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Abstract

We study the symmetry energy (SE), an important quantity in nuclear physics, in
the Witten-Sakai-Sugimoto model and in a much simpler hard-wall model of holographic
QCD. The SE is the energy contribution to the nucleus due to having an unequal number
of neutrons and protons. Using a homogeneous Ansatz representing smeared instantons
and quantizing their isospin, we extract the SE and the proton fraction assuming charge
neutrality and beta-equilibrium, using quantization of the isospin zeromode. We also
show the equivalence between our method adapted from solitons and the usual way of
the isospin controlled by a chemical potential at the holographic boundary. We find that
the SE can be well described in the WSS model if we allow for a larger ’t Hooft coupling
and lower Kaluza-Klein scale than is normally used in phenomenological fits, passing
all experimental constraints and is compatible with results from nuclear physics at low
densities.
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1 Introduction

The equation of state (EOS) of nuclear matter is central to nuclear physics from neutron stars
to heavy ion collisions, and an important feature is the symmetry energy (SE) as a function
of the density. The symmetry energy is the symmetric increase in energy as one moves away
from the isospin symmetric point, that is, the point where the number of protons equals that
of neutrons, i.e. E(ρ) = E0(ρ) + S(ρ)β2 + · · · , with β = N−Z

A being the difference between
the number of neutrons N and the number of protons Z, normalized by the atomic mass
number, A = Z+N — for a nice review see Ref. [1]. The symmetry energy is experimentally
well constrained around saturation density, ρ0 ∼ 0.16fm−3, to be near S(ρ0) ∼ 30 MeV –
both from astrophysical observations as well as heavy ion collision data – but much less so at
larger densities. The symmetry energy around saturation density is conventionally expanded
as

S(ρ) = S0 +
1

3
Lϵ+

1

18
Ksymϵ

2 + · · · (1)

with ϵ := (ρ−ρ0)/ρ0, whereas L and Ksym are proportional to the slope and second derivative
of the SE with respect to the density. Expectedly, the constraints on L and Ksym are less
tight than those on S0. Traditionally, the symmetry energy was defined for nuclear matter,
which can be thought of as an infinitely large nucleus at density ρ, and so surface effects
are absent. The symmetry energy can equally well be defined for a fixed, but finite, atomic
number A.

Current experimental bounds on the first 3 observables of the symmetry energy as in
the expansion of the density come from mass, radius and tidal deformation of neutron stars,
excitation energies of isobaric analog states, neutron skin in Sn isotopes and 208Pb as well as
heavy ion collision data [2, 3, 4, 5, 6, 5, 7, 8, 9].

The equation of state in nuclear physics relates the energy density with the pressure and is
the main ingredient in the understanding of neutron stars as well as heavy ion collisions. The
problem with obtaining the equation of state for nuclei is that the strong nuclear force is gov-
erned by Quantum Chromodynamics (QCD), an inherently strongly coupled theory and hence
cannot be tackled by perturbation theory or first-principles calculations. Nuclear physics, in
particular, ab initio methods, like the no-core shell model [10], utilize pion scattering data
to reconstruct the interaction potential of nuclei and this approach leads to solid predictions
for the interaction potential and the chiral effective field theory can accurately determine the
EOS [11], albeit only at relatively small densities. QCD at high energies is perturbative due
to its asymptotically free nature, and hence can be used to make solid predictions for the EOS
[12], unfortunately at pressures far larger than those of a neutron star – the most compact
object known, not collapsed into a black hole (BH).

A new paradigm of studying QCD and attempting to extract observables for nuclear
physics and hadronic physics, was envisioned by Maldacena at the end of the ’90-ies [13]
and further elaborated by Witten [14]. After a couple of decades, the mentioned framework
known as holography or AdS/CFT, has been coined holographic QCD (HQCD) when applied
to the strong nuclear force [15, 16, 17]. There are two main approaches to HQCD, top-down
and bottom-up; the top-down approach is based on string-theory constructions and the most
prominent example is the Witten-Sakai-Sugimoto model (WSS) [14, 18, 19]. For the bottom-
up construction, which shares similar theoretical ingredients, two main types of models are
known as soft-wall (SW) (e.g. Improved HQCD [20, 21] and V-QCD [22, 23, 24]) and hard-wall
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(HW) models [25, 26, 27, 28, 29, 30, 31, 32, 33]. Especially, the top-down type of HQCD have
quite some predictive power, in the sense that the models have very few adjustable parameters
[15, 16, 17]. For the WSS, there is the mass scale and the ’t Hooft coupling, where the mass
scale is normally fitted to the mass of the ρ meson and the ’t Hooft coupling is determined
from the pion decay constant [18].

Attempts have already been made at extracting the SE from various HQCD models,
including top-down approaches as in the D4/D6 model [34] and even the WSS model, see
Ref. [35], and NSs have been constructed using the holographically extracted EOS to solve
the governing Tolman-Oppenheimer-Volkov (TOV) equations [36, 37]. The SE, however,
comes out too large in the WSS [35]. In HQCD in contrast to traditional nuclear physics, the
proton and the neutron are not point particles, but are described by a topological soliton,
the Sakai-Sugimoto soliton [18, 38, 39, 40], which is initially isospin symmetric – that is, the
proton is equal to the neutron. In order to compute the SE, we must distinguish the proton
from the neutron and this can be done by the introduction of an isospin chemical potential
[35].

HQCD at finite isospin chemical potential has been object of inspection in the context
of many models: top-down approaches include the D3/D7 model [41, 42, 43] and the WSS
model [44, 45] in the case of the DBI action and without employing the homogeneous Ansatz
(see below).

