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Abstract

We examine the phase diagram of the extended Hubbard model on a square lattice, for
both attractive and repulsive nearest-neighbor interactions, using CDMFT+HFD, a com-
bination of Cluster Dynamical Mean Field theory (CDMFT) and a Hartree-Fock mean-field
decoupling of the inter-cluster extended interaction. For attractive non-local interac-
tions, this model exhibits a region of phase separation near half-filling, in the vicinity
of which we find islands of d-wave superconductivity, decaying rapidly as a function of
doping, with disconnected regions of extended s-wave order at smaller (higher) electron
densities. On the other hand, when the extended interaction is repulsive, a Mott insu-
lating state at half-filling is destabilized by hole doping, in the strong-coupling limit, in
favor of d-wave superconductivity. At the particle-hole invariant chemical potential, we
find a first-order phase transition from antiferromagnetism (AF) to d-wave superconduc-
tivity as a function of the attractive nearest-neighbor interaction, along with a deviation
of the density from the half-filled limit. A repulsive extended interaction instead favors
charge-density wave (CDW) order at half-filling.
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1 Introduction20

The single-band Hubbard model has long served as a useful platform for studying the effect of21

strong electronic correlations [1–6]. In particular, it explains many of the experimental obser-22

vations in the high-Tc cuprate superconductors [2,7–16], providing an approximate picture for23

the description of these materials [17–25]. More recently, there have been numerous studies24

on extensions of this model with nearest-neighbor interactions, known as the extended Hub-25

bard model (EHM) [26–90]. There are several reasons for the continuing interest of the com-26

munity in exploring the effect of non-local interactions. In actual materials, the interactions27

between neighboring sites may not be completely screened, necessitating a more careful treat-28

ment of longer-range interactions. The model with an attractive nearest-neighbor interaction29

provides an effective representation of the attractive interactions mediated by electron-phonon30

coupling, and may be realized in ultra-cold atom systems. The relevance of studying such a31

model is further emphasized by recent ARPES studies on the one-dimensional cuprate chain32

compound Ba2−xSrxCuO3+δ [91], where the observations can be explained using a Hubbard33

model with an attractive extended interaction. On the other hand, the model with repulsive34

non-local interactions provides an ideal playground for studying the interplay of charge and35

spin fluctuations, since the relative magnitude of the charge fluctuations can be controlled by36

the strength of the extended interaction [26,30,34,35]. The EHM at quarter-filling has proven37

useful for describing the charge ordering transition due to inter-site Coulomb interactions in38

a variety of materials [28, 48, 49, 79, 83]. Both the Hubbard model and its extension with39

longer-range interactions have contributed significantly to the methodological development40

in the field of strongly correlated systems, and in particular high-Tc superconductors, which is41

essential for obtaining results that can be quantitatively compared with experiments.42

In recent years, the properties of the EHM have been analyzed using a variety of ap-43

proaches, including, among others, mean-field theory [50–52,72], functional renormalization44

group (fRG) [39], exact diagonalization (ED) [29,32,55,61], density-matrix renormalization45

group (DMRG) [57, 63], Quantum Monte Carlo (QMC) [70, 87, 89, 92] and the fluctuation-46

exchange approximation (FLEX) [56]. However, many of the approaches used are best suited47

for studying the weak-coupling or the strong-coupling limit, and there are few that can de-48

scribe the intermediate-coupling regime equally well. Even among those that can, each has it49

own limitations. For instance, simple exact diagonalizations are restricted to small systems,50

quantum Monte Carlo methods suffer from the fermion sign problem in many applications51

of interest, the density-matrix renormalization group (DMRG) applies to one-dimensional or52

ribbon-like systems, etc. In addition, certain aspects of the model with repulsive interactions53

have been studied in detail using the so-called extended dynamical mean-field theory (EDMFT)54

approach [93–95], in which the local density fluctuations together with the local self-energy55

are propagated on the whole lattice using the known dispersion and density-density extended56

interactions. Other variations of this method, such as a combination of EDMFT with the GW57
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approximation [27, 96–98],which perturbatively includes non-local self-energy corrections,58

and the dual boson method [81, 82, 99], which constructs a diagrammatic expansion about59

the extended DMFT, have likewise contributed to its understanding. More recently, cluster60

methods [26,38,76–78,100,101], which capture short-range correlations non-perturbatively61

within periodic clusters, have also been applied to this model. However, such studies have62

largely been limited to fixed densities and repulsive interactions. Overall, there have been63

fewer studies that consider both an extensive range of interaction couplings and band fillings,64

and relatively less focus on the case of attractive extended interactions.65

In this paper, we study the phase diagram of the extended Hubbard model on a square66

lattice, for both attractive and repulsive nearest-neighbor interactions, using CDMFT+HFD,67

an extension of the Cluster Dynamical Mean Field Theory (CDMFT) [100,102] approach with68

a Hartree-Fock decoupling of the inter-cluster interactions. CDMFT belongs to a class of meth-69

ods called Quantum Cluster Methods [103–109]. This is a set of approaches that consider a70

finite cluster of sites embedded in an infinite lattice, and introduce additional fields or “bath”71

degrees of freedom, determined by variational or self-consistency principles, to best represent72

the effect of the surrounding infinite lattice. These methods have proven useful for interpola-73

tion between results obtained in the weak- and strong-coupling regimes, since their accuracy74

is controlled by the size of the clusters used, rather than the strength of the couplings. Fur-75

ther, we treat the inter-cluster interactions within a Hartree-Fock mean-field decoupling, which76

generates additional Hartree, Fock and anomalous contributions to the cluster Hamiltonian.77

While a similar treatment has been used to study the model at quarter-filling [48] for the case78

of repulsive interactions, with the objective of understanding the electronic properties of met-79

als close to a Coulomb-driven charge ordered insulator transition, this analysis was focused80

on a specific parameter regime, and did not include superconducting orders.81

This work constitutes a test of the CDMFT+HFD method, described in Sect. 2 below. Our82

main findings are as follows. For a weak repulsive local interaction U and an attractive ex-83

tended interaction V , the system undergoes a transition towards a phase separated (PS) state84

when the chemical potential lies in the vicinity of its particle-hole symmetric value, U/2+4V .85

The exact region of phase separation is identified by using the hysteresis in the behavior of the86

electron density as a function of the chemical potential, which corresponds to the coexistence87

of two different uniform-density solutions. As a function of doping away from the half-filled88

point, symmetrical and sharply decaying regions of dx2−y2-wave superconducting order are89

observed, followed by disconnected regions of extended s-wave order near quarter-filling, as90

well as at very small (large) densities. A stronger attractive extended interaction tends to fa-91

vor phase separation as well as superconductivity, whereas the repulsive on-site interaction92

U is found to be detrimental to both. At the particle-hole symmetric chemical potential, we93

detect a first-order phase transition from antiferromagnetism (AF) to d-wave superconductiv-94

ity as the attractive V becomes stronger, which is accompanied by a gradual deviation of the95

density from its half-filled limit, induced by phase separation. For repulsive nearest-neighbor96

interactions in the strong-coupling regime U � t, the Mott insulating state at half-filling is97

destabilized, upon hole doping, in favor of a dome-shaped region of d-wave superconducting98

order. This order is found to be remarkably stable in the presence of a non-local interaction,99

and slightly suppressed by it. At half-filling, a repulsive non-local interaction induces a first-100

order phase transition from antiferromagnetism (AF) to a charge-density wave (CDW) order.101

Our results are qualitatively in agreement with the existing literature on the phase diagram102

of the EHM, with some notable differences in the region of attractive interactions. An im-103

portant difference is that intra-cluster fluctuations are treated exactly, which tends to make104

superconducting orders somewhat weaker in this approach.105

The paper is organized as follows. In Sect. 2, we introduce the model Hamiltonian, and106

provide a brief overview of the CDMFT approach that we use for our analysis, as well as the107
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Hartree-Fock mean-field decoupling of the inter-cluster interactions. In Sect. 3, we describe108

the phase diagram obtained as a function of the interaction strength and doping, and the phase109

transitions observed at half-filling. Finally, in Sect. 4, we summarize our results, discuss some110

relevant observations and present the conclusions of our study.111

2 Model and method112

2.1 Model Hamiltonian113

The general form of the extended Hubbard model Hamiltonian is114

H =
∑

r,r′,σ
trr′ c

†
rσcr′σ + U

∑

r

nr↑nr↓ +
1
2

∑

r,r′,σ,σ′
Vrr′nrσnr′σ′ (1)

where r, r′ label lattice sites, trr′ are the hopping amplitudes, U the on-site Hubbard interaction,115

and Vrr′ the nearest-neighbor interaction (each bond counted once, hence the factor 1
2).116

For the purpose of our analysis, we study the following model on a square lattice:117

H = −t
∑

r

�

c†
r cr+x + c†

r cr+y +H.c.
�

+ U
∑

r

nr↑nr↓

−µ
∑

r

(nr↑ + nr↓) + V
∑

r,σ,σ′

�

nrσnr+x,σ′ + nrσnr+y,σ′
�

(2)

where x,y are the lattice unit vectors along the x and y directions, and the operator crα an-118

nihilates a particle with spin α =↑,↓ at site r. The occupation number is nrα = c†
rαcrα. We119

consider a range of values for the chemical potential µ, corresponding to a continuous range120

of densities, from n = 0 to 2, along with a repulsive local interaction U > 0, and a nearest-121

neighbor interaction V that can be positive or negative. The particle-hole symmetric value of122

the chemical potential, µ = U/2+ 4V , which corresponds to a half-filled band in the absence123

of phase separation, features prominently in our analysis. The unit of energy is taken to be124

the nearest-neighbor hopping amplitude t = 1.0, with the lattice constant a = 1. Note that125

in the absence of longer-range hopping terms, beyond the nearest-neighbor bonds, the model126

respects particle-hole symmetry n→ 2− n.127

We examine the possibility of superconducting as well as density-wave orders. For this128

purpose, the anomalous operators are defined on the lattice using a d-vector, as129

∆rr′,bcrs(iσbσ2)ss′ cr′s′ +H.c. (3)

where b = 0,1, 2,3, and σb are the Pauli matrices. The case b = 0 corresponds to singlet130

superconductivity, in which case ∆rr′,0 = ∆r′r,0 and the cases b = 1, 2,3 correspond to triplet131

superconductivity, in which case, ∆rr′,b = −∆r′r,b. In practice, these operators are defined by132

specifying b and the relative position r− r′.133

Density wave operators are defined with a spatial modulation characterized by a wave134

vector Q, and can be based on sites or on bonds. In our analysis, we focus on site density135

waves, defined as136
∑

r

Ar cos(Q · r+φ) (4)

where Ar = nr, S x
r , Sz

r corresponds to charge- or spin-density wave orders, and φ is a sliding137

phase. We probe the presence of density-wave orders with Q= (π,π) and φ = 0.138
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Figure 1: Schematic representation of the first (“simple”) impurity problem used
in our analysis, with bath energies εi , cluster-bath hybridization parameters θi and
anomalous bath parameters ∆i . Physical sites are marked by numbered black dots
and bath orbitals by red squares. We choose the bath parameters such that the envi-
ronment of each cluster site is identical. This impurity model has reflection symmetry
with respect to horizontal and vertical mirror planes (C2v symmetry), and typically
involves only spin-independent hopping terms. Pairing terms ∆1,2 are introduced
between bath orbitals, with signs adapted to the SC order probed (shown here for a
d-wave order, but all positive for an extended s-wave order). The number of inde-
pendent bath parameters is 6.
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Figure 2: Schematic representation of the second (“general”) impurity problem used
in our analysis. Each representation of the point group C2v (A1,2 and B1,2) corre-
sponds to a set of phases (±1), and each of the 8 bath orbitals belongs to one of
these four representations (two bath orbitals per representation). The different bath
orbitals are independent (the bath system is diagonal) and we only show here a view
of each of the four representations with the corresponding signs associated to each
cluster site (black dots). The hybridization parameters θ are shown, and correspond-
ing pairing operators (or anomalous hybridizations) between each bath orbital and
each site also exist, with the same relative phases. We have 3 parameters per bath
orbital, which leads to a total of 24 bath parameters, and subtracting six constraints
due to a C4v rotational symmetry, we obtain 18 independent bath parameters for the
general model.
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2.2 Method: CDMFT+HFD139

Let us briefly describe the method used in our analysis, Cluster dynamical mean-field theory140

(CDMFT). For a detailed discussion of the basic principles of such Quantum Cluster Methods,141

please see Ref. [103,105,110].142

This approach is an extension of dynamical mean-field theory (DMFT) [111–114], which143

accounts for short-range spatial correlations, by considering a cluster of sites with open bound-144

ary conditions, instead of a single-site impurity. The effect of the cluster’s environment is taken145

into account by introducing a set of uncorrelated “bath” orbitals hybridized with it. In this man-146

ner, the infinite lattice is tiled into identical clusters coupled to a bath of auxiliary, uncorrelated147

orbitals, with energy levels εiσ, which may or may not be spin dependent, and hybridized with148

the cluster sites (labeled r) with amplitudes θirσ. In addition, for studying superconducting149

orders, different types of anomalous pairings ∆i jσσ′ may be introduced between bath orbitals150

i, j or ∆irσσ′ between bath orbital i and cluster site r.151

The cluster and bath size is limited by the exact diagonalization solver: the practical upper152

limit for the total number of cluster and bath orbitals is 4+8=12, given that the ground state153

and Green function must be computed repeatedly in this approach. A true finite-size analysis154

is impossible here, for the next cluster size of the same square geometry would be 9, and the155

number of bath orbitals would need to grow accordingly. Even in a one-dimensional model,156

analyzing finite-size effects in CDMFT is challenging, because of the combined effects of cluster157

size and bath size [115].158

We use two types of bath models. In the simple model (Fig. 1), the environment of each159

cluster is identical, and we introduce two bath orbitals per cluster site. Parameters of the impu-160

rity model include bath orbital energy levels (ε1,2), hybridization between each cluster site and161

the corresponding bath orbitals (θ1,2), and pairings between the bath orbitals (∆1,2). The pre-162

cise form of ∆1,2, including their relative phases between different bath orbitals, depends on163

whether we probe extended s-wave, d-wave, or triplet superconductivity. This simple impurity164

model involves 6 independent parameters to be determined self-consistently. At half-filling,165

we introduce bath energies as well as hoppings, that are consistent with the appearance of a166

density-wave order, and additionally spin-dependent in the presence of antiferromagnetism.167

This increases the number of independent parameters. However, imposing particle-hole sym-168

metry at half-filling once again reduces this number to 6. For V < 0, we do not impose169

particle-hole symmetry on the bath parameters due to the possibility of phase separation, and170

the number then increases to 10.171

We also use a more general bath model (Fig. 2). While the total number of bath orbitals172

is unchanged, every bath orbital is connected to every cluster site (with distinct combinations173

of relative phases), and we define bath energies, cluster-bath hybridizations and anomalous174

pairings between the cluster and the bath sites. In this model the bath is diagonal, i.e., the175

different bath orbitals are not directly coupled between themselves. We have 3 parameters176

per bath orbital, and taking into account six constraints due to rotation symmetry, there are177

