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The k · p method, combined with group theory, is an efficient approach to obtain the low energy
effective Hamiltonians of crystalline materials. Although the Hamiltonian coefficients are written as
matrix elements of the generalized momentum operator π = p+pSOC (including spin-orbit coupling
corrections), their numerical values must be determined from outside sources, such as experiments
or ab initio methods. Here, we develop a code to explicitly calculate the Kane (linear in crystal
momentum) and Luttinger (quadratic in crystal momentum) parameters of k · p effective Hamilto-
nians directly from ab initio wave-functions provided by Quantum ESPRESSO. Additionally, the
code analyzes the symmetry transformations of the wave-functions to optimize the final Hamilto-
nian. This an optional step in the code, where it numerically finds the unitary transformation U
that rotates the basis towards an optimal symmetry-adapted representation informed by the user.
Throughout the paper we present the methodology in detail, and illustrate the capabilities of the
code applying it to a selection of relevant materials. Particularly, we show a “hands on” example on
how to run the code for graphene (with and without spin-orbit coupling). The code is open source
and available at https://gitlab.com/dft2kp/dft2kp.

I. INTRODUCTION

The band structure of crystalline materials define most
of its electronic properties, and its accurate description
is essential to the development of novel devices. For this
reason, the ab initio density functional theory (DFT)
[1, 2] provides one of the most successful tools for the
development of electronics, spintronics, optoelectronics,
etc. The DFT methods have been implemented in a se-
ries of codes (e.g., Quantum ESPRESSO [3, 4], VASP
[5], Wien2K [6], Gaussian [7], DFTB+ [8], Siesta [9, 10],
...), which differ by the choice of basis functions (e.g.,
localized orbitals or plane-waves), pseudo-potential ap-
proximations, and other functionalities. Nevertheless,
all DFT implementations provide methods to obtain the
equilibrium (relaxed) crystalline structure, phonon dis-
persion, and electronic band structures. Complementary,
few bands effective models are essential to further study
transport, optical, and magnetic properties of crystalline
materials. These can be developed either via the tight-
binding (TB) [11–13] or k ·p method [14, 15], which com-
plement each other.

On the one hand, the TB method has an “atomistic”
nature, since it is built upon localized basis sets (e.g.,
maximally-localized Wannier functions [16], or atomic or-
bitals), which makes this method optimal for numerical
modeling of transport, optical and other properties of
complex nanomaterials [17–20].

On the other hand, the k · p method uses basis sets of
extended waves, which are exact solutions of the Hamilto-
nian at a quasi-momentum of interest, typically at a high
symmetry point of the Brillouin zone. While this charac-
teristic may limit the k ·p description to a narrow region
of the energy-momentum space, the k · p Hamiltonians
are easier to handle analytically and, specially, are very
suitable to study mesoscopic systems using the envelope

function approximation [21–26]. For example, the k.p
framework has been successfully applied to study nanos-
tructures (quantum wells, wires, and dots) [27–29], topo-
logical insulators [30–32], spin-lasers [33, 34], polytyp-
ism [35–37], as well as a large variety of two-dimensional
van der Waals materials [38–41]. Moreover, recent devel-
opments in the field of transition metal dichalcogenides
(TMDCs) have combined DFT and k·p methodologies to
explore the valley Zeeman physics in TMDC monolayers
and their van der Waals heterostructures [42–45].

Both the TB and k · p Hamiltonians are defined in
terms of arbitrary coefficients. In the TB case, these are
local site energies and hopping amplitudes described by
Slater-Koster matrix elements [11]. For the k · p Hamil-
tonians, these are the Kane [46, 47] and Luttinger [48]
parameters, which are matrix elements of the momentum
and spin-orbit coupling operators. In both methods (TB
or k ·p), the values of these arbitrary coefficients must be
determined from outside sources, which strongly depend
on the size and analytical properties of the particular
model Hamiltonian. For instance, early studies within
the k · p framework have shown that for parabolic single
band descriptions, or weakly coupled models, it is possi-
ble to write the quadratic coefficients in terms of effective
masses, which can be experimentally determined by cy-
clotron resonance experiments [46, 49–52]. Moreover, en-
ergy splittings, such as band gaps, can be directly deter-
mined from optical experiments [53–57]. For III-V semi-
conductors with zinc-blend structure and nitride-based
wurtzite compounds, a useful database for k · p param-
eters inspired by experimentally available datasets can
be found in Ref. [58]. Conversely, for k · p Hamiltonians
that do not allow analytical solutions, but still have a low
number of bands (∼ 10), it is possible to perform numeri-
cal fitting techniques to DFT calculations [39, 41, 59–65].
For larger k ·p Hamiltonians (> 30 bands), fitting proce-
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dures may also be applied [66, 67] or directly extracted
from first principles calculations since the only matrix
elements involved are linear in momentum [68–70]. In-
terestingly, these large band k · p models can even be
used to supplement and speedup first principles calcula-
tions, as demonstrated in Refs. [68–70]. In TB models,
fitting procedures can also be applied to obtain the un-
known parameters [71–75]. Conversely, fully automated
procedures, integrated within ab initio codes, such as the
wannier90 code [76, 77], uses localized Wannier functions
computed from the DFT wave functions to calculate TB
parameters. Moreover, explicit calculation of the Slater-
Koster matrix elements are implemented in the paoflow
[78] and DFTB+ [8] codes.

While it is possible to extract k · p models from a
Taylor expansion on top of a TB model (e.g., via the
code tbmodels [79]), there are no versatile implementa-
tions to calculate the k · p Kane (linear in k) and Lut-
tinger (quadratic in k) parameters directly from the DFT
wave-functions[80]. To calculate the k·p matrix elements
from the DFT wave-functions, one needs to account for
how the wave-functions are represented in the DFT code
[69, 81]. For instance, Quantum ESPRESSO and VASP
implement pseudopotential approximations within the
Projector Augmented Wave (PAW) method [82–85]. For-
tunately, Quantum ESPRESSO already provides a rou-
tine to calculate matrix elements of the velocity operator
(which is sufficient to obtain k · p models, as we see in
Section B). Indeed, recently, Jocić and collaborators [86]
have successfully calculated k · p models directly from
QE’s wave-functions (see disclaimer at our Conclusions).

In this paper, we present an open-source code that au-
tomatically calculates the numerical values for the k · p
Kane and Luttinger parameters using the wave-functions
provided by Quantum ESPRESSO (QE). For this pur-
pose, first, we develop a patch to instruct QE to calculate
and store the matrix elements of the generalized momen-
tum π = p+pSOC, which includes the spin-orbit correc-
tions. Together with the eigenenergies E0

n at k0, the ma-
trix elements of π for a selected set of N bands define the
effective k · p Hamiltonian HN×N (k) for k near k0. Our
python package reads these matrix elements and QE’s
wave-functions |n⟩ to automatically build HN×N (k) us-
ing Löwdin’s partitioning [87] for the folding down of all
QE bands into the selected N bands subspace. Addition-
ally, the user has the option to improve the appearance
(or form) of the effective Hamiltonian via a symmetry op-
timization process aided by the qsymm package [88], which
builds the symbolic Hamiltonian via group theory and
the method of invariants. To illustrate the capabilities of
our code, we show here a step-by-step “hands-on” tutorial
on how to run the code for graphene, and later we present
results for selected materials [zincblende, wurtzite, rock-
salt, transition metal dichalcogenides (TMDC), and oth-
ers]. In all cases, the modeled band structure matches
remarkably well the DFT data at low energies near the
expansion point k0. Our code is open source and avail-
able at the gitlab repository [89].

This paper is organized as follows. In Section II we
present our methodology starting with a brief review
of the k · p method, Löwdin partitioning, the method
of invariants, the symmetry optimization process, and
the calculation of matrix elements using the DFT data.
Next, in Section III, we show the code in detail using
graphene as a practical example. Later, in Section IV,
we illustrate the results of the code for zincblend (GaAs,
CdTe, HgTe), wurtzite (GaP, GaN, InP), rock-salt (SnTe,
PbSe), a TMDC (MoS2), and other materials (Bi2Se3,
GaBiCl2). We finish the paper with an overview of the
results in Section V, and the conclusions.

II. METHODS

Our goal is to obtain the numerical values for the
coefficients of k · p effective Hamiltonians [14, 15].
Namely, these are the Kane [46, 47] and Luttinger [48]
parameters. To present our approach for this calculation,
let us start by briefly describing its fundamental steps.
First, we review the k · p method to show that these co-
efficients depend only upon matrix elements of the type
Pm,n = ⟨m|π |n⟩, where π = p+pSOC is the generalized
momentum operator with the spin-orbit corrections, and
{|n⟩} is the set of numerical wave-functions obtained
from the ab initio DFT simulations (e.g. via Quantum
ESPRESSO [3, 4]). However, the numerical DFT basis
given by {|n⟩} does not match, a priori, the optimal
symmetry-adapted basis set that yields the desired form
for the effective k ·p Hamiltonian. Therefore, to properly
identify the Kane and Luttinger parameters, we perform
a symmetry optimization, which rotates the arbitrary
numerical basis into the optimal symmetry-adapted
form. This symmetry optimization is performed via
group theory [90, 91] by enforcing that the numerical
DFT basis transform under the same representation of
an optimal symmetry-adapted basis, which is informed
by the user.

In summary, the algorithm steps are:

1. Read the QE/DFT data: energies E0
n and eigen-

states |n⟩ at the selected k0 point.

