travelled. Starting from the point η0 = 0, the naive
expectation is then for the probability distribution to spreads over time as:

ρ(η,φ)∝ exp
�

−η2/(2σ2)
�

.

Here, η equals the arc distance from the pole on a unit sphere for a point with latitude coordi-
nateη. The variance of the distribution grows over time and is given byσ2(t ) = Dt = ε2t/δt ,
with ε the typical arc distance travelled in time δt so that D the diffusion coefficient for the
spread of the probability distribution, which is inversely proportional to its correlation time.

As before, only the probability distribution for the latitude angle η affects the time evolu-
tion of the state. It is found by integrating over the azimuthal distribution:

ρ(η)∝
∫ 2π

0

dφ sin(η)ρ(η,φ).

Here, sin(η)dφ is the arc distance along a line of constant latitude.
Takingρ(η,φ)∝ exp

�

−η2/(2σ2)
�

as before, gives a good approximation for the distribution
function at short times, but it fails to account for any random walks crossing the south pole.
To correct for this, we can extend the distribution beyond η = π and fold it back onto the unit
sphere:

ρA(η) = N̄
∞
∑

n=−∞

∫ 2π

0

dφ sin(η)e−
1

2σ2 (η+n2π)2 . (12)

Here, n ∈ Z and N̄ is a normalisation factor. Finally, starting from an arbitrary initial position
on the sphere the same sequence of arguments yields the expression:

PA(η) =
∞
∑

n=−∞

∫ 2π

0

dφN̄ sin(η)exp
� −1

2σ2
(arccos[sin(η0) sin(η) cos(φ0 −φ)

+ cos(η0) cos(η)] + 2nπ)2
�

. (13)

Here, the arccos term is the arc distance between the initial point (η0,φ0) and the point
(η,φ). We thus arrive at an exact but open form expression for the probability distribution
obtained in a random walk on the sphere. Cutting off the sum at a finite value of |n|, it can be
used to numerically compute the time evolution of Eqs. (2) and (3) in the mesoscopic regime.

Numerical results

Besides using an approximate form for the probability distribution function after a given time
interval, as provided by Eq. (A.4), we can also numerically simulate the random walk on the
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unit sphere directly. Every time step, the stochastic variable then travels a fixed arc distance
dstep in a random direction. A typical trajectory on the unit sphere is displayed in Fig. 1

The statistical distribution of latitude angles after a given time and starting from a given
position will approach the probability distribution function ρ(η) when averaged over suffi-
ciently many instances of the random walk. In Fig. 2, the evolution of the distribution is
shown for different times. The Ansatz of equation A.4 up to |n|max = 500 is drawn as black
lines in the same figure. here we used the definition σ2 = d2

stept/2. Increasing nmax yields an
increasingly better match with the numerical averages. The n = 0 term on its own provides
the approximation ρ(η)∝ sin(η)exp

�

−(η−η0)2/(2σ2)
�

, which is indicated by the orange
line. It gives a good approximation only at short times, and increasingly diverges from the
numerical average as time progresses.

Figure 2: Probability distribution for the latitude angle η, after a random walk on the
sphere with 10, 500, 1000, and 10000 steps of arc length 0.03. Here, we used the
initial values η0 = π/3 (indicated by a vertical light brown line) and φ0 = π/2. The
black line shows the Ansatz of equation A.4 with σ2 = d2

stept/2 and |n|max = 500.
The orange dashed line indicates only the n = 0 term and is seen to diverge from
both the numerical average and the black line only at late times.

Statistics

Using the evolution of the noise on the sphere, we can consider the objective collapse dynamics
of Eq. (9). For τ≪ 1/(J N), the noise fluctuates much faster than the state evolves. The state
evolution then effectively experiences the average value of the noise, which is always located
at the equator, η = π/2. In the limit of infinitesimal τ, this causes the probability P|0〉 of
the state evolving to the fixed point given by the pointer state |0〉, to become a step-function:
P|0〉 = Θ(θ0 −π/2).

We can counteract the tendency towards a step-function distribution of outcomes by intro-
ducing a scaling factor B for the ratio of between the coupling strength to the stochastic noise
and the non-linear coupling driving the collapse dynamics:

θ̇ = −J N sin(θ )(cos(θ )− Bλ1). (14)

For large values B≫ 1, the stochastic term dominates the collapse process, and the non-linear
term can be neglected. This yields a flat probability distribution P|0〉 = 1/2 for the collapse
outcome as, expected from earlier work [24].

The probability distribution corresponding to Born’s rule, P|0〉 = | cos(θ0/2)|2, interpolates
between the step-function obtained for small values of τ at B = 1, and the constant obtained
at large B. The probability distributions for various intermediate values of B are shown in
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Figure 3: Probability of evolving towards the stable fixed point corresponding to the
pointer state |0〉, as a function of the initial value θ0. The colours indicate different
values for B, ranging from 1 to 100. For each instance of the state evolution, 2000
time steps in the evolution of θ are considered to determine its final state, and each
point in the figure corresponds to the final state average of 10000 such evolutions.
To minimise the effect of the fixed step size in the evolution of the noise, the noise
takes 100 steps of arc length 0.1 before each new step in the evolution of the state.

Fig. 3, and are seen not to have an inflection point apart from the central point at θ0 = π/2.
For any value of τ, There is thus guaranteed to be some value of B at which Born’s rule is
obtained.

Using a bisection method to numerically determine the values of B yielding Born’s rule
results in Fig. 4. The three lines correspond to different values of J N, and each point is the
result of a bisection method to find the value of B for fixed J Nτ and θ0 that yields Born’s
rule within a 0.0029 margin. For each combination of J Nτ and B, 10000 evolutions are
averaged to find the corresponding value of P|0〉. The noise is modelled as a random walk on
the unit sphere with steps of arc length 0.05. To minimise the effect of the fixed step size in
the evolution of the noise, the noise takes 100 steps before each new step in the evolution of
the state.

In terms of the collapse time τc and the size dt of the time step used in simulations, three
regimes can be distinguished in Fig. 4, characterised by τc ≪ τ, dt ≪ τ ≪ τc and τ ≲ dt .
The first is the regime in which the noise is nearly constant during the time it takes the state
to collapse. The limiting value of B for large J Nτ matches the analytic result B = 1 identified
before. For noise processes with any arbitrary but finite correlation time τ, this regime is
relevant to macroscopic measurement machines, which collapse instantaneously as N →∞
(i.e. in the thermodynamic limit).

In the mesoscopic regime, with small but non-zero correlation times τ≪ τc , The relation
between B and J Nτ shown in Fig. 4 can be well approximated by the dashed black line over a
large range of parameters. The dashed line is a fit of the form B = γ/(J Nτ)α, with parameter
values found to be γ = 0.92± 0.05 and α = 0.50± 0.01. In this regime we thus find:

B2∝ 1/(J Nτ) ⇔ (BJ N)2∝ J N/τ. (15)

Here, we write the relation in terms of J N, BJ N, and 1/t au, as these are the energy scales
defining the dynamics.

Finally, a third regime is visible in Fig. 4, for τ < dt . Here B again becomes independent of
J Nτ, but does depend on J N in a non-universal way (i.e. not through Jτ). This is typical cut-
off behaviour arising from the non-commuting limits of dt → 0 and τ → 0, which indicates

10



SciPost Physics Core Submission

Figure 4: Parameter values yielding Born’s rule. The simulation is carried out for
J N = 0.5 (dark), J N = 1 (middle), and J N = 2 (light). In each case, three regimes
can be identified, corresponding to large, medium and small values of J Nτ. The
dashed black line indicates a fit for the central regime, of the form B = γ/(J Nτ)α

with γ ≈ 0.92 and α = 0.50. The downward triangle on the right side indicates
the exact result B = 1 for the limit J Nτ → ∞, corresponding to constant noise
or macroscopic measurement machines. The relation between J Nτ and B can be
seen to become non-universal (dependent on J N) for small values of J Nτ, where
the approximation of a continuous noise process using finite step size breaks down.
Each circular point along the curves represents the value of B giving Born’s rule as
determined using a bisection method at fixed θ0, and probabilities after averaging
over 100000 evolutions using arc length steps of 0.05 for the noise.

that the approximation of a continuous noise process using finite step size breaks down. De-
creasing the size of the time steps used in the calculation, or equivalently, considering smaller
values of J N, results in the shrinking of the third regime. The nonphysical low-J Nτ regime
thus vanishes in the dt → 0 limit.

Both in the mesoscopic and in the macroscopic regime, Fig. 4 shows it is possible to em-
ploy a Markovian random walk on a unit two-sphere as the stochastic variable in a theory of
spontaneous unitarity violation, such that it results in objective collapse obeying Born’s rule.
For any given correlation time τ of the external noise, Born’s rule is obtained only for a par-
ticular relation between the coupling strength BJ N of the system to the stochastic noise, and
the coupling strength J N to the non-linear term driving the collapse process. The existence
of such a relation suggests the stochastic and non-linear processes in models of spontaneous
unitarity violation should have a common physical origin. Importantly, it does not imply an
assumption of Born’s rule in the definition of the dynamics, as the relation between JBN and
J N is independent of the state.