18 independent bath parameters to set. At the particle-hole symmetric chemical potential,178

we introduce bath energies, hybridizations and anomalous pairings that have two different179

values for alternative sites. This gives us a total of 42 independent parameters in the absence180

of particle-hole symmetry for V < 0 and 15 independent parameters when superconductivity181

is absent (i.e. for V > 0) and particle-hole symmetry is taken into account.182

All bath parameters are determined by a self-consistency condition (see Ref. [103,105,110]183

for details). The simple bath model is expected to be easier to converge than the general bath184

model, because of the smaller set of parameters. While we expect the results obtained from the185

general bath model to be more reliable, we do find most of the results to be qualitatively similar186

in the two cases. Once the bath parameters are converged, the self-energy Σ(ω) associated187
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with the cluster is applied to the whole lattice, so that the lattice Green function is188

G−1(k̃,ω) = G−1
0 (k̃,ω)−Σ(ω) (5)

Here, k̃ denotes a reduced wave vector (defined in the Brillouin zone of the super-lattice189

of clusters defined by the tiling) and G0 is the non-interacting Green function. The Green-190

function-like objects G, G0 and Σ are L × L matrices, L being the number of physical degrees191

of freedom on the cluster (here L = 8 because of spin and the four cluster sites). The aver-192

age values of one-body operators defined on the lattice are obtained using the lattice Green193

function G determined from the solution for the optimum values of the bath parameters. An194

exact-diagonalization solver (the Lanczos method or variants thereof) is used at zero temper-195

ature. The computational size of the problem increases exponentially with the total number196

of cluster and bath orbitals.197

In the presence of extended interactions, we also perform a Hartree-Fock mean-field de-198

composition of the interaction terms defined between different clusters, while the interactions199

within a cluster are treated exactly. The inter-cluster interactions are decoupled in the Hartree,200

Fock and anomalous channels, which contribute to the number density, the hopping and the201

pairing operators, respectively. Moreover, we only retain those combinations of the site/bond202

operators that are physically relevant in the regions we work in (such as d-wave or extended203

s-wave), and discard the rest. The mean-field values of the relevant combinations are deter-204

mined self-consistently, within the CDMFT loop that optimizes the bath parameters. For the205

details of this procedure, please refer to Appendix A. For a comparison of different methods206

used for solving the self-consistent nonlinear equations involved in the CDMFT procedure,207

please refer to Appendix B.208

3 Results209

In this section, we discuss the salient features of the phase diagram obtained from our analysis,210

for both attractive and repulsive nearest-neighbor interactions. The dominant superconduct-211

ing and density-wave orders are identified by computing the corresponding order parameters212

using the optimum values of the CDMFT (bath and mean-field) parameters, as a function of213

electron density, as well as at half-filling. In the following analysis, we focus our attention on214

the strong coupling limit U � t for V > 0, which is a regime well-understood on physical215

grounds. For V < 0, we consider relatively weak interactions U ∼ t, far from the Mott insu-216

lating regime, which primarily serve the purpose of controlling the extent of phase separation217

when the interaction V becomes sufficiently attractive. At half-filling, we confirm the nature218

of the phase transitions, by plotting the relevant order parameters both as a function of U > 0,219

for fixed values of V > 0 or V < 0, and as a function of V for fixed values of U .220

3.1 Phase diagram at the particle-hole symmetric chemical potential221

Here, we fix the chemical potential to µ= U/2+ 4V , corresponding to a half-filled band, and222

examine the behavior of different superconducting and density-wave orders, as a function of223

the local repulsion U as well as attractive/repulsive V . While antiferromagnetism is favored224

at half-filling, in both weak- and strong-coupling regimes, an attractive non-local interaction225

is expected to drive the system towards a superconducting instability, and eventually phase226

separation. On the other hand, repulsive interactions V would typically foster competition227

between charge and spin fluctuations, and favor a charge-ordered state. Below, we discuss the228

results obtained using the simple bath model (Fig. 1).229
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Figure 3: First-order phase transition from d-wave superconductivity (indicated by
filled/open red circles) to antiferromagnetism (AF, indicated by filled/open blue cir-
cles), as a function of the repulsive local interaction U , at fixed V = −0.4 (top) and
V = −0.6 (bottom), and fixed chemical potential µ = U/2+ 4V (particle-hole sym-
metric point). The simple impurity model (Fig. 1) is used. The transition is accom-
panied by a deviation in the number density (indicated by filled/open green circles)
from the half-filled value n = 1, meaning that we are entering a phase separated
regime. The dashed (solid) curves of each color depict the behavior of the differ-
ent quantities for decreasing (increasing) U , respectively. The prominent region of
hysteresis between the two curves confirms the order of the transition. The small
jump/discontinuity observed in the d−wave order parameter for increasing U for
V = −0.4 results from issues with the convergence of the CDMFT procedure at that
point. On the other hand, for V = −0.6, we observe a jump in the d−wave order pa-
rameter for decreasing U , which appears to signal a transition from a d−wave order
at half-filling to one coexisting with phase separation, rather than being a numerical
error. Likewise, for increasing U , we observe a nontrivial d−wave order parameter
both in the presence and absence of phase separation for V = −0.6 (for more details,
see Appendix B).
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Figure 4: First-order phase transition from antiferromagnetism (AF) (indicated by
filled/open blue circles) to d-wave superconductivity (indicated by filled/open red
circles), for increasingly attractive V , followed by a rapid suppression in the super-
conducting order parameter, for on-site interaction U = 1 (top) and U = 2 (bottom).
The simple impurity model (Fig. 1) is used. The transition is accompanied by a devia-
tion in the number density (indicated by filled/open green circles) from the half-filled
value n= 1. The dashed (solid) curves of each color depict the behavior of different
quantities for decreasing/more negative (increasing/less negative) V , and we find
significant hysteresis. For larger repulsive interactions U , the transition is found to
occur at a critical value of V that is more attractive. For U = 1, we observe oscil-
lations between the d−wave and AF orders at half-filling, close to the transition for
decreasing/more negative V , while for U = 2, we see a significant region of d−wave
superconductivity close to half-filling for increasing/less negative V , as well as similar
oscillations between the d−wave and AF orders at half-filling, close to the transition
between the two states for increasing/less negative V .
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3.1.1 V < 0 :230

For a fixed attractive nearest-neighbor interaction V , as the strength of the local repulsive231

interaction U decreases, the system undergoes a first-order phase transition from antiferro-232

magnetism to d-wave superconductivity. This is accompanied by a deviation in the electron233

density from its half-filled limit, which can be attributed to the effects of phase separation, dis-234

cussed in more detail in the next subsection. Each of the order parameters is plotted for both235

increasing and decreasing U , and the region of hysteresis between the two curves indicates236

that the transition is first-order in nature. We have verified that other pairing symmetries,237

such as extended s-wave and p-wave, do not compete with dx2−y2 pairing in this regime. The238

results of our analysis are shown in Fig. 3. Likewise, an antiferromagnetic order is destabilized239

in favor of d-wave superconductivity for an attractive V , at a fixed repulsive U ∼ t, with signif-240

icant hysteresis between the curves obtained for increasing/decreasing V . The latter state is241

then rapidly suppressed due to the effect of phase separation. The results are shown in Fig. 4.242

3.1.2 V > 0 :243

For repulsive nearest-neighbor interactions V , we do not expect to find any superconducting244

orders at half-filling in the strong-coupling limit U � t, and instead focus on studying the245

competition between charge- and spin-density-wave orders. At fixed V > 0, we observe a246

first-order phase transition from a charge-density wave (CDW) to an antiferromagnetic (AF)247

state, as a function of increasing U . Likewise, for a large repulsive U , the system undergoes248

a phase transition from antiferromagnetism to CDW, as a function of the repulsive V . In both249

cases, a large region of hysteresis is observed between the results obtained for increasing and250

decreasing values of the respective interaction couplings. The results of our analysis are shown251

in Figs 5 and 6, respectively.252

We do not present the corresponding results for the more general bath model (Fig. 2) here,253

as they are found to be qualitatively similar to those obtained for the simple model. The key254

differences, that are sometimes observed, include a) an increase/decrease in the strength of255

the d-wave order parameter close to the transition, b) a smaller region of hysteresis, c) a small256

shift in the position of the transition, particularly as a function of V for fixed U .257

3.2 Phase diagram as a function of density258

Next, we examine the phase diagram of the model over a continuous range of densities, for259

U > 0 and attractive/repulsive V . For V > 0, we once again limit ourselves to the strong-260

coupling limit U � t. For V < 0, we focus on studying the effect of an attractive extended261

interaction, with a local repulsion U controlling the extent of phase separation.262

3.2.1 V < 0 :263

Let us now discuss the different phases that are supported by the model as a function of den-264

sity. Close to half-filling, we find a region of phase separation, indicated by a jump in the265

density, flanked by symmetrical islands of dx2−y2 pairing, which decay rapidly as a function of266

density. For further smaller (larger) fillings, an extended s-wave order appears in the form of267

disconnected regions, near quarter-filling and at very small (large) densities. Interestingly, the268

variation of the extended s-wave order parameter as a function of U and V are found to be dif-269

ferent for the simple bath model and the more general one. In the case of the simple model (see270

Fig. 7), we find small regions of extended s-wave superconductivity near quarter-filling, that271

vary non-monotonously as a function of U . Only for sufficiently attractive V , nearly symmetri-272

cal regions of extended s-wave order also appear close to the band edges. The corresponding273

results for the general bath model are illustrated in Fig. 8. While the overall magnitude of the274
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Figure 5: First-order phase transition from a charge-density wave (CDW) order (in-
dicated by filled/open red circles) to antiferromagnetism (indicated by filled/open
blue circles), at half-filling, as a function of the local repulsive interaction U , for
V = 0.5 (top) and V = 0.75 (bottom). The simple impurity model (Fig. 1) is used.
The dashed (solid) curves of each color depict the behavior of the order parameters
for decreasing (increasing) U , and exhibit significant hysteresis. As the repulsive V
becomes stronger, the transition is found to occur at a larger value of U , the CDW
order parameter increases considerably in magnitude, and the region of hysteresis is
somewhat enhanced.
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Figure 6: First-order phase transition from antiferromagnetism (indicated by
filled/open blue circles) to charge-density wave (CDW) order (indicated by
filled/open red circles), at half-filling, as a function of the repulsive interaction V
for fixed U , with U = 8 (top) and U = 12 (bottom). The simple impurity model
(Fig. 1) is used. The dashed (solid) curves of each color depict the behavior of the
order parameters for decreasing (increasing) V , and exhibit considerable hysteresis.
As U increases, the transition occurs at a larger critical value of V , and the antiferro-
magnetic order parameter increases in magnitude.
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Figure 7: Superconducting order parameter of the EHM with attractive nearest-
neighbor interactions, as a function of density n, from n = 0 to 2 for the simple
bath model (Fig. 1). Close to the half-filled value n= 1, we find signatures of phase
separation, indicated by a gap in the curve over a range of densities, caused by a jump
in the compressibility ∂ n/∂ µ (as shown in Fig. 9). For smaller (larger) fillings, nearly
symmetrical and sharply defined regions of d-wave superconductivity (represented
by filled/open blue circles) are followed by disconnected patches of extended s-wave
order (represented by filled/open red circles), which appear only beyond a critical
attractive value of V . Note that the asymmetry between either the d−wave regions
or the extended s-wave regions near the band edges, especially evident for V = −0.4,
is a numerical artefact owing to insufficient accuracy in the CDMFT procedure and
has no physical consequence.
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Figure 8: Superconducting order parameter of the EHM with attractive nearest-
neighbor interactions, as a function of density n, from n = 0 to 2 for the general
bath model (Fig. 2). The overall behavior of the d− and extended s-wave patches are
similar to the corresponding result for the simple bath model. However, note that the
structure of the s-wave order parameter has changed, with a more extended region
near quarter-filling, and an additional patch near 1/3−filling. For U = 0, V = −0.7,
the phase separation region extends all the way to quarter-filling, and the corre-
sponding superconducting patches are almost absent, and asymmetric about n = 1.
Moreover, the new s-wave order parameter becomes unambiguously weaker as the
repulsive U increases, and is completely absent for U = 1 and U = 2, thus resolving
the question of the non-monotonous behavior of the s-wave order parameter in the
simple bath model.
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Figure 9: Number density n as a function of the chemical potential µ (measured
with respect to its particle-hole invariant value, µc = U/2 + 4V ) for an EHM with
attractive nearest-neighbor interactions, over a range of values of U ≥ 0 and V < 0
for the simple bath model (Fig. 1). On either side of half-filling (µ = µc), we find
symmetrical jumps in the compressibility ∂ n/∂ µ enclosing a region of hysteresis,
which corresponds to the coexistence of two different uniform-density solutions. This
is interpreted as the region of phase separation. The red, blue and black filled/open
circles represent the behavior for various values of U for V = −0.7, and demonstrate
that while a sufficiently attractive interaction V favors phase separation, a stronger
on-site repulsion U is detrimental to it.
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Figure 10: Number density n as a function of the chemical potential µ (measured
with respect to its particle-hole invariant value, µc = U/2 + 4V ) for the EHM with
attractive nearest-neighbor interactions, over a range of values of U ≥ 0 and V < 0
for the general bath model (Fig. 2). The behavior is very similar to that observed
in the simple bath model, with the most notable difference being the appearance of
symmetric jumps in the number density n, close to quarter-filling, for each of the
curves.
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s-wave order parameter turns out to be smaller than in the previous case, its shape is more275

extended at quarter-filling, with two patches appearing next to each other, which, interest-276

ingly, appear close to fillings of 1/3 and 1/2, respectively. While it is tempting to blame the277

n = 1/2 feature on a commensurate finite-size effect on a 4-site cluster, this is less obvious278

for the n = 1/3 feature. The superconductivity also clearly becomes stronger as a function of279

V < 0. Notably, the s-wave order is clearly absent for both U = 1 and U = 2, thus eliminating280

the confusion caused by the aforementioned non-monotonous variation in the case of the sim-281

ple model, and illustrating the advantage of considering a larger number of bath parameters282

in the CDMFT procedure. This being said, the conclusions from the two bath models are very283

similar. Using two different bath models provides us with an order-of-magnitude estimate of284

the error caused by the discreteness of the bath.285

To better characterize the region of phase separation, we examine the behavior of the num-286

ber density n as a function of the chemical potential µ, measured with respect to its particle-287

hole symmetric value µc = U/2+ 4V . On either side of µ = µc , we find symmetrical jumps288

in the compressibility ∂ n/∂ µ, enclosing a region of hysteresis in the µ− n curve, depicted in289

Fig. 9, where two uniform-density solutions coexist. Within our approach, this is interpreted290

as the region of phase separation, and is found to shrink under the influence of stronger local291

repulsive interactions U , and expand when V becomes more attractive. The corresponding re-292

sults for the general bath model are depicted in Fig. 10. The two sets of results are qualitatively293

similar, except for symmetric jumps observed in the number density n near quarter-filling in294

the latter case. We note that the jumps occur only for the model with the larger number of295

bath parameters, and are the most prominent for U = 0, V = −0.7, where the phase separa-296

tion region extends all the way to quarter-filling, becoming progressively smaller for U = 1297

and 2. It is plausible that phase separation might lead to the appearance of multiple jumps in298

the density, at half-filling as well as quarter-filling. Moreover, a finite-size effect would have299

been even more obvious in the simple bath model, where these jumps are found to be absent.300