2. Calculate or read the matrix elements of Pm,n =
⟨m|π |n⟩ for all bands (m,n).

3. Select the bands of interest (set A). The code will
identify the irreducible representations of the bands
using the IrRep python package [92], and present
it as a report to the user. Additionally, the code
calculates the model folded down into the selected
set A via Löwdin partitioning.

4. Build the optimal effective model from symmetry
constraints using the Qsymm python package [88] un-
der an optimal symmetry-adapted basis informed
by the user. This optimal basis must be in a set of
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representations equivalent to the ones identified in
step 3.

5. Calculate the representation matrices for the sym-
metry operators in the original QE basis |n⟩. The
code verifies if the representations of numerical QE
basis are equivalent to the representations of the
optimal symmetry-adapted basis from step 4.

6. Calculates the transformation matrix U that ro-
tates the original QE basis into the optimal
symmetry-adapted basis set on step 4. Applies
the transformation U and calculates the opti-
mal symmetry-adapted numerical effective Hamil-
tonian.

7. Convert values from Rydberg atomic units into
meV and nm units, and presents a report with val-
ues for the k · p parameters.

In the next sections we describe the relevant details of
the steps above, but not following the algorithmic order
above. More specifically, in Section IIA, we briefly review
the k · p formalism to show that Pm,n = ⟨m|π |n⟩ plays
a central role in our approach. Incidentally, we introduce
the folding down via Löwdin partitioning [87]. Next, we
define what is the optimal symmetry-adapted form of the
Hamiltonian via method of invariants [15, 93] in Section
II B. In Section II C, we present the symmetry optimiza-
tion approach to calculate the transformation matrix U
that yields our final Hoptimal = U ·HDFT · U†. At last,
in Section II D we discuss how Pm,n = ⟨m|π |n⟩ is calcu-
lated.

Throughout the paper we use atomic Rydberg units
(a.u.), thus the reduced Planck constant, bare electron
mass and charge are ℏ = 2m0 = e2/2 = 1, the per-
mittivity of vacuum is 4πε0 = 1, the speed of light is
c = 2/α ≈ 274, and α ≈ 1/137 is the fine structure
constant.

A. The k · p model

In this section we briefly review the k · p method [14,
15, 46–48] and the folding down via Löwdin partitioning
[15, 87, 93] to establish our notation.

We are interested in the effective Hamiltonian near a
high symmetry point k0 of the Brillouin zone. Therefore,
we write the quasi-momentum as κ = k0+k, such that k
is the deviation from k0. The Bloch theorem allow us to
decompose the wave-function as ψκ(r) = eik·rϕk0,k(r),
with ϕk0,k(r) = eik0·ruk0+k(r), where uk0+k(r) ≡ uκ(r)
is the periodic part of the Bloch function, while ϕk0,k(r)
carries the phase given by k0 and obeys the Schrödinger
equation [H0 +H ′(k)]ϕk0,k(r) = [E − k2]ϕk0,k(r), with

H0 = p2 + V (r) + 2k0 · π +HSR, (1)
H ′(k) = 2k · π, (2)

π = p+
α2

8
σ ×∇V (r), (3)

where H0 is the Hamiltonian at k = 0, V (r) is the pe-
riodic potential, H ′(k) carries the k-dependent contri-
butions that will be considered as a perturbation here-
after, π is the generalized momentum that includes the
spin-orbit contributions (SOC), and σ = (σx, σy, σz) are
the Pauli matrices for the electron spin. For simplic-
ity, we consider only leading order corrections of the
fine structure terms. Namely, at k = 0, the HSR car-
ries the scalar relativistic terms, composed by the Dar-
win, HD = α2

8 ∇2V (r), and the mass-velocity corrections,
HMV = −α2p4/4. In the ab initio DFT data, these are
implied in the numerical eigenvalues E0

n of H0. For fi-
nite k ̸= 0, we keep only the SOC contribution in π, and
neglect the higher order mass-velocity corrections (see
Appendix A).

The DFT data, as shown in the next section, provide us
with a set {|n⟩} of eigenstates ofH0, i.e. H0 |n⟩ = E0

n |n⟩.
From this crude DFT basis, we define an all bands model
HDFT

all (k), with matrix elements

⟨m|HDFT
all |n⟩ = E0

nδm,n + 2k · Pm,n, (4)

where Pm,n = ⟨m|π |n⟩. We refer to this as the crude
model because it is calculated from the original numer-
ical DFT wave-functions, which is does not have an op-
timal symmetry-adapted form (more detail in Section
IIC). Nevertheless, it already shows that E0

n and Pm,n
are central quantities, and both can be extracted from
DFT simulations, as shown in Section II D.

Next, we want to fold down HDFT
all into a subspace

of N bands near the Fermi energy to obtain our re-
duced, but still crude, effective model HDFT

N×N . This is
done via Löwdin partitioning [15, 87, 93]. First, the user
must inform the set of N bands of interest, which we
refer as set A. Complementary, the remaining remote
bands compose set B. Considering the diagonal basis
H0 |n⟩ = E0

n |n⟩, and the perturbationH ′(k), the Löwdin
partitioning leads to the effective Hamiltonian HDFT

N×N de-
fined by the expansion

[HDFT
N×N ]m,n(k) =

(
E0
n + k2

)
δm,n +H ′

m,n(k)

+
1

2

∑
r∈B

H ′
m,r(k)H

′
r,n(k)

(
1

E0
m − E0

r

+
1

E0
n − E0

r

)
+ · · ·

(5)

with H ′
m,n(k) = ⟨m|H ′(k) |n⟩ = 2k ·Pm,n. Here, the in-

dices m,n ∈ A run over the bands we want to model (set
A), while r ∈ B run over the remote bands. The expan-
sion above is shown up to second order in H ′, but higher
order terms can be found in Ref. [15]. Alternatively,
the recent python package pymablock [94] implements
an efficient numerical method to compute the Löwdin
partitioning to arbitrary order.
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B. The optimal symmetry-adapted form of H

The selection rules from group theory allow us identify
which matrix elements of an effective Hamiltonian are
finite [90]. More interestingly, the method of invariants
[15, 93] can be used to directly obtain the most general
form of Hoptimal

N×N (k) allowed by symmetry. To define this
form, consider a Taylor series expansion

Hoptimal
N×N (k) =

∑
i,j,l

hi,j,l k
i
x k

j
y k

l
z, (6)

where hi,j,l are constant matrices that multiply the pow-
ers of k = (kx, ky, kz) as indicated by its indices i, j, l =
{0, 1, 2, . . . }. To find the symmetry allowed hi,j,l, we re-
call that the space group G of the crystal is defined by
symmetry operations that keep the crystalline structure
invariant. Particularly, at a high symmetry point κ = k0,
one must consider the little group Gk0 ∈ G of symmetry
operations that maintain k0 invariant (the star of k0).
Hence, Hoptimal

N×N (k) must commute with the symmetry
operations of Gk0 . Namely

Hoptimal
N×N (Dk(S)k) = Dψ(S)Hoptimal

N×N (k)Dψ(S−1), (7)

where Dψ(S) are the representation matrices for each
symmetry operator S ∈ Gk0

in the subspace defined by
the wave-functions of set A, and Dk(S) are the represen-
tation matrices acting on the vector k = (kx, ky, kz). The
set of equations defined by this relation for all S ∈ Gk0

leads to a linear system of equations that constrain the
symmetry allowed form of Hoptimal

N×N (k), i.e., it defines
which of constant matrices hi,j,l are allowed up to a mul-
tiplicative factor. Ultimately, these multiplicative factors
are the Kane and Luttinger parameters that we want to
calculate numerically.

The python package Qsymm [88] implements an efficient
algorithm to find the form of Hoptimal

N×N (k) solving the
equation above and returns the symmetry allowed hi,j,l.
Qsymm refers to these as the Hamiltonian family. To per-
form the calculation, the user must inform the represen-
tation matrices Dψ(S) for the generators of Gk0 . Notice
that the choice of representation is arbitrary, and differ-
ent choices lead to effective Hamiltonians with different
forms. This ambiguity is the reason why the next step,
the symmetry optimization, is necessary.

C. Symmetry optimization

In the previous section, the matrix representations for
generators S ∈ Gk0

are implicitly written in an optimal
symmetry-adapted basis, which we will now label with a
O index, as in {|nO⟩}, to distinguish from the crude DFT
numerical basis, which we now label with an C index, as
in {|nC⟩}. The matrix representations of S written in
these two basis are equivalent up to an unitary transfor-
mation U , i.e. DO(S) = U ·DC(S)·U†. Indeed, this same

matrix U transforms the crude DFT numerical Hamilto-
nian into the desired optimal symmetry-adapted form, i.e.
Hoptimal
N×N = U ·HDFT

N×N ·U†. Therefore, our goal here is to
find this transformation matrix U .

For each symmetry operator Si ∈ Gk0
, let us define

Ci ≡ DC(Si) and Oi ≡ DO(Si) as the representation ma-
trices under the original numerical DFT basis (C), and
under the desired optimal symmetry-adapted represen-
tation (O), respectively. For irreducible representations,
this U is unique (modulo a phase factor) and an efficient
method to obtain it was recently developed [95] and used
in Ref. [86] to transform the effective model into the de-
sired form. The procedure described in Ref. [95] is exact,
but relies on a critical step where one has to find for which
indices (a, b) the weight matrix ra,b is finite. For trans-
formations between irreps, any of the finite ra,b lead to
equivalent unitary transformations. However, for trans-
formations between reducible representations one needs
to identify, within the set of finite ra,b, the ones that
yield nonequivalent transformation matrices that com-
bine to form the final transformation matrices U . This
can be a complicated numerical task. Here, instead, we
propose an alternative method that applies more easily
to reducible representations and allow us to obtain the
transformation matrix U with a systematic approach.
Next, we describe the method, and later in Sec. III C
we illustrate its capabilities using the spinful graphene
example.