In this paper, we propose using the homogeneous Ansatz in the WSS, but quantizing
the isospin symmetry – a technique known from the Skyrme model [46, 47, 48], which is the
leading-order low-energy effective theory of the WSS model [18]. The homogeneous Ansatz
represents an approximation to describe densely packed nucleons that form nuclear matter
above saturation density. It relies on the assumption that nuclear matter forms a spatially
homogeneous distribution, in which nucleons lose their individual properties: despite being
shown in Ref. [49] that such a configuration is not admitted in holographic models under
assumptions of regularity of the gauge fields, the Ansatz can still be employed with mod-
ifications, such as formulating it at the level of the field strengths [50] or (as we will do)
introducing a discontinuity that acts as a source of baryon number [51]. The quantization
of the isospin symmetry introduces the isospin quantum number, which makes it possible to
extract the SE as the coefficient of the square of the difference between the number of protons
and neutrons. The quantization method of introducing isospin is also shown to be equivalent
to using a chemical potential, see A. We find a lower SE compared to previous attempts in
the WSS [35], since we include all the needed fields in our Ansatz and because we choose
a different Nc scaling such that the nucleons are states with the minimal isospin quantum
number; however, there is no difference coming from using either the chemical potential or the
quantization method – they are equivalent as shown explicitly in A. In particular, we find a
phenomenologically viable value of the constant S(ρ0) at saturation density and the first two
coefficients L and Ksym are compatible with current experimental bounds from astrophysics
and heavy ion collision data for a certain choice of the model parameters.

2 Model

We will treat the WSS and the HW model on equal footing in the following. The model at low
energies is described by the Yang-Mills (YM) and Chern-Simons (CS) actions in 5-dimensional
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AdS5 spacetime (M, g):

SYM = −κTr

∫
M

F ∧ ∗F ,

SCS =
Nc

24π2
Tr

∫
M

[
A ∧ F2 − i

2
A3 ∧ F +

1

10
A5

]
, (2)

with S = SYM + SCS being the total action, the constant κ = λNc
216π3 for the WSS model and

κ = M5 for the HW model, λ = g2YMNc the ’t Hooft coupling, Nc the number of colors of
QCD (i.e. 3 in nature), the field strength 2-form is

F = 1
2(∂αAβ − ∂βAα + i[Aα,Aβ])dx

α ∧ dxβ, (3)

α, β = 0, 1, 2, 3, 4 with x4 = z the holographic coordinate, and the power of forms is under-
stood with the wedge product. The metric is

g = h(z)k(z)dxµdx
µ + h2(z)dz2, (4)

with h(z) = k−1/3(z) = (1+ z2)−1/3, z ∈ (−∞,∞) for WSS and h(z) = k(z) = L/z, z ∈ [0, L]
for the HW model, the index µ = 0, 1, 2, 3 is summed over in the metric and µ is raised with
the Minkowski metric here.

The gauge field can be decomposed for later convenience in the Abelian and non-Abelian
parts as

Aα = Aa
αT

a + Âα
1

2
, (5)

where the generators of SU(2) T a are chosen as T a = 1
2τ

a so that TrT aT b = 1
2δ

ab, and the
spacetime indices follow the convention:

α, β, . . . = {0,M}; M,N, . . . = {i, z}; µ, ν, . . . = {0, i}. (6)

In writing Eq. (2), we performed dimensional reduction in the WSS, integrating out S4 from
the original nine-dimensional action for the stack of D8−Branes, while in the HW we do not
explicitly include an action for the scalar field encoding chiral symmetry breaking, since we
set the scalar field to zero, which is appropriate in the homogeneous baryonic phase, following
Ref. [37]. Despite not appearing explicitly in our computation, the scalar field plays an
important role: its vacuum energy, determines the density of nuclear matter at the baryonic
onset, hence defining saturation density within this model. For details on how the scalar field
defines the saturation density, but otherwise vanishes in the baryonic phase, see D. Here we
will utilize the fit found in Ref. [37] and only adjust the overall energy scale.

Two further steps were employed in order to write the action and equations of motion for
the two models in a compact way. For the HW model we assumed the symmetry properties
for the fundamental fields LM ,RM as follows:

Li = −Ri, L0 = R0. (7)

For the WSS model, we similarly assumed parity properties of the fields with respect to z:

Ai(z) = −Ai(−z), A0(z) = +A0(−z). (8)
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With these procedures, we halve the number of fields in the HW model (from L,R to A) and
the integration interval in the WSS model (from (−∞,+∞) to [0,+∞)) generating an overall
factor of 2 in the action in both cases.

As a last step, we introduce generic symbols zIR, zUV to indicate the infrared and ultra-
violet boundary values of the holographic coordinate2, which in the two models assume the
values

zIR =

{
0 WSS

L HW
, zUV =

{
+∞ WSS

0 HW
(9)

The classical homogeneous Ansatz for isospin-symmetric matter, reasonable for large-density
computations, is defined as

Acl
0 = 1

2 â0, Acl
i = −1

2Hτ i, Acl
z = 0, (10)

where {â0, H} = {â0, H}(z) are functions of the holographic coordinate z. We have sup-
pressed the unit 2-by-2 matrices in the terms without a Pauli matrix τ .

The function H(z) encodes the baryonic density through its value at z = zIR: if either
H(zIR) or H ′(zIR) vanish, then the baryon number would also vanish as noted in Ref. [49],
so we will assume that H(z) obeys a Dirichlet boundary condition H(zIR) = H0, with the
value of H0 to be determined by minimization of the action. This defines the baryon density
ρ (assuming H(z) → 0 for z → zUV) as follows:

ρ =
1

16π2

∫
dz ϵMNPQTrFMNFPQ

= − 3

4π2

∫
dz H ′H2

= −ϵ
1

4π2

[
H3
]zUV

zIR
, (11)

so that the infrared boundary condition for the numerical integration of the function H(z) is
directly related to the baryon number density as:

H(zIR) = ϵ
(
4π2ρ

) 1
3 , (12)

where for convenience of putting the two models on same footing, have defined the integral
in the holographic direction as∫

dz f(z) := ϵ

∫ zUV

zIR

dz f(z), (13)

which we will use throughout the paper and ϵ assumes a different sign depending on the
model:

ϵ =

{
+1 WSS

−1 HW
(14)

2In the WSS model, the spatial manifold only has a UV boundary at z = ±∞. However, when we introduced
the ”folding” of the coordinate z exploiting the assumptions (8), we effectively introduced an IR boundary at
the folding point zIR = 0. Moreover, the homogeneous Ansatz will introduce a discontinuity in the field Ai at
that point.
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Thus the integral is defined in such a way to take into account the different orientation in
the integration along z, dictated by the choice of coordinates for the two models. Note that
this choice of boundary condition for H(zIR) means that in the WSS, once we restore the
full domain of integration z ∈ (−∞,∞), the function H(z) will be discontinuous. This still
leads to a continuous field strength, since both H ′ and H2 are continuous functions. For the
HW model instead, this choice just means that we cannot enforce the standard boundary
condition Lµ(zIR) − Rµ(zIR) = 0, which has to be replaced with the one above, implying
Lµ(zIR) = −Rµ(zIR).