The origin of the jumps is currently unclear to us.301

The appearance of a phase separated state for sufficiently attractive interactions is a famil-302

iar result [32, 52, 71, 81, 87, 116], which has received attention from other groups, including303

very recently [70], but the characterization of the region of phase separation tends to depend304

on the method used for the analysis, and whether it is capable of handling a nonuniform305

distribution of particles.306

3.2.2 V > 0 :307

At half-filling, for U = 8t, the large on-site interaction freezes the charge degree of freedom,308

and the ground state is a Mott insulator. Hole doping is found to destabilize the magnetic309

order, and drive the system towards a d-wave superconducting phase. We encounter a dome-310

shaped region of d-wave superconductivity for V = 0, which is suppressed at smaller densities,311

where no competing superconducting orders are found to be stabilized in our analysis. Upon312

introducing a repulsive V ∼ t, the superconducting order remains stable, but is somewhat313

suppressed. The results are depicted in Fig. 11. The corresponding results for the general bath314

model are depicted in Fig. 12. The two sets of results are qualitatively similar, with the most315

noticeable difference being the relatively sharper transition to and from the d-wave ordered316

state in the latter case. These results are consistent with the picture of superconductivity317

mediated by short-range spin fluctuations in a doped Mott insulator [117–119].318
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Figure 11: Superconducting d-wave order parameter of the EHM with repulsive
nearest-neighbor interactions in the strong-coupling limit, i.e., at U = 8t, using the
simple bath model (Fig. 1). The Mott insulating state at half-filling is destabilized
in favor of dx2−y2 pairing, upon hole doping. The dome-like region of d-wave su-
perconducting order is observed for V = 0 (indicated by the solid blue curve) and is
somewhat suppressed for nonzero repulsive V (indicated by the solid red curve). No
other superconducting orders are found to be stabilized in this region.
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Figure 12: Superconducting d-wave order parameter of the EHM with repulsive
nearest-neighbor interactions in the strong-coupling limit (U = 8t) using the gen-
eral bath model (Fig. 2). The behavior is qualitatively similar to that obtained in the
simple model, with a slight difference in the magnitudes of the d-wave order param-
eter. The most noticeable difference between the two bath models is the relatively
sharp transition into and out of the d-wave superconducting phase.
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Figure 13: The figure shows the behavior of the extended s-wave order parameter as a
function of the number density n, with and without the inclusion of the self-consistent
anomalous mean-field parameter Es (see Appendix A), for U = 0, V = −0.4 (above)
and U = 0, V = −0.7 (below). Clearly, some of the regions with a nontrivial s-wave
order parameter are found to be absent when Es is not included. For U = 0, V = −0.7,
the most prominent among these appears to be the region with density in the range
0< n< 0.3. Upon considering a stronger attractive V , these regions tend to reappear,
but are suppressed in magnitude in the absence of Es.
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4 Discussion and conclusions319

In summary, we have studied the phase diagram of the extended Hubbard model, for both320

attractive and repulsive nearest-neighbor interactions, using a combination of Cluster Dynam-321

ical Mean Field Theory (CDMFT), with a dynamical Hartree-Fock approximation for treating322

inter-cluster interactions. We examine possible phase transitions at half-filling, as well as the323

dominant phases that are stabilized as a function of density. At the particle-hole invariant324

chemical potential, which corresponds to a half-filled band in the absence of phase separation,325

the antiferromagnetically ordered state undergoes a first-order phase transition to d-wave su-326

perconductivity for a critical attractive interaction V . Stronger attractive extended interactions327

also tend to induce phase separation, which manifests itself in the form of a gradual deviation328

of the density from its half-filled limit, for a fixed chemical potential. For a sufficiently strong329

repulsive interaction V , a charge-density wave order is stabilized at half-filling.330

As a function of density, a phase separated state near the half-filled point is flanked by331

symmetrical regions of d-wave superconductivity, that decay sharply as a function of density,332

and islands of extended s-wave order at smaller (larger) band fillings. For the case of repulsive333

non-local interactions, in the strongly coupled limit, the Mott insulator at half-filling gives way334

to a dome-shaped region of d-wave superconductivity, upon hole doping, which is expected335

on physical grounds. No other competing superconducting orders are found to be stabilized336

in this region of parameter space.337

For the most part, our results are found to be qualitatively consistent with the existing338

literature. The transition between antiferromagnetism and CDW at half-filling, for repulsive339

interactions, has been predicted by several previous studies [26,31,54,58,62,65,70,76–78,87],340

although the critical interaction strength typically depends on the method of analysis. For341

densities away from half-filling, there have also been some predictions of dx y pairing, that342

appears beyond the region of dx2−y2 pairing, for repulsive extended interactions [39,56]. We343

do not find such a state in our analysis. The phase diagrams obtained from self-consistent344

mean-field theory based analyses tend to prominently feature d-wave superconductivity at345

half-filling, with a continuous region of extended s-wave order at smaller densities, along346

with a region of coexistence between the two, i.e., s + id pairing [50, 51]. In our analysis,347

we do not usually see a coexistence between d- and extended s-wave orders. In the simple348

model, such a coexistence is observed only in those regimes where both interactions U > 0349

and V < 0 are sufficiently strong, and comparable in magnitude. This may be due to the350

fact that the superconducting orders found in our analysis are fairly weak, and the significant351

attractive interactions that are, therefore, needed for stabilizing overlapping regions of d-352

and extended s-wave orders, would also lead to a larger region of phase separation. This353

effect can only be compensated by including a sufficiently large repulsive local interaction.354

On the other hand, we have not been able to verify a similar coexistence of the orders for the355

general bath model, due to the rapid suppression of the extended s-wave order, near quarter-356

filling, with an increase in U . Some studies have also suggested the possibility of p-wave357

superconductivity, especially at half-filling [32], and for intermediate hole doping, beyond358

the region of d-wave superconducting order [39, 50, 51]. We do not find signatures of p-359

wave superconductivity in the parameter regimes that we study. Some of our results at half-360

filling are found to be qualitatively consistent with a recent study on the extended Hubbard361

model using the determinantal Quantum Monte Carlo technique [70], which also reports the362

transitions between d-wave superconductivity and AFM, as well as between phase separation363

and d-wave, that we observe in our analysis. In addition, the authors of the aforementioned364

paper also explore other quadrants of the U − V phase diagram, including the case where365

U < 0, which we do not take into account, since the repulsive component of the Coulomb366

interaction is always expected to be present in a realistic situation.367
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In contrast to ordinary mean-field theory, our approach takes the intra-cluster fluctuations368

into account exactly, and is therefore expected to give more reliable quantitative results. In par-369

ticular, ordered phases are weaker in this approach than in ordinary mean-field theory. At the370

same time, it should be noted that we only take into account spatial fluctuations within small371

clusters, and the accuracy of the method is controlled by the size of the clusters used. To illus-372

trate the importance of including the effect of the inter-cluster interactions self-consistently,373

which are usually disregarded in cluster-based approaches, we have compared the behavior of374

the superconducting d- and extended s-wave orders as a function of density n, for an attractive375

V (see Fig. 13) in the presence and absence of the anomalous mean-field parameters (which we376

refer to as Ed and Es respectively). Certain regions of the extended s-wave order, that we ob-377

serve in our analysis, disappear entirely in the absence of the self-consistent anomalous mean378

field parameter Es. These regions tend to reappear, but with a smaller amplitude, when the at-379

tractive V is sufficiently strong. Likewise, in the case of d-wave superconductivity, we find that380

the superconducting order parameter is negligible when Ed is absent, and tends to reappear,381

with a much smaller amplitude, when the repulsive U is increased. Our approach is more suit-382

able for making predictions about the thermodynamic limit than exact diagonalization studies383

on finite-sized clusters, since only the self-energy is limited by the cluster size. Some recent384

studies have explored the possibility of magnetic states characterized by ordering wave vectors385

that are incommensurate with the lattice periodicity [120] in the two-dimensional Hubbard386

model, for electron densities below half-filling, where the antiferromagnetic state becomes387

unstable. Our approach is unsuitable for identifying such incommensurate charge and spin388

orders. Our method does not suffer from fundamental restrictions on its applicability in any389

particular parameter regime, and allows us to study the behavior of the model as a continuous390

function of doping, rather than by focusing on specific densities, as has been done in many391

previous studies. In the future, this method could be potentially useful for analyzing more392

complicated models, including those with spin-orbit interactions. It can also be applied to the393

single-band Hubbard model on a triangular lattice, in which the importance of non-local inter-394

actions has been pointed out in the literature [121]. It would also be interesting to explore the395

regime of non-perturbative repulsive local interactions and attractive extended interactions, to396

observe their combined effect on driving or suppressing phase separation [122,123]. Longer-397

range hopping terms can also be included within our exact diagonalization implementation,398

which give rise to geometric frustration, making the analysis more relevant for the physics of399

the cuprates.400
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A The inter-cluster mean-field procedure407

The extended interaction term can be rewritten as408

1
2

∑

r,r′,σ,σ′
Vrr′nrσnr′σ′ =

1
2

∑

r,r′,σ,σ′
V c

rr′nrσnr′σ′ +
1
2

∑

r,r′,σ,σ′
V ic

rr′nrσnr′σ′

where r, r′ refer to the lattice sites, and nrσ is the number of particles at site r with spin σ.409

Here V c
rr′ and V ic

rr′ refer to the intra-cluster and inter-cluster parts of the interaction. Inspired410
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Figure 14: Inter-cluster Hartree-Fock mean fields for the solutions shown in the top
panel of Fig. 4. Ed is the eigen-operator associated with d-wave superconductiv-
ity, E f with the nearest-neighbor kinetic operator frr′σσ and En with the density n
(basically a shift in the chemical potential induced by V ). The mean-field Es asso-
ciated with extended s-wave superconductivity is negligible over almost the entire
range of V , since this is at half-filling, except at significantly attractive V (due to
phase separation). Note the very different scales (the superconducting mean field
is much magnified). The filled and empty circles denote the results for increasing
(less negative) and decreasing (more negative) V , respectively. The oscillations in
the d−wave order parameters observed close to the transition are also reflected in
the corresponding mean-field parameter.
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by Wick’s theorem, we decompose the inter-cluster part of the interaction into Hartree, Fock411

and anomalous channels, as follows:412

1
2

∑

r,r′,σ,σ′
V ic

rr′nrσnr′σ′ =
∑

r,r′,σ,σ′
V ic

rr′

�

nrσ n̄r′σ′ −
1
2

n̄rσ n̄r′σ′

�

−
∑

r,r′,σ,σ′
V ic

rr′

�

frr′σσ′ f̄
∗
rr′σσ′ −

1
2

f̄ ∗rr′σσ′ f̄ rr′σσ′

�

+
1
2

∑

r,r′,σ,σ′
V ic

rr′
�

∆rr′σσ′∆̄
∗
rr′σσ′ +∆

†
rr′σσ′∆̄rr′σσ′ − ∆̄rr′σσ′∆̄

∗
rr′σσ′

�

(A.1)

where the operators are defined as nrσ ≡ c†
rσcrσ, frr′σσ′ ≡ c†

rσcr′σ′ and ∆rr′σσ′ ≡ crσcr′σ′ . Note413

that the applicability of Wick’s theorem is not exact in this case, as we are considering a model414

which already includes on-site interactions, but must be considered as an ad hoc Ansatz. In415

other words, at a fundamental level, we are not assuming that the ground state of the system is416

a Slater determinant. We are rather resting on a variational principle for the self-energy [124]417

on which CDMFT is formally based.418

The sum over sites r, r′ is taken over the whole lattice. But the average n̄rσ will be assumed419

to have the periodicity of the cluster, i.e., n̄r+Rσ = n̄rσ where R belongs to the super-lattice. In420

addition, the two-site averages f̄ rr′σσ′ and ∆̄rr′σσ′ are assumed to depend only on the relative421

position r− r′. The mean-field inter-cluster interaction (A.1) is then a one-body contribution422

to the Hamiltonian with the periodicity of the super-lattice, and contains both intra-cluster423

and inter-cluster terms, whereas the purely intra-cluster part V c
rr′ retains its fully correlated424

character.425

For a four-site cluster, we have a total of eight bonds between neighboring clusters, along426

the x and y directions, with two spin combinations (σ,σ′) per bond, where we consider spin-427

parallel combinations for the Fock terms (in the absence of spin-dependent hopping) and spin-428

antiparallel combinations for the anomalous terms. In practice, we only consider physically429

relevant combinations of operators defined on different sites/bonds for our analysis (such as430

those compatible with a d-wave or an extended s-wave order). As an illustration of this, let431

us consider the pairing fields ∆ defined on all of these bonds, which we denote by the labels432

i = 1− 16 (including different bond and spin combinations).433

The mean-field Hamiltonian can be written as434

V
2

∑

i, j

(∆̄∗i Mi j∆ j +∆
†
i Mi j∆̄ j − ∆̄∗i Mi j∆̄ j) (A.2)

where i, j = (r, r′,σ,σ′) and the matrix Mi j describes the combinations of the pairing fields435

defined on different bonds which appear in the Hartree-Fock decomposition of the inter-cluster436

interactions. The matrix M turns out to be an identity matrix for the Fock and pairing fields f437

and ∆ respectively, but the corresponding matrix for the Hartree fields n is off-diagonal.438

Defining the eigen-combinations of the pairing fields by439

Eα = Uαi∆i (A.3)

and the eigenvalues of the matrix M by λα, such that440

Mi j =
∑

α,β

U∗αiλαδαβUβ j

we can rewrite Eq. (A.2), above, as441

V
2

∑

α

λα(Ē
∗
αEα + E†

α Ēα − Ē∗α Ēα) (A.4)

22



SciPost Physics Core Submission

The mean-field values Ēα of the relevant eigen-combinations Eα of the pairing operators de-442

fined on different nearest-neighbor bonds are obtained self-consistently within the CDMFT443

loop, and likewise for the other mean fields that are the appropriate eigen-combinations of444

n̄rσ and f̄ rr′σσ′ .445

B CDMFT convergence446

The CDMFT procedure is iterative and aims at finding a solution to a set of nonlinear equations447

that can be schematically expressed as448

x= f(x) , (B.1)

where x stands for the set of bath and inter-cluster Hartree-Fock parameters and f is an equally449

large set of functions that returns the next set of parameters from the current set, following450

a procedure that combines the CDMFT update with the inter-cluster mean-field one. The451

canonical way to solve Eqs (B.1) is the fixed-point method: the map xn+1 = f(xn) is iterated452

until the difference ∆xn+1 = xn+1 − xn is smaller than some preset accuracy.453

However, if the purpose is to find a solution to (B.1), there are more efficient and stable454

alternatives. Specifically, one could use the classic Broyden method for finding roots of sets455

of nonlinear equations, a generalization to many variables of Newton’s root-finding method.456

Broyden’s method relies on a computation of the Jacobian matrix J= ∂ f/∂ x that is improved457

at each iteration. It typically finds a solution with fewer iterations than the fixed-point method,458

and with greater accuracy. In addition, it is “stickier”, meaning that upon performing an exter-459

nal loop over model parameters, it will “stick” to the current solution (or the current phase),460

whereas the fixed-point method will be prone to instabilities and will more likely switch to461

more stable solutions.462

This means that the fixed-point method, although less efficient, is more appropriate to463

detect phase transitions, whereas the Broyden method is better at keeping the current solution464

into its metastable regime. Hence the Broyden method will typically result in wider hysteresis465

loops than the fixed-point method when the external parameter is cycled in both directions466

(ascending and descending).467

In practice, we can converge the CDMFT-DHF procedure on the difference ∆xn+1, but we468

can also ask for the convergence of physical quantities, such as the cluster self-energy Σ(ω), or469

relevant order parameters. It may happen that physical quantities converge even though bath470

parameters do not, because the latter are sometimes subject to discrete “gauge” symmetries471

that do not affect physical observables. But even though convergence criteria may be based472

on physical quantities, the iteration xn → xn+1 is still based on either the fixed point or the473