The set of unitary transformations Oi = U · Ci · U†

for each Si ∈ Gk0
compose a system of equations for U .

These can be written in terms of the its matrix elements
in a linearized form that reads as∑

j

Um,jCij,n −Oi
m,jUj,n = 0. (8)

Defining a vector V = {U1,1, U1,2, · · · , U2,1, · · · , UN,N}T ,
where N is the order of the representations (number of
bands in set A), allow us to cast the equation above
as Qi · V = 0, with Qi = 1N ⊗ (Ci)T − Oi ⊗ 1N of
size N2 × N2, and 1N as the N × N identity matrix.
Since the same similarity transformation U must apply
for all Si, we stack each Qi into a rectangular matrix
Q = [Q1,Q2, · · · ,Qq]

T of size (qN2) × N2. The full
set of equations now read as Q · V = 0, such that the
solution V =

∑NQ

j=1 cjvj is a linear combination of the
nullspace {vj} of Q, with coefficients cj and nullity NQ.
The matrix U can be recovered from the elements of V ,
which follow from its definition above. If uj is the matrix
reconstructed form of vj , we can write U =

∑NQ

j=1 cjuj .
Additionally, it is interesting to consider anti-unitary

symmetries. These can be either the time-reversal sym-
metry (TRS) itself, or combinations of TRS and space
group operations (magnetic symmetries) [90, 91]. For
instance, in spinful graphene neither TRS nor spatial in-
version are symmetries of the K point, but their com-
position is an important symmetry that enforces a con-
straint on the allowed SOC terms (see Sec. III C). Fol-
lowing a notation similar to the one above, let us refer
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to these magnetic symmetries as C̄i = DC(S̄i)K ≡ C̃iK
and Ōi = DO(S̄i)K ≡ ÕiK, where K is the complex con-
jugation, and (C̃i, Õi) are the unitary parts of (C̄i, Ōi).
Now the basis transformation for these symmetries read
as Õi = U∗ ·C̃i ·U†, where we choose to apply K to the left
(this choice is for compatibility with the python package
IrRep [92]). To add this equation to the Q matrix above,
we consider U and U∗ as independent variables. Then,
as above, it follows the linearized form∑

j

U∗
m,j C̃ij,n − Õi

m,jUj,n = 0. (9)

In all cases, the expression for the transformation ma-
trix is U =

∑NQ

j=1 cjuj , where the coefficients cj are so far
undefined. To find these coefficients cj , we numerically
minimizing the residues R({cj}) =

∑
i ||Oi−U ·Ci ·U†||2,

and R̃({cj}) =
∑
i ||Õi − U∗ · C̃i · U†||2. The global min-

ima of these residues, R({cj}) = R̃({cj}) ≡ 0, yields a
solution U({cj}), such that small perturbations to the
coefficients cj → cj + δcj lead to quadratic deviations
from the minima, e.g., R ∝ |δcj |2. This procedure opens
a question of whether or not the solution U({cj}) at the
global minima is unique.

Since U represents a transformation between two ba-
sis sets (e.g., |nO⟩ = U |nC⟩), it expected to be unique.
However, the problem here is formulated such that we ex-
plicitly have the eigenstates |nC⟩ that compose the crude
DFT basis set C, while for the optimal symmetry-adapted
basis set O we know only how we expect the eigenstates
|nO⟩ to transform under the symmetry operations of the
group. Therefore, instead of solving for U directly from
the linear basis transformation |nO⟩ = U |nC⟩, we rely on
the quadratic equations for the transformation between
the symmetry operators (e.g., DO(S) = U ·DC(S) · U†),
or their linearized forms in Eq. (8) and Eq. (9). First, let
us consider that O and C refer to distinct, but equivalent
irreps. As emphasized in [95], it follows from Schur’s
lemma that the transformation U is unique modulo a
phase. Indeed, for the unitary constraints, Oi = U ·Ci·U†,
the solution U is invariant under U → eiθU for any real
θ, while for the anti-unitary constraint, Õi = U∗ · C̃i ·U†,
U is invariant only for θ = 0 or π. Next, without loss of
generality, let us consider that O and C refer to reducible
representations already cast in block-diagonal forms. In
this case, the solution U = U1 ⊕ U2 ⊕ · · · also takes a
block-diagonal form where each block Uj correspond to
a transformation within a single irrep subspace. It fol-
lows that each Uj is unique modulo the phases above.
The overall global phase of U does not affect the calcu-
lation of our matrix elements. However, the arbitrary
relative phases between the blocks Uj might lead to ill
defined phases of matrix elements between eigenstates of
different irreps if the anti-unitary symmetries are not in-
formed. In contrast, if anti-unitary symmetries are used,
the undefined phase factor in the matrix elements is just
a sign.

D. Matrix elements via DFT

As shown above, our approach to obtain a k · p model
directly from the DFT data relies on two quantities: (i)
the band energies E0

n at the k ·p expansion point k0; and
(ii) the matrix elements Pm,n = ⟨m|π |n⟩ also calculated
at k0 for all bands {|n⟩}. The band energies E0

n are a
straightforward output of any DFT code. Therefore, here
we discuss only the calculation of Pm,n = ⟨m|π |n⟩.

We focus on the Quantum ESPRESSO (QE) [3, 4] im-
plementation of ab initio DFT [1, 2]. The Hamiltonian
in QE is split into the core and inter-core regions via
the Projector Augmented Wave (PAW) method [82–84],
which is backwards compatible with ultrasoft (USPPs)
[83, 96] and norm-conserving pseudo-potentials (NCPP)
[97–99]. In these approaches, the atomic core region is re-
placed by pseudopotentials, which are constructed from
single-atom DFT simulations with the Dirac equation
in the scalar relativistic or full relativistic approaches.
Thus, for molecules or crystals, QE solves a pseudo-
Schrödinger equation, with the atomic potentials re-
placed by the pseudopotentials. Here we shall not go
through details of the PAW and pseudopotential meth-
ods. For the interested reader, we suggest Refs. [82–
84]. Instead, for now, it is sufficient to conceptually un-
derstand that QE provides numerical solutions for the
Schrödinger equation with the fine structure corrections,
which can be expressed by the Hamiltonian

H ≈ p2 + V (r) +HSR +
α2

4
(σ ×∇V ) · p, (10)

where HSR = HD +HMV contain the Darwin and mass-
velocity contributions, as presented above, and the last
term is the spin-orbit coupling.

1. Matrix elements of the velocity

Fortunately, the QE code already provides tools to
calculate the matrix elements of the velocity operator
1
2v = i

2 [H, r], which reads as

v

2
=

1

2

∂H

∂p
= π +

1

2

∂HMV

∂p
≈ π, (11)

where we neglect the mass velocity corrections (see Ap-
pendix A). Thus, we find that Pm,n = ⟨m|π |n⟩ ≈
⟨m| 1

2v |n⟩. The calculation of Pm,n is already par-
tially included in the post-processing tool bands.x (file
PP/src/bands.f90), within the write_p_avg subrou-
tine (file PP/src/write_p_avg.f90). This calculation
includes the necessary PAW, USPPs, or NCPPs correc-
tions, which are critical for materials where the wave-
function strongly oscillates near the atomic cores [100].
However, the write_p_avg subroutine only calculates
|Pm,n|2 form in the valence bands (below the Fermi level)
and n in the conduction bands (above the Fermi level).
To overcome this limitation, we have built a patch that
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modifies bands.f90 and write_p_avg.f90 to calculate
Pm,n for all bands. This leads to a modified bands.x with
options to follow with its original behavior, or to calcu-
late Pm,n accordingly to our needs. This is controlled
by a new flag lpall = False/True added to the input
file of bands.x in addition to the lp = True. Its default
value (lpall = False) runs bands.x with its original
code, while the option lpall = True intructs bands.x
to store all Pm,n into the file indicated by the input pa-
rameter filp.

In general, it is preferable to patch QE to use the full
Pm,n instead, since the calculation is faster and more
precise. Nevertheless, if the user prefers not to apply our
patch to modify QE, our code can calculate an approx-
imate Pm,n using only the plane-wave components out-
putted by the QE code. In this case, we consider that the
pseudo-wavefunction is a reasonable approximation for
the all-electron wavefunction, thus neglecting PAW cor-
rections, which are necessary to account for SOC. There-
fore, under this approximation, Pm,n ≈ ⟨m|p |n⟩. The
relevance of these PAW/SOC corrections to Pm,n are pre-
sented in the example shown in Sec. IV B1. Within this
approximation, the wave-function ψn,k(r) for band n at
quasi-momentum k, and Pm,n read as

ψn,k(r) ≈
1√
Ω

∑
G

cn(G)ei(k+G)·r, (12)

Pm,n ≈
∑
G

(k +G)c†m(G)cn(G), (13)

where cn(G) are the plane-wave expansion coefficients
(spinors in the spinful case), Ω is the normalization vol-
ume, and G are the lattice vectors in reciprocal space.
To implement this calculation, and the one shown next,
we use the IrRep python package [92], since it already
have efficient routines to read and manipulate the QE
data.