3 Time-dependent configurations

We wish to include the effects of isospin asymmetry in the system. To do so, we follow a
method inspired by the single-soliton analysis: we know that for the single baryon, the proton
and the neutron are described as degenerate (in absence of quark mass terms3) quantum
states of the effective Hamiltonian obtained by considering a slow rotation in SU(2). The
homogeneous Ansatz shares a similar structure with the single-soliton configuration, made
easier by the absence of translational moduli4 XM and ρ (but with the minor complication
of not having an analytical configuration to approximate our static Ansatz (10)), so we can
attempt to follow steps similar to the ones in Refs. [38] and [39], in order to obtain a time-
dependent configuration – yet to be quantized.

We start by assuming a configuration of the form

A0 = 0, (15)

Ai = V Acl
i V

−1 − iV ∂iV
−1, (16)

Az = −iV ∂zV
−1, (17)

which implies the following transformations in the field strengths:

FMN = V F cl
MNV −1, (18)

F0z = −V Dcl
z ΦV

−1, (19)

F0i = 0, (20)

where V (z, t) encodes the time-dependent rotation in SU(2), and Φ is defined as

Φ ≡ −iV −1V̇ . (21)

Notice, this is not a gauge transformation since the field A0 is not transformed along with the
rest. The function V (z, t) needs to depend on z in order to allow us to satisfy the equation
of motion

−κ
(
h(z)DjF

0j +Dz

(
k(z)F 0z

))
+

Nc

64π2
ϵ0α1α2α3α4Fα1α2F̂α3α4 = 0. (22)

3See Ref. [52] for the effect of breaking the degeneracy for the WSS model, when including the quark mass
terms.

4The translational moduli Xi are absent because of the assumption of homogeneity, while the pseudo-
modulus size ρ is fixed by the numerical solution so as to minimize energy. The pseudo-modulus Z describing
the center of the soliton in z is fixed by our Ansatz to be at the position of the discontinuity. This in principle
can also be determined by choosing Z = z0 that minimizes the free energy as opposed to our simpler choice
z0 = 0 for all densities. See Ref. [53] for the inclusion of this effect in the static approximation.
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The function V (z, t) is holographically dual to the SU(2)-valued collective coordinate a(t),
as we choose it such that

V (z → zUV, t) = a(t), (23)

which in turn implies

Φ(z → zUV, t) = −ia−1ȧ ≡ 1

2
χ · τ , (24)

where χ is the boundary angular velocity. The presence of a nonvanishing F0z will also enable
a source term for the fields Âi via the Chern-Simons action, so we will have to complete the
field content by turning on Âi = −1

2Lχ
i: here we already guessed that the vector field will

be proportional to the angular velocity χi, and we can do so without loss of generality, since
in the homogeneous case this is the only three-vector available to the Abelian field.

At this stage the problem is well posed and the function Φ(z, t) can be found by solving
Eq. (22), but it is more convenient to perform a gauge transformation to make the system
easier to treat.

We perform the gauge SU(2) transformation

Aα → AS
α = GAαG

−1 − iG∂αG
−1, G ≡ aV −1, α = 0, 1, 2, 3, 4, (25)

where the superscript “S” stands for “singular”, because this is reminiscent of the trans-
formation changing from the regular gauge to the singular gauge in the single-soliton case.
With this choice (dropping the superscript “S” for convenience, since we will use this gauge
henceforth) the field content becomes

A0 = a

(
Φ− 1

2
τ · χ

)
a−1, (26)

Ai = aAcl
i a

−1, (27)

Az = 0. (28)

Now we can factorize the function Φ(z, t) as

Φ = Φaχa ≡ G̃χ · τ , (29)

and since we imposed Eq. (24), we see that

G̃(z → zUV) =
1

2
. (30)

We then conclude that the field A0 in this gauge vanishes at the UV boundary, and can be
expressed as

A0 = G(z)aχ · τa−1, G(z → zUV) = 0. (31)

We notice that this result is exactly what one would expect by allowing for the most gen-
eral field configuration respecting spherical symmetry, homogeneity in three-dimensional flat
space, and the gauge choice Az = 0. Taking the functions H, â0, G, L to be independent of χ
amounts to considering a slow rotation, thus including only linear terms in χ in the Ansatz.
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Whereas 1
2χ ·τ is the matrix form of the boundary angular velocity, 1

2aχ ·τa−1 = −iȧa−1

is the matrix form of the boundary angular isospin velocity (i.e. describing rotations in SU(2)
instead of in space). Thus, although one may think we are spinning the fields in space, this
is really an isospin action on the homogeneous fields.