Broyden method. In this work, we used the self-energy and relevant order parameters as474

convergence criteria, with accuracies of the order of 10−4.475

As an illustration, we compare the behavior of the relevant order parameters for the phases476

observed at the particle-hole symmetric chemical potential as a function of U > 0 for V = −0.6477

in Fig. 15 and as a function of V < 0 for U = 2 in Fig. 16, using the fixed-point and the478

Broyden methods for obtaining the optimal set of CDMFT parameters. As expected, the region479

of hysteresis is found to be much larger when the Broyden method is used, consistent with480

the tendency of this method to stick to the current solution. Interestingly, we find that the481

existence of d-wave order does not necessarily coincide with phase separation, and there may482

be a region with a nontrivial d− order parameter even at half-filling. However, such a region is483

not easily observed with the fixed-point method and is usually significantly amplified when the484

Broyden method is used, as illustrated in the lower plot of Fig. 15. We also observe oscillations485

between the d-wave solutions obtained in the presence and absence of phase separation within486
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Figure 15: Order parameters for the different phases observed at the particle-hole
symmetric chemical potential for V = −0.6, as a function of U , using the fixed-point
method (above) and the Broyden method (below) for obtaining the optimal set of
bath and mean-field parameters. The hysteresis loop obtained for increasing and
decreasing U is found to be much larger for the Broyden method, indicating that it
has a tendency to stick to the current solution. A prominent region with a nontrivial
d-wave superconducting order parameter is observed at half-filling for the Broyden
method (indicated by the region with filled red circles in the lower plot). The tran-
sition from the phase-separated to the half-filled state is indicated by a shoulder-like
feature in the corresponding d-wave order parameter. Oscillations are observed be-
tween the d-wave solutions with and without phase separation, within the hysteresis
region, for both methods. In the presence of phase separation, the density is found to
oscillate between values greater than and less than 1, when the Broyden method is
used, and sometimes also with the fixed-point method. Moreover, some oscillations
are also observed between the AF and normal states, close to the phase transition
towards AF for increasing U (see open blue circles in the lower plot).
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Figure 16: Order parameters corresponding to the different phases observed at the
particle-hole symmetric chemical potential for U = 2, as a function of V , using the
fixed-point method (above) and the Broyden method (below) for obtaining the op-
timal bath and mean-field parameters. Once again, the hysteresis region between
increasing and decreasing negative V is found to be much larger when the Broyden
method is employed. Interestingly, the AF region is found to persist all the way to
V = −1.8 for decreasing (more negative) V with the Broyden method (not shown in
the figure), beyond which the system directly undergoes a transition to the normal
state, and the intervening d-wave superconducting region is found to be absent (the
open blue circles in the lower plot depict the behavior up till V = −1.1). For increas-
ing (less negative) V , a part of the d-wave superconducting phase observed is found
to be very close to half-filling for both methods (indicated by the filled red circles).
Moreover, oscillations are observed between the d-wave and AF phases, which are
found to occur more frequently when the Broyden method is used. Note that the
results for increasing V have been plotted starting from V = −1.0 in both cases for
convenience, but may be smoothly extrapolated to more negative values of V .
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the gray hysteresis region, for both the methods. Although the Broyden method converges487

faster even with a higher accuracy, we obtain more oscillatory solutions in general with this488

method, which includes oscillations between densities greater than and less than 1 in the489

phase-separated region for small U , as well as between the normal state and the AF state,490

close to the transition from d-wave to antiferromagnetism for increasing U . In Fig. 16, we see491

that d-wave superconducting state persists well into the region of half-filling as V becomes492

less negative, for both methods. When the Broyden method is used, we find that the system493

continues in the AF state down to V = −1.8 and then undergoes a transition to the normal494

state, without the appearance of a d-wave order or phase separation. This is an extreme495

example of the tendency of this method to preserve the existing solution. In contrast, the496

fixed-point method gives rise to a phase transition towards the d-wave superconducting state,497

close to V=-0.9. Therefore, for most situations, it is more convenient for us to employ the498

fixed-point method for our computations.499
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Abstract

We examine the phase diagram of the extended Hubbard model on a square lattice, for
both attractive and repulsive nearest-neighbor interactions, using CDMFT+HFD, a com-
bination of Cluster Dynamical Mean Field theory (CDMFT) and a Hartree-Fock mean-
field decoupling of the inter-cluster extended interaction. For attractive non-local inter-
actions, this model exhibits a region of phase separation near half-filling, in the vicin-
ity of which we find pockets

:::::::
islands

:
of d-wave superconductivity, decaying rapidly as

a function of doping, with disconnected patches
:::::::
regions

:
of extended s-wave order at

smaller (higher) electron densities. On the other hand, when the extended interaction
is repulsive, a Mott insulating state at half-filling is destabilized by hole doping, in the
strong-coupling limit, in favor of d-wave superconductivity. At the particle-hole invariant
chemical potential, we find a first-order phase transition from antiferromagnetism (AF)
to d-wave superconductivity as a function of the attractive nearest-neighbor interaction,
along with a deviation of the density from the half-filled limit. A repulsive extended
interaction instead favors charge-density wave (CDW) order at half-filling.
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1 Introduction21

The single-band Hubbard model has long served as a useful platform for studying the effect of22

strong electronic correlations [1–6]. In particular, it explains many of the experimental obser-23

vations in the high-Tc cuprate superconductors [2,7–16], providing an approximate picture for24

the description of these materials [17–25]. More recently, there have been numerous studies25

on extensions of this model with nearest-neighbor interactions, known as the extended Hub-26

bard model (EHM) [26–90]. There are several reasons for the continuing interest of the com-27

munity in exploring the effect of non-local interactions. In actual materials, the interactions28

between neighboring sites may not be completely screened, necessitating a more careful treat-29

ment of longer-range interactions. The model with an attractive nearest-neighbor interaction30

provides an effective representation of the attractive interactions mediated by electron-phonon31

coupling, and may be realized in ultra-cold atom systems. The relevance of studying such a32

model is further emphasized by recent ARPES studies on the one-dimensional cuprate chain33

compound Ba2−xSrxCuO3+δ [91], where the observations can be explained using a Hubbard34

model with an attractive extended interaction. On the other hand, the model with repulsive35

non-local interactions provides an ideal playground for studying the interplay of charge and36

spin fluctuations, since the relative magnitude of the charge fluctuations can be controlled by37

the strength of the extended interaction [26,30,34,35]. The EHM at quarter-filling has proven38

useful for describing the charge ordering transition due to inter-site Coulomb interactions in39

a variety of materials [28, 48, 49, 79, 83]. Both the Hubbard model and its extension with40

longer-range interactions have contributed significantly to the methodological development41

in the field of strongly correlated systems, and in particular high-Tc superconductors, which is42

essential for obtaining results that can be quantitatively compared with experiments.43

In recent years, the properties of the EHM have been analyzed using a variety of ap-44

proaches, including, among others, mean-field theory [50–52,72], functional renormalization45

group (fRG) [39], exact diagonalization (ED) [29,32,55,61], density-matrix renormalization46

group (DMRG) [57, 63], Quantum Monte Carlo (QMC) [70, 87, 89, 92] and the fluctuation-47

exchange approximation (FLEX) [56]. However, many of the approaches used are best suited48

for studying the weak-coupling or the strong-coupling limit, and there are few that can de-49

scribe the intermediate-coupling regime equally well. Even among those that can, each has it50

own limitations. For instance, simple exact diagonalizations are restricted to small systems,51

quantum Monte Carlo methods suffer from the fermion sign problem in many applications52

of interest, the density-matrix renormalization group (DMRG) applies to one-dimensional or53

ribbon-like systems, etc. In addition, certain aspects of the model with repulsive interactions54

have been studied in detail using the so-called extended dynamical mean-field theory (EDMFT)55

approach [93–95], in which the local density fluctuations together with the local self-energy56
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are propagated on the whole lattice using the known dispersion and density-density extended57

interactions. Other variations of this method, such as a combination of EDMFT with the GW58

approximation [27, 96–98],which perturbatively includes non-local self-energy corrections,59

and the dual boson method [81, 82, 99], which constructs a diagrammatic expansion about60

the extended DMFT, have likewise contributed to its understanding. More recently, cluster61

methods [26,38,76–78,100,101], which capture short-range correlations non-perturbatively62

within periodic clusters, have also been applied to this model. However, such studies have63

largely been limited to fixed densities and repulsive interactions. Overall, there have been64

fewer studies that consider both an extensive range of interaction couplings and band fillings,65

and relatively less focus on the case of attractive extended interactions.66

In this paper, we study the phase diagram of the extended Hubbard model on a square67

lattice, for both attractive and repulsive nearest-neighbor interactions, using CDMFT+HFD,68

an extension of the Cluster Dynamical Mean Field Theory (CDMFT) [100,102] approach with69

a Hartree-Fock decoupling of the inter-cluster interactions. CDMFT belongs to a class of meth-70

ods called Quantum Cluster Methods [103–109]. This is a set of approaches that consider a71

finite cluster of sites embedded in an infinite lattice, and introduce additional fields or “bath”72

degrees of freedom, determined by variational or self-consistency principles, to best represent73

the effect of the surrounding infinite lattice. These methods have proven useful for interpola-74

tion between results obtained in the weak- and strong-coupling regimes, since their accuracy75

is controlled by the size of the clusters used, rather than the strength of the couplings. Fur-76

ther, we treat the inter-cluster interactions within a Hartree-Fock mean-field decoupling, which77

generates additional Hartree, Fock and anomalous contributions to the cluster Hamiltonian.78

While a similar treatment has been used to study the model at quarter-filling [48] for the case79

of repulsive interactions, with the objective of understanding the electronic properties of met-80

als close to a Coulomb-driven charge ordered insulator transition, this analysis was focused81

on a specific parameter regime, and did not include superconducting orders.82

This work constitutes a test of the CDMFT+HFD method, described in Sect.II
::
2 below. Our83

main findings are as follows. For a weak repulsive local interaction U and an attractive ex-84

tended interaction V , the system undergoes a transition towards a phase separated (PS) state85

when the chemical potential lies in the vicinity of its particle-hole symmetric value, U/2+4V .86

The exact region of phase separation is identified by using the hysteresis in the behavior of87

the electron density as a function of the chemical potential, which corresponds to the coex-88

istence of two different uniform-density solutions. As a function of doping away from the89

half-filled point, symmetrical and sharply decaying regions of dx2−y2-wave superconducting90

order are observed, followed by disconnected pockets
:::::::
regions of extended s-wave order near91

quarter-filling, as well as at very small (large) densities. A stronger attractive extended in-92

teraction tends to favor phase separation as well as superconductivity, whereas the repulsive93

on-site interaction U is found to be detrimental to both. At the particle-hole symmetric chemi-94

cal potential, we detect a first-order phase transition from antiferromagnetism (AF) to d-wave95

superconductivity as the attractive V becomes stronger, which is accompanied by a gradual96

deviation of the density from its half-filled limit, induced by phase separation. For repulsive97

nearest-neighbor interactions in the strong-coupling regime U � t, the Mott insulating state98

at half-filling is destabilized, upon hole doping, in favor of a dome-shaped region of d-wave99

superconducting order. This order is found to be remarkably stable in the presence of a non-100

local interaction, and slightly suppressed by it. At half-filling, a repulsive non-local interaction101

induces a first-order phase transition from antiferromagnetism (AF) to a charge-density wave102

(CDW) order. Our results are qualitatively in agreement with the existing literature on the103

phase diagram of the EHM, with some notable differences in the region of attractive interac-104

tions. An important difference is that intra-cluster fluctuations are treated exactly, which tends105

to make superconducting orders somewhat weaker in this approach.106
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The paper is organized as follows. In Sect. II
::
2, we introduce the model Hamiltonian, and107

provide a brief overview of the CDMFT approach that we use for our analysis, as well as the108

Hartree-Fock mean-field decoupling of the intercluster
:::::::::::
inter-cluster

:
interactions. In Sect. III

:
3,109

we describe the phase diagram obtained as a function of the interaction strength and doping,110

and the phase transitions observed at half-filling. Finally, in Sect. IV
:
4, we summarize our111

results, discuss some relevant observations and present the conclusions of our study.112

2 Model and method113

2.1 Model Hamiltonian114

The general form of the extended Hubbard model Hamiltonian is115

H =
∑

r,r′,σ
trr′ c

†
rσcr′σ + U

∑

r

nr↑nr↓ +
1
2

∑

r,r′,σ,σ′
Vrr′nrσnr′σ′ (1)

where r, r′ label lattice sites, trr′ are the hopping amplitudes, U the on-site Hubbard interaction,116

and Vrr′ the nearest-neighbor interaction (each bond counted once, hence the factor 1
2).117

For the purpose of our analysis, we study the following model on a square lattice:118

H = −t
∑

r

�

c†
r cr+x + c†

r cr+y +H.c.
�

+ U
∑

r

nr↑nr↓

−µ
∑

r

(nr↑ + nr↓) + V
∑

r,σ,σ′

�

nrσnr+x,σ′ + nrσnr+y,σ′
�

(2)

where x,y are the lattice unit vectors along the x and y directions, and the operator crα an-119

nihilates a particle with spin α =↑,↓ at site r. The occupation number is nrα = c†
rαcrα. We120

consider a range of values for the chemical potential µ, corresponding to a continuous range121

of densities, from n = 0 to 2, along with a repulsive local interaction U > 0, and a nearest-122

neighbor interaction V that can be positive or negative. The particle-hole symmetric value of123

the chemical potential, µ = U/2+ 4V , which corresponds to a half-filled band in the absence124

of phase separation, features prominently in our analysis. The unit of energy is taken to be125

the nearest-neighbor hopping amplitude t = 1.0, with the lattice constant a = 1. Note that126

in the absence of longer-range hopping terms, beyond the nearest-neighbor bonds, the model127

respects particle-hole symmetry n→ 2− n.128

We examine the possibility of superconducting as well as density-wave orders. For this129

purpose, the anomalous operators are defined on the lattice using a d-vector, as130

∆rr′,bcrs(iσbσ2)ss′ cr′s′ +H.c. (3)

where b = 0,1, 2,3, and σb are the Pauli matrices. The case b = 0 corresponds to singlet131

superconductivity, in which case ∆rr′,0 = ∆r′r,0 and the cases b = 1, 2,3 correspond to triplet132

superconductivity, in which case, ∆rr′,b = −∆r′r,b. In practice, these operators are defined by133

specifying b and the relative position r− r′.134

Density wave operators are defined with a spatial modulation characterized by a wave135

vector Q, and can be based on sites or on bonds. In our analysis, we focus on site density136

waves, defined as137
∑

r

Ar cos(Q · r+φ) (4)

where Ar = nr, S x
r , Sz

r corresponds to charge- or spin-density wave orders, and φ is a sliding138

phase. We probe the presence of density-wave orders with Q= (π,π) and φ = 0.139
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Figure 1: Schematic representation of the first (“simple”) impurity problem used
in our analysis, with bath energies εi , cluster-bath hybridization parameters θi and
anomalous bath parameters ∆i . Physical sites are marked by numbered black dots
and bath orbitals by red squares. We choose the bath parameters such that the envi-
ronment of each cluster site is identical. This impurity model has reflection symmetry
with respect to horizontal and vertical mirror planes (C2v symmetry), and typically
involves only spin-independent hopping terms. Pairing terms ∆1,2 are introduced
between bath orbitals, with signs adapted to the SC order probed (shown here for a
d-wave order, but all positive for an extended s-wave order). The number of inde-
pendent bath parameters is 6.
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Figure 2: Schematic representation of the second (“general”) impurity problem used
in our analysis. Each representation of the point group C2v (A1,2 and B1,2) corre-
sponds to a set of phases (±1), and each of the 8 bath orbitals belongs to one of
these four representations (two bath orbitals per representation). The different bath
orbitals are independent (the bath system is diagonal) and we only show here a view
of each of the four representations with the corresponding signs associated to each
cluster site (black dots). The hybridization parameters θ are shown, and correspond-
ing pairing operators (or anomalous hybridizations) between each bath orbital and
each site also exist, with the same relative phases. The number