Notice that starting from Eq. (10) rather than Eq. (9), the stochastic terms appears inside
a periodic function. Introducing a parameter B multiplying λ2 may then affect the direction
of the state evolution, but not its speed. In that situation it is therefore not possible to balance
two limiting behaviours as we did in Fig. 3, and Born’s rule cannot be obtained at any finite τ.
Because the values of the stochastic term in consecutive experiments should not be correlated,
this effectively rules out any dynamics based on Eq. (10) models for objective collapse. We thus
find that the only consistent form for theories of spontaneous unitarity violation, as applied to
an initial two-state superposition, is given by Eq. (14), with the relation between B and J Nτ
according to Fig. 4.
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Random walks on other manifolds

The analysis above can be repeated for random walks on any closed manifold. In general,
Eq. (14) yields the limiting behaviours for small τ/τc and large B shown in Fig. 4. Interpo-
lating between these, a relation between B and J Nτ resulting in Born’s rule can in principle
be obtained even in the general case. The resulting dynamical equations, however, do not
generally allow for a physical interpretation.

To see this, consider the example of a random walk on a two-torus. As shown in detail in the
Supplemental Material, the requirement that Born’s rule is obtained in the macroscopic regime
result in a relation of the form λ1∝ φ, with φ one of the two angles parameterizing positions
on the two-torus. Although this is a valid algebraic expression, the angle φ appearing outside
of any trigonometric function would render λ1 a multi-valued function of φ, which cannot be
given a physical interpretation. This feature generally appears for random walks on manifolds
with non-zero genus, so that Eq. (14) provides a physical model for objective collapse only if
the stochastic variable λ1 is modelled by a random walk on a (d > 1)-dimensional sphere.

The examples of random walks on the unit 3-sphere and 4-sphere, are worked out in detail
in the Supplemental Material. Both yield physical models, which reproduce Born’s rule for
general J Nτ, given a specific relation between B and J Nτ. In both cases, the macroscopic,
large-J Nτ limit yields B = 1, as in the case of the random walk on a two-sphere considered
before. In the regime of τ non-zero but small compared to τc , both higher-dimensional cases
again yield a relation of the form B ≈ γ/(J Nτ)0.5, but with parameter values γ = 0.936
(3-sphere) and γ = 0.966 (4-sphere).

We thus find that a model for spontaneous unitarity violation starting from a superposition
over two states must necessarily be of the form of Eq. (14), with the stochastic variable λ1
modelled by a random walk on a sphere. For a sphere in any dimension larger than one, and
for any non-zero correlation time of the random walk, Born’s rule is recovered given a specific
relation between BJ N and J N. The functional form of the required relation depends on the
dimension of the sphere only in a parametric fashion.

5 Microscopic regime

In the microscopic limit, finally, the measurement machine itself is a quantum system that con-
sists of only a small number of constituent particles (argued for example in Ref. [1] to be fewer
than about 106 atoms). In this regime, the dynamics induced by Eq. (14) should be negligible
in order to reproduce the well-established adherence of microscopic physics to Schródinger’s
dynamics. In direct analogy to ny usual type of spontaneous symmetry breaking [36], this
implies that the strength of the unitarity-breaking perturbation J must be sufficiently weak to
have unobservable effect on any experimentally achievable time scale. Only the regular dy-
namics governed by Schrödinger’s equation then remains, reproducing the experimental fact
that the evolution of microscopic objects is well-described by unitary quantum mechanics.

6 Discussion

In summary, we considered models of spontaneous unitarity violation, in which a weak non-
unitary perturbation of Schrödinger’s equation causes the objective collapse of macroscopic
quantum systems, while leaving the evolution of microscopic particles unaffected. We re-
stricted attention to models with both a non-unitary, non-linear, deterministic term, and sepa-
rately a non-unitary, linear, stochastic term. The separation between non-linear and stochastic
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terms ensures that any noise process representing the evolution of the stochastic variable is
independent of the state being collapsed.

Imposing the constraint that Born’s rule must be obtained for the final state statistics of
the collapse dynamics, we find that there is only one, unique form for the evolution starting
from a two-state superposition:

θ̇ = −J N sin(θ )(cos(θ )− Bλ). (16)

Here, θ is an Euler angle parameterising the Bloch sphere, N represents the size (number of
particles, mass, or volume) of the collapsing system, while J and BJ are the coupling constants
for the non-linear and stochastic processes driving the collapse dynamics. The random variable
λ is defined on a bounded domain that we take to be [−1, 1], and has a correlation time τ
that we assume to be non-zero.

With these definitions, Born’s rule is recovered in the limit of τ large compared to the
collapse time τc if B = 1 and the equilibrium probability distribution for λ is flat on the interval
[−1, 1]. For general values of τ, finding Born’s rule requires the existence of a relation between
the coupling strength of the stochastic term, BJ N, and that of the non-linear term, J N. For
τ ≪ τc the relation is of the form (BJ N)2 ∝ J N/τ, independent of the state undergoing
collapse (i.e. regardless of the initial state being measured). For intermediate values of τ,
the required relation between BJ N and J N follows a smooth curve interpolating between the
forms at short and long correlation times, as shown in Fig. 4. Importantly, the requirement
that there exists a specific relation between coupling strengths suggests a common physical
origin for the stochastic and non-linear processes driving the objective collapse process, akin
for example, to the relation between drift and dissipation in Einstein’s description of Brownian
motion [37,38].

Finally, modelling the stochastic process as an unbiased random walk, the requirement of
obtaining Born’s rule restricts the possible types of manifold on which the random walk takes
place. It needs to be closed for the equilibrium distribution of λ cover a bounded interval, it
should have genus zero to allow for a single-valued map between λ and a coordinate on the
manifold, and it should have dimension two or larger to allow for the equilibrium distribution
of of λ to be flat. These conditions limit the possible types of physical processes that can
provide the stochastic process driving collapse dynamics. Together with the identification of a
physical relation between stochastic and non-linear processes, the results presented here thus
constrain and point the way towards a fully microscopic theory underlying objective collapse
models based on spontaneous unitarity violation.
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A Appendix

This appendix details the calculation of probability distribution functions for random walks on
closed manifolds used in the main text.

A.1 Constant noise limit on the two-sphere

Consider a two-sphere parameterised by the latitude and azimuthal angles η and φ. Combin-
ing these angles into a vector g⃗ = (η,φ), any alternative set of coordinates can be written in
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terms of a vector f⃗ (g⃗ ), whose components are functions of η and φ. We define:

E = ∂η f⃗ · ∂η f⃗ ,

F = ∂η f⃗ · ∂φ f⃗ ,

G = ∂φ f⃗ · ∂φ f⃗ .

Under the coordinate transformation from g⃗ to f⃗ , the probability distribution function defined
on the two-sphere transform as [35]:

PB( f⃗ ) =
PA(g⃗ )
p

EG − F2
. (A.1)

Here,
p

EG − F2 denotes the Jacobian of the coordinate transformation, and the subscripts A
and B denote that the probability distribution is expressed in original and transformed coor-
dinates respectively.

Considering an unbiased random walk on the two-sphere, we know that the infinite-time
probability distribution in terms of Cartesian coordinates is PB(x , y, z) = 1/(4π). That is,
under the Markovian random process every point on the manifold obtained with equal likeli-
hood in the equilibrium distribution. Applying the prescription of Eq. (A.1) The distribution
PA(η,φ) in terms of Euler angles is found to obey:

1

4π
=

PA(η,φ)

| sin(η)|
. (A.2)

Defining probability distribution functions for the individual Euler angles in terms of inde-
pendent sampling, PA(η,φ) = PA(η)pA(φ), the distribution of η follows from:

PA(η)

∫ 2π

0

PA(η
′,φ)|ηdφ =

sin(η)

4π

∫ 2π

0

dφ

⇒ PA(η) =
1

2
sin(η).

A.2 Fluctuating noise on the two-sphere

Starting from the knowledge that at short times, the probability distribution obtained in a
random walk on the sphere starting from the point (η0,φ0) is Gaussian in the arc distance
travelled, we can write:

PA(η) ≈
∫ 2π

0

dφN̄ sin(η)exp
� −1

2σ2
∆2
�

. (A.3)

Here, ∆ = arccos[sin(η0) sin(η) cos(φ0 −φ) + cos(η0) cos(η)] is the arc distance between
the initial point (η0,φ0) and the point (η,φ), while N̄ denotes a normalisation factor. The
analytical result of this integral is not known. However, for x ≪ 1 we can write:

arccos(x )2 = π2/3−πx + O(x2).

Cutting off the series at this order corresponds to taking the short time limit. In that limit, we
can solve the integral using:

∫ 2π

0

exp(b cos(φ) + c sin(φ))dφ = 2πI0(
p

b2 + c2).

14
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Here, I0 denotes the Bessel function. We are then left with an approximate form for the
probability distribution function valid at short times:

PA(η) ≈ N̄ sin(η)I0

�sin(η0) sin(η)

2σ2

�

e
cos(η0) cos(η)

2σ2 .

Here, all prefactors are absorbed into the normalisation N̄. This expression is an approximation
of the actual distribution function because arccos is a multi-valued function, and we only
consider the domain [0,π], thus ignoring the tails of the Gaussian distribution extending all
the way around the sphere. To correct for this omission, we can include all domains of the
arccos:

PA(η) =
∞
∑

n=−∞

∫ 2π

0

dφN̄ sin(η)exp
� −1

2σ2
(arccos[sin(η0) sin(η) cos(φ0 −φ)

+ cos(η0) cos(η)] + 2nπ)2
�

. (A.4)

In the infinite sum over n, all terms evaluate to weighted Bessel functions.