The final form of our time-dependent homogeneous Ansatz is then summarized in compact
notation as:

A0 = Gaχ · τa−1 + 1
2 â0, Ai = −1

2

(
Haτ ia−1 + Lχi

)
, Az = 0, (32)

with the mandatory boundary condition G(z → zUV) = 0.
This Ansatz leads to the action

SYM =− κ

∫
d4x

∫
dz

[
− 8hH2

(
G+

1

2

)2

χ · χ+ 3hH4 (33)

+ k
[
(L′)2 − 4(G′)2 + 8(KH)2

]
χ · χ+ 3k(H ′)2 − k(â′0)

2

]
,

SCS =− Nc

8π2

∫
d4x

∫
dz â0H

′H2 +
Nc

4π2

∫
d4x

∫
dz
(
LH ′ − L′GH

)
Hχ · χ, (34)

which gives rise to the equations of motion

hH3 − 1

2
∂z(kH

′)− Nc

32π2κ
H2â′0 = 0, (35)

∂z(kâ
′
0) +

3Nc

16π2
H2H ′ = 0, (36)

∂z(kG
′)− hH2(1 + 2G) +

Nc

32π2κ
H2L′ = 0, (37)

∂z(kL
′) +

Nc

8π2κ
H
[
HG′ + (1 + 2G)H ′] = 0, (38)

where the first two equations of motion are truncated to order |χ|0, whereas the latter two
only appear at quadratic order in χ. Including the subleading |χ|2 corrections to the solutions
of H and â0 has a negligible impact, which we checked explicitly.

This set of equations is composed by ODEs in the holographic coordinate z and can be
solved with standard off-the-peg solvers in packages like Mathematica or Matlab, once we
specify all the boundary conditions:

G′(zIR) = â′0(zIR) = L(zIR) = 0, H(zIR) = ϵ(4π2ρ)
1
3 , (39)

and all fields are vanishing at z = zUV. We recall that that in the chosen coordinates zIR = 0
(zIR = L), zUV = ∞ (zUV = 0) and ϵ = +1 (ϵ = −1) for the WSS (HW) model.

Another possible approach would be to keep the fields in a static configuration, hence keep-
ing the freedom to set the standard orientation of Eq. (10), and introduce an external isospin
chemical potential, which holographically amounts to introducing a finite UV boundary value
for the field A0: in A we show that this approach is related to ours by a gauge transformation,
hence leading to the same physics. This formalism is the one employed in [35, 54]: the two
calculations, however, differ in that in the present work we have turned on the Abelian field
Âi, which turns out to be linear in χ, and we are effectively truncating the χ dependence of
the gauge fields at linear order. The inclusion of the Abelian component is necessary to have

7



a self-consistent Ansatz, as the equations of motion cannot be solved by setting L(z) = 0 (the
Chern-Simons term provides a source for L(z)). Moreover, it turns out that the field L(z)
dominates the small-λ behavior of the symmetry energy: despite the holographic model being
developed with the large-λ limit in mind, for the practical application of extracting a value
for the symmetry energy, we need to extrapolate to a finite-λ, and the most popular fit of
the model employs the value of λ = 16.63, which does not realize the large-λ nor the small-λ
regimes. On top of the difference at the level of the Ansatz, another difference with respect
to Refs. [35, 54] lies in the implicit definition of the isospin number of nucleon states in the
large-Nc limit. We choose as proton (neutron) state the lowest-lying isospin state, which can
be thought of as being composed of 1

2 (Nc + 1) up (down) and 1
2 (Nc − 1) down (up) quarks.

With this definition, the angular velocity χ of a nucleon state is of order N−1
c , and so are the

isospin chemical potential and the symmetry energy5. A different choice that still reduces
to the familiar Nc = 3 case is that in which the proton (neutron) is composed of Nc − 1 up
(down) and one down (up) quarks: in this scenario the isospin number is of order Nc, and so
is the symmetry energy. We find appropriate the former definition for nucleon states, in that
it keeps the nucleons as the ground state baryons, and preserves the familiar electric charge
following the Gell-Mann-Nishijima formula

Q = I3 +
NB

2
, (40)

with Q, I3, NB being the electric charge, the third component of the isospin, and the baryon
number, respectively.

The truncation of the χ dependence (and so of the dependence on µI) is an approximation
that does not affect the computation, since the symmetry energy is by definition obtained by
evaluating the first nonvanishing term in the expansion of the energy per nucleon around an
isospin symmetric configuration.

4 Symmetry energy

The terms quadratic in χ exactly produce the SE upon Hamiltonian quantization:

H =
1

2
V Λχ · χ+ V U

= 2V Λȧ2m + V U

=
π2
m

8V Λ
+ V U

=
I(I + 1)

2V Λ
+ V U, (41)

where canonical quantization of am, m = 0, 1, 2, 3, a coordinate on the 3-sphere (a2m = 1),
leads to the momentum conjugate

πm =
∂H

∂ȧm
= 4V Λȧm, (42)

5Note that the symmetry energy is a 1/N2
c correction to the leading O(Nc) baryon energy, while corrections

from the axial anomaly would be further suppressed as 1/Nc and can provide corrections to the symmetry
energy only at order O(N−2

c ), see C.
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and hence to π2
m = ℓ(ℓ + 2) being the spherical harmonics and ℓ = 2I, with I the isospin

quantum number [46]6. The identification of V χ2 and I(I + 1)/V coming from Hamiltonian
quantization is also justified by the holographic dictionary, since it can be obtained by com-
puting the third component of the isovector charge density, see B for a detailed computation.
The functionals Λ and U are defined as

Λ = 2κ

∫
dz
[
2hH2(2G+ 1)2 + k((L′)2 + 4(G′)2)

]
,

U = κ

∫
dz
[
3hH4 + 3k(H ′)2 + k(â′0)

2
]
, (43)

where V denotes the spatial 3-volume. Using now the relation between isospin and the number
of protons and neutrons:

2I = Z −N = −βA, (44)

with Z the proton number and N the neutron number, as well as the atomic number

A = Z +N = V ρ, (45)

being the product of the 3-volume and the baryonic density. β is defined as the normalized
difference between the number of neutrons and protons, β = (N − Z)/A, hence we have

H

A
=

U

ρ
+ S(ρ)β2 +O(V −1), (46)