2. Matrix elements of the symmetry operators

To calculate the matrix elements of the symmetry op-
erators, it is sufficient to consider ψn,k(r) from Eq. (12).
In this case it is safe to neglected PAW corrections,
since they must transform identically to the plane-wave
parts under the symmetry operations of the crystal space
group. For a generic symmetry operation S ∈ Gk0

, its
matrix elements read as

Dψ
m,n(S) =

∑
G,G′

c†m(G′)cn(G)

∫
e−i(k+G′)·re−iS

−1(k+G′)·r d
3r

Ω
. (14)

Using the plane-wave orthogonality, one gets

Dψ
m,n(S) =

∑
G

c†m
(
− k + S−1 · (k +G)

)
cn(G), (15)

where S−1 is the inverse of S, and S−1 · (k + G) is its
action on the (k + G) vector. For instance, if S = I is
the spatial inversion symmetry, S−1 · (k+G) = −k−G,
and Dψ

m,n(S) =
∑

G c†m(−2k −G)cn(G).

III. HANDS ON EXAMPLE: GRAPHENE

In this section we present a detailed example and
results for spinless graphene, and a shorter discussion
on spinful graphene in Sec. III C to illustrate the case
of transformations between reducible representations.
Graphene [101, 102] is nowadays one of the most studied
materials due to the discovery of its Dirac-like effective
low energy model, which read as H = ℏvFσ ·k. Here, the
σ Pauli matrices act on the orbital pseudo-spin subspace,
k = (kx, ky) is the quasi-momentum, and vF is the Fermi
velocity, which is the unknown coefficient that we want to
calculate in this example. For this purpose, in this first
example we follow a pedagogical route. First, we present
the symmetry characteristics of the graphene lattice and
its wave-functions at the K point. Then, we show the re-
sults for the representation matrices and Hamiltonian in
the crude and optimal symmetry-adapted basis to illus-
trate how the symmetry optimization of Section II C is
used to build the optimal symmetry-adapted Hamiltoni-
ans and identify the numerical values for its coefficients.
Later, in Section III B we show a step-by-step tutorial on
how to run the code. This example was chosen for its
simplicity, which allow for a clear discussion of each step.
Later, in Section IV we present a summary of examples
for other materials of current interest.

Before discussing the details, we summarize the results
for the band structure of graphene in Fig. 1, which com-
pares the DFT data with our two main models. The
black lines are calculated from the all bands model from
Eq. (4), which uses the matrix elements Pm,n in the orig-
inal crude DFT basis without further processing. In con-
trast, the red lines are the band structure calculated with
the folded down Hamiltonian for a set A composed by the
two bands near the Fermi energy that defines the Dirac
cone, and considers the symmetry optimization process
to properly identify the k · p parameters. This optimal
symmetry-adapted Hamiltonian is shown in Eq. (21) be-
low, and the numerical value for its parameters is shown
at Step 7 in Section III B.

A. Overview of the theory and symmetry
optimization

The crystal structure of graphene is an hexagonal
monolayer of carbon atoms, as shown in Figs. 1(a) and
1(b), which is invariant under the P6/mmm space group
(#191). However, since its Dirac cone is composed of
pz orbitals only, it is sufficient to consider the C6V fac-
tor group to describe the lattice. Particularly, at the K
point [see Fig. 1(c)], the star of K corresponds to the
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Figure 1. Graphene lattices emphasizing the Dirac cone eigen-
states at the K point, where (a) |A⟩ = |(X + iY )Z⟩ and (b)
|B⟩ = |(X − iY )Z⟩. Both eigenstates are composed by pz
orbitals centered at the colored sites (A and B lattices) with
the Bloch phase factors indicated within the circles, where
τ = exp(i2π/3). (c) The first Brillouin zone marking the path
Γ−K −M used to plot the bands in (d). (d) Band structure
for graphene calculated via QE/DFT (blue circles), all bands
model [Eq. (4)] (black lines), and optimal symmetry-adapted
model [Eq. (21)] for the two bands forming the Dirac cone
(red). Here, the QE/DFT simulation was performed with
300 bands.

little group C3V , which is generated by a 3-fold rotation
C3(z) and a mirror My. The Dirac bands of graphene are
characterized by the irrep E of C3V (or irrep K6 from
P6/mmm [103]), which is composed by basis functions
(xz, yz).

To build the optimal symmetry-adapted effective
model via the method of invariants, we need to spec-
ify a basis and calculate the matrix representation of the
symmetry operations mentioned above. Since the wave-
functions of the Dirac cone transform as the irrep E of
C3V , a naive choice would be Aunconv ={|XZ⟩ ,|Y Z⟩},
which corresponds to a set A in Section II A. This choice
of basis refers to a possible C representation in Section
IIC, and it yields

Dunconv(C3(z)) =

(
cos θ − sin θ
sin θ cos θ

)
, (16)

Dunconv(My) =

(
1 0
0 −1

)
, (17)

Hunconv ≈
(
c0 − c1kx c1ky
c1ky c0 + c1kx

)
, (18)

where θ = 2π/3. Here Hunconv is obtained via Qsymm

up to linear order in k, for brevity. While the eigenen-
ergies of Hunconv represent correctly the Dirac cone as
E± = c0 + |c1|

√
k2x + k2y, the Hamiltonian Hunconv takes

an undesirable unconventional form.
A more convenient choice is Aconv =

{|(X + iY )Z⟩ ,|(X − iY )Z⟩}, which is illustrated in
Figs. 1(a) and 1(b). This choice of basis leads to

Dconv(C3(z)) =

(
eiθ 0
0 e−iθ

)
, (19)

Dconv(My) =

(
0 1
1 0

)
, (20)

Hconv ≈
(

c0 c1k−
c1k+ c0

)
+

(
c2k

2 c3k
2
+

c3k
2
− c2k

2

)
, (21)

where k± = kx±iky. Now, up to linear order in k, we see
that Hconv ≈ c0+c1σ ·k, where σ act on the subspace set
by Aconv, and we identify c1 = ℏvF . Additionally, the k-
quadratic terms that lead to trigonal warping corrections.
Notice that both choices, Aunconv and Aconv, are equiva-
lent representations, but the conventional one leads to the
familiar form of the graphene Hamiltonian. These two
basis sets are related by an unitary transformation U ,
such that Aconv = U ·Aunconv and Hconv = UHunconvU

†,
with

Uunconv→conv =
1√
2

(
1 i
1 −i

)
. (22)

Next, let us analyze the set AQE of numerical wave-
functions from QE. Do they correspond to AQE = Aconv

or AQE = Aunconv? The answer is neither. Since it is a
raw numerical calculation, typically diagonalized via the
Davidson algorithm [104], a degenerate or nearly degen-
erate set of eigenstates might be in any linear combina-
tion of its representative basis. Therefore, the symmetry
optimization step is essential to find the matrix transfor-
mation U that yields Aconv = U ·AQE. To visualize this,
let us check the matrix representations of the symmetry
operators above, and the effective Hamiltonian calculated
from the crude QE data. For the symmetry operators,
we find

DQE(C3(z)) ≈
(

−0.5 −0.35 + 0.79i
0.35 + 0.79i −0.5

)
, (23)

DQE(My) ≈
(

+0.5 0.35− 0.79i
0.35 + 0.79i −0.5

)
, (24)

While this cumbersome numerical representation does
not resemble neither Aconv nor Aunconv, our symmetry
optimization process correctly finds a transformation ma-
trix U that returns Aconv = U ·AQE, where

U ≈
(

0.7i −0.28 + 0.65i
−0.6 + 0.37i 0.7− 0.1i

)
. (25)

Finally, for the Hamiltonian, up to linear order in k and
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in the original QE basis, we find

HQE ≈
(

−0.37 −0.25 + 0.57i
−0.25− 0.57i 0.37

)
kx

+

(
0.62 0.15− 0.34i

0.15 + 0.34i 0.62

)
ky, (26)

which takes a cumbersome form in this raw numerical
basis. However, applying the transformation U , the sym-
metry adapted model becomes

Hoptimal
N×N = UHDFT

N×NU
† ≈ 0.72σ · k. (27)

Here we identify ℏvF = 0.72 in Rydberg units, yielding
vF = 0.83 × 106 m/s. The resulting band structure cal-
culated from Hoptimal, including the k-quadratic terms,
is shown as red lines in Fig. 1(d) and it matches well the
QE/DFT data near K.

B. Running the code

The example presented here is available in the
Examples/graphene-nosoc.ipynb notebook in the code
repository, and shown in Algorithm 1. Here we
show only the minimal procedure to read the DFT
data, build an effective model from the symmetry con-
straints, and calculate the numerical values for the
model parameters. Complementary, the full code in
Examples/graphene-nosoc.ipynb shows how to plot
the data presented in our figures.

For now, we assume that the DFT simulation was
successful. The suggested steps to run QE and prepare
the data for our code is to run the calculation=‘scf’
and calculation=‘bands’ with pw.x. Then, run
bands.x to extract the bands and from QE’s output
and store it in gnuplot format to plot the figures. Here,
for graphene, we assume that the bands calculation was
run for a path Γ − K − M with 30 points between each
section, such that K is the 31st point in the list.

Next, we describe each step shown in Algorithm 1.

Step 1. After running QE, the first step is to read the
DFT data from the QE’s output folder. The command
dft2kp.irrep(...) uses the python package IrRep
[92] to read the data for the selected k point to be used in
the k · p expansion, as indicated by the parameters kpt
and kname. The data is read from the folder indicated by
the parameter dftdir, while outdir and prefix refer
to values used in the input file of QE’s pw.x calculation.
Additionally, the command dft2kp.irrep(...) also
accepts extra parameters from the package IrRep (see
code documentation).