:::
We

::::
have

::
3
:::::::::::
parameters

:::
per

:::::
bath

:::::::
orbital,

::::::
which

::::::
leads

:::
to

:
a
:::::
total

:
of

::
24

:::::
bath

:::::::::::
parameters,

:::::
and

:::::::::::
subtracting

:::
six

::::::::::
constraints

::::
due

::
to

::
a

:::
C4v::::::::::

rotational
::::::::::
symmetry,

:::
we

::::::
obtain

:::
18

:
independent bath param-

eters is 18.
:::
for

:::
the

:::::::
general

:::::::
model.
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2.2 Method: CDMFT+HFD140

Let us briefly describe the method used in our analysis, Cluster dynamical mean-field theory141

(CDMFT). For a detailed discussion of the basic principles of such Quantum Cluster Methods,142

please see Ref. [103,105,110].143

This approach is an extension of dynamical mean-field theory (DMFT) [111–114], which144

accounts for short-range spatial correlations, by considering a cluster of sites with open bound-145

ary conditions, instead of a single-site impurity. The effect of the cluster’’s environment is taken146

into account by introducing a set of uncorrelated “bath”
::::::
“bath” orbitals hybridized with it. In147

this manner, the infinite lattice is tiled into identical clusters coupled to a bath of auxiliary,148

uncorrelated orbitals, with energy levels εiσ, which may or may not be spin dependent, and149

hybridized with the cluster sites (labeled r) with amplitudes θirσ. In addition, for studying150

superconducting orders, different types of anomalous pairings ∆i jσσ′ may be introduced be-151

tween bath orbitals i, j or ∆irσσ′ between bath orbital i and cluster site r.152

In our analysis , we
::::
The

::::::
cluster

::::
and

:::::
bath

::::
size

::
is

:::::::
limited

::
by

::::
the

:::::
exact

:::::::::::::::
diagonalization

::::::
solver:153

:::
the

::::::::
practical

::::::
upper

:::::
limit

:::
for

:::
the

:::::
total

:::::::
number

:::
of

::::::
cluster

::::
and

:::::
bath

:::::::
orbitals

::
is

:::::::::
4+8=12,

:::::
given

::::
that154

:::
the

:::::::
ground

:::::
state

::::
and

:::::::
Green

::::::::
function

:::::
must

:::
be

::::::::::
computed

::::::::::
repeatedly

:::
in

::::
this

:::::::::
approach.

:::
A

::::
true155

:::::::::
finite-size

::::::::
analysis

::
is

::::::::::
impossible

::::::
here,

:::
for

::::
the

:::::
next

::::::
cluster

:::::
size

::
of

::::
the

:::::
same

:::::::
square

:::::::::
geometry156

::::::
would

:::
be

::
9,

:::::
and

::::
the

::::::::
number

::
of

:::::
bath

::::::::
orbitals

::::::
would

::::::
need

::
to

::::::
grow

::::::::::::
accordingly.

::::::
Even

::
in

::
a157

:::::::::::::::
one-dimensional

:::::::
model,

::::::::::
analyzing

:::::::::
finite-size

:::::::
effects

::
in

::::::::
CDMFT

::
is

:::::::::::
challenging,

::::::::
because

:::
of

:::
the158

:::::::::
combined

::::::
effects

:::
of

:::::::
cluster

::::
size

::::
and

::::
bath

::::
size

:::::::
[115].

:
159

:::
We

:
use two types of bath models. In the simple model (Fig. 1), the environment of each160

cluster is identical, and we introduce two bath orbitals per cluster site. Parameters of the161

impurity model include bath orbital energy levels (ε1,2), hybridization between each cluster162

site and the corresponding bath orbitals (θ1,2), and pairings between the bath orbitals (∆1,2).163

The precise form of ∆1,2, including their relative phases between different bath orbitals, de-164

pends on whether we probe extended s-wave, d-wave, or triplet superconductivity. This sim-165

ple impurity model involves 6 independent parameters to be determined self-consistently. At166

half-filling, we introduce bath energies as well as hoppings, that are consistent with the ap-167

pearance of a density-wave order, and additionally spin-dependent in the presence of anti-168

ferromagnetism. This increases the number of independent parameters. However, imposing169

particle-hole symmetry at half-filling once again reduces this number to 6.
:::
For

:::::::
V < 0,

:::
we170

::
do

::::
not

:::::::
impose

::::::::::::
particle-hole

::::::::::
symmetry

:::
on

:::
the

:::::
bath

:::::::::::
parameters

::::
due

:::
to

:::
the

::::::::::
possibility

::
of

::::::
phase171

::::::::::
separation,

::::
and

::::
the

:::::::
number

:::::
then

:::::::::
increases

::
to

::::
10.

:
172

We also use a more general bath model (Fig. 2). While the total number of bath orbitals173

is unchanged, every bath orbital is connected to every cluster site (with distinct combinations174

of relative phases), and we define bath energies, cluster-bath hybridizations and anomalous175

pairings between the cluster and the bath sites. In this model the bath is diagonal, i.e., the dif-176

ferent bath orbitals are not directly coupled between themselves, and,
:
.
:::
We

:::::
have

::
3

::::::::::
parameters177

:::
per

:::::
bath

:::::::
orbital,

::::
and

:
taking into account

:::
six

:::::::::::
constraints

::::
due

::
to

:
rotation symmetry, there are178

18 independent bath parameters to set. At the particle-hole symmetric chemical potential, we179

introduce bath energies, hybridizations and anomalous pairings that have two different values180

for alternative sites. Even upon taking into account particle-hole symmetry, this
::::
This gives us181

a total of 52
::
42 independent parameters in the presence of superconductivity, and 20

:::::::
absence182

::
of

::::::::::::
particle-hole

::::::::::
symmetry

:::
for

::::::
V < 0

::::
and

:::
15 independent parameters when superconductivity183

is absent (i.e. for V > 0)
::::
and

::::::::::::
particle-hole

:::::::::
symmetry

::
is

::::::
taken

::::
into

::::::::
account.184

All bath parameters are determined by a self-consistency condition (see Ref. [103,105,110]185

for details). The simple bath model is expected to be easier to converge than the general bath186

model, because of the smaller set of parameters. While we expect the results obtained from the187

general bath model to be more reliable, we do find most of the results to be qualitatively similar188

in the two cases. Once the bath parameters are converged, the self-energy Σ(ω) associated189

6
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with the cluster is applied to the whole lattice, so that the lattice Green function is190

G−1(k̃,ω) = G−1
0 (k̃,ω)−Σ(ω) (5)

Here, k̃ denotes a reduced wave vector (defined in the Brillouin zone of the super-lattice191

of clusters defined by the tiling) and G0 is the non-interacting Green function. The Green-192

function-like objects G, G0 and Σ are L × L matrices, L being the number of physical degrees193

of freedom on the cluster (here L = 8 because of spin and the four cluster sites). The aver-194

age values of one-body operators defined on the lattice are obtained using the lattice Green195

function G determined from the solution for the optimum values of the bath parameters. An196

exact-diagonalization solver (the Lanczos method or variants thereof) is used at zero temper-197

ature. The computational size of the problem increases exponentially with the total number198

of cluster and bath orbitals.199

In the presence of extended interactions, we also perform a Hartree-Fock mean-field de-200

composition of the interaction terms defined between different clusters, while the interactions201

within a cluster are treated exactly. The inter-cluster interactions are decoupled in the Hartree,202

Fock and anomalous channels, which contribute to the number density, the hopping and the203

pairing operators, respectively. Moreover, we only retain those combinations of the site/bond204

operators that are physically relevant in the regions we work in (such as d−wave or extended205

s−wave
:::::::
d-wave

::
or

::::::::::
extended

::::::
s-wave), and discard the rest. The mean-field values of the rele-206

vant combinations are determined self-consistently, within the CDMFT loop that optimizes the207

bath parameters. For the details of this procedure, please refer to the Appendix
:::::::::
Appendix

::
A.208

:::
For

::
a

:::::::::::
comparison

::
of

::::::::
different

:::::::::
methods

:::::
used

:::
for

:::::::
solving

:::
the

::::::::::::::
self-consistent

:::::::::
nonlinear

:::::::::
equations209

::::::::
involved

::
in

::::
the

:::::::
CDMFT

:::::::::::
procedure,

::::::
please

:::::
refer

::
to

::::::::::
Appendix

::
B.210

3 Results211

In this section, we discuss the salient features of the phase diagram obtained from our analysis,212

for both attractive and repulsive nearest-neighbor interactions. The dominant superconduct-213

ing and density-wave orders are identified by computing the corresponding order parameters214

using the optimum values of the CDMFT (bath and mean-field) parameters, as a function of215

electron density, as well as at half-filling. In the following analysis, we focus our attention on216

the strong coupling limit U � t for V > 0, which is a regime well-understood on physical217

grounds. For V < 0, we consider relatively weak interactions U ∼ t, far from the Mott insu-218

lating regime, which primarily serve the purpose of controlling the extent of phase separation219

when the interaction V becomes sufficiently attractive. At half-filling, we confirm the nature220

of the phase transitions, by plotting the relevant order parameters both as a function of U > 0,221

for fixed values of V > 0 or V < 0, and as a function of V for fixed values of U .222

3.1 Phase diagram at the particle-hole symmetric chemical potential223

Here, we fix the chemical potential to µ= U/2+ 4V , corresponding to a half-filled band, and224

examine the behavior of different superconducting and density-wave orders, as a function of225

the local repulsion U as well as attractive/repulsive V . While antiferromagnetism is favored at226

half-filling, in both the weak- and strong-coupling regimes, an attractive non-local interaction227

is expected to drive the system towards a superconducting instability, and eventually phase228

separation. On the other hand, repulsive interactions V would typically foster competition229

between charge and spin fluctuations, and favor a charge-ordered state. Below, we discuss the230

results obtained using the simple bath model (Fig. 1).231
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Figure 3: First-order phase transition from d-wave superconductivity (indicated by
filled/open red circles) to antiferromagnetism (AF, indicated by filled/open blue cir-
cles), as a function of the repulsive local interaction U , at fixed V = −0.4 (top)
and V = −0.6 (bottom), and fixed chemical potential µ = U/2+ 4V (particle-hole
symmetric point). The simple impurity model (Fig. 1) is used. The transition is
accompanied by a deviation in the number density (indicated by filled/open green
circles) from the half-filled value n = 1, meaning that we are entering a phase sep-
arated regime. This may also explain the rapid suppression of superconductivity for
smaller values of U for a more negative interaction V . The dashed (solid) curves
of each color depict the behavior of the different quantities for decreasing (increas-
ing) U , respectively. The prominent region of hysteresis between the two curves
confirms the order of the transition.

::::
The

:::::
small

:::::::::::::::::::
jump/discontinuity

:::::::::
observed

::
in

::::
the

::::::::
d−wave

:::::
order

::::::::::
parameter

:::
for

::::::::::
increasing

:::
U

:::
for

:::::::::
V = −0.4

:::::::
results

:::::
from

::::::
issues

::::
with

::::
the

:::::::::::
convergence

:::
of

:::
the

:::::::
CDMFT

::::::::::
procedure

::
at

::::
that

::::::
point.

::::
On

:::
the

:::::
other

::::::
hand,

:::
for

::::::::::
V = −0.6,

:::
we

:::::::
observe

::
a
:::::
jump

::
in

::::
the

::::::::
d−wave

::::::
order

::::::::::
parameter

:::
for

::::::::::
decreasing

:::
U ,

::::::
which

::::::::
appears

::
to

::::::
signal

::
a
::::::::::
transition

:::::
from

::
a
:::::::::
d−wave

::::::
order

::
at

:::::::::::
half-filling

::
to

:::::
one

::::::::::
coexisting

:::::
with

:::::
phase

:::::::::::
separation,

:::::::
rather

::::
than

::::::
being

::
a
::::::::::
numerical

::::::
error.

:::::::::
Likewise,

::::
for

::::::::::
increasing

:::
U ,

:::
we

:::::::
observe

::
a
::::::::::
nontrivial

::::::::
d−wave

:::::
order

::::::::::
parameter

:::::
both

:::
in

:::
the

:::::::::
presence

::::
and

::::::::
absence

::
of

::::::
phase

::::::::::
separation

:::
for

:::::::::
V = −0.6

::::
(for

::::::
more

:::::::
details,

:::
see

::::::::::
Appendix

:::
B).

:
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Figure 4: First-order phase transition from antiferromagnetism (AF) (indicated by
filled/open blue circles) to d-wave superconductivity (indicated by filled/open red
circles), for increasingly attractive V , followed by a rapid suppression in the super-
conducting order parameter, for on-site interaction U = 1 (top) and U = 2 (bottom).
The simple impurity model (Fig. 1) is used. The transition is accompanied by a
deviation in the number density (indicated by filled/open green circles) from the
half-filled value n = 1. The dashed (solid) curves of each color depict the behav-
ior of different quantities for decreasing/more negative (increasing/less negative)
V , and we find significant hysteresis. For larger repulsive interactions U , the tran-
sition is found to occur at a critical value of V that is more attractive.

:::
For

:::::::
U = 1,

:::
we

:::::::
observe

:::::::::::
oscillations

:::::::::
between

:::
the

:::::::::
d−wave

::::
and

:::
AF

:::::::
orders

::
at

:::::::::::
half-filling,

:::::
close

:::
to

:::
the

:::::::::
transition

::::
for

::::::::::::::::
decreasing/more

::::::::
negative

:::
V ,

::::::
while

:::
for

::::::
U = 2,

::::
we

:::
see

::
a

::::::::::
significant

::::::
region

::
of

::::::::
d−wave

:::::::::::::::::
superconductivity

:::::
close

:::
to

::::::::::
half-filling

:::
for

::::::::::::::
increasing/less

:::::::::
negative

::
V ,

:::
as

::::
well

:::
as

:::::::
similar

:::::::::::
oscillations

::::::::
between

::::
the

::::::::
d−wave

::::
and

:::
AF

:::::::
orders

::
at

:::::::::::
half-filling,

:::::
close

::
to

:::
the

::::::::::
transition

::::::::
between

::::
the

::::
two

::::::
states

:::
for

::::::::::::::
increasing/less

::::::::
negative

:::
V .