S(ρ) =
ρ

8Λ
, (47)

where S(ρ) is the symmetry energy as a function of the density.
Using the standard phenomenological fit for the WSS model of Ref. [19], we set λ = 16.63

and find the first SE expansion parameters as

S0

MKK
= 0.1032,

L

MKK
= 0.1339,

Ksym

MKK
= −0.1982, (48)

where the Kaluza-Klein scale only enters as an overall factor. Using the standard fit [19],
MKK = 949MeV, we obtain S0 = 97.95MeV, L = 136.2MeV, and Ksym = −188.1MeV, which
are somewhat larger than values typically obtained from phenomenological models [1], but
much smaller than obtained in the WSS previously [35]. For the HW model, we fix M5 =

Nc
12π2

using the leading OPE coefficient of the vector current correlator [30], for which the first few
SE expansion parameters are

S0L = 0.2743, LL = 0.3905, KsymL = 1.347, (49)

where L−1 is the mass scale of the HW model, which we set as L−1 = 150MeV following
Ref. [37], which provides phenomenologically good results for neutron stars in terms of mass-
radius data; this yields S0 = 41.13MeV, L = 58.57MeV, and Ksym = 202.1MeV. The

6Due to the simplicity of the homogeneous Ansatz, the isospin quantum number is identical to the spin
quantum number in magnitude; this is an artifact of the Ansatz, but it does not increase the kinetic energy. In
particular, for reading off the coefficient of the symmetry energy at β = 0, this artifact of the approximation
of using the homogeneous Ansatz is irrelevant.
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SE at saturation density and the slope are in fairly good agreement with phenomenological
constraints, whereas Ksym has the opposite sign to most predictions in the literature [1]. The
saturation density, ρ0, in HQCD is defined to be at the onset of baryonic matter, obtained
by minimization of the free energy with the baryonic chemical potential as the boundary
condition â0(zUV) = µB. The value of ρ0 obtained this way in the WSS model turns out to
be too large by a factor of 3 wrt. nature, an overestimate by the same order of other baryonic
quantities.

0 1 2 3 4
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Figure 1: The symmetry energy (SE) calculated in the WSS model with the phenomenological
value of the ’t Hooft coupling and in the HW model, both using quantization of isospin as
functions of the density. a) The red area corresponds to the WSS model with MKK ranging
from 300MeV to 1200MeV and the red line in the middle is at 949MeV. The green area
corresponds to the HW model with L−1 ranging from 110MeV to 320MeV and the green line
in the middle is at 150MeV. The constraints from the PREX-II experiment using the neutron
skin thickness of 208Pb [6] are shown with a gray shaded area, while the extensive 2021 survey
of constraints on the symmetry energy of Li et.al. [4] using neutron stars, are shown with a
cyan shaded area. Constraints from isobaric analog states below saturation density are shown
with a purple shaded area [2]. b) The SE calculated in the WSS model with the ’t Hooft
coupling λ = 60. The red shaded area corresponds to MKK ∈ [370, 949]MeV and the red
solid curve is the rescaled phenomenological mass scale, that keeps the pion decay constant
at 93MeV.

We explore a larger range of densities for both the WSS and the HWmodel in Fig. 1a). For
the WSS model, we have used the phenomenological value of the ’t Hooft coupling (λ = 16.63)
and shown the range ofMKK ∈ [300, 1200]MeV with a red shaded area, which includesMKK =
949MeV [19] (red solid line), whereas for the HW model the range of L−1 ∈ [110, 320]MeV
is shown with a green shaded area, which includes L−1 = 150MeV (green solid line) that
is chosen from neutron star phenomenology [37] and the highest mass scale is from meson
physics [55, 31]. Up-to-date constraints from astrophysics and heavy-ion collision data are
shown with gray and cyan shaded areas near and above saturation density and constraints
using nuclear excitation energies from isobaric analog states (IAS) are shown with a purple
shaded area below saturation density. As can be seen from the figure, the phenomenologically
fitted value of the mass scale MKK at 949MeV [38] overestimates the SE with about a factor of
3; however, the fit is made using mesonic observables and is known to overestimate baryonic
observables; for instance, the baryon mass is typically overestimated by a factor of 1.7-1.8
[38, 56, 57] using the mesonic fit.
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Figure 2: The symmetry energy (SE) calculated in the WSS model using quantization of
isospin as a function of the ’t Hooft coupling λ at saturation density. The red area spans
the mass scale MKK from 300MeV to 1200MeV and the red line is at 949MeV. The gray,
cyan and purple shaded areas are the same as in Fig. 1. The vertical gray line marks the
phenomenological ’t Hooft coupling λ = 16.63 [19].

Although both models come in the ball park of the experimental constraints above satu-
ration density and nuclear physics predictions below saturation density, the shape of the SE
does not quite satisfy all the constraints. In the WSS model, however, we can dial the ’t Hooft
coupling to see whether we can fit in the allowed regions and indeed it is possible by raising
both the ’t Hooft coupling from the phenomenological value to λ = 60, as well as the (lower)
KK scale from 300MeV to 370MeV, see Fig. 1b). With the larger ’t Hooft coupling, the SE of
the WSS has a compatible shape to pass all the constraints, but the ρ meson is too light and
the baryon mass is too heavy – often a problem in HQCD; the baryon mass is reduced from
about 1600MeV to 1191MeV. If we keep the pion decay constant at its phenomenological
value, the KK scale, however, is lowered and is shown in Fig. 1b) with a solid red curve –
not too far from a the viable solution. The dependence on the ’t Hooft coupling for the WSS
model is shown in Fig. 2 for the KK scale in the interval 300-1200MeV at saturation density.