A.3 Random walk on the two-torus

As an example of a random walk on a bounded two-dimensional manifold other than a sphere,
consider a torus described by the Cartesian coordinates:

x (η,φ) = (R + r cos(η)) cos(φ)

y(η,φ) = (R + r cos(η)) sin(φ)

z(η,φ) = r sin(η)

Here, the angles η and φ are both defined on the interval [0, 2π). The angle φ denotes the
rotation around the axis of revolution of the torus, while η is the angle describing rotations
around the surface of the torus at fixed φ. The constant r denotes the radius of the circle
whose revolution yields the torus, while R is the distance between the centre of the torus to
the middle of the circle with radius r . The Jacobian for the transformation between Cartesian
coordinates and the coordinates (η,φ), is given by |J | = rR + r2 cos(η).

If the probability distribution function ρ(x , y, z) has equal value for every valid combina-
tion of x , y , and z, then we can deduce the probability distributions for the individual angles
η and φ as before:

PA(η) =
R + r cos(η)

2πR
PA(φ) = 1/(2π)

To obtain Born’s rule in the constant noise limit, we must identify a coordinate λ = g (η,φ)
on the two-sphere, such that its probability distribution function becomes either flat in the
domain [−1, 1] (for the collapse process with λ1) or equal to 1/2 sin(λ) in the domain [0,π]
(for the λ2 process). The only possible ways of realising these constraints are given by:

λ1(φ) = φ/π− 1

or λ1(η) = η/π+
r

πR
sin(η)− 1

λ2(φ) = arccos(1−φ/π)

or λ2(η) = arccos
�

η

π
+

r

πR
sin(η)− 1
�
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Notice that the angles η and φ appearing outside of any trigonometric functions render λ1 a
multi-valued function of φ, while the arccos has the same effect on the function cos(θ −λ2)
appearing in the state dynamics. These functions therefore cannot be given a physical inter-
pretation.

A.4 Higher-dimensional manifolds

On higher-dimensional manifolds, the procedure for obtaining the probability distribution
function for a single component is a straightforward generalisation of the procedure on the
two-sphere. Using again the assumptions of independent sampling and equal likelihood for
obtaining any point on the manifold in the infinite-time limit, we can write:

PA(η) = J(η, {Ξ})/V. (A.5)

Here, V is the volume of the d-dimensional manifold and J the Jacobian of the transformations
from Cartesian coordinates to the coordinates (η, {Ξ}), with {Ξ} a list of d − 1 angles [35].

To obtain Born’s rule in the constant noise limit, we again need to define coordinate λ1
or λ2, such that P(λ1) = 1/2 or P(λ2) = 1/2 sin(η). Formally following the same steps as
before this yields the possible definitions:

λ1(η) =

∫ η

a

dη′
sin(η′)

2J(η′, {Ξ})

λ2(η) =

∫ η

a

dη′
1

2J(η′, {Ξ})
.

Here, the constant a will be determined by the domain of λ. The equations can be evaluated
for any choice of coordinates on the manifold.

A.4.1 Three-sphere

Directly applying this procedure on the unit three-sphere, we have the relation between Carte-
sian coordinates and Euler angles given by:

x1 = cos(φ1)

x2 = sin(φ1) cos(φ2)

x3 = sin(φ1) sin(φ2) cos(φ3)

x4 = sin(φ1) sin(φ2) sin(φ3).

This implies the Jacobian and transformed probability distributions:

|J4| = sin2(φ1) sin(φ2)

1

2π2
=

PA(φ1,φ2,φ3)

sin2(φ1) sin(φ2)

PA(φ1,φ2) =
1

π
sin2(φ1) sin(φ2).

Using these, we find the probability distributions for individual coordinates:

PA(φ3) =
1

2π

PA(φ2) =
1

2
sin(φ2)

PA(φ1) =
2

π
sin2(φ1).
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Figure 5: The relation between B and J Nτ yielding Born’s rule when the stochastic
process is interpreted as a random walk on either a 2-, 3-, or 4-sphere. The dashed
lines show fits of the low-J Nτ regime of the form B = γ/(J Nτ)α. The best-fit values
for the 2-sphere are γ = 0.919 and α = 0.49, while those for the 3-sphere are
γ = 0.936 and α = 0.49, and we find γ = 0.966 and α = 0.49 for the 4-sphere.

These, finally allow a definition for the functions featuring in the state dynamics such that
Born’s rule is obtained in the constant noise limit:

λ1(φ1)∝ (η− sin(η)) cos(η)

or λ1(φ2) = cos(φ2).

The first possibility can again not be given a physical interpretation due to the appearance of
the angle η outside of a trigonometric function. We thus restrict attention to the definition
λ1(φ2) = cos(φ2) from here on.

Having found dynamics that yields Born’s rule in the static noise limit, we can consider
time-varying noise by directly simulating a random walk on the three-sphere, as we did in the
main text for the two-sphere. Again, we find that there is a specific value for the parameter B
at any value of J Nτ which yields Born’s rule, as shown by the red line in Fig. 5. As for the two-
sphere, the low-J Nτ behaviour of B can be fitted with a function of the form B = γ/(J Nτ)α,
which in the case of the three-sphere yields in the best-fit parameters γ = 0.936 and α = 0.49.

A.4.2 Four-sphere

Again applying the same procedure to the unit four-sphere, the relation between Cartesian
coordinates and Euler angles is given by:

x1 = cos(φ1)

x2 = sin(φ1) cos(φ2)

x3 = sin(φ1) sin(φ2) cos(φ3)

x4 = sin(φ1) sin(φ2) sin(φ3) cos(φ4)

x5 = sin(φ1) sin(φ2) sin(φ3) sin(φ4).
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This implies the Jacobian and transformed probability distributions:

|J4| = sin3(φ1) sin2(φ2) sin(φ3)

1

2π2
=

PA(φ1,φ2,φ3,φ4)

sin3(φ1) sin2(φ2) sin(φ3)

PA(φ1,φ2,φ3) =
1

π
sin3(φ1) sin2(φ2) sin(φ3).

Using these, we find the probability distributions for individual coordinates:

PA(φ4) =
1

2π

PA(φ3) =
1

2
sin(φ3)

PA(φ2) =
2

π
sin2(φ2)

PA(φ1) =
3

4
sin3(φ1).

These, finally allow a definition for the functions featuring in the state dynamics such that
Born’s rule is obtained in the constant noise limit:

λ1(φ2) = cos(φ3).

Repeating the random walk simulation, but on the four-sphere we obtain the relation be-
tween B and J Nτ indicated by the orange line in Fig. 5. The relation at small J Nτ can be fit
with a function of the same form and nearly identical best-fit parameter values as in the case
of the two-sphere and three-sphere.
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Objective collapse theories propose a solution to the quantum measurement problem by predicting
deviations from Schrodinger

::::::::::
Schrödinger’s equation that can be tested experimentally. A class of

objective theories based on spontaneous unitarity violation was recently introduced, in which the
stochastic field required for obtaining Born’s rule does not depend on the state of the system
being measured. Here, we classify possible models for the stochastic field dynamics in theories of
spontaneous unitarity violation. We show that for correlated stochastic dynamics, the field must be
defined on a closed manifold. In two or more dimensions, it is then always possible to find stochastic
dynamics yielding Born’s rule, independent of the state being measured or the correlation time of
the stochastic field. We show that the models defined this way are all isomorphic to the definition
on a two-sphere, which we propose to be a minimal physical model for the stochastic field in models
of spontaneous unitarity violation.

I. INTRODUCTION

Quantum mechanics has been proven to be highly ac-
curate in describing the dynamics of microscopic sys-
tems1,2. The dynamics of macroscopic objects as a whole,
however, is described by classical physics. The qualita-
tive distinction between these regimes leads to a prob-
lem that becomes visible when measuring microscopic ob-
jects using macroscopic measurement machines3–6. Even
though the measurement machine consists of quantum
particles, we cannot describe its observed behaviour using
quantum mechanics. Precisely what causes the quantum-
classical crossover and how the measurement device turns
a superposed initial state into a single classical outcome
is still unknown. These questions are collectively known
as the quantum measurement problem, and it contin-
ues to be a topic of active research1,7–11. Besides the
formulation of explicit models for the quantum-classical
crossover7,8,12,13, there has recently been a focus on con-
structing new experiments aimed at probing the crossover
regime9–11,14,15.
Theoretical approaches to solving the quantum mea-

surement problem can broadly be divided into interpre-
tations and objective collapse theories. Interpretations
assume that Schrödinger’s equation holds at all scales and
then attempt to explain why we only perceive single clas-
sical states for macroscopic objects1. On the other hand,
objective collapse theories –which are the focus of the
current work– propose objectively distinct dynamics for
the microscopic and macroscopic worlds, connected by
a smooth transition in the mesoscopic region7,12,16. The
transition is facilitated by a modification to Schrödinger’s
equation that leads to the “quantum state reduction” or
collapse of superpositions into classical states. Although
the modified dynamics applies to all objects, its effect is
instantaneous for macroscopic objects but takes an al-
most infinitely long time to become significant in micro-
scopic systems. At mesoscopic scales, it must then oc-
cur within measurable times. Currently, this mesoscopic

regime is on the verge of being probed by state-of-the-art
experimental efforts1,14,15,17–23.