Step 2. In step 2, the code will either read or calculate
the matrix elements Pm,n to build the effective models.
If the user runs QE modified by our patch, the QE tool

bands.x will generate a file kp.dat that already contains
the values for Pm,n. In this case, the user must inform
the name of this file via the parameter qekp. Otherwise,
if qekp is omitted, our code calculates an approximate
value for Pm,n ≈ ⟨m|p |n⟩ from the pseudo-wavefunction
of QE, as in Eq. (13), which neglects all SOC corrections.

Step 3. Next, the user must choose which set of bands
will be considered to build the model. This is the set A
in Section IIA. In this example we select bands 3 and
4, which correspond to the Dirac cone of graphene. The
code analyses the list of bands and identify their irre-
ducible representations (irreps) using the IrRep package
[92]. Here, the set A must contain only complete sets of
irreps, otherwise the Löwdin perturbation theory would
fail with divergences [see Eq. (5)], since the remote bands
of set B would have at least one band degenerated with
a band from set A. If this condition fails, the code stops
with an error message. Otherwise, if set A is valid, the
code outputs a report indicating the space group of the
crystal (e.g., P6/mmm), the selected set of bands (e.g.,
[3,4]), their irrep (e.g., K6 [103]), and degeneracy (2).
The report reads as

Space group 191 : P6/mmm
Verifying set A: [3 4]
Band indices: [3, 4] Irreps: (K6) Degeneracy: 2

Additionally, in this step the code also calculates
the crude effective model for the bands in set A via
Löwdin partitioning [87]. It stores the folded Hamil-
tonian in a python dictionary (kp.Hdict) representing
the matrices hi,j,l in the crude DFT basis that de-
fine HDFT(k) =

∑
i,j,l hi,j,kk

i
xk
j
yk
l
z. For instance,

kp.Hdict[‘xx’] refers to the matrix h2,0,0 that defines
the term h2,0,0k

2
x.

Step 4. In step 4 we build the optimal symmetry-
adapted model using Qsymm [88], which solves Eq. (7) for
the method of invariants. In Algorithm 1, we build the
representations for the symmetry operations C3(z), My,
Mz, and T I. Above we have discussed only the first
two for simplicity. Here we also include the mirror Mz,
and the anti-unitary symmetry T I, which is composed
by the product of time-reversal and spatial inversion
symmetries. The mirror Mz has a trivial representation
Dψ(Mz) = −1, since the orbitals that compose the
Dirac bands in graphene are all of Z-like (odd in z).
The T I representation follows from Aconv presented
above by recalling that spinles time-reversal is simply
the complex conjugation, and the spatial inversion takes
(X,Y, Z) → (−X,−Y,−Z). In this particular example,
the T I symmetry does not play an important role,
but it is essential for a spinful graphene example, as it
constrains the SOC terms at finite k (see Sec. III C).
The command dft2kp.qsymm(...) calls Qsymm to
build the effective model from the list of symmetries,
indicated by symm, up to order k2, as indicated by
total_power. We recommend always using dim=3 [three
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dimensions for k = (kx, ky, kz)] because QE always work
with the 3D space groups. Additionally, the command
dft2kp.qsymm(...) accepts other parameters that
are passed to the Qsymm package (see code documenta-
tion). By default, this command outputs the optimal
symmetry-adapted Hamiltonian, which matches the one
in Eq. (21).

Step 5. Next, we start the symmetry optimization
process. The first call kp.get_symm_matrices() cal-
culates, via Eq. (15), the matrix representation for all
symmetry operators identified in the QE data by the
IrRep package. However, neither QE nor IrRep account
for the anti-unitary symmetries. Therefore, we call here
the optional routine kp.add_antiunitary_symm(...),
which manually adds the anti-unitary symmetry to
the list of QE symmetries and match it with the
corresponding symmetry of Qsymm informed on its first
parameter. In this example, we add the T I symmetry
built with Qsymm above. This operator needs to be
complemented with a possible non-symmorphic transla-
tion vector, which is zero in this case, as shown by the
second parameter of kp.add_antiunitary_symm(...).
Both calls, kp.get_symm_matrices() and
kp.add_antiunitary_symm(...), calculate the matrix
representations in the crude QE basis.

Step 6. To calculate the transformation matrix
U , we compare the ideal matrix representations
informed via Qsymm (object qs) and the crude
QE matrix representations (object kp). The call
dft2kp.basis_transform(...) performs this com-
parison and returns an error if the symmetries in both
objects do not match. More importantly, it calculates
the transformation matrix U solving Eq. (8) and Eq. (9).
The matrix U is stored in the object optimal.U. If the
calculation of U is successful, the code applies U to
rotate the hi,j,l terms in kp.Hdict from the crude DFT
basis into the optimal symmetry-adapted basis. This
allows for a direct identification of the coefficients cn
from Eq. (21), which are stored in optimal.coeffs.
Additionally, the code builds the numerical optimal
symmetry-adapted model and provides a callable object
optimal.Heff(kx, ky, kz) that returns the numerical
HamiltonianHoptimal

N×N for a given value of k = (kx, ky, kz).

Step 7. At last, the code prints a report with the
numerical values for the coefficients cn, which are sum-
marized in Table I. As mentioned above, here we identify
ℏvF = 0.72 a.u., yielding vF = 0.83× 106 m/s after con-
verting the units.

Algorithm 1 Minimal example for spinless graphene.

1 import numpy as np
2 import pydft2kp as dft2kp

3 # import s0, sx, sy, sz: Pauli matrices
4 from pydft2kp.constants import s0, sx, sy, sz

5 # step 1: read DFT data
6 kp = dft2kp.irrep(dftdir='graphene-nosoc',
7 outdir='outdir',
8 prefix='graphene',
9 kpt=31,

10 kname='K')

11 # step 2: read or calculate matrix elements of p
12 kp.get_p_matrices(qekp='kp.dat')

13 # step 3: define the set alpha
14 # applies fold down via Löwdin
15 setA = [3, 4]
16 kp.define_set_A(setA)

17 # step 4: builds optimal model with qsymm
18 phi = 2*np.pi/3
19 U = np.diag([np.exp(1j*phi), np.exp(-1j*phi)])
20 C3 = dft2kp.rotation(1/3, [0,0,1], U=U)
21 My = dft2kp.mirror([0,1,0], U=sx)
22 Mz = dft2kp.mirror([0,0,1], U=-s0)
23 TI = dft2kp.PointGroupElement(R=-np.eye(3),
24 conjugate=True,
25 U=sx)
26 symms = [C3, My, Mz, TI]
27 qs = dft2kp.qsymm(symms, total_power=2, dim=3);

28 # step 5: calculate the representation matrices
29 kp.get_symm_matrices()
30 # (optional): adds anti-unitary symmetry
31 kp.add_antiunitary_symm(TI, np.array([0,0,0]))

32 # step 6: calculates and applies
33 # the transformation U
34 optimal = dft2kp.basis_transform(qs, kp)

35 # step 7: print results
36 optimal.print_report(sigdigits=3)

Table I. Graphene parameters for the Hamiltonian of Eq. (21).

Coefficient Values in a.u. Values in (eV, nm)

c0 ∼ 0 ∼ 0 eV

c1 0.72 0.52 eV nm

c2 ∼ 0 ∼ 0 eV nm2

c3 0.82 0.031 eV nm2
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C. Spinful graphene

To complement the example above, we consider
now the spinful graphene (full code available at
Examples/graphene.ipynb [89]). In this case, due to
the small spin-orbit coupling of graphene, the numerical
DFT basis functions from QE mixes two nearly degen-
erate irreps into a unintended reducible representation.
Nevertheless, our symmetry optimization procedure is
able to properly block diagonalize the symmetry oper-
ators accordingly to the intended representation.

Figure 2. Absolute value of the representation matrices
of the symmetry operations for the spinful graphene exam-
ple, as labeled on top of each column. The top line of
matrices are defined under the ideal basis informed by the
user, i.e. {|(X + iY )Z, ↑⟩, |(X − iY )Z, ↓⟩, |(X − iY )Z, ↑⟩,
|(X + iY )Z, ↓⟩}, as discussed in the text. The central line
shows the calculated representation matrices under the crude
DFT basis from QE, which does not split into the ideal
block-diagonal form due to the small SOC gap between the
bands. Applying our transformation U to the crude represen-
tation from the central line, we obtain the optimal symmetry
adapted basis that lead to the proper block-diagonal form of
the representation matrices shown in the bottom line.

To see this, let us first establish the ideal basis in
proper ordering that leads to the block-diagonal form of
the symmetry operators C3(z), My, Mz, and T I (consid-
ering the group generators only). Thus, considering the
spin, the basis functions now read as {|(X + iY )Z, ↑⟩,
|(X − iY )Z, ↓⟩, |(X − iY )Z, ↑⟩, |(X + iY )Z, ↓⟩}. Under
the P6/mmm double space group [103, 105], this set of
basis functions transform as the sum of two bidimensional
irreps [106], namely K̄7⊕ K̄9. Under this basis, the sym-
metry operators listed above take a block-diagonal form,
which are illustrated in the top row of Fig. 2. Alge-
braically, these read

Dideal(C3) =

−τ∗ 0 0 0
0 −τ 0 0
0 0 −1 0
0 0 0 1

 , (28)

Dideal(My) =

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , (29)

Dideal(Mz) =

i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 , (30)

Dideal(T I) =

 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

K. (31)

In contrast to the block diagonal form of theDideal(· · · )
matrices above, the representation matrix for the C3(z)
calculated with the crude DFT basis from QE takes the
form

DQE(C3) ≈−0.9− 0.1i −0.0− 0.0i +0.1 + 0.1i −0.3− 0.3i
+0.0− 0.0i −0.9 + 0.1i −0.3 + 0.3i −0.1 + 0.1i
−0.2− 0.1i +0.0− 0.4i +0.4 + 0.5i +0.3 + 0.6i
+0.0 + 0.4i +0.2− 0.1i −0.3 + 0.6i +0.4− 0.5i

 .