5 Proton fraction

We will now consider the proton fraction at β-equilibrium with charged leptons, imposing
charge neutrality. Using the Gell-Mann-Nishijima formula, we can relate the baryon density,
ρ, and isospin density, ρI , with the proton/neutron densities:

ρP,N = 1
2ρ± ρI , (50)

where the upper sign is for protons and the lower for neutrons. Charge neutrality is imposed
by

1
2ρ+ ρI =

∑
ℓρℓ, (51)

with ℓ = e, µ being a sum over the charged leptons and the β-equilibrium (from the decay
N → P + ℓ+ ν̄ℓ) amounts to

µℓ = µN − µP = −µI , ℓ = e, µ, (52)
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Figure 3: The proton fraction calculated in the WSS and HW model as functions of the
density. The red shaded area corresponds to the WSS model with the phenomenological ’t
Hooft coupling λ = 16.63 and MKK ∈ [300, 1200]MeV, the red line at MKK = 949MeV and
the red dashed line at MKK → 0. The green shaded area corresponds to the HW model
with L−1 ∈ [110, 320]MeV, the green line at L−1 = 150MeV and the green dashed line is the
limit L−1 → 0. The magenta shaded area corresponds to the WSS model with the calibration
of Fig. 1b), i.e. λ = 60 and MKK ∈ [370, 949]MeV, the solid magenta curve corresponds to
the phenomenological pion decay constant, and the dashed magenta curve corresponds to
MKK → 0, thus eliminating the muons. The gray shaded area is the result from chiral EFT
[58].

where µX is the chemical potential of the particle species X. The lepton density is calculated
assuming it to be a (massive) Fermi gas as [35]

ρℓ = ΘH(µℓ −mℓ)
(µ2

ℓ −m2
ℓ )

3
2

3π2
, (53)

with ΘH being the Heaviside step function, µℓ the chemical potential and mℓ being the mass
of the lepton ℓ. Using the definition of the isospin chemical potential as being the conjugate
variable of the isospin density, we get

µI =
1

V

∂H

∂ρI
=

ρI
Λ(ρ)

. (54)

Inserting Eq. (53) into the charge neutrality condition (51) and using the β-equilibrium con-
dition (52), we obtain an implicit solution for the isospin density, ρI , as a function of the
density ρ:

ρ3I
3π2Λ3

[
ΘH(−ρI) + (1−R−2m2

µ)
3
2ΘH(−R−mµ)

]
+ ρI +

1

2
ρ = 0, R =

ρI
Λ
, (55)

where we have set the electron mass to zero and the dimensionless muon mass parameter is
the ratio of the physical mass (105.7MeV) to the mass scale MKK and L−1, for the WSS and
the HW models, respectively.

In Fig. 3 we show the numerical results for both the WSS and the HWmodel for the proton
fraction at various densities around saturation density. We find that the HWmodel gives more
realistic proton fractions (green shaded area) than the WSS model fitted phenomenologically

12



to mesons (red shaded area), but yields quite good proton fractions below saturation density
if we use the calibration from Fig. 1b), i.e. λ = 60 and MKK = 370MeV. Since we take the
electrons to be massless, the mass scale of the model only enters in the muon mass parameter.
The dashed curves correspond to the muon being infinitely heavy (or the mass scale of the
model being sent to zero).

6 Discussion and outlook

In this paper, we have computed the symmetry energy in two holographic QCD models using
the method of quantizing the isospin symmetry, namely in the top-down WSS model and the
bottom-up HW model. We find fairly good agreement between our model results for the SE
and proton fraction in both the HW model, using the fit from neutron stars and in the WSS
model with a new calibration (i.e. λ ∼ 60 and MKK ∼ 370MeV).

We have also shown that the method known from Skyrmions of quantizing the isospin
zeromode is equivalent to introducing a chemical potential on the holographic boundary for
the gauge fields, see A. There is mathematically no difference between the two methods.

It would be interesting in future work to take into account the strange quark (3 instead of
2 flavors) or alternatively the kaons, to see at what densities it might have an impact on the
SE. Furthermore, there are certain transitions that happen at larger densities, for example
the Skyrmion-half-Skyrmion transition [59], which has an analog in holographic instantons
[60]. Although it is not directly observable in our homogeneous Ansatz, it may have some
effect on the SE and proton fractions at large densities. The holographic pop-corn transition
that is known to occur in HQCD [61, 37] is already taken into account in our models and
has observable consequences for the SE, especially the Ksym becomes positive in the HW
model due to an earlier (wrt. WSS) appearance of the transition – better future experimental
constraints may help to pinpoint the best HQCD model for finite density calculations.
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A Equivalence between rotation in SU(2) and external isospin
chemical potential

We start with our field configuration given by Eq. (32), of which we rewrite the non-Abelian
components:

A0 = Gaχ · τa−1 (56)

Ai = −H

2
aτ ia−1, (57)

Az = 0. (58)

We now perform a gauge transformation, with the aim of obtaining a static configuration in
the limit of constant χ: we choose a gauge function b(t) that only depends on time, so that
the fields transform as

A0 → Ã0 = Gbaχ · τa−1b−1 − ib∂0b
−1, (59)

Ai → Ãi = −H

2
baτ ia−1b−1, (60)

Az → Ãz = 0. (61)

Now we choose b = a−1, hence rotating the fields Ai back to the standard orientation, while
modifying the field A0 with an additional term:

Ã0 = Gχ · τ − ia−1ȧ (62)

Ãi = −H

2
τ i, (63)

Ãz = 0. (64)

We recognize the quantity of Eq. (24) in the last term of Eq. (62):

−ia−1ȧ =
1

2
χ · τ , (65)

so that we are left with

Ã0 =

(
G+

1

2

)
χ · τ . (66)

We know that by construction the function G(z) vanishes at the boundary at zUV, so we
conclude that this configuration behaves as:

Ã0(z → zUV) =
1

2
χ · τ . (67)

The boundary value of the field A0 is dual to an isospin chemical potential in the holographic
dictionary. Since the orientation of the soliton is a zeromode, we can set χ to point in
a chosen direction for simplicity without loss of generality: we choose it to have only a
nonvanishing third component as χ = (0, 0, µI), following the same convention of choosing
the third component of isospin as the operator to diagonalize simultaneously with the isospin
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squared (and the isospin chemical potential to appear holographically as the boundary value
of Aa=3

0 ). Shifting G(z) as

G̃(z) =

(
G(z) +

1

2

)
, (68)

we obtain the familiar expressions for the gauge field and its boundary condition

Ã0 = G̃τ3µI , Ã0(z → zUV) =
1

2
µIτ

3. (69)

We then conclude that a static system in the presence of an external isospin chemical
potential µI is equivalently described as it rotating in isospin space with angular velocity
χi = µIδ

i3, as observed in Ref. [62] in the non-holographic context of the Skyrme model.
We want to emphasize that, despite our solution to the system of coupled equations of

motion is performed in the limit of small angular velocity (small µI), the equivalence between
the two methods just shown holds true in general, since we made no assumptions on the χ
dependence of the functions H, â0, G, L. The assumption of small χ will not affect in any
way the calculation of the symmetry energy, as it is the coefficient of a term of an expansion
around symmetric matter, hence all the functions would have to be evaluated at vanishing
isospin density (and µI) anyway.