All viable objective collapse theories must reproduce
known experimental results correctly. Hence,

::::
This

::::::
implies

::::
that

:
their time evolution must include at least a

stochastic, non-unitary term to account for probabilistic
measurement outcomes 8, as well as a non-unitary
and non-linear elementto allow for their

::::

8,24,
::::::::
because

:
a
:::::
fully

::::::::::::
deterministic

:::::::
theory

:::::::
cannot

:::::
yield

::::::::::::
probabilistic

::::::::::::
measurement

::::::::::
outcomes,

::::::
while

::
a
::::::
fully

::::::
linear

:::::::
theory

::::::
cannot

:::::::::
reproduce

::::
the observed stability and statistics

:
of

::::::::::::
measurement

:::::::::
outcomes.

::::
The

:::::::::::
non-unitary

::::
and

:::::::::
non-linear

:::::::
element

::
is

::::
thus

::::::::
required

:::
to

::::::::
introduce

::::::
stable

:::::
fixed

::::::
points

::
in

:::
the

::::::::::
dynamics,

:::::
while

::::
the

::::::::::::
combination

::
of

:::::::::::
non-unitary

:::::::::
stochastic

::::
and

::::::::::
non-linear

::::::
terms

::::::
allows

:::
for

::::
the

:::::::
correct

::::::::
statistics

::
to

:::
be

::::::::
realized24. Moreover, all

::
All

:
objective

collapse theories
::::::::
moreover

:
predict an instantaneous re-

duction of quantum superpositions into a classical mea-
surement outcome and ensure Born’s rule in the macro-
scopic limit25,26. Despite this similarity in behaviour at
the macro-scale, predictions of objective collapse theories
may differ wildly in the mesoscopic region, and this pro-
vides opportunity for experimentally distinguishing be-
tween them17,18,27.

Mathematically, one major distinction between differ-
ent objective collapse theories is how stochasticity is in-
troduced in their dynamics. In many models, the time
evolution of the quantum state itself is assumed to be
stochastic1,12,13,28. Constructing the theory this way al-
lows for the explicit exclusion of faster-than-light commu-
nication and the automatic obtaining of Born’s rule. It
comes at the cost, however, of the stochastic contribution
not being independent of the quantum state being mea-
sured29. It was recently shown that it is also possible to
construct models in which the stochastic and non-linear
contributions to the dynamics are decoupled, so that the
stochastic term may represent a physical field that is in-
dependent of the state being measured30. These Spon-
taneous Unitarity Violation (SUV) models still allow for
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obtaining Born’s rule24,30. The exclusion of faster-than-
light communication has not been demonstrated yet and
is an important consideration for future work. However,
it has been shown that this is possible for certain non-
linear models31.

Here, we derive constraints on the form of the stochas-
tic terms that can appear in SUV models based on the
requirement that the late-time probability distribution
of measurement outcomes adheres to Born’s rule. Since
the stochastic term represents a physical field in these
theories, identifying its possible symmetries and dimen-
sionality narrows the possibilities for its physical origin.

In this study, we restrict attention solely to quantum
state reduction starting from an initial superposition of
two states. Notice that any successful objective collapse
theory must be able to describe the quantum state re-
duction of an initial superposition over two pointer states
(distinguished, for example, by their centre of mass posi-
tions). We focus on these processes because all possible
SUV models reduce to one of only two forms when ap-
plied to the evolution of a two-state system. We thus
identify general constraints on the stochastic field ap-
pearing in any theory of SUV. More stringent constraints
on the stochastic field of specific models may perhaps be
obtained by considering different initial conditions, which
we leave for future research. We find that the require-
ment of Born’s rule being obtained in the presence of
correlated stochasticity and regardless of system size, re-
quires a unique form of the two-state SUV dynamics, and
we fully constrain the stochastic field parameters appear-
ing in that form.

II. TWO-STATE COLLAPSE DYNAMICS

Consider the time evolution of the general two-
component wave function parameterised on the Bloch
sphere:

|ψt⟩ = cos (θt/2) |0⟩+ sin (θt/2) |1⟩ . (1)

Here, the states |0⟩ and |1⟩ represent entangled (prod-
uct) states of a microscopic quantum system in an eigen-
state of the observable being measured and a macroscopic
measurement device indicating the corresponding mea-
surement outcome. In the generic description of a strong
measurement25, this is the state obtained right after cou-
pling pointer states of a measurement machine to the
quantum system being measured. Collapse, or measure-
ment, should reduce the system to either |0⟩ or |1⟩ with
respective probabilities cos2(θ0/2) and sin2(θ0/2). This
quantum states reduction should take place over immea-
surably short times for truly macroscopic measurement
machines, while taking indefinitely long times if the mea-
surement device is made microscopic. Notice that we ig-
nored the relative phase between between components of
|ψt⟩, which is generically present, as well as the dynamics
of the overall norm and phase. As has been previously
shown24,32,33, these do not influence the time evolution

of θt, even for general (not necessarily unitary) models of
quantum state evolution.
Here, we focus on models of Spontaneous Unitarity

Violation (SUV), in which the stochastic contribution to
the state dynamics is driven by a physical field evolv-
ing independently from the quantum state29. Within
this setting, only two possible

::::::::
imposing

::::
that

::::::
there

:::
are

::::
only

::::
two

::::
fixed

:::::::
points

::
in

:::
the

:::::::::
dynamics

::::
(i.e.

:::::
two

:::::::
possible

::::::::::::
measurement

::::::::::
outcomes),

::::
and

:::::
that

::::
the

::::::::::::
probabilities

::
of

:::::::
reaching

::::::
either

:::::
fixed

:::::
point

::::::::::
correspond

::
to

::::::
Born’s

::::
rule

::::
(i.e.

:::
are

:::::
given

:::
by

:::
the

:::::::
squared

::::::::::
amplitude

::
of

:::
the

:::::::::::::
corresponding

::::::::::
component

::
in

:::
the

::::::
initial

::::
wave

::::::::
fuction)

:::::::
severely

:::::::::
constrains

:::
the

:::::::
possible

:::::
form

::
of

::::
the

:::::::::
evolution.

::
In

:::::
fact,

:::
up

::
to

:::::::
unitary

::::::::::::::
transformations,

::::
the

:::::
only

::::::::
allowed

:
forms for the non-

unitary evolution of a two-state system arepossible
::::

24,30

:

θ̇t = −JN sin(θt)(cos(θt + a1)− λ1(t)), (2)

or θ̇t = −JN sin(θt) cos(θt + a2 − λ2(t)). (3)

Here N indicates the system size (the volume, mass, or
number of constituent particles of the measurement ma-
chine), which explicitly indicates the origin of the collapse
dynamics stemming from a process of spontaneous sym-
metry breaking involving states with distinct values of an
emergent order parameter8,29,34. The coupling constant
J determines the speed of the collapse process, and θ
represents the angle with the z-axis on the Bloch sphere
as before. The variables λ1,2(t) and a1,2 denote time-
dependent stochastic variables and constant parameters
respectively. The allowed probability distribution func-
tions (pdf) and dynamics of λ1,2 and values of a1,2 are
constrained by the requirement that there is no inherent
preference (independent of the initial state) for either the
θ = 0 or the θ = π measurement outcome. This means
that θ̇(θ, λ) = −θ̇(π − θ, λ′) for some value λ′ appear-
ing with the same probability as λ. We thus find that
necessarily a1 = 0 and λ1 has a probability distribution
function that is even, while the pdf of λ2 must be sym-
metric around λ2 = a2. Without loss of generality, we
can then also consider an even pdf for λ2 and set a2 to
be zero.

Notice that Eqs. (2) and (3) neglect the usual unitary
part of the evolution described by the quantum mechani-
cal Hamiltonian. As shown previously24, the statistics of
measurement outcomes is not influenced by the unitary
part of the dynamics and we thus set it to zero without
loss of generality. Moreover, by studying the dynamics
directly on the Bloch sphere, we avoid the need for nor-
malisation of the wave function. Notice that normalisa-
tion can be included at the level of the state dynamics29,
but that this leaves Eqs. (2) and (3) invariant. These thus
represent the only possible forms of the quantum state re-
duction process consistent with having stable end states
corresponding to single pointer states (the states |0⟩ and
|1⟩), having no possible other end states (no attractive
fixed points other than θ = 0 or θ = π), and contain-
ing an independent physical field driving the stochastic
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evolution (i.e. λ1,2 evolving independently of θ, and not
being multiplied by any θ-dependent factor besides the
overall, geometric factor sin(θ) which constrains the evo-
lution to the Bloch sphere)24,29,30.
With either of the equations (2) or (3), the probability

of obtaining a particular outcome in any given realisation
of the dynamics depends on the probability distribution
and dynamics of the stochastic variable λ1,2(t). Assum-
ing this variable arises from an as-yet unknown physi-
cal process, its effectively stochastic dynamics is charac-
terised by a correlation time τ , which cannot be iden-
tically zero. The average half-time τc of the quantum
state reduction towards the poles of the Bloch sphere,
meanwhile, is determined by the overall factor NJ , ren-
dering it inversely proportional to system size. The ratio
of these two intrinsic time scales defines three possible
regimes for the collapse dynamics.

• Macroscopic regime: τc ≪ τ . The term λ is approx-
imately constant during quantum state reduction.

• Mesoscopic regime: τc ∼ τ .

• Microscopic regime: τc ≫ τ . The term λ fluctuates
strongly during collapse.