:
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3.1.1 V < 0 :232

For a fixed attractive nearest-neighbor interaction V , as the strength of the local repulsive233

interaction U decreases, the system undergoes a first-order phase transition from antiferro-234

magnetism to d-wave superconductivity. This is accompanied by a deviation in the electron235

density from its half-filled limit, which can be attributed to the effects of phase separation, dis-236

cussed in more detail in the next subsection. Each of the order parameters is plotted for both237

increasing and decreasing U , and the region of hysteresis between the two curves indicates238

that the transition is first-order in nature. We have verified that other pairing symmetries,239

such as extended s-wave and p-wave, do not compete with dx2−y2 pairing in this regime. The240

results of our analysis are shown in Fig. 3. Likewise, an antiferromagnetic order is destabi-241

lized in favor of d−wave
:::::::
d-wave

:
superconductivity for an attractive V , at a fixed repulsive242

U ∼ t, with significant hysteresis between the curves obtained for increasing/decreasing V .243

The latter state is then rapidly suppressed due to the effect of phase separation. The results244

are shown in Fig. 4.245

3.1.2 V > 0 :246

For repulsive nearest-neighbor interactions V , we do not expect to find any superconducting247

orders at half-filling in the strong-coupling limit U � t, and instead focus on studying the248

competition between charge- and spin-density-wave orders. At fixed V > 0, we observe a249

first-order phase transition from a charge-density wave (CDW) to an antiferromagnetic (AF)250

state, as a function of increasing U . Likewise, for a large repulsive U , the system undergoes251

a phase transition from antiferromagnetism to CDW, as a function of the repulsive V . In both252

cases, a large region of hysteresis is observed between the results obtained for increasing and253

decreasing values of the respective interaction couplings. The results of our analysis are shown254

in Figs 5 and 6, respectively.255

We do not present the corresponding results for the more general bath model (Fig. 2) here,256

as they are found to be qualitatively similar to those obtained for the simple model. The key257

differences, that are sometimes observed, include a) an increase/decrease in the strength of258

the d−wave
::::::
d-wave

:
order parameter close to the transition, b) a smaller region of hysteresis,259

c) a small shift in the position of the transition, particularly as a function of V for fixed U .260

3.2 Phase diagram as a function of density261

Next, we examine the phase diagram of the model over a continuous range of densities, for262

U > 0 and attractive/repulsive V . For V > 0, we once again limit ourselves to the strong-263

coupling limit U � t. For V < 0, we focus on studying the effect of an attractive extended264

interaction, with a local repulsion U controlling the extent of phase separation.265

3.2.1 V < 0 :266

Let us now discuss the different phases that are supported by the model as a function of density.267

Close to half-filling, we find a region of phase separation, indicated by a jump in the density,268

flanked by symmetrical pockets
::::::
islands

:
of dx2−y2 pairing, which decay rapidly as a function of269

density. For further smaller (larger) fillings, an extended s-wave order appears in the form of270

disconnected patches
:::::::
regions, near quarter-filling and at very small (large) densities. Interest-271

ingly, the variation of the extended s−wave
:::::::
s-wave order parameter as a function of U and V272

are found to be different for the simple bath model and the more general one. In the case of273

the simple model (see Fig. 7), we find small regions of extended s−wave
:::::::
s-wave superconduc-274

tivity near quarter-filling, that vary non-monotonously as a function of U . Only for sufficiently275

attractive V , nearly symmetrical patches
:::::::
regions of extended s-wave order also appear close to276
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Figure 5: First-order phase transition from a charge-density wave (CDW) order (in-
dicated by filled/open red circles) to antiferromagnetism (indicated by filled/open
blue circles), at half-filling, as a function of the local repulsive interaction U , for
V = 0.5 (top) and V = 0.75 (bottom). The simple impurity model (Fig. 1) is used.
The dashed (solid) curves of each color depict the behavior of the order parameters
for decreasing (increasing) U , and exhibit significant hysteresis. As the repulsive V
becomes stronger, the transition is found to occur at a larger value of U , the CDW
order parameter increases considerably in magnitude, and the region of hysteresis is
somewhat enhanced.
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Figure 6: First-order phase transition from antiferromagnetism (indicated by
filled/open blue circles) to charge-density wave (CDW) order (indicated by
filled/open red circles), at half-filling, as a function of the repulsive interaction V
for fixed U , with U = 8 (top) and U = 12 (bottom). The simple impurity model
(Fig. 1) is used. The dashed (solid) curves of each color depict the behavior of the
order parameters for decreasing (increasing) V , and exhibit considerable hysteresis.
As U increases, the transition occurs at a larger critical value of V , and the antiferro-
magnetic order parameter increases in magnitude.
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Figure 7: Superconducting order parameter of the EHM with attractive nearest-
neighbor interactions, as a function of density n, from n = 0 to 2 for the simple
bath model (Fig. 1). Close to the half-filled value n= 1, we find signatures of phase
separation, indicated by a gap in the curve over a range of densities, caused by a jump
in the compressibility ∂ n/∂ µ (as shown in Fig. 9). For smaller (larger) fillings,

::::::
nearly

symmetrical and sharply defined regions of d-wave superconductivity (represented
by filled/open blue circles) are followed by disconnected patches of extended s-wave
order (represented by filled/open red circles), which appear only beyond a critical
attractive value of V .

:::::
Note

::::
that

::::
the

::::::::::
asymmetry

:::::::::
between

::::::
either

:::
the

::::::::
d−wave

::::::::
regions

::
or

:::
the

:::::::::
extended

:::::::
s-wave

:::::::
regions

:::::
near

:::
the

:::::
band

::::::
edges,

::::::::::
especially

:::::::
evident

:::
for

::::::::::
V = −0.4,

:
is
::
a
::::::::::
numerical

::::::::
artefact

::::::
owing

:::
to

::::::::::
insufficient

:::::::::
accuracy

::
in

::::
the

::::::::
CDMFT

::::::::::
procedure

::::
and

:::
has

:::
no

::::::::
physical

:::::::::::::
consequence.

:
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Figure 8: Superconducting order parameter of the EHM with attractive nearest-
neighbor interactions, as a function of density n, from n = 0 to 2 for the general
bath model (Fig. 2). The overall behavior of the d− and extended s-wave patches are
similar to the corresponding result for the simple bath model. However, note that the
structure of the s-wave order parameter has changed, with a more extended region
near quarter-filling, and an additional patch near 1/3−filling. For U = 0, V = −0.7,
the phase separation region extends all the way to quarter-filling, and the corre-
sponding superconducting patches are almost absent, and asymmetric about n = 1.
Moreover, the new s-wave order parameter becomes unambiguously weaker as the
repulsive U increases, and is completely absent for U = 1 and U = 2, thus resolving
the question of the nonmonotonous

:::::::::::::::
non-monotonous

:
behavior of the s-wave order

parameter in the simple bath model.
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Figure 9: Number density n as a function of the chemical potential µ (measured
with respect to its particle-hole invariant value, µc = U/2 + 4V ) for an EHM with
attractive nearest-neighbor interactions, over a range of values of U ≥ 0 and V < 0
for the simple bath model (Fig. 1). On either side of half-filling (µ = µc), we find
symmetrical jumps in the compressibility ∂ n/∂ µ enclosing a region of hysteresis,
which corresponds to the coexistence of two different uniform-density solutions. This
is interpreted as the region of phase separation. The red, blue and black filled/open
circles represent the behavior for various values of U for V = −0.7, and demonstrate
that while a sufficiently attractive interaction V favors phase separation, a stronger
on-site repulsion U is detrimental to it.
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Figure 10: Number density n as a function of the chemical potential µ (measured
with respect to its particle-hole invariant value, µc = U/2 + 4V ) for the EHM with
attractive nearest-neighbor interactions, over a range of values of U ≥ 0 and V < 0
for the general bath model (Fig. 2). The behavior is very similar to that observed
in the simple bath model, with the most notable difference being the appearance of
symmetric jumps in the number density n, close to quarter-filling, for each of the
curves.
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the band edges. The corresponding results for the general bath model are illustrated in Fig. 8.277

While the overall magnitude of the s-wave order parameter turns out to be smaller than in278

the previous case, its shape is more extended at quarter-filling, with two patches appearing279

next to each other, which, interestingly, appear close to fillings of 1/3 and 1/2, respectively.280

While it is tempting to blame the n = 1/2 feature on a commensurate finite-size effect on a281

4-site cluster, this is less obvious for the n = 1/3 feature. The superconductivity also clearly282

becomes stronger as a function of V < 0. Notably, the s−wave
::::::
s-wave

:
order is clearly absent283

for both U = 1 and U = 2, thus eliminating the confusion caused by the aforementioned284

non-monotonous variation in the case of the simple model.
:
,
::::
and

:::::::::::
illustrating

:::
the

::::::::::
advantage285

::
of

:::::::::::
considering

::
a

::::::
larger

:::::::
number

:::
of

::::
bath

:::::::::::
parameters

:::
in

:::
the

::::::::
CDMFT

::::::::::
procedure.

:::::
This

::::::
being

::::
said,286

:::
the

:::::::::::
conclusions

:::::
from

::::
the

::::
two

:::::
bath

:::::::
models

::::
are

::::
very

:::::::
similar.

:::::::
Using

::::
two

::::::::
different

:::::
bath

:::::::
models287

::::::::
provides

::
us

:::::
with

:::
an

::::::::::::::::::
order-of-magnitude

::::::::
estimate

:::
of

:::
the

:::::
error

:::::::
caused

:::
by

:::
the

::::::::::::
discreteness

::
of

:::
the288

:::::
bath.289

To better characterize the region of phase separation, we examine the behavior of the num-290

ber density n as a function of the chemical potential µ, measured with respect to its particle-291

hole symmetric value µc = U/2+ 4V . On either side of µ = µc , we find symmetrical jumps292

in the compressibility ∂ n/∂ µ, enclosing a region of hysteresis in the µ− n curve, depicted in293

Fig. 9, where two uniform-density solutions coexist. Within our approach, this is interpreted294

as the region of phase separation, and is found to shrink under the influence of stronger local295

repulsive interactions U , and expand when V becomes more attractive. The corresponding re-296

sults for the general bath model are depicted in Fig. 10. The two sets of results are qualitatively297

similar, except for symmetric jumps observed in the number density n near quarter-filling in298

the latter case. We note that the jumps occur only for the model with the larger number of299

bath parameters, and are the most prominent for U = 0, V = −0.7, where the phase separa-300

tion region extends all the way to quarter-filling, becoming progressively smaller for U = 1301

and 2. It is plausible that phase separation might lead to the appearance of multiple jumps in302

the density, at half-filling as well as quarter-filling. Moreover, a finite-size effect would have303

been even more obvious in the simple bath model, where these jumps are found to be absent.304

The origin of the jumps is currently unclear to us.305

The appearance of a phase separated state for sufficiently attractive interactions is a famil-306

iar result [32, 52, 71, 81, 87, 116], which has received attention from other groups, including307

very recently [70], but the characterization of the region of phase separation tends to depend308

on the method used for the analysis, and whether it is capable of handling a non-uniform309

:::::::::::
nonuniform distribution of particles.310

3.2.2 V > 0 :311

At half-filling, for U = 8t, the large on-site interaction freezes the charge degree of freedom,312

and the ground state is a Mott insulator. Hole doping is found to destabilize the magnetic313

order, and drive the system towards a d-wave superconducting phase. We encounter a dome-314

shaped region of d-wave superconductivity for V = 0, which is suppressed at smaller densities,315

where no competing superconducting orders are found to be stabilized in our analysis. Upon316

introducing a repulsive V ∼ t, the superconducting order remains stable, but is somewhat317

suppressed. The results are depicted in Fig. 11. The corresponding results for the general bath318

model are depicted in Fig. 12. The two sets of results are qualitatively similar, with the most319

noticeable difference being the relatively sharper transition to and from the d-wave ordered320

state in the latter case. These results are consistent with the picture of superconductivity321

mediated by short-range spin fluctuations in a doped Mott insulator [117–119].322
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Figure 11: Superconducting d−wave
:::::::
d-wave order parameter of the EHM with repul-

sive nearest-neighbor interactions in the strong-coupling limit, i.e., at U = 8t, using
the simple bath model (Fig.

:
1). The Mott insulating state at half-filling is destabi-

lized in favor of dx2−y2 pairing, upon hole doping. The dome-like region of d-wave
superconducting order is observed for V = 0 (indicated by the solid blue curve) and
is somewhat suppressed for non-zero

::::::::
nonzero repulsive V (indicated by the solid red

curve). No other superconducting orders are found to be stabilized in this region.
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Figure 12: Superconducting d−wave
:::::::
d-wave order parameter of the EHM with re-

pulsive nearest-neighbor interactions in the strong-coupling limit (U = 8t) using the
general bath model (Fig. 2). The behavior is qualitatively similar to that obtained
in the simple model, with a slight difference in the magnitudes of the d-wave order
parameter. The most noticeable difference between the two bath models is the rela-
tively sharp transition into and out of the d− wave

::::::
d-wave

:
superconducting phase.
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Figure 13: The figure shows the behavior of the extended s−wave
::::::
s-wave

:
order

parameter as a function of the number density n, with and without the inclusion
of the self-consistent anomalous mean-field parameter Es (see Appendix

:::
A), for

U = 0, V = −0.4 (above) and U = 0, V = −0.7 (below). Clearly, some of the regions
with a nontrivial s−wave

::::::
s-wave

:
order parameter are found to be absent when Es

is not included.
:::
For

::::::::::::::::
U = 0, V = −0.7,

:::
the

::::::
most

::::::::::
prominent

:::::::
among

:::::
these

::::::::
appears

:::
to

::
be

::::
the

::::::
region

:::::
with

::::::::
density

::
in

::::
the

::::::
range

::::::::::::
0< n< 0.3.

:
Upon considering a stronger

attractive V , these regions tend to reappear, but are suppressed in magnitude in the
absence of Es.