B Isospin density from holographic current

In this section we want to prove that the isospin number density that we defined from the
quantized angular momentum coincides with the canonical one obtained through the holo-
graphic dictionary via the computation of the isovectorial current. For simplicity, we will
show the proof in the WSS model, so that zIR = 0, zUV = +∞, but it holds true in the
HW model too, after substitution of the appropriate quantities. As shown in Ref. [39], the
vectorial current is obtained as

JV µ = −κ [k(z)Fµz]
+∞
−∞ = −2κ [k(z)Fµz]

+∞
0 . (70)

With this quantity we can build the isovectorial charge QV of which we take the third com-
ponent to coincide with the isospin operator

Qa=3
V = I3 =

∫
d3xTr

(
J0
V τ

3
)
= V Tr

(
J0
V τ

3
)
. (71)

We plug in this formula the homogeneous Ansatz (32):

I3 = −2κV
[
G′k(z)

]+∞
0

χiTr
(
aτ ia−1τ3

)
(72)

= −2κV
[
G′k(z)

]
z=+∞ χiTr

(
aτ ia−1τ3

)
, (73)

where we used the fact that G′(0) = 0.
The angular velocity χi is related to the angular momentum operator J i by the familiar

relation involving the moment of inertia Λ:

χi =
1

V Λ
J i, (74)
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and we can exploit the useful relationship between angular momentum and isospin operators
that holds due to the spherical symmetry of the system:

J iTr
(
aτ ia−1τa

)
= −2Ia, (75)

so that we are left with:

I3 =
4κ

Λ

[
G′k(z)

]
z=+∞ I3. (76)

We see that the validity of this relationship depends on whether the following identification
holds true:

4κ
[
G′k(z)

]
z=+∞ = Λ. (77)

To prove this relationship, we first notice that the formula for the current is obtained by
differentiating the action with respect to the UV boundary value of the A0 field, following

δA0S = (e.o.m. terms) + 4κV Tr
[
k(z)A′

0δA0

]
z=+∞ , (78)

where the first term means that we neglect contributions that vanish by the equations of
motion, we evaluate only boundary terms, and we made use of the boundary condition A′

0(z =
0) = 0. We decide to employ the gauge in which the field A0 has a finite boundary value,
dual to the isospin chemical potential, so we take the field to be as in Eq. (69). With this
configuration, the variation of the action assumes the shape

δA0S = (e.o.m. terms) + 2κV Tr
[
k(z)G̃′τ3τ3

]
z=+∞

µIδµI , (79)

and finally we can compute the derivative

∂S

∂µI
= 4κV

[
k(z)G̃′

]
z=+∞

µI . (80)

We can change this result to our usual “rotating” gauge by noting that we have to rename
µI → χ3, and that G̃′ = G′, so that on-shell we obtain

∂S

∂χ3
= 4κV

[
k(z)G′]

z=+∞ χ3. (81)

We now look at the definition of Λ: it is nothing but the part of the energy density that is
quadratic in the angular velocity, and there is no linear term. In this picture, the system
is rotating and there is no chemical potential, so the on-shell action gives the energy of the
system, so that we can write

∂S

∂χ3
= V Λχ3. (82)

Comparing Eqs. (80) and (82), we finally prove Eq. (77).
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C The subleading order in Nc of the chiral anomaly

Throughout the main body of this work, we have ignored the presence of the chiral anomaly
of QCD: we expect on general grounds that the currents dual to the holographic fields Aα are
conserved, with the exception of the axial U(1) current, since the corresponding symmetry is
broken by the chiral anomaly. Analogously, we expect the Goldstone boson associated to the
axial symmetry to acquire a finite mass as a consequence of the anomaly.

This holds true in the WSS model, where the mechanism is incorporated nontrivially from
the top-down construction in string theory. The model includes Ramond-Ramond forms Cn

of odd rank n: Among these is C7, whose action, inclusive of a coupling with the flavor branes,
reads

SC7 = − 1

4π
(2πℓs)

6

∫
dC7 ∧ ⋆dC7 +

1

2π

∫
C7 ∧ TrF ∧ ωy, (83)

where a one-form ωy = δ(y)dy has been introduced to model the distribution of the stack of
branes in the y-direction (by definition transverse to z), extending the otherwise 9-dimensional
integral to the whole 10-dimensional spacetime.

We can write the equation of motion as

d ⋆ dC7 = d ⋆ F8 =
1

(2πℓs)6
TrF ∧ δ(y)dy, (84)

and then use Hodge duality ⋆F8 = (2πℓs)
−6F̃2 to turn Eq. (84) into an anomalous Bianchi

identity:

dF̃2 = TrF ∧ δ(y)dy. (85)

This form is gauge invariant if we allow C1 to transform with a U(1) transformation of the
flavor group:

δΛdC1 =

√
Nf

2
dΛ ∧ δ(y)dy, δΛÂ = −dΛ. (86)

The implication of this fact is that dC1 is not a gauge invariant form, only F̃2 is the correct
gauge invariant combination.