Here, the names of the regimes refer to the size N ∝ 1/τc
of the measurement device. Effectively instantaneous col-
lapse into classical measurement outcomes, as envisioned
for devices used in everyday quantum measurement, oc-
curs in the macroscopic regime. In this regime, the col-
lapse dynamics is much faster than any other time scale,
including that characterising the stochastic variable, and
λ may be approximated to be constant. In contrast, if
both the object to be measured and the “measurement
device” are microscopic quantum systems, we are in the
microscopic regime and all evolution should be extremely
well-approximated by the unitary Schrödinger equation.
The value of J should thus be such that the collapse time
in this regime is larger than any observable time scale.
The third, mesoscopic, regime interpolates between these
extremes. It has not been probed in any experiments to
date9–11,14,15. It is the regime where new physics might
be found, and where objective collapse theories can be
distinguished from one another.

III. MACROSCOPIC REGIME

The dynamics of Eqs. (2) and (3) must reproduce
existing experiments, and thus yield measurement out-
comes adhering to Born’s rule in the macroscopic regime.

::::
That

::::
is,

:::
an

::::::::::
ensemble

:::
of

:::::::::
infinitely

::::::
many

::::::::::
evolutions

:::::::
starting

::::
from

::::
the

:::::
same

:::::
initial

:::::
state

::::
but

:::::
being

::::::::::
propagated

::::::::
according

:::
to

::::
Eq.

:::
(2)

:::
or

:::
(3)

::::::
using

::::::::
different

:::::
λ1,2, ::::::

should

::::
only

:::::::
contain

::::::::::
evolutions

:::::::
ending

:::
up

::
in

::::::
either

::::
|0⟩

::
or

::::
|1⟩,

:::
and

::::
the

::::::::::
proportion

::
of

::::::::::
evolutions

::::::::
reaching

:::
|0⟩

::::::
should

:::
be

::::::::::
cos2(θ0/2).

Assuming the stochastic variable λ1,2 to be constant
during the nearly instantaneous collapse dynamics

::
in

:::
the

:::::::::::
macroscopic

::::::
regime, its value is taken from an equi-

librium probability distribution. If the initial value of
cos(θ0) is larger than λ1 in Eq. (2), the derivative θ̇ will
be negative. The value of θt will then decrease over time,
while the value of cos(θt) increases and θ̇ becomes even
more negative. This continues until the value θ = 0 is
reached (asymptotically), which indicates the completion
of the collapse process and realisation of a single classi-
cal pointer state. As the initial parameter values com-
pletely determine the measurement outcome, the prob-
ability of obtaining the outcome |0⟩ in any individual
quantum measurement can be written as:

P
|0⟩
1 (θ0) =

∫ h1

l1

ρeql,1(λ)Θ(cos(θ0)− λ)dλ. (4)

Here, Θ is the Heaviside step function, while ρeql,1(λ) is
the equilibrium probability distribution function for λ1,
defined on the domain [l1, h1].
Starting instead from Eq. (3), we can make the same

argument of the state evolving uniformly towards either
θ = 0 or θ = π for any given initial value of cos(θ0 − λ2)
as long as λ2 ∈ [−π/2, π/2]. Assuming this, and using
the Heavyside step function to restrain the limits on the
integral, we thus write:

P
|0⟩
1 (θ0) =

∫ cos(θ0)

l1

ρeql,1(λ)dλ, (5)

P
|0⟩
2 (θ0) =

∫ h2

θ0−π/2

ρeql,2(λ)dλ. (6)

Imposing P
|0⟩
1,2 to vanish as θ0 goes to π, fixes the remain-

ing limits on the integrals to be l1 = −1 and h2 = π/2.
Considering the probabilities for measuring |1⟩ similarly
fixes h1 = 1 and l2 = −π/2. Substituting those limits
and demanding that the probabilities in Eqs. (5) and (6)
equal Born’s rule for general θ0 yields the necessary forms
for the probability distribution functions:

ρeql,1(λ) =
sin(arccos(λ))

2
√
1− λ2

=
1

2
, (7)

ρeql,2(λ) =
1

2
sin(π/2− λ). (8)

We thus finally find the SUV dynamics for two-
component superpositions to be described by:

θ̇ = −JN sin(θ)(cos(θ)− λ1) (9)

or θ̇ = −JN sin(θ) cos(θ − λ2), (10)

with the pdf of the stochastic variables λ1,2 given in the
limit of infinite correlation time by a normalised flat dis-
tribution between −1 and 1 for λ1, and by 1/2 cos(λ)
on the domain [−π/2, π/2] for λ2. ::::::

Notice
:::::
these

:::
are

::::
still

:::
just

:::::
Eqs.

:::
(2)

::::
and

:::
(3)

::::
with

::::
the

::::::::::
parameters

::::
a1,2 :::

set
::
to

::::
zero

:::
and

::::
the

:::::
forms

::
of

::::
the

:::
pdf

:::
for

::::
the

:::::::::
stochastic

::::::::
variables

::::
λ1,2

::::::::
specified.

:
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For both of the possible evolution equations, the
stochastic variable is necessarily defined on a bounded
domain. If the stochastic variable represents a physical
process, this implies that the process must be defined
on a bounded domain as well. It is then most natural
to consider processes on closed (periodic) manifolds, as
opposed to open manifolds with arbitrary boundary con-
ditions. Moreover, although the stochastic variable is
essentially constant during collapse in the macroscopic
regime, it must necessarily fluctuate between measure-
ments in order to allow for different measurement out-
comes being realised in subsequent measurements. The
stochastic variable must therefore evolve (randomly) in
time, and have a finite correlation time. Finally, to en-
sure that subsequent measurements are independent of
one another, the future evolution of the stochastic vari-
able should not depend on its past values. Taking the
limit in which the variable has no memory of its past at
all, we consider the stochastic process to be Markovian.

Combining these requirements, the stochastic variable
can be interpreted as the (abstract) position of a (Marko-
vian) random walk with correlation time τ on a closed
manifold. The shape of the manifold on which the walk
takes place fully determines the probability distribution
function for its position. In the following sections, we
consider which manifolds allow for random walks that
realise the pdf required for obtaining Born’s rule.

Random walk on a circle

The lowest-dimensional closed manifold to consider is
the circle, with an angle η parameterising its single di-
mension. We will not consider more general shapes, since
smooth deformations of the circle and of the pdf for the
coordinate η can always be made to cancel one another,
making all smoothly connected shapes equivalent.

For times short compared to the correlation time τ ,
a Markovian random walk will result in a Gaussian pdf
centered around the initial value of the angle. For times
(infinitely) larger than τ , the pdf ρeql,circ(η) becomes flat,
indicating that each angle on the circle is equally likely to
be realised. This is a general feature of Markovian ran-
dom walks on a closed manifold; as there is no preferred
point, each point on the manifold will become equally
likely in the infinite time limit.

To see whether the coordinate η can be used to define
the random variables λ1,2 yielding Born’s rule, we need
to identify a function λ(η) such that the pdf for λ equals
that of Eq. (7) or (8). The pdf for the value of any
function λ(η) is related to the pdf for its argument η
through35

ρ(λ(η)) |dλ/dη| = ρ(η). (11)

Because the coordinate η is periodic, it is defined only
modulo integer multiples of 2π (its period). For λ1(η) to
be invariant under additions of 2π, it necessarily needs
to be a trigonometric function, such as λ1 = cos(η),

λ1 = sin(η), or polynomial combinations of these. Using
ρeql,circ(η) = 1/(2π) and Eq. (11), none of these trigono-
metric functions can produce the pdf of Eq. (7). Simi-
larly, because λ2 appears inside a cosine in Eq. (10), it
should be an angle, defined modulo 2π. This is realised
if λ2 is a linear function of η, but it is not possible to
obtain the pdf of Eq. (8) that way.
We thus find that a Markovian random walk on the

circle cannot generate the stochastic variable required for
obtaining Born’s rule. Additional degrees of freedom are
required, which can be provided by considering higher
dimensional manifolds.

Random walk on a sphere

The surface of a sphere is the representative closed
manifold to be considered in two dimensions. We will
discuss topologically distinct manifold such as the torus
in Sec. IV. To parameterise the position of a random
walk on the sphere we use the latitude and azimuth
angles η and ϕ. In the limit of times (infinitely) long
compared to the correlation time τ , the probability dis-
tribution function for the random walk uniformly cov-
ers the sphere. This implies ρeql,sphere(ϕ) = 1/(2π) and
ρeql,sphere(η) = sin(η)/2 (see Supplemental Material for
details).
As before, λ1 should be a trigonometric function of

the angles η and ϕ, while λ2 is a linear function of them.
Choosing the specific forms λ1 = cos(η) and λ2 = η, the
uniform distribution of the random walk over the sphere
combined with Eq.(11) results precisely in the probability
distribution functions of Eqs. (7) and (8).
A Markovian random walk on the sphere can there-

fore be used to generate stochastic variables with the
pdf required for obtaining Born’s rule in the macroscopic
regime. We will comment on random walks in higher
dimensions and on topologically distinct manifolds in
Sec. IV, after considering the effect of the random walk if
the collapse time is comparable to the correlation time.

IV. MESOSCOPIC REGIME

If the collapse time is finite and larger than the cor-
relation time, τc > τ , the value of the stochastic vari-
able will fluctuate significantly while the system col-
lapses from a superposed state to a classical outcome.
Experimental verification for the statistics of obtained
outcomes is unavailable throughout a large part of this
regime. It is easily verified, however, that any devia-
tion of the late-time probabilities from Born’s rule would
allow faster-than-light communication

:
,
::::::::
because

::
if

::::
two

::::::::
observers

::::::
share

::
a
:::::::
known

:::::::::
entangled

:::::
state

:::::
and

::
a
:::::
prior

:::::::::
agreement

::
of

::::
who

:::::::::
measures

:::::
first,

:::
the

::::::
latter

:::::::::::
observations

:::::::::
reproduce

:::
the

::::::::::::
measurement

:::::::::
statistics

::
of

:::
the

::::::
earlier

:::::
ones.