4 Discussion and conclusions323

In summary, we have studied the phase diagram of the extended Hubbard model, for both324

attractive and repulsive nearest-neighbor interactions, using a combination of Cluster Dynam-325

ical Mean Field Theory (CDMFT), with a dynamical Hartree-Fock approximation for treating326

inter-cluster interactions. We examine possible phase transitions at half-filling, as well as the327

dominant phases that are stabilized as a function of density. At the particle-hole invariant328

chemical potential, which corresponds to a half-filled band in the absence of phase separation,329

the antiferromagnetically ordered state undergoes a first-order phase transition to d-wave su-330

perconductivity for a critical attractive interaction V . Stronger attractive extended interactions331

also tend to induce phase separation, which manifests itself in the form of a gradual deviation332

of the density from its half-filled limit, for a fixed chemical potential. For a sufficiently strong333

repulsive interaction V , a charge-density wave order is stabilized at half-filling.334

As a function of density, a phase separated state near the half-filled point is flanked by335

symmetrical regions of d-wave superconductivity, that decay sharply as a function of density,336

and disconnected patches
:::::::
islands of extended s-wave order at smaller (larger) band fillings.337

For the case of repulsive non-local interactions, in the strongly coupled limit, the Mott insula-338

tor at half-filling gives way to a dome-shaped region of d-wave superconductivity, upon hole339
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doping, which is expected on physical grounds. No other competing superconducting orders340

are found to be stabilized in this region of parameter space.341

For the most part, our results are found to be qualitatively consistent with the existing342

literature. The transition between antiferromagnetism and CDW at half-filling, for repulsive343

interactions, has been predicted by several previous studies [26,31,54,58,62,65,70,76–78,87],344

although the critical interaction strength typically depends on the method of analysis. For345

densities away from half-filling, there have also been some predictions of dx y pairing, that346

appears beyond the region of dx2−y2 pairing, for repulsive extended interactions [39,56]. We347

do not find such a state in our analysis. The phase diagrams obtained from self-consistent348

mean-field theory based analyses tend to prominently feature d-wave superconductivity at349

half-filling, with a continuous region of extended s-wave order at smaller densities, along with350

a region of coexistence between the two, i.e., s + id pairing [50, 51]. In our analysis, we do351

not usually see a coexistence between d- and extended s-wave orders. In the simple model,352

such a coexistence is observed only in those regimes where both the interactions U > 0 and353

V < 0 are sufficiently strong, and comparable in magnitude. This may be due to the fact354

that the superconducting orders found in our analysis are fairly weak, and the significant355

attractive interactions that are, therefore, needed for stabilizing overlapping regions of d-356

and extended s-wave orders, would also lead to a larger region of phase separation. This357

effect can only be compensated by including a sufficiently large repulsive local interaction.358

On the other hand, we have not been able to verify a similar coexistence of the orders for359

the general bath model, due to the rapid suppression of the extended s−wave
::::::
s-wave

:
order,360

near quarter-filling, with an increase in U . Some studies have also suggested the possibility361

of p-wave superconductivity, especially at half-filling [32], and for intermediate hole doping,362

beyond the region of d-wave superconducting order [39,50,51]. We do not find signatures of363

p-wave superconductivity in the parameter regimes that we study. Some of our results at half-364

filling are found to be qualitatively consistent with a recent study on the extended Hubbard365

model using the determinantal Quantum Monte Carlo technique [70], which also reports the366

transitions between d-wave superconductivity and AFM, as well as between phase separation367

and d-wave, that we observe in our analysis. In addition, the authors of the aforementioned368

paper also explore other quadrants of the U − V phase diagram, including the case where369

U < 0, which we do not take into account, since the repulsive component of the Coulomb370

interaction is always expected to be present in a realistic situation.371

In contrast to ordinary mean-field theory, our approach takes the intra-cluster fluctuations372

into account exactly, and is therefore expected to give more reliable quantitative results. In par-373

ticular, ordered phases are weaker in this approach than in ordinary mean-field theory. At the374

same time, it should be noted that we only take into account spatial fluctuations within small375

clusters, and the accuracy of the method is controlled by the size of the clusters used. To illus-376

trate the importance of including the effect of the inter-cluster interactions self-consistently,377

which are usually disregarded in cluster-based approaches, we have compared the behavior of378

the superconducting d− and extended s−wave
::
d-

::::
and

:::::::::
extended

:::::::
s-wave

:
orders as a function379

of density n, for an attractive V (see Fig. 13) in the presence and absence of the anomalous380

mean-field parameters (which we refer to as Ed and Es respectively). Certain regions of the ex-381

tended s−wave
:::::::
s-wave order, that we observe in our analysis, disappear entirely in the absence382

of the self-consistent anomalous mean field parameter Es. These regions tend to reappear, but383

with a smaller amplitude, when the attractive V is sufficiently strong. Likewise, in the case384

of d−wave
:::::::
d-wave

:
superconductivity, we find that the superconducting order parameter is385

negligible when Ed is absent, and tends to reappear, with a much smaller amplitude, when386

the repulsive U is increased. Our approach is more suitable for making predictions about the387

thermodynamic limit than exact diagonalization studies on finite-sized clusters, since only the388

self-energy is limited by the cluster size. Some recent studies have explored the possibility389
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Figure 14: Inter-cluster Hartree-Fock mean fields for the solutions shown in the top
panel of Fig. 4. Ed is the eigen-operator associated with d-wave superconductiv-
ity, E f with the nearest-neighbor kinetic operator frr′σσ and En with the density n
(basically a shift in the chemical potential induced by V ). The mean-field Es asso-
ciated with extended s-wave superconductivity is negligible over almost the entire
range of V , since this is at half-filling, except at significantly attractive V (due to
phase separation). Note the very different scales (the superconducting mean field
is much magnified). The filled and empty circles denote the results for increasing
(less negative) and decreasing (more negative) V , respectively.

:::
The

:::::::::::
oscillations

:::
in

:::
the

::::::::
d−wave

::::::
order

:::::::::::
parameters

:::::::::
observed

:::::
close

:::
to

:::
the

::::::::::
transition

:::
are

:::::
also

::::::::
reflected

:::
in

:::
the

::::::::::::::
corresponding

::::::::::
mean-field

::::::::::
parameter.

:

of magnetic states characterized by ordering wave vectors that are incommensurate with the390

lattice periodicity [120] in the two-dimensional Hubbard model, for electron densities below391

half-filling, where the antiferromagnetic state becomes unstable. Our approach is unsuitable392

for identifying such incommensurate charge and spin orders. Our method does not suffer from393

fundamental restrictions on its applicability in any particular parameter regime, and allows us394

to study the behavior of the model as a continuous function of doping, rather than by focusing395

on specific densities, as has been done in many previous studies. In the future, this method396

could be potentially useful for analysing
:::::::::
analyzing

:
more complicated models, including those397

with spin-orbit interactions.
::
It

::::
can

::::
also

:::
be

:::::::
applied

:::
to

::::
the

:::::::::::
single-band

:::::::::
Hubbard

::::::
model

::::
on

:
a398

:::::::::
triangular

:::::::
lattice,

:::
in

::::::
which

:::
the

:::::::::::
importance

:::
of

:::::::::
non-local

::::::::::::
interactions

:::
has

:::::
been

::::::::
pointed

::::
out

::
in399

:::
the

:::::::::
literature

:::::::
[121].

:::
It

::::::
would

:::::
also

::
be

:::::::::::
interesting

::
to

::::::::
explore

::::
the

:::::::
regime

::
of

::::::::::::::::
non-perturbative400

::::::::
repulsive

:::::
local

::::::::::::
interactions

::::
and

::::::::::
attractive

:::::::::
extended

::::::::::::
interactions,

:::
to

:::::::
observe

::::::
their

:::::::::
combined401

:::::
effect

:::
on

:::::::
driving

::
or

:::::::::::
suppressing

::::::
phase

::::::::::
separation

:::::::::::
[122,123].

:::::::::::::
Longer-range

::::::::
hopping

::::::
terms

:::
can402

::::
also

::
be

:::::::::
included

::::::
within

:::
our

::::::
exact

::::::::::::::
diagonalization

::::::::::::::::
implementation,

::::::
which

::::
give

::::
rise

::
to

:::::::::
geometric403

::::::::::
frustration,

::::::::
making

:::
the

::::::::
analysis

:::::
more

::::::::
relevant

::::
for

:::
the

:::::::
physics

:::
of

:::
the

:::::::::
cuprates.

:
404
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A Appendix411

A
::::
The

:::::::::::::::::
inter-cluster

::::::::::::::
mean-field

::::::::::::::
procedure412

The extended interaction term can be rewritten as413

1
2

∑

r,r′,σ,σ′
Vrr′nrσnr′σ′ =

1
2

∑

r,r′,σ,σ′
V c

rr′nrσnr′σ′ +
1
2

∑

r,r′,σ,σ′
V ic

rr′nrσnr′σ′

where r, r′ refer to the lattice sites, and nrσ is the number of particles at site r with spin σ.414

Here V c
rr′ and V ic

rr′ refer to the intra-cluster and inter-cluster parts of the interaction. Inspired415

by Wick’s theorem, we decompose the inter-cluster part of the interaction into Hartree, Fock416

and anomalous channels, as follows:417

1
2

∑

r,r′,σ,σ′
V ic

rr′nrσnr′σ′ =
∑

r,r′,σ,σ′
V ic

rr′(
�

nrσ n̄r′σ′ −
1
2

n̄rσ n̄r′σ′)
�

−
∑

r,r′,σ,σ′
V ic

rr′(
�

frr′σσ′ f̄
∗
rr′σσ′ −

1
2

f̄ ∗rr′σσ′ f̄ rr′σσ′)
�

+
1
2

∑

r,r′,σ,σ′
V ic

rr′(
�

∆rr′σσ′∆̄
∗
rr′σσ′ +∆

†
rr′σσ′∆̄rr′σσ′ − ∆̄rr′σσ′∆̄

∗
rr′σσ′)

�

(A.1)

where the operators are defined as nrσ ≡ c†
rσcrσ, frr′σσ′ ≡ c†

rσcr′σ′ and ∆rr′σσ′ ≡ crσcr′σ′ . Note418

that the applicability of Wick’s theorem is not exact in this case, as we are considering a model419

which already includes on-site interactions, but must be considered as an ad hoc Ansatz. In420

other words, at a fundamental level, we are not assuming that the ground state of the system is421

a Slater determinant. We are rather resting on a variational principle for the self-energy [124]422

on which CDMFT is formally based.423

The sum over sites r, r′ is taken over the whole lattice. But the average n̄rσ will be assumed424

to have the periodicity of the cluster, i.e., n̄r+Rσ = n̄rσ where R belongs to the super-lattice. In425

addition, the two-site averages f̄ rr′σσ′ and ∆̄rr′σσ′ are assumed to depend only on the relative426

position r− r′. The mean-field inter-cluster interaction (A.1) is then a one-body contribution427

to the Hamiltonian with the periodicity of the super-lattice, and contains both intra-cluster428

and inter-cluster terms, whereas the purely intra-cluster part V c
rr′ retains its fully correlated429

character.430

For a four-site cluster, we have a total of eight bonds between neighboring clusters, along431

the x and y directions, with two spin combinations (σ,σ′) per bond, where we consider432

spin-parallel combinations for the Fock terms (in the absence of spin-dependent hopping)433

and spin-antiparallel combinations for the anomalous terms. In practice, we only consider434

physically relevant combinations of operators defined on different sites/bonds for our analysis435

(such as those compatible with a d−wave
:::::::
d-wave

:
or an extended s−wave

::::::
s-wave

:
order). As436

an illustration of this, let us consider the pairing fields ∆ defined on all of these bonds, which437

we denote by the labels i = 1− 16 (including different bond and spin combinations).438

The mean-field Hamiltonian can be written as439

V
2

∑

i, j

(∆̄∗i Mi j∆ j +∆
†
i Mi j∆̄ j − ∆̄∗i Mi j∆̄ j) (A.2)

where i, j = (r, r′,σ,σ′) and the matrix Mi j describes the combinations of the pairing fields440

defined on different bonds which appear in the Hartree-Fock decomposition of the intercluster441

:::::::::::
inter-cluster

:
interactions. The matrix M turns out to be an identity matrix for the Fock and442

21



SciPost Physics Core Submission

pairing fields f and ∆ respectively, but the corresponding matrix for the Hartree fields n is443

off-diagonal.444

Defining the eigen-combinations of the pairing fields by445

Eα = Uαi∆i (A.3)

and the eigenvalues of the matrix M by λα, such that446

Mi j =
∑

α,β

U∗αiλαδαβUβ j

we can rewrite Eq. (A.2), above, as447

V
2

∑

α

λα(Ē
∗
αEα + E†

α Ēα − Ē∗α Ēα) (A.4)

The mean-field values Ēα of the relevant eigen-combinations Eα of the pairing operators de-448

fined on different nearest-neighbor bonds are obtained self-consistently within the CDMFT449

loop, and likewise for the other mean fields that are the appropriate eigen-combinations of450

n̄rσ and f̄ rr′σσ′ .451

B
:::::::::
CDMFT

:::::::::::::::::
convergence452

:::
The

::::::::
CDMFT

::::::::::
procedure

::
is

::::::::
iterative

:::
and

:::::
aims

::
at

:::::::
finding

::
a

::::::::
solution

::
to

:
a
::::
set

::
of

:::::::::
nonlinear

:::::::::
equations453

::::
that

:::
can

:::
be

:::::::::::::
schematically

::::::::::
expressed

::
as

:
454

x= f(x) ,
::::::::

(B.1)

::::::
where

:
x
:::::::
stands

:::
for

:::
the

:::
set

::
of

:::::
bath

::::
and

:::::::::::
inter-cluster

:::::::::::::
Hartree-Fock

::::::::::
parameters

::::
and

::
f
::
is

::
an

:::::::
equally455

:::::
large

:::
set

::
of

::::::::::
functions

::::
that

:::::::
returns

::::
the

::::
next

::::
set

::
of

:::::::::::
parameters

:::::
from

::::
the

:::::::
current

::::
set,

:::::::::
following456

:
a
::::::::::
procedure

:::::
that

:::::::::
combines

::::
the

::::::::
CDMFT

:::::::
update

:::::
with

::::
the

::::::::::::
inter-cluster

::::::::::
mean-field

:::::
one.

:::::
The457

:::::::::
canonical

::::
way

:::
to

:::::
solve

::::
Eqs

:
(B.1)

:
is
::::
the

:::::::::::
fixed-point

::::::::
method:

::::
the

:::::
map

:::::::::::
xn+1 = f(xn):::

is
:::::::
iterated458

::::
until

::::
the

::::::::::
difference

:::::::::::::::::
∆xn+1 = xn+1 − xn::

is
:::::::
smaller

:::::
than

::::::
some

::::::
preset

:::::::::
accuracy.459

:::::::::
However,

::
if

::::
the

::::::::
purpose

::
is

::
to

::::
find

::
a
::::::::
solution

:::
to (B.1)

:
,
:::::
there

::::
are

:::::
more

::::::::
efficient

::::
and

::::::
stable460

:::::::::::
alternatives.

::::::::::::
Specifically,

::::
one

::::::
could

::::
use

:::
the

:::::::
classic

::::::::
Broyden

::::::::
method

:::
for

:::::::
finding

::::::
roots

::
of

::::
sets461

::
of

:::::::::
nonlinear

::::::::::
equations,

::
a
::::::::::::::
generalization

::
to

::::::
many

:::::::::
variables

::
of

::::::::::
Newton’s

:::::::::::
root-finding

::::::::
method.462

:::::::::
Broyden’s

::::::::
method

:::::
relies

:::
on

::
a

::::::::::::
computation

::
of

::::
the

::::::::
Jacobian

:::::::
matrix

::::::::::
J= ∂ f/∂ x

::::
that

::
is

:::::::::
improved463

::
at

::::
each

:::::::::
iteration.

::
It
:::::::::
typically

::::
finds

::
a
::::::::
solution

::::
with

::::::
fewer

:::::::::
iterations

:::::
than

:::
the

::::::::::
fixed-point

::::::::
method,464

:::
and

:::::
with

::::::::
greater

:::::::::
accuracy.

::::
In

:::::::::
addition,

::
it

::
is
::::::::::

“stickier”,
:::::::::
meaning

::::
that

::::::
upon

:::::::::::
performing

:::
an465

:::::::
external

:::::
loop

:::::
over

:::::::
model

:::::::::::
parameters,

:::
it

::::
will

::::::
“stick”

:::
to

::::
the

:::::::
current

::::::::
solution

::::
(or

::::
the

:::::::
current466

:::::::
phase),

::::::::
whereas

::::
the

:::::::::::
fixed-point

::::::::
method

::::
will

:::
be

::::::
prone

:::
to

:::::::::::
instabilities

:::::
and

::::
will

::::::
more

:::::
likely467

::::::
switch

::
to

::::::
more

::::::
stable

:::::::::
solutions.

:
468

::::
This

:::::::
means

::::
that

::::
the

:::::::::::
fixed-point

::::::::
method,

:::::::::
although

:::::
less

::::::::
efficient,

:::
is

:::::
more

::::::::::::
appropriate

::
to469

::::::
detect

:::::
phase

:::::::::::
transitions,

::::::::
whereas

::::
the

::::::::
Broyden

:::::::
method

::
is

::::::
better

::
at

::::::::
keeping

:::
the

:::::::
current

::::::::
solution470

::::
into

::
its

:::::::::::
metastable

:::::::
regime.