This is welcome, since in the model C1 is dual to the θ angle of QCD as

θ + 2πk =

∫
S4
UV

C1. (87)

Let us now consider a zeromode for the field Âz, dual to the η′ meson, such that∫
dzÂz =

2η′(x)

fπ
, (88)

and plug it into the action

S
F̃2

= − 1

4π(2πℓs)6

∫
d10x|F̃2|2. (89)
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The result is an action that displays a mass term for the η′:

S
F̃2

= −χg

2

∫
d4x

(
θ +

√
2Nf

fπ
η′

)2

, (90)

with the η′ mass agreeing with the Witten-Veneziano formula

m2
η′ =

2Nf

f2
π

χg. (91)

The topological susceptibility χg and the pion decay constant are computed in the model (see
Ref. [18]):

χg =
λ3M4

KK

4(3π)6
, fπ = 2

√
κ

π
. (92)

We now recall that the parameter κ was defined to be κ ≡ λNc
216π3 : this means that the mass

term for the η′ meson is of order N−1
c (since f2

π ∝ O(Nc)), while the action for the flavor fields
that we employed in the main body of this work is of order Nc. While true that the angular
velocity χi itself is of order N

−1
c , hence pushing the isospin asymmetric action (proportional

to χ2) to be of order N−1
c , we have to recall that eventual isospin asymmetric terms will carry

factors of N−1
c or higher also in the η′ mass term, pushing it to even higher order in the N−1

c

expansion. Hence it is formally safe to neglect the contribution from the axial anomaly in the
large-Nc scheme of approximation.

D The vanishing of the hard-wall tachyon in the baryonic
phase

Let us quickly review the setup of the hard-wall model of Ref. [37] that utilizes a scalar field
with an IR potential to dynamically stabilize it. The metric is given by

ds2 =
L2

z2
(
dxµdxµ − dz2

)
, (93)

where L := 1 is the curvature scale of AdS5 and set equal to one. Upon restoring units,
energies are multiplied by a physical scale.

For two flavors, we have left and right U(2) gauge fields, LM , RM and the minimal action
[37]:

S = Sg + SCS + SΦ + SIR, (94)

Sg = −M5

2

∫
d4xdz a(z) Tr

(
LMNLMN +RMNRMN

)
, (95)

SCS =
Nc

16π2

∫
d4xdz

1

4
ϵMNOPQ

[
L̂M

(
Tr(LNOLPQ +

1

6
L̂NOL̂PQ

)
− R̂M

(
Tr(RNORPQ +

1

6
R̂NOR̂PQ

)]
, (96)

SΦ = M5

∫
d4xdz a3(z)

[
Tr(DMΦ)†(DMΦ)− a2(z)M2

ΦTrΦ†Φ
]
, (97)

SIR =
1

2
m2

bξ
2 − λbξ

4, (98)
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where a(z) = L/z, the U(2) gauge field LM is split into SU(2) and U(1) parts as

LM = La
M

τa

2
+ L̂M

12
2
, (99)

and similarly for RM , the field strength for LM is

LMN = ∂MLN − ∂NLM + i[LM ,LN ], (100)

and similarly for RMN , the covariant derivative for the scalar field is defined as

DMΦ = ∂MΦ+ iLMΦ− iΦRM , (101)

the boundary condition for the scalar field is

Φ(zIR) = ξ12, (102)

which is stabilized by the boundary potential as the minimization of the vacuum solution and
is given by

ξ2 = ξ20 =
m2

b − 12M5/L

4λb
, (103)

the mass of the scalar is M2
ΦL

2 = −3, the would-be quark mass in the model is switched off,
the indices M,N = 0, 1, 2, 3, z run over all AdS5, and finally Nc is the number of colors and
M5 is a coupling of the theory (playing the role of κ in the WSS model), which we have set
as M5L = Nc/(12π

2) [37].
Chiral symmetry breaking is done in Ref. [37] following [63, 64] as (Lzµ +Rzµ)z=zIR = 0,

and hence we choose Lz = Rz = 0 (gauge choice), Li = −Ri, L̂0 = R̂0 and Φ diagonal, which
means that the scalar field only couples to Li = −Ri via the covariant derivative

D0Φ = 0, DiΦ = ∂iΦ+ 2iLiΦ, DzΦ = ∂zΦ. (104)

Employing the homogeneous Ansatz

Li = −Ri = −H(z)
τ i

2
, L̂0 = R̂0 = â0(z), Φ = ω0(z)

12
2
, (105)

and the coordinates zUV = 0, zIR = L = 1, we can write down the vacuum solution

Φ = ξz312, (106)

which holds when H = 0 that corresponds to ρ = 0 – the vanishing baryonic density and
ξ = ξ0 of Eq. (103). Once the IR potential has been fixed by choosing the two parameters mb

and λb that correspond to a certain ξ0, the impact of the scalar is just to define the vacuum
value of the action in the mesonic phase of the theory. It can readily by computed to be

S = −λbξ
4
0 . (107)

The boundary conditions for the fields H(z) and â0(z) are

H(0) = 0, H(1) = −(4π2ρ)
1
3 , (108)

â0(0) = µ, â′0(1) = 0, (109)
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(a) (b)

Figure 4: The action evaluated as a surface for densities ρ and scalar field with coefficient ξ
at (a) (for (b) twice) the chemical potential that corresponds to saturation density. In this
figure, the IR potential is chosen as mb = 0.657 and λb = 0.001, giving λbξ

4
0 = 1.024.

with µ being the (baryonic) chemical potential.
In the phase ρ > 0, the vacuum of the theory is still given by H = â0 = 0 and Φ given

by the vacuum solution (106) until the baryonic onset, which corresponds to the nuclear
saturation density. At the onset, there are two vacua: a mesonic and baryonic one each with
the same value of the action (by definition), see Fig. 4(a). Once ρ > ρcrit one may ask at
what configuration the scalar field stabilizes at. It turns out by numerical computations that
the scalar turns off, which corresponds to ξ = 0 in the baryonic phase, see Fig. 4(b). This
corresponds to Φ = 0 and when studying only the baryonic phase, the impact of the scalar is
to set the saturation density of this simplistic hard-wall model.
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