We therefore require Born’s rule also in this regime.
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FIG. 1. Typical random walk on the unit sphere with initial
position η0 = 0 and ϕ0 = π/2. One thousand steps were
taken with an arc length of 0.06. The colours indicate the
time evolution, going from dark to light.

We again take the random walk on a sphere as the pro-
cess defining the evolution of the stochastic variable. To
find its probability distribution given a previous value, we
use the fact that it must be Gaussian in the distance trav-

elled. Starting from the point η0 = 0, the naive expec-
tation is then for the probability distribution to spreads
over time as: ρ(η, ϕ) ∝ exp

[
−η2/(2σ2)

]
. Here, η equals

the arc distance from the pole on a unit sphere for a point
with latitude coordinate η. The variance of the distribu-
tion grows over time and is given by σ2(t) = Dt = ϵ2t/δt,
with ϵ the typical arc distance travelled in time δt so that
D the diffusion coefficient for the spread of the proba-
bility distribution, which is inversely proportional to its
correlation time.
As before, only the probability distribution for the lat-

itude angle η affects the time evolution of the state. This
can be found by integrating over the azimuthal distri-

bution: ρ(η) ∝
∫ 2π

0
dϕ sin(η)ρ(η, ϕ). Here, sin(η)dϕ is

the arc distance along a line of constant latitude. Taking
ρ(η, ϕ) ∝ exp

[
−η2/(2σ2)

]
as before, gives a good approx-

imation for the distribution function at short times, but it
fails to account for any random walks crossing the south
pole. To correct for this, we can extend the distribution
beyond η = π and fold it back onto the unit sphere:

ρA(η) = N̄

∞∑
n=−∞

∫ 2π

0

dϕ sin(η)e−
1

2σ2 (η+n2π)2 . (12)

Here, n ∈ Z and N̄ is a normalisation factor. Finally,
starting from an arbitrary initial position on the sphere
the same sequence of arguments yields the expression:

PA(η) =

∞∑
n=−∞

∫ 2π

0

dϕN̄ sin(η) exp

(
−1

2σ2
(arccos[sin(η0) sin(η) cos(ϕ0 − ϕ) + cos(η0) cos(η)] + 2nπ)2

)
. (13)

Here, the arccos term is the arc distance between the
initial point (η0, ϕ0) and the point (η, ϕ). We thus arrive
at an exact but open form expression for the probability
distribution obtained in a random walk on the sphere.
Cutting off the sum at a finite value of |n|, it can be used
to numerically compute the time evolution of Eqs. (2)
and (3) in the mesoscopic regime.

Numerical results

Besides using an approximate form for the probabil-
ity distribution function after a given time interval, as
provided by Eq. (20), we can also numerically simulate
the random walk on the unit sphere directly. Every time
step, the stochastic variable then travels a fixed arc dis-
tance dstep in a random direction. A typical trajectory
on the unit sphere is displayed in Fig. 1

The statistical distribution of latitude angles after a
given time and starting from a given position will ap-
proach the probability distribution function ρ(η) when
averaged over sufficiently many instances of the random

walk. In Fig. 2, the evolution of the distribution is shown
for different times. The Ansatz of equation 20 up to
|n|max = 500 is drawn as black lines in the same figure.
here we used the definition σ2 = d2stept/2. Increasing
nmax yields an increasingly better match with the nu-
merical averages. The n = 0 term on its own provides
the approximation ρ(η) ∝ sin(η) exp

[
−(η − η0)

2/(2σ2)
]
,

which is indicated by the orange line. It gives a good
approximation only at short times, and increasingly di-
verges from the numerical average as time progresses.

Statistics

Using the evolution of the noise on the sphere, we can
consider the objective collapse dynamics of Eq. (9). For
τ ≪ 1/(JN), the noise fluctuates much faster than the
state evolves. The state evolution then effectively expe-
riences the average value of the noise, which is always
located at the equator, η = π/2. In the limit of in-
finitesimal τ , this causes the probability P|0⟩ of the state
evolving to the fixed point given by the pointer state |0⟩,
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to become a step-function: P|0⟩ = Θ(θ0 − π/2).
We can counteract the tendency towards a step-

function distribution of outcomes by introducing a scal-
ing factor B for the ratio of between the coupling strength
to the stochastic noise and the non-linear coupling driv-
ing the collapse dynamics:

θ̇ = −JN sin(θ)(cos(θ)−Bλ1). (14)

For large values B ≫ 1, the stochastic term dominates
the collapse process, and the non-linear term can be
neglected. This yields a flat probability distribution
P|0⟩ = 1/2 for the collapse outcome as, expected from

earlier work24.
The probability distribution corresponding to Born’s

rule, P|0⟩ = | cos(θ0/2)|2, interpolates between the step-
function obtained for small values of τ at B = 1, and the
constant obtained at large B. The probability distribu-
tions for various intermediate values of B are shown in
Fig. 3, and are seen not to have an inflection point apart
from the central point at θ0 = π/2. For any value of τ ,
There is thus guaranteed to be some value of B at which
Born’s rule is obtained.

Using a bisection method to numerically determine the
values of B yielding Born’s rule results in Fig. 4. The
three lines correspond to different values of JN , and each
point is the result of a bisection method to find the value
of B for fixed JNτ and θ0 that yields Born’s rule within
a 0.0029 margin. For each combination of JNτ and B,
10000 evolutions are averaged to find the corresponding
value of P|0⟩. The noise is modelled as a random walk
on the unit sphere with steps of arc length 0.05. To
minimise the effect of the fixed step size in the evolution
of the noise, the noise takes 100 steps before each new

FIG. 2. Probability distribution for the latitude angle η, after
a random walk on the sphere with 10, 500, 1000, and 10000
steps of arc length 0.03. Here, we used the initial values η0 =
π/3 (indicated by a vertical light brown line) and ϕ0 = π/2.
The black line shows the Ansatz of equation 20 with σ2 =
d2stept/2 and |n|max = 500. The orange dashed line indicates
only the n = 0 term and is seen to diverge from both the
numerical average and the black line only at late times.

FIG. 3. Probability of evolving towards the stable fixed point
corresponding to the pointer state |0⟩, as a function of the
initial value θ0. The colours indicate different values for B,
ranging from 1 to 100. For each instance of the state evolu-
tion, 2000 time steps in the evolution of θ are considered to
determine its final state, and each point in the figure corre-
sponds to the final state average of 10000 such evolutions. To
minimise the effect of the fixed step size in the evolution of
the noise, the noise takes 100 steps of arc length 0.1 before
each new step in the evolution of the state.

step in the evolution of the state.
In terms of the collapse time τc and the size dt of the

time step used in simulations, three regimes can be distin-
guished in Fig. 4, characterised by τc ≪ τ , dt ≪ τ ≪ τc
and τ ≲ dt. The first is the regime in which the noise
is nearly constant during the time it takes the state to
collapse. The limiting value of B for large JNτ matches
the analytic result B = 1 identified before. For noise
processes with any arbitrary but finite correlation time
τ , this regime is relevant to macroscopic measurement
machines, which collapse instantaneously as N → ∞ (i.e.
in the thermodynamic limit).
In the mesoscopic regime, with small but non-zero cor-

relation times τ ≪ τc, The relation between B and JNτ
shown in Fig. 4 can be well approximated by the dashed
black line over a large range of parameters. The dashed
line is a fit of the form B = γ/(JNτ)α, with parameter
values found to be γ = 0.92± 0.05 and α = 0.50± 0.01.
In this regime we thus find:

B2 ∝ 1/(JNτ) ⇔ (BJN)2 ∝ JN/τ (15)

:::::
Here,

:::
we

::::::
write

::::
the

::::::::
relation

:::
in

::::::
terms

:::
of

:::::
JN ,

::::::
BJN ,

:::
and

:::::::
1/tau,

::
as

::::::
these

:::
are

::::
the

:::::::
energy

::::::
scales

:::::::
defining

::::
the

:::::::::
dynamics.

:

Finally, a third regime is visible in Fig. 4, for τ < dt.
Here B again becomes independent of JNτ , but does
depend on JN in a non-universal way (i.e. not through
Jτ). This is typical cut-off behaviour arising from the
non-commuting limits of dt → 0 and τ → 0, which indi-
cates that the approximation of a continuous noise pro-
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FIG. 4. Parameter values yielding Born’s rule. The simula-
tion is carried out for JN = 0.5 (dark), JN = 1 (middle), and
JN = 2 (light). In each case, three regimes can be identified,
corresponding to large, medium and small values of JNτ . The
dashed black line indicates a fit for the central regime, of the
form B = γ/(JNτ)α with γ ≈ 0.92 and α = 0.50. The down-
ward triangle on the right side indicates the exact result B = 1
for the limit JNτ → ∞, corresponding to constant noise or
macroscopic measurement machines. The relation between
JNτ and B can be seen to become non-universal (dependent
on JN) for small values of JNτ , where the approximation of
a continuous noise process using finite step size breaks down.
Each circular point along the curves represents the value of
B giving Born’s rule as determined using a bisection method
at fixed θ0, and probabilities after averaging over 100000 evo-
lutions using arc length steps of 0.05 for the noise.

cess using finite step size breaks down. Decreasing the
size of the time steps used in the calculation, or equiv-
alently, considering smaller values of JN , results in the
shrinking of the third regime. The nonphysical low-JNτ
regime thus vanishes in the dt→ 0 limit.
Both in the mesoscopic and in the macroscopic regime,

Fig. 4 shows it is possible to employ a Markovian ran-
dom walk on a unit two-sphere as the stochastic variable
in a theory of spontaneous unitarity violation, such that
it results in objective collapse obeying Born’s rule. For
any given correlation time τ of the external noise, Born’s
rule is obtained only for a particular relation between
the coupling strength BJN of the system to the stochas-
tic noise, and the coupling strength JN to the non-linear
term driving the collapse process. The existence of such a
relation suggests the stochastic and non-linear processes
in models of spontaneous unitarity violation should have
a common physical origin. Importantly, it does not im-
ply an assumption of Born’s rule in the definition of the
dynamics, as the relation between JBN and JN is inde-
pendent of the state.