:::::::
Hence

:::
the

::::::::
Broyden

::::::::
method

::::
will

::::::::
typically

::::::
result

::
in

::::::
wider

:::::::::
hysteresis471

:::::
loops

:::::
than

:::
the

:::::::::::
fixed-point

::::::::
method

::::::
when

:::
the

::::::::
external

:::::::::::
parameter

::
is

::::::
cycled

:::
in

:::::
both

:::::::::
directions472

::::::::::
(ascending

::::
and

::::::::::::
descending).

:
473

::
In

:::::::::
practice,

:::
we

::::
can

:::::::::
converge

:::
the

::::::::::::
CDMFT-DHF

::::::::::
procedure

:::
on

::::
the

:::::::::
difference

:::::::
∆xn+1,

::::
but

:::
we474

:::
can

::::
also

::::
ask

:::
for

:::
the

::::::::::::
convergence

::
of

::::::::
physical

::::::::::
quantities,

:::::
such

::
as

::::
the

::::::
cluster

:::::::::::
self-energy

::::::
Σ(ω),

::
or475

:::::::
relevant

::::::
order

:::::::::::
parameters.

:::
It

::::
may

:::::::
happen

::::
that

::::::::
physical

::::::::::
quantities

:::::::::
converge

:::::
even

:::::::
though

::::
bath476

::::::::::
parameters

:::
do

:::::
not,

::::::::
because

:::
the

::::::
latter

:::
are

:::::::::::
sometimes

:::::::
subject

:::
to

:::::::
discrete

::::::::
“gauge”

:::::::::::
symmetries477
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::::
that

:::
do

:::
not

::::::
affect

::::::::
physical

::::::::::::
observables.

::::
But

:::::
even

::::::::
though

::::::::::::
convergence

:::::::
criteria

:::::
may

::
be

::::::
based478

::
on

::::::::
physical

:::::::::::
quantities,

::::
the

::::::::
iteration

::::::::::
xn→ xn+1::

is
::::
still

::::::
based

:::
on

:::::::
either

:::
the

:::::
fixed

::::::
point

:::
or

:::
the479

::::::::
Broyden

::::::::
method.

::::
In

::::
this

::::::
work,

:::
we

:::::
used

::::
the

:::::::::::
self-energy

::::
and

:::::::::
relevant

:::::
order

::::::::::::
parameters

::
as480

:::::::::::
convergence

::::::::
criteria,

:::::
with

::::::::::
accuracies

::
of

::::
the

:::::
order

:::
of

:::::
10−4.

:
481

:::
As

::
an

:::::::::::
illustration,

:::
we

:::::::::
compare

:::
the

:::::::::
behavior

::
of

:::
the

::::::::
relevant

::::::
order

::::::::::
parameters

:::
for

::::
the

::::::
phases482

::::::::
observed

::
at

::::
the

::::::::::::
particle-hole

::::::::::
symmetric

::::::::
chemical

:::::::::
potential

::
as

::
a
::::::::
function

::
of

::::::
U > 0

:::
for

:::::::::
V = −0.6483

::
in

::::
Fig.

:::
15

:::::
and

::
as

::
a
:::::::::

function
:::
of

::::::
V < 0

:::
for

:::::::
U = 2

:::
in

::::
Fig.

::::
16,

::::::
using

:::
the

:::::::::::
fixed-point

:::::
and

:::
the484

::::::::
Broyden

::::::::
methods

:::
for

:::::::::
obtaining

::::
the

:::::::
optimal

:::
set

:::
of

:::::::
CDMFT

:::::::::::
parameters.

:::
As

::::::::::
expected,

:::
the

::::::
region485

::
of

:::::::::
hysteresis

:::
is

::::::
found

::
to

:::
be

::::::
much

::::::
larger

::::::
when

::::
the

::::::::
Broyden

::::::::
method

::
is

::::::
used,

::::::::::
consistent

::::
with486

:::
the

:::::::::
tendency

:::
of

::::
this

:::::::
method

:::
to

:::::
stick

:::
to

:::
the

::::::::
current

::::::::
solution.

:::::::::::::
Interestingly,

::::
we

::::
find

:::::
that

:::
the487

::::::::
existence

:::
of

:::::::
d-wave

::::::
order

::::
does

::::
not

::::::::::
necessarily

::::::::
coincide

:::::
with

::::::
phase

:::::::::::
separation,

::::
and

:::::
there

::::
may488

::
be

::
a

::::::
region

:::::
with

:
a
::::::::::
nontrivial

:::
d−

:::::
order

::::::::::
parameter

:::::
even

::
at

:::::::::::
half-filling.

:::::::::
However,

:::::
such

:
a
::::::
region

::
is489

:::
not

::::::
easily

::::::::
observed

:::::
with

:::
the

:::::::::::
fixed-point

:::::::
method

::::
and

::
is

:::::::
usually

:::::::::::
significantly

:::::::::
amplified

::::::
when

:::
the490

::::::::
Broyden

:::::::
method

::
is

:::::
used,

:::
as

::::::::::
illustrated

::
in

:::
the

::::::
lower

::::
plot

::
of

::::
Fig.

::::
15.

:::
We

::::
also

::::::::
observe

::::::::::
oscillations491

::::::::
between

:::
the

:::::::
d-wave

:::::::::
solutions

::::::::
obtained

:::
in

:::
the

::::::::
presence

::::
and

::::::::
absence

::
of

::::::
phase

::::::::::
separation

::::::
within492

:::
the

:::::
gray

:::::::::
hysteresis

::::::::
region,

:::
for

:::::
both

::::
the

:::::::::
methods.

::::::::::
Although

:::
the

:::::::::
Broyden

:::::::
method

::::::::::
converges493

:::::
faster

:::::
even

:::::
with

::
a

::::::
higher

:::::::::
accuracy,

::::
we

::::::
obtain

::::::
more

::::::::::
oscillatory

:::::::::
solutions

::
in

::::::::
general

::::
with

::::
this494

::::::::
method,

::::::
which

::::::::
includes

::::::::::::
oscillations

::::::::
between

:::::::::
densities

:::::::
greater

:::::
than

:::::
and

::::
less

:::::
than

::
1

:::
in

:::
the495

:::::::::::::::
phase-separated

::::::
region

::::
for

::::::
small

:::
U ,

::
as

:::::
well

:::
as

::::::::
between

::::
the

:::::::
normal

:::::
state

:::::
and

:::
the

::::
AF

:::::
state,496

:::::
close

::
to

:::
the

::::::::::
transition

:::::
from

:::::::
d-wave

::
to

:::::::::::::::::::
antiferromagnetism

:::
for

::::::::::
increasing

:::
U .

::
In

::::
Fig.

::::
16,

:::
we

:::
see497

::::
that

:::::::
d-wave

::::::::::::::::
superconducting

:::::
state

::::::::
persists

::::
well

:::::
into

:::
the

:::::::
region

:::
of

::::::::::
half-filling

::
as

:::
V

::::::::
becomes498

:::
less

:::::::::
negative,

::::
for

::::
both

:::::::::
methods.

:::::::
When

:::
the

:::::::::
Broyden

:::::::
method

:::
is

:::::
used,

:::
we

:::::
find

::::
that

:::
the

:::::::
system499

:::::::::
continues

::
in

::::
the

:::
AF

:::::
state

::::::
down

:::
to

:::::::::
V = −1.8

::::
and

:::::
then

::::::::::
undergoes

::
a
::::::::::
transition

::
to

::::
the

:::::::
normal500

:::::
state,

::::::::
without

::::
the

:::::::::::
appearance

:::
of

::
a

:::::::
d-wave

::::::
order

:::
or

::::::
phase

:::::::::::
separation.

::::::
This

::
is

:::
an

::::::::
extreme501

::::::::
example

::
of

::::
the

:::::::::
tendency

:::
of

::::
this

::::::::
method

::
to

:::::::::
preserve

::::
the

::::::::
existing

::::::::
solution.

::::
In

:::::::::
contrast,

:::
the502

::::::::::
fixed-point

:::::::
method

::::::
gives

:::
rise

:::
to

:
a
::::::
phase

::::::::::
transition

:::::::
towards

::::
the

:::::::
d-wave

::::::::::::::::
superconducting

:::::
state,503

:::::
close

::
to

::::::::
V=-0.9.

:::::::::::
Therefore,

:::
for

::::::
most

::::::::::
situations,

::
it

::
is

::::::
more

::::::::::
convenient

::::
for

:::
us

::
to

::::::::
employ

:::
the504

::::::::::
fixed-point

::::::::
method

:::
for

:::
our

::::::::::::::
computations.

:
505
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Figure 15:
:::::
Order

:::::::::::
parameters

:::
for

::::
the

:::::::::
different

:::::::
phases

::::::::
observed

:::
at

::::
the

::::::::::::
particle-hole

:::::::::
symmetric

:::::::::
chemical

:::::::::
potential

:::
for

::::::::::
V = −0.6,

::
as

::
a
::::::::
function

:::
of

::
U ,

::::::
using

:::
the

:::::::::::
fixed-point

:::::::
method

::::::::
(above)

:::::
and

:::
the

:::::::::
Broyden

::::::::
method

::::::::
(below)

::::
for

:::::::::
obtaining

::::
the

::::::::
optimal

::::
set

::
of

:::::
bath

::::
and

:::::::::::
mean-field

::::::::::::
parameters.

:::::
The

::::::::::
hysteresis

:::::
loop

:::::::::
obtained

::::
for

::::::::::
increasing

:::
and

:::::::::::
decreasing

:::
U

::
is

::::::
found

:::
to

:::
be

::::::
much

::::::
larger

:::
for

::::
the

::::::::
Broyden

:::::::::
method,

::::::::::
indicating

::::
that

::
it

::::
has

:
a
:::::::::

tendency
:::

to
:::::
stick

:::
to

:::
the

::::::::
current

::::::::
solution.

:::
A
:::::::::::
prominent

::::::
region

:::::
with

::
a

:::::::::
nontrivial

::::::::
d-wave

::::::::::::::::
superconducting

::::::
order

::::::::::
parameter

::
is

:::::::::
observed

:::
at

::::::::::
half-filling

::::
for

:::
the

::::::::
Broyden

::::::::
method

:::::::::::
(indicated

:::
by

::::
the

::::::
region

:::::
with

::::::
filled

::::
red

::::::
circles

:::
in

::::
the

::::::
lower

:::::
plot).

::::
The

::::::::::
transition

::::
from

::::
the

:::::::::::::::
phase-separated

::
to

::::
the

:::::::::
half-filled

:::::
state

::
is

:::::::::
indicated

::
by

::
a

::::::::::::
shoulder-like

:::::::
feature

::
in

::::
the

::::::::::::::
corresponding

:::::::
d-wave

::::::
order

::::::::::
parameter.

:::::::::::
Oscillations

::::
are

::::::::
observed

:::::::::
between

:::
the

::::::::
d-wave

:::::::::
solutions

::::
with

:::::
and

:::::::
without

::::::
phase

:::::::::::
separation,

:::::::
within

:::
the

::::::::::
hysteresis

:::::::
region,

:::
for

:::::
both

::::::::::
methods.

:::
In

::::
the

::::::::
presence

:::
of

::::::
phase

:::::::::::
separation,

::::
the

:::::::
density

::
is

::::::
found

::
to

::::::::
oscillate

:::::::::
between

::::::
values

:::::::
greater

:::::
than

::::
and

::::
less

:::::
than

:::
1,

:::::
when

::::
the

::::::::
Broyden

:::::::
method

::
is

:::::
used,

::::
and

::::::::::
sometimes

:::::
also

::::
with

:::
the

:::::::::::
fixed-point

::::::::
method.

::::::::::
Moreover,

:::::
some

:::::::::::
oscillations

:::
are

:::::
also

::::::::
observed

:::::::::
between

:::
the

::::
AF

::::
and

:::::::
normal

::::::
states,

::::::
close

::
to

::::
the

:::::
phase

::::::::::
transition

:::::::
towards

:::
AF

:::
for

::::::::::
increasing

::
U

::::
(see

:::::
open

:::::
blue

::::::
circles

::
in

::::
the

:::::
lower

::::::
plot).
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Figure 16:
::::::
Order

:::::::::::
parameters

::::::::::::::
corresponding

:::
to

::::
the

:::::::::
different

:::::::
phases

:::::::::
observed

:::
at

:::
the

::::::::::::
particle-hole

::::::::::
symmetric

:::::::::
chemical

:::::::::
potential

:::
for

:::::::
U = 2,

:::
as

:
a
:::::::::

function
::
of

:::
V ,

::::::
using

:::
the

:::::::::::
fixed-point

:::::::
method

::::::::
(above)

::::
and

::::
the

::::::::
Broyden

::::::::
method

::::::::
(below)

:::
for

:::::::::
obtaining

::::
the

:::::::
optimal

:::::
bath

::::
and

::::::::::
mean-field

:::::::::::
parameters.

::::::
Once

::::::
again,

::::
the

:::::::::
hysteresis

:::::::
region

::::::::
between

:::::::::
increasing

::::
and

:::::::::::
decreasing

::::::::
negative

::
V
::
is
::::::
found

:::
to

:::
be

:::::
much

::::::
larger

::::::
when

::::
the

::::::::
Broyden

:::::::
method

::
is

::::::::::
employed.

:::::::::::::
Interestingly,

::::
the

:::
AF

:::::::
region

::
is

::::::
found

:::
to

::::::
persist

:::
all

::::
the

::::
way

:::
to

:::::::::
V = −1.8

:::
for

::::::::::
decreasing

::::::
(more

::::::::::
negative)

::
V

::::
with

::::
the

::::::::
Broyden

::::::::
method

::::
(not

::::::
shown

:::
in

:::
the

:::::::
figure),

::::::::
beyond

::::::
which

::::
the

:::::::
system

:::::::
directly

::::::::::
undergoes

::
a
:::::::::
transition

:::
to

::::
the

:::::::
normal

:::::
state,

::::
and

::::
the

::::::::::::
intervening

:::::::
d-wave

:::::::::::::::::
superconducting

::::::
region

:::
is

::::::
found

:::
to

:::
be

:::::::
absent

::::
(the

:::::
open

:::::
blue

::::::
circles

:::
in

:::
the

::::::
lower

:::::
plot

::::::
depict

::::
the

::::::::
behavior

::::
up

:::
till

:::::::::::
V = −1.1).

::::
For

:::::::::
increasing

:::::
(less

::::::::::
negative)

::
V ,

::
a
:::::
part

::
of

::::
the

:::::::
d-wave

::::::::::::::::
superconducting

::::::
phase

:::::::::
observed

:
is
::::::
found

:::
to

:::
be

::::
very

:::::
close

:::
to

::::::::::
half-filling

:::
for

:::::
both

:::::::::
methods

::::::::::
(indicated

::
by

::::
the

:::::
filled

::::
red

:::::::
circles).

:::::::::::
Moreover,

:::::::::::
oscillations

::::
are

:::::::::
observed

::::::::
between

::::
the

::::::::
d-wave

::::
and

:::
AF

::::::::
phases,

::::::
which

:::
are

::::::
found

:::
to

:::::
occur

::::::
more

::::::::::
frequently

:::::
when

::::
the

::::::::
Broyden

::::::::
method

::
is

:::::
used.

::::::
Note

::::
that

:::
the

:::::::
results

:::
for

::::::::::
increasing

:::
V

:::::
have

:::::
been

:::::::
plotted

::::::::
starting

:::::
from

:::::::::
V = −1.0

:::
in

:::::
both

:::::
cases

:::
for

::::::::::::
convenience,

::::
but

::::
may

:::
be

:::::::::
smoothly

::::::::::::
extrapolated

:::
to

:::::
more

::::::::
negative

::::::
values

:::
of

::
V .

:
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