(32)

Similarly, the crude DFT representation for My, Mz and
T I also show non-block-diagonal forms in the central line
of Fig. 2.

The algorithm described in Sec. II C builds a system
of equations to find the transformation matrix U that
yields Dideal(S) = UDQE(S)U† for all symmetry S of
the group (i.e., S = {C3(z),My,Mz, T I} in this exam-
ple). The python code to implement this procedure is
nearly identical to Algorithm 1, requiring only (i) the ex-
pansion of setA, in Step 3, to account for the 4 bands
that compose the spinful Dirac cone (i.e., setA = [6,
7, 8, 9] in this Example); and (ii) the replacement of
the symmetry matrices from Step 4 for the ones listed
above. From these, in Step 6 we find the transformation
matrix

U ≈+0.1− 0.0i −0.1 + 0.2i −0.6− 0.6i −0.4− 0.2i
+0.1− 0.2i −0.0− 0.1i +0.4 + 0.2i −0.9− 0.0i
+0.2 + 0.2i −0.9 + 0.1i −0.1 + 0.2i +0.0 + 0.1i
−0.6− 0.7i −0.3 + 0.0i −0.1 + 0.1i +0.1− 0.2i

 ,

(33)

which precisely yields the transformation UDQE(S)U† =
Doptimal(S) ≡ Dideal(S), as illustrated in the bottom row
of Fig. 2.
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The model resulting from the considerations above
read as

Hsfg =

 c0 0 −c2k− 0
0 c0 0 −c2k+

−c2k+ 0 c1 0
0 −c2k− 0 c1



+

 c4k
2 0 −c5k2+ 0

0 c4k
2 0 −c5k2−

−c5k2− 0 c6k
2 0

0 −c5k2+ 0 c6k
2

 , (34)

where k2 = k2x + k2y, k± = kx ± iky, and we omit kz-
dependent for 2D materials. Notice that if we do not
consider the composed magnetic anti-unitary symmetry
T I, the c2 and c5 terms above split into real and imag-
inary parts. Particularly for c2, the real part refers to
matrix elements of p, while the imaginary part would
carry contributions from psoc. Nevertheless, considering
T I, these coefficients are expected to be real and the psoc

contributions to the imaginary part vanish by symmetry.
The numerical values found for the parameters of Hsfg

in Eq. (34) are shown in Table II. The Fermi velocity
matches the one from spinless graphene above, and we
find that the intrinsic spin-orbit coupling is λI = c1−c0 ≈
1 µeV, which is much smaller than its established value of
λI ≈ 24 µeV obtained via all-electron full-potential DFT
implementations [107, 108]. This discrepancy is due to
limitations of the pseudo-potentials used here with QE
[109], which do not include d orbitals. Nevertheless, this
example serves to show that, whenever two irreps are
nearly degenerate, the DFT wavefunctions might always
be mixed into reducible representations and the symme-
try optmization procedure implemented here efficiently
rotates the DFT basis back into ideal form that yield
block-diagonal reducible representations.

Table II. Spinful graphene parameters for the Hamiltonian of
Eq. (34).

Coefficient Values in a.u. Values in (eV, nm)

c0 −1.39× 10−5 −0.000189 eV

c1 −1.40× 10−5 −0.000190 eV

c2 0.72 0.518 eV nm

c4 0.049 0.0018 eV nm2

c5 −0.82 -0.031 eV nm2

c6 0.049 0.0018 eV nm2

IV. EXAMPLES

In this section we briefly show the results for a series of
selected materials without presenting a step-by-step tuto-
rial as above. More detail for each case below can be seen
in the code repository. Here we consider examples for

zincblende crystals (GaAs, HgTe, CdTe), wurtzite crys-
tals (GaN, GaP, InP), rock-salt crystals (SnTe, PbSe),
a transition metal dichalcogenide monolayer (MoS2), 3D
and 2D topological insulators (Bi2Se3, GaBiCl2). Addi-
tional examples can be found in the code repository. In
all cases the resulting models agree well with the DFT
bands near the k ·p expansion point and low energies, as
expected. The DFT parameters used in the simulations
are presented in Appendix B.

A. Zincblende crystals

We consider well known zincblende crystals: GaAs,
CdTe and HgTe. These crystals are characterized by lat-
tices that transform as the space group F4̄3m, but their
low energy bandstructure concentrates near the Γ point,
which can be described by the point group Td after factor-
izing the invariant subgroup of Bloch translations. The
basis functions and effective Kane model for these ma-
terials are well described in the literature [14, 15, 91].
Here, let us simply summarize this characterization to
establish a notation.

In all cases considered in this section, the first conduc-
tion band and the top valence bands transform either as
S or P = (X,Y, Z) orbitals, and in terms of the crystal-
lographic coordinates we define x ∥ [100], y ∥ [010], and
z ∥ [001]. In the single group Td, neglecting spin, the S-
like orbitals transform accordingly to the trivial A1 irrep
of Td, while the P-like orbitals transform as the T2 irrep.
Including spin, the double group representation for the
S-like orbitals become A1 ⊗ D1/2 = Γ̄6, where D1/2 is
the spinor representation, and it yields the spin 1/2 ba-
sis functions |S ↑⟩ and |S ↓⟩. For the P-like bands one
gets T2 ⊗D1/2 = Γ̄8 ⊕ Γ̄7, where Γ̄8 represents the basis
functions of total angular momentum 3/2, and Γ̄7 has
total angular momentum 1/2. These basis functions are
listed in Table III. For GaAs and CdTe the conduction
band is represented by Γ̄6 (S-type, and spin 1/2), the first
valence band is composed by P-type orbitals with total
angular momentum 3/2, which are described by the Γ̄8

irrep, and the split-off band contains P-type orbitals with
total angular momentum 1/2, which defines the irrep Γ̄7.
In contrast, for HgTe the Γ̄6 and Γ̄8 are inverted due to
fine structure corrections.

The basis from Table III diagonalizes the spinful ef-
fective Hamiltonian at k = 0, and leads to the well
known extended Kane Hamiltonian [15]. The expression
for the 8 × 8 Hamiltonian HZB is shown in Appendix C
in terms of the coefficients cj following the output of the
qsymm code, so that it matches Examples in our reposi-
tory. There, the notation for the powers of k follows from
Ref. [15], such that it can be directly compared to the
extended Kane model shown in their Appendix C. The
values for the coefficients cj are also shown in Appendix
C.
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Figure 3. (a) Zincblende lattice, and (b) its first Brillouin zone (FCC). The band structure for (c) GaAs, (d) HgTe, and (e)
CdTe are shown over a large energy scale on the main panels, while at the bottom of each panel we show a zoom over the
relevant low energy range. In all cases, the DFT data consider 1000 bands.

The band structures calculated from HZB are shown in
Fig. 3, which also shows the crystal lattice and the first
Brillouin zone in Figs. 3(a-b). In all cases, Figs. 3(c–e),
the blue dots represent the DFT results. The black lines
are the crude model from Eq. 4, which includes all DFT
bands and approaches a full zone description, but with a
cost of a large N×N model with typical N ≫ 100. More
importantly, the red lines represent effective 8× 8 Kane
model from HZB, which matches well the DFT data at
low energies and near Γ, as shown in the zoomed insets
below each panel for GaAs [Fig. 3(c)], HgTe [Fig. 3(c)],
and CdTe [Fig. 3(c)]. Particularly, for HgTe it is clear
the band inversion between the Γ̄6 and Γ̄8 irreps.

Table III. Basis functions for zincblende crystals. The first
column indicates the double group irreps for the Td point
group at Γ, which are induced from the single group irreps in
parenthesis. The second column lists the basis functions in
the basis of total angular momentum, and the third column
show their expressions in terms of the symmetry orbitals (S,
X, Y, Z) and spin (↑, ↓), which follows the definitions from
Ref. [15].

IRREP Td |J,mj⟩ |orb, spin⟩

Γ̄6(A1)

∣∣ 1
2
,+ 1

2

〉
|S, ↑⟩∣∣ 1

2
,− 1

2

〉
|S, ↓⟩

Γ̄8(T2)

∣∣ 3
2
,+ 3

2

〉
− 1√

2
|X + iY, ↑⟩∣∣ 3

2
,− 3

2

〉
+ 1√

2
|X − iY, ↓⟩∣∣ 3

2
,− 1

2

〉
+ 1√

6

[
2 |Z, ↓⟩+ |X − iY, ↑⟩

]
∣∣ 3
2
,+ 1

2

〉
+ 1√

6

[
2 |Z, ↑⟩ − |X + iY, ↓⟩

]
Γ̄7(T2)

∣∣ 1
2
,− 1

2

〉
+ 1√

3

[
|Z, ↓⟩ − |X − iY, ↑⟩

]
∣∣ 1
2
,+ 1

2

〉
− 1√

3

[
|Z, ↑⟩+ |X + iY, ↓⟩

]
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B. Wurtzite crystals

The wurtzite crystals form a lattice that is character-
ized by the space group P63mc, and the low energy band
structure appears near the Γ point only. Near Γ, one can
factorize the translations and the resulting factor group
is the C6V point group, which is generated by the C6

rotation around the z axis, and the mirror Mx. Here,
in terms of the crystallographic coordinates, x ∥ [100],
y ∥ [010], and z ∥ [001]. The unit cell and first Brillouin
zone for these materials are shown in Figs. 4(a) and 4(b).