Notice that starting from Eq. (10) rather than Eq. (9),
the stochastic terms appears inside a periodic function.
Introducing a parameter B multiplying λ2 may then af-
fect the direction of the state evolution, but not its speed.

In that situation it is therefore not possible to balance
two limiting behaviours as we did in Fig. 3, and Born’s
rule cannot be obtained at any finite τ . Because the
values of the stochastic term in consecutive experiments
should not be correlated, this effectively rules out any dy-
namics based on Eq. (10) models for objective collapse.
We thus find that the only consistent form for theories of
spontaneous unitarity violation, as applied to an initial
two-state superposition, is given by Eq. (14), with the
relation between B and JNτ according to Fig. 4.

Random walks on other manifolds

The analysis above can be repeated for random walks
on any closed manifold. In general, Eq. (14) yields the
limiting behaviours for small τ/τc and large B shown in
Fig. 4. Interpolating between these, a relation between B
and JNτ resulting in Born’s rule can in principle be ob-
tained even in the general case. The resulting dynamical
equations, however, do not generally allow for a physical
interpretation.

To see this, consider the example of a random walk
on a two-torus. As shown in detail in the Supplemental
Material, the requirement that Born’s rule is obtained in
the macroscopic regime result in a relation of the form
λ1 ∝ ϕ, with ϕ one of the two angles parameterizing
positions on the two-torus. Although this is a valid al-
gebraic expression, the angle ϕ appearing outside of any
trigonometric function would render λ1 a multi-valued
function of ϕ, which cannot be given a physical interpre-
tation. This feature generally appears for random walks
on manifolds with non-zero genus, so that Eq. (14) pro-
vides a physical model for objective collapse only if the
stochastic variable λ1 is modelled by a random walk on
a (d > 1)-dimensional sphere.

The examples of random walks on the unit 3-sphere
and 4-sphere, are worked out in detail in the Supple-
mental Material. Both yield physical models, which re-
produce Born’s rule for general JNτ , given a specific
relation between B and JNτ . In both cases, the macro-
scopic, large-JNτ limit yields B = 1, as in the case
of the random walk on a two-sphere considered before.
In the regime of τ non-zero but small compared to τc,
both higher-dimensional cases again yield a relation of
the form B ≈ γ/(JNτ)0.5, but with parameter values
γ = 0.936 (3-sphere) and γ = 0.966 (4-sphere).

We thus find that a model for spontaneous unitarity
violation starting from a superposition over two states
must necessarily be of the form of Eq. (14), with the
stochastic variable λ1 modelled by a random walk on a
sphere. For a sphere in any dimension larger than one,
and for any non-zero correlation time of the random walk,
Born’s rule is recovered given a specific relation between
BJN and JN . The functional form of the required re-
lation depends on the dimension of the sphere only in a
parametric fashion.
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V. MICROSCOPIC REGIME

In the microscopic limit, finally, the measurement ma-
chine itself is a quantum system that consists of only
a small number of constituent particles (argued for ex-
ample in Ref. 1 to be fewer than about 106 atoms).
Considering the strength of the unitarity-breaking
perturbation J to be weak, in

::
In

::::
this

::::::::
regime,

::::
the

::::::::
dynamics

::::::::
induced

:::
by

::::
Eq.

:::::
(14)

::::::
should

:::
be

::::::::::
negligible

::
in

:::::
order

:::
to

:::::::::
reproduce

:::::
the

::::::::::::::
well-established

::::::::::
adherence

:::
of

::::::::::
microscopic

:::::::
physics

:::
to

:::::::::::::
Schródinger’s

:::::::::
dynamics.

::::
In

:
di-

rect analogy to any
::
ny

:
usual type of spontaneous sym-

metry breaking36, renders the dynamics induced by
Eq. (14) negligible on any measurable

:::
this

:::::::
implies

::::
that

:::
the

::::::::
strength

:::
of

::::
the

:::::::::::::::::
unitarity-breaking

::::::::::::
perturbation

::
J

::::
must

:::
be

::::::::::
sufficiently

:::::
weak

:::
to

::::
have

::::::::::::
unobservable

:::::
effect

:::
on

:::
any

::::::::::::::
experimentally

:::::::::
achievable

:
time scale. Only the reg-

ular dynamics governed by Schrödinger’s equation then
remains, reproducing the experimental fact that the evo-
lution of microscopic objects is well-described by unitary
quantum mechanics.

VI. DISCUSSION

In summary, we considered models of spontaneous uni-
tarity violation, in which a weak non-unitary perturba-
tion of Schrödinger’s equation causes the objective col-
lapse of macroscopic quantum systems, while leaving the
evolution of microscopic particles unaffected. We re-
stricted attention to models with both a non-unitary,
non-linear, deterministic term, and separately a non-
unitary, linear, stochastic term. The separation between
non-linear and stochastic terms ensures that any noise
process representing the evolution of the stochastic vari-
able is independent of the state being collapsed.

Imposing the constraint that Born’s rule must be ob-
tained for the final state statistics of the collapse dynam-
ics, we find that there is only one, unique form for the
evolution starting from a two-state superposition:

θ̇ = −JN sin(θ)(cos(θ)−Bλ). (16)

Here, θ is an Euler angle parameterising the Bloch sphere,
N represents the size (number of particles, mass, or vol-

ume) of the collapsing system, while J and BJ are the
coupling constants for the non-linear and stochastic pro-
cesses driving the collapse dynamics. The random vari-
able λ is defined on a bounded domain that we take to
be [−1, 1], and has a correlation time τ that we assume
to be non-zero.
With these definitions, Born’s rule is recovered in the

limit of τ large compared to the collapse time τc if B = 1
and the equilibrium probability distribution for λ is flat
on the interval [−1, 1]. For general values of τ , finding
Born’s rule requires the existence of a relation between
the coupling strength of the stochastic term, BJN , and
that of the non-linear term, JN . For τ ≪ τc the relation
is of the form (BJN)2 ∝ JN/τ , independent of the state
undergoing collapse (i.e. regardless of the initial state
being measured). For intermediate values of τ , the re-
quired relation between BJN and JN follows a smooth
curve interpolating between the forms at short and long
correlation times, as shown in Fig. 4. Importantly, the
requirement that there exists a specific relation between
coupling strengths suggests a common physical origin for
the stochastic and non-linear processes driving the ob-
jective collapse process, akin for example, to the relation
between drift and dissipation in Einstein’s description of
Brownian motion37,38.

Finally, modelling the stochastic process as an unbi-
ased random walk, the requirement of obtaining Born’s
rule restricts the possible types of manifold on which the
random walk takes place. It needs to be closed for the
equilibrium distribution of λ cover a bounded interval,
it should have genus zero to allow for a single-valued
map between λ and a coordinate on the manifold, and
it should have dimension two or larger to allow for the
equilibrium distribution of of λ to be flat. These condi-
tions limit the possible types of physical processes that
can provide the stochastic process driving collapse dy-
namics. Together with the identification of a physical
relation between stochastic and non-linear processes, the
results presented here thus constrain and point the way
towards a fully microscopic theory underlying objective
collapse models based on spontaneous unitarity violation.
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APPENDIX

This appendix details the calculation of probability
distribution functions for random walks on closed mani-
folds used in the main text.

A. Constant noise limit on the two-sphere

Consider a two-sphere parameterised by the latitude
and azimuthal angles η and ϕ. Combining these angles
into a vector g⃗ = (η, ϕ), any alternative set of coordi-

nates can be written in terms of a vector f⃗(g⃗), whose
components are functions of η and ϕ. We define:

E = ∂η f⃗ · ∂η f⃗ ,

F = ∂η f⃗ · ∂ϕf⃗ ,

G = ∂ϕf⃗ · ∂ϕf⃗ .

Under the coordinate transformation from g⃗ to f⃗ , the
probability distribution function defined on the two-
sphere transform as35:

PB(f⃗) =
PA(g⃗)√
EG− F 2

. (17)

Here,
√
EG− F 2 denotes the Jacobian of the coordinate

transformation, and the subscripts A and B denote that
the probability distribution is expressed in original and
transformed coordinates respectively.

Considering an unbiased random walk on the two-
sphere, we know that the infinite-time probability distri-
bution in terms of Cartesian coordinates is PB(x, y, z) =
1/(4π). That is, under the Markovian random process
every point on the manifold obtained with equal likeli-
hood in the equilibrium distribution. Applying the pre-
scription of Eq. (17) The distribution PA(η, ϕ) in terms
of Euler angles is found to obey:

1

4π
=
PA(η, ϕ)

| sin(η)|
. (18)

Defining probability distribution functions for the in-
dividual Euler angles in terms of independent sampling,

PA(η, ϕ) = PA(η)pA(ϕ), the distribution of η follows
from:

PA(η)

∫ 2π

0

PA(η
′, ϕ)|ηdϕ =

sin(η)

4π

∫ 2π

0

dϕ

⇒ PA(η) =
1

2
sin(η).