To illustrate the results for wurtzite materials, we
consider the cases of GaN, GaP, and InP. Their band
structures are shown in Figs. 4(c–e). In all cases,
the top valence bands are characterized by the irreps
(A1 + E1) ⊗ D1/2 = Γ̄7 ⊕ 2Γ̄9. Here, A1 is the trivial
irrep of C6V (single group), which represents S-like and
Z-like orbitals, and E1 is the vector representation of C6V

that contains (X, Y)-like orbitals. These are composed
with the pure spinor representation D1/2 to define the
C6V double group irreps Γ̄7 and Γ̄9. Additionally, we
consider two conduction bands, which are characterized
by the irreps (A1 + B1) ⊗ D1/2 = Γ̄8 ⊕ Γ̄9. The orbital
basis function for the B1 irrep is odd under both C6 and
Mx, its representation on group character tables is cum-
bersome, so one defines it as

∣∣X(X2 − 3Y 2)
〉
≡ |V ⟩ [14].

Ultimately, we consider the double group representations
ordered as shown in Table IV.

Table IV. Basis functions for wurtzite crystals. The first col-
umn show the double group irreps of C6V , which are induced
from the single group irrep between parenthesis. The second
column show the basis representation in terms of the spherical
harmonics Y m

l and spin (↑, ↓), while the third column show
the representation in terms of the orbitals (S, X, Y, Z, V),
where V = X(X2 − 3Y 2) [14].

IRREP C6V |Y m
l , spin⟩ |orb, spin⟩

Γ̄c
9(A1)

∣∣Y 0
0 , ↑

〉
|S′, ↑⟩∣∣Y 0

0 , ↓
〉

|S′, ↓⟩

Γ̄c
8(B1)

∣∣Y 3
3 − Y −3

3 , ↑
〉

|V, ↑⟩∣∣Y 3
3 − Y −3

3 , ↓
〉

|V, ↓⟩

Γ̄v
9(A1)

∣∣Y 0
1 , ↑

〉
|Z′, ↑⟩∣∣Y 0

1 , ↓
〉

|Z′, ↓⟩

Γ̄v
9(E1)

∣∣Y 1
1 , ↑

〉
|X ′ + iY ′, ↑⟩∣∣Y −1

1 , ↓
〉

|X ′ − iY ′, ↓⟩

Γ̄v
7(E1)

∣∣Y −1
1 , ↑

〉
|X ′ − iY ′, ↑⟩∣∣Y 1

1 , ↓
〉

|X ′ + iY ′, ↓⟩

There the top indexes {c, v} refer to conduction and
valence bands. Notice that the Γ9 irrep appears in three
pairs of basis functions, which allows for the s–pz mixing
[110–112] Here, however, we always work in the diagonal
basis (HWZ is diagonal at k = 0), which is indicated
by the primes in the orbitals above. For a recent and
detailed discussion on this choice of representation and
the s–pz mixing, please refer to Ref. [113].

Using the basis functions from Table IV to calculate
the effective 10 × 10 model using qsymm, we obtain the
Hamiltonian HWZ shown in Appendix C. Here we always
consider two conduction bands, which leads to this 10×10
generic model HWZ. However, one can also opt to work
with traditional 8 × 8 models with a single conduction
band. Notice, however, that for GaP the first conduction
band transform as Γ̄8, while for GaN and InP the first
conduction band is Γ̄9. Therefore, one must be careful
when selecting the appropriate 8 × 8 model for wurtzite
materials. For the valence bands one always get Γ̄7⊕2Γ̄9,
however, the internal ordering of these valence bands may
change between materials and it can be highly sensible
to the choice of density functional [28, 60, 114, 115]. The
numerical coefficients cj found for GaN, GaP, InP are
shown in Appendix C, and the resulting band structures
are shown in Figs. 4(c–e). In all cases we see that the
crude model with 1000 bands (black lines) approaches a
full zone description, but here we are more interested in
the reduced 10×10 models (red lines), which present sat-
isfactory agreement with the DFT data at low energies.

1. Effects of the SOC corrections on Pm,n

As introduced in Sec. II D 2, the matrix elements Pm,n
can be calculated with or without the PAW corrections,
pSOC, that carry the SOC contributions. For most of
the materials we have studied here, these corrections are
marginal and the results from both cases are nearly iden-
tical. Nevertheless, we emphasize that using our patched
bands.x within QE is faster than using the python code
to calculate Pm,n via Eq. (13).

To illustrate the effects of the PAW/SOC corrections
on the matrix elements Pm,n, Fig. 5 compares the mod-
els for GaN and GaP with and without these corrections.
For the conduction bands, we notice that the pSOC cor-
rections significantly improve the GaN effective mass, but
barely affects GaP. For the valence bands, both GaN and
GaP show moderate effects of pSOC. Indeed, this shows
that a precise calculation of Pm,n is critical to improve
the precision of the models [116].
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Figure 4. (a) Lattice and (b) Brillouin zone for wurtzite crystals. Band structures for (c) GaN, (d) GaP and (e) InP showing
the large energy range on top, and a zoom showing the top of the valence bands at the bottom of each panel. In all cases, the
DFT calculation considers 1000 bands.

Figure 5. Comparison between the DFT data and the ef-
fective models calculated with the full matrix element Pm,n

including PAW/SOC corrections (red lines) and the simpli-
fied Pm,n without PAW/SOC corrections (green lines) for (a)
GaN and (b) GaP.

C. Rock-salt crystals

The crystal lattice for rock-salt crystals is shown in
Fig. 6(a), which is an FCC lattice with two atoms in the
base, and it is described by the space group Fm3̄m. The

low energy band structure concentrates at the L point
of the Brillouin zone shown in Fig. 6(b), which trans-
forms as the D3D point group after factorizing the Bloch
translations. The basis functions for the first valence
and conduction bands transform as A1g ⊗ D1/2 = L̄+

6

and A2u ⊗ D1/2 = L̄−
6 , where A1g is the trivial ir-

rep for S-like orbitals, and A2u represent Z-like orbitals
[117]. Therefore, the basis functions for the L̄+

6 bands
are {|S, ↑⟩ , |S, ↓⟩}, and for L̄−

6 one gets {|Z, ↑⟩ , |Z, ↓⟩}.
Here, the x, y, and z coordinates are taken along the
[1̄1̄2], [11̄0],and [111] crystallographic directions.

Here we consider two examples of rock-salt crystals:
PbSe and SnTe. Their effective 4 × 4 Hamiltonian HRS

under the L̄±
6 basis, and its numerical parameters are

shown in Appendix C, and the comparison between DFT
and model band structures are shown in Figs. 6(c)–(d).
PbSe is a narrow gap semiconductor, where the conduc-
tion band transform as the L̄+

6 irrep, and the valence
band as L̄−

6 . In contrast, SnTe show inverted bands,
with L̄+

6 below L̄−
6 , yielding a topological insulator phase

[118, 119]. In both cases the low energy model captures
the main features of the bands, including the anisotropy.
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Figure 6. (a) The rock salt lattice and (b) its Brillouin zone
(FCC). Band structures for (c) PbSe and (d) SnTe. The bot-
tom of each panel zooms into the low energy range near the
Fermi level. Both DFT calculations were performed consid-
ering 500 bands.

D. Other examples

To finish the set of illustrative examples, we show here
the case for: (i) the monolayer MoS2, which is one of the
most studied transition metal dichalcogenides (TMDC)
[120–122]; (ii) the bulk bismuth selenide (Bi2Se3), which
is one of the first discovered 3D topological insulators
[123, 124]; and (iii) a monolayer of GaBiCl2, which is
a large gap 2D topological insulator [125]. The symme-
try characteristics and basis functions for the low energy
bands of these materials mentioned above are summa-
rized in Table V.

Table V. Summary of space group, irreps and basis functions
for the low energy bands of MoS2, GaBiCl2, and Bi2Se3. The
first column lists the materials, the second indicates the lattice
space group and the little group at the relevant k point. The
third and fourth columns lists the irreps and basis functions
for the low energy bands in each case. The table show the
double group irreps and the corresponding single group irreps
between parenthesis.