B. Fluctuating noise on the two-sphere

Starting from the knowledge that at short times, the
probability distribution obtained in a random walk on
the sphere starting from the point (η0, ϕ0) is Gaussian in
the arc distance travelled, we can write:

PA(η) ≈
∫ 2π

0

dϕN̄ sin(η) exp

(
−1

2σ2
∆2

)
. (19)

Here, ∆ = arccos[sin(η0) sin(η) cos(ϕ0 − ϕ) +
cos(η0) cos(η)] is the arc distance between the ini-
tial point (η0, ϕ0) and the point (η, ϕ), while N̄ denotes
a normalisation factor. The analytical result of this
integral is not known. However, for x ≪ 1 we can write
arccos(x)

2
= π2/3 − πx + O(x2). Cutting off the series

at this order corresponds to taking the short time limit.
In that limit, we can solve the integral using:∫ 2π

0

exp(b cos(ϕ) + c sin(ϕ))dϕ = 2πI0(
√
b2 + c2).

Here, I0 denotes the Bessel function. We are then left
with an approximate form for the probability distribution
function valid at short times:

PA(η) ≈ N̄ sin(η)I0

(
sin(η0) sin(η)

2σ2

)
e

cos(η0) cos(η)

2σ2 .

Here, all prefactors are absorbed into the normalisation
N̄ . This expression is an approximation of the actual dis-
tribution function because arccos is a multi-valued func-
tion, and we only consider the domain [0, π], thus ignor-
ing the tails of the Gaussian distribution extending all
the way around the sphere. To correct for this omission,
we can include all domains of the arccos:

PA(η) =

∞∑
n=−∞

∫ 2π

0

dϕN̄ sin(η) exp

(
−1

2σ2
(arccos[sin(η0) sin(η) cos(ϕ0 − ϕ) + cos(η0) cos(η)] + 2nπ)2

)
. (20)

In the infinite sum over n, all terms evaluate to weighted Bessel functions.

C. Random walk on the two-torus

As an example of a random walk on a bounded two-
dimensional manifold other than a sphere, consider a

torus described by the Cartesian coordinates:

x(η, ϕ) = (R+ r cos(η)) cos(ϕ)

y(η, ϕ) = (R+ r cos(η)) sin(ϕ)

z(η, ϕ) = r sin(η)
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Here, the angles η and ϕ are both defined on the interval
[0, 2π). The angle ϕ denotes the rotation around the axis
of revolution of the torus, while η is the angle describing
rotations around the surface of the torus at fixed ϕ. The
constant r denotes the radius of the circle whose revo-
lution yields the torus, while R is the distance between
the centre of the torus to the middle of the circle with
radius r. The Jacobian for the transformation between
Cartesian coordinates and the coordinates (η, ϕ), is given
by |J | = rR+ r2 cos(η).
If the probability distribution function ρ(x, y, z) has

equal value for every valid combination of x, y, and z,
then we can deduce the probability distributions for the
individual angles η and ϕ as before:

PA(η) =
R+ r cos(η)

2πR
PA(ϕ) = 1/(2π)

To obtain Born’s rule in the constant noise limit, we
must identify a coordinate λ = g(η, ϕ) on the two-sphere,
such that its probability distribution function becomes
either flat in the domain [−1, 1] (for the collapse process
with λ1) or equal to 1/2 sin(λ) in the domain [0, π] (for
the λ2 process). The only possible ways of realising these
constraints are given by:

λ1(ϕ) = ϕ/π − 1

or λ1(η) = η/π +
r

πR
sin(η)− 1

λ2(ϕ) = arccos(1− ϕ/π)

or λ2(η) = arccos
( η
π
+

r

πR
sin(η)− 1

)
Notice that the angles η and ϕ appearing outside of any
trigonometric functions render λ1 a multi-valued function
of ϕ, while the arccos has the same effect on the function
cos(θ − λ2) appearing in the state dynamics. These func-
tions therefore cannot be given a physical interpretation.

D. Higher-dimensional manifolds

On higher-dimensional manifolds, the procedure for
obtaining the probability distribution function for a sin-
gle component is a straightforward generalisation of the
procedure on the two-sphere. Using again the assump-
tions of independent sampling and equal likelihood for
obtaining any point on the manifold in the infinite-time
limit, we can write:

PA(η) = J(η, {Ξ})/V. (21)

Here, V is the volume of the d-dimensional manifold and
J the Jacobian of the transformations from Cartesian
coordinates to the coordinates (η, {Ξ}), with {Ξ} a list
of d− 1 angles35.
To obtain Born’s rule in the constant noise limit, we

again need to define coordinate λ1 or λ2, such that

P (λ1) = 1/2 or P (λ2) = 1/2 sin(η). Formally following
the same steps as before this yields the possible defini-
tions:

λ1(η) =

∫ η

a

dη′
sin(η′)

2J(η′, {Ξ})

λ2(η) =

∫ η

a

dη′
1

2J(η′, {Ξ})
.

Here, the constant a will be determined by the domain
of λ. The equations can be evaluated for any choice of
coordinates on the manifold.

1. Three-sphere

Directly applying this procedure on the unit three-
sphere, we have the relation between Cartesian coordi-
nates and Euler angles given by:

x1 = cos(ϕ1)

x2 = sin(ϕ1) cos(ϕ2)

x3 = sin(ϕ1) sin(ϕ2) cos(ϕ3)

x4 = sin(ϕ1) sin(ϕ2) sin(ϕ3).

This implies the Jacobian and transformed probability
distributions:

|J4| = sin2(ϕ1) sin(ϕ2)

1

2π2
=

PA(ϕ1, ϕ2, ϕ3)

sin2(ϕ1) sin(ϕ2)

PA(ϕ1, ϕ2) =
1

π
sin2(ϕ1) sin(ϕ2).

Using these, we find the probability distributions for in-
dividual coordinates:

PA(ϕ3) =
1

2π

PA(ϕ2) =
1

2
sin(ϕ2)

PA(ϕ1) =
2

π
sin2(ϕ1).

These, finally allow a definition for the functions featur-
ing in the state dynamics such that Born’s rule is ob-
tained in the constant noise limit:

λ1(ϕ1) ∝ (η − sin(η)) cos(η)

or λ1(ϕ2) = cos(ϕ2).

The first possibility can again not be given a physical in-
terpretation due to the appearance of the angle η outside
of a trigonometric function. We thus restrict attention
to the definition λ1(ϕ2) = cos(ϕ2) from here on.
Having found dynamics that yields Born’s rule in the

static noise limit, we can consider time-varying noise by
directly simulating a random walk on the three-sphere,
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FIG. 5. The relation between B and JNτ yielding Born’s
rule when the stochastic process is interpreted as a random
walk on either a 2-, 3-, or 4-sphere. The dashed lines show
fits of the low-JNτ regime of the form B = γ/(JNτ)α. The
best-fit values for the 2-sphere are γ = 0.919 and α = 0.49,
while those for the 3-sphere are γ = 0.936 and α = 0.49, and
we find γ = 0.966 and α = 0.49 for the 4-sphere.

as we did in the main text for the two-sphere. Again, we
find that there is a specific value for the parameter B at
any value of JNτ which yields Born’s rule, as shown by
the red line in Fig. 5. As for the two-sphere, the low-JNτ
behaviour of B can be fitted with a function of the form
B = γ/(JNτ)α, which in the case of the three-sphere
yields in the best-fit parameters γ = 0.936 and α = 0.49.

2. Four-sphere

Again applying the same procedure to the unit four-
sphere, the relation between Cartesian coordinates and
Euler angles is given by:

x1 = cos(ϕ1)

x2 = sin(ϕ1) cos(ϕ2)

x3 = sin(ϕ1) sin(ϕ2) cos(ϕ3)

x4 = sin(ϕ1) sin(ϕ2) sin(ϕ3) cos(ϕ4)

x5 = sin(ϕ1) sin(ϕ2) sin(ϕ3) sin(ϕ4).

This implies the Jacobian and transformed probability
distributions:

|J4| = sin3(ϕ1) sin
2(ϕ2) sin(ϕ3)

1

2π2
=

PA(ϕ1, ϕ2, ϕ3, ϕ4)

sin3(ϕ1) sin
2(ϕ2) sin(ϕ3)

PA(ϕ1, ϕ2, ϕ3) =
1

π
sin3(ϕ1) sin

2(ϕ2) sin(ϕ3).

Using these, we find the probability distributions for in-
dividual coordinates:

PA(ϕ4) =
1

2π

PA(ϕ3) =
1

2
sin(ϕ3)

PA(ϕ2) =
2

π
sin2(ϕ2)

PA(ϕ1) =
3

4
sin3(ϕ1).

These, finally allow a definition for the functions featur-
ing in the state dynamics such that Born’s rule is ob-
tained in the constant noise limit:

λ1(ϕ2) = cos(ϕ3).

Repeating the random walk simulation, but on the
four-sphere we obtain the relation between B and JNτ
indicated by the orange line in Fig. 5. The relation at
small JNτ can be fit with a function of the same form
and nearly identical best-fit parameter values as in the
case of the two-sphere and three-sphere.
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