Material Group info IRREP Basis

MoS2

Space group K̄11(E
′
1) |X + iY, ↑⟩

P6̄m2 K̄10(E
′
1) |X + iY, ↓⟩

Little group K̄8(A
′) |S, ↑⟩

K: C3h K̄9(A
′) |S, ↓⟩

GaBiCl2

Space group
Γ̄4(E) |X + iY, ↑⟩

Γ̄5(E) |X − iY, ↓⟩

P3m1
Γ̄6(E)

|X − iY, ↑⟩

Little group
|X + iY, ↓⟩

Γ̄6(A1)
|Z ↑⟩

Γ: C3V |Z ↓⟩

Bi2Se3

Space group
Γ̄+
6 (A1g)

|S, ↑⟩

R3̄m |S, ↓⟩

Little group
Γ̄−
6 (A2u)

|Z, ↑⟩

Γ: D3d |Z, ↓⟩

For MoS2, the first valence and conduction bands are
given by the single group irreps A′ and E′

1 of the C3h

group [39, 126], which can be represented as S-like and
(X + iY )-like orbitals. For GaBiCl2, the valence bands
are characterized by single group E irrep, and it splits
into E⊗D1/2 = Γ̄4⊕Γ̄5⊕Γ̄6 in the spinful case, while the
conduction band is given by the irrep A1⊗D1/2 = Γ̄6. For
Bi2Se3, a detailed derivation of the effective model can
be seen in Ref. [127], which shows that the first valence
and conduction bands are given by A1g⊗D1/2 = Γ+

6 , and
A2u ⊗D1/2 = Γ−

6 .
The effective Hamiltonians and its numerical coeffi-

cients for these materials can be found in the Examples
folder of the code repository. Here we show only the com-
parison between the DFT and model band structures in
Fig. 7. The MoS2 case, as shown in Fig. 7(a), is challeng-
ing for a k · p method, since its band structure presents
valleys in between high symmetry points. Consequently,
the 4 bands model (red lines) captures only the nearly
parabolic dispersion at the K point.
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Figure 7. Band structures for: (a) MoS2, (b) GaBiCl2, and (c) Bi2Se3 showing only the relevant low energy range. The DFT
calculations were performed for 1000, 500, 500 bands, respectively. (d) Rhombohedral lattice of Bi2Se3 and 2D hexagonal
lattice of (e) MoS2 and (f) GaBiCl2, where we have omitted the vacuum region (15 Å) perpendicular to the plane formed by
vectors A1 and A2. (g) 2D Brillouin zone common to MoS2 and GaBiCl2, and (h) 3D BZ of Bi2Se3.

However, the crude all bands model (black lines, see
Eq. (4)) approaches a full zone description and captures
the the valley along the Γ–K direction. For GaBiCl2,
Fig. 7(c), the 6 bands model describes satisfactorily the
low energy conduction and valence bands. For Bi2Se3
in Fig. 7(b) the 4 bands model captures well the low
energy band structure near Γ, including the hybridization
between the inverted bands.

V. DISCUSSIONS

Above, we have presented illustrative results of the ca-
pabilities of our code to calculate the k · p Kane and
Luttinger parameters for a series of relevant materials.
In all cases we see a patent agreement between the DFT
(QE) data and the low energy models near the relevant
k0 point. However, it is important to notice that here
we use only PBE functionals [128], consequently it often
underestimates the gap (e.g. 0.5 eV instead of 1.5 eV for
GaAs). Therefore, our models are limited by the quality
of the DFT bands, and the resulting numerical param-
eters might not match Kane and Luttinger parameters
for well known materials, for which these parameters are
typically chosen to match the experimental data, and not
the DFT simulations.

For instance, let us consider the zincblende crystals
Kane parameter EP = 2m0P

2/ℏ2, band gap Eg and ef-
fective mass for the conduction band m∗. For GaAs, the
experimental values are EP ∼ 24 eV, P ∼ 0.96 eVnm,
Eg ∼ 1.5 eV, and m∗ = 0.065m0 [58]. As mentioned
above, the DFT results with PBE functionals underes-

timates the gap, and we get Eg ∼ 0.5 eV. Moreover,
the Kane parameter can be written as P = −

√
6c5/2,

where the coefficient c5 = −0.635 eVnm is shown in
Appendix C. This value yields P ∼ 0.7 eVnm and
EP ∼ 16 eV. The effective mass for the conduction
band can be estimated from its spinless expression [47],
m0/m

∗ = 1+2m0P
2/Egℏ2, which give usm∗ = 0.031m0.

While these numbers to not match well with the exper-
imental values, we notice that if we fix the GaAs gap
(scissors-cut approximation), but keep our value for P ,
we find m∗ = 0.058m0, which is already much closer to
the experimental value for the effective mass.

The number estimates shown above clearly indicates
that the quality of our models are limited the DFT sim-
ulations only. Particularly, the gap issue can be fixed if
one replaces the PBE functionals with hybrid functionals,
GW calculations, or other methods that improve the ma-
terial gap accuracy. These are beyond the scope of this
paper, but it is possible path for future improvements of
our code.

In all examples presented here, we always consider the
crude all bands model from Eq. (4), and the optimal
symmetry-adapted (few bands) model from Eq. (5). This
raises two interesting questions: (i) how many bands are
necessary for convergence? And (ii) for a large number of
bands, should we get a full zone description? We discuss
these questions below.
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A. Convergence

The convergence threshold (how many bands are nec-
essary) strongly depends on the material. In some cases
∼ 300 bands is sufficient, but in others it often needs
∼ 1000 bands. We do not have a general rule to estab-
lish which materials will show a slow or fast convergence.
Nevertheless, we believe it is instructive to discuss the
outcomes of our convergence analysis.

Notice that the the Löwdin partitioning from Eq. (5)
has two distinct contributions. The first two terms in
Eq. (5) are the zeroth and first order perturbation terms.
These terms do not change as we increase the number
of DFT bands (provided that there are enough bands to
converge the DFT calculation itself). The zeroth order
term is essentially given by the DFT eigenstates, and
the first order terms is given by the matrix elements
⟨m|H ′(k) |n⟩ = 2k · Pm,n between eigenstates of set A,
which is the low energy sector of interest. In contrast, the
third term defines the second order corrections, which are
quadratic in k (assuming a diagonal basis at k = 0). In
this case, the second order contributions depend explic-
itly on the sum over the remote set of bands B. These
are the the terms that strongly depend on the number of
remote bands.

To check for the convergence, we plot the values of the
Hamiltonian coefficients cj associated with second order
corrections as a function of the number of remote bands.
In the Examples folder in the code repository, one finds
these plots for all cases presented in this paper. Here, in
the top panels of Fig. 8, we select a few illustrative cases.
In the bottom panels of Fig. 8 we combine the discrete
derivatives of cj into a single dimensionless metric for
convergence C(N), which read as

C(N) =

∑
j |cj(N + 1)− cj(N)|∑

j |cj(N)|
, (35)

where cj(N) refers to the coefficient calculated using N
remote bands. With increasing N , the coefficients are
expect to converge, consequently C(N) → 0. The data for
C(N) is shown in blue dots on the bottom panels of Fig. 8,
which is significantly noisy due to the discrete jumps on
the evolution of cj with increasing N . Therefore, we also
plot a moving average C(N) (orange lines) to clearly show
the convergence. For spinless graphene in Fig. 8(a), there
are only two second order cj terms (neglecting terms with
kz, since it is a 2D material), and we see that it reaches
convergence with less than 300 remote bands.

In contrast, for MoS2, the convergence requires at least
∼ 500 remote bands. Interestingly, it has been recently
shown that TMDC materials indeed require a large num-
ber of bands to converge the orbital angular momenta
[42–45]. This fact may be associated to the large number
of unoccupied bands with plane-wave character that ap-
pear due to the spatial extension of the vacuum region.
The GaN and GaP cases in Figs. 8(c)–(d) is an inter-
esting case, they belong to the same class of materials,

but GaP reaches convergence with ∼ 200 remote bands,
while GaN is not yet fully converged for ∼ 1000 remote
bands. Unlike monolayer materials, GaN compound is
not described by any vacuum region, and therefore we
speculate that such poor convergence may be related to
details of the pseudopotential [100] and the electronega-
tivity of Nitrogen.

B. Full zone kp

In Section II A we have presented the k·p method in its
traditional form, which considers a perturbative expan-
sion of the Bloch Hamiltonian at a reference momentum
k0, and a small set of bands near the Fermi energy. Usu-
ally, one expects the resulting effective model to be valid
only near k0 and only for a small energy range that en-
closes the bands of interest. In contrast, within the full
zone k ·p approach [66, 129–133] one considers a large set
of bands, such that the resulting low energy model agree
well with DFT or experimental bands over the full Bril-
louin zone, instead of only the vicinity of k0. However,
to achieve this precision, one needs to apply fitting pro-
cedures to assure that the bands match selected energy
levels at various k points over the Brillouin zone.

Here, in our code, we can easily select an arbitrary
number of bands to build the effective models. All ex-
amples presented above show sets of bands colored in
red and black, such that the red ones consider models
built from a small set of bands A (from 4 to 10 bands),
while the black ones consider the full set of bands from
the DFT data (typically 500 or 1000 bands). This leads
to an interesting question: should our all bands model
match the full zone k · p models?

To answer this question, let us focus first on the
graphene results from Fig. 1. There, we have seen that
the QE/DFT and the model agree remarkably well at
low energies near the K point, as expected. Particularly,
the red line for the optimal symmetry-adapted model de-
scribes precisely the low energy regime and Dirac cone
and the trigonal warping from the quadratic terms in
Eq. (21). In contrast, when we consider the all bands
model (black lines), we see that the model approaches a
full zone agreement with 300 bands. What if we consider
more bands? Our numerical tests have shown that in-
creasing the number of bands does improve the overall
description, approaching the full zone agreement. How-
ever, this is a very slow convergence and we never really
reach a true full zone agreement. This characteristic is
seen in all other examples shown here.

For GaAs, Gawarecki and collaborators [133] show an
excellent full zone agreement between model and DFT
bands considering 30 bands. In contrast, our results pre-
sented in Fig. 3(a) for 8 (red) and 1000 (black) bands
remain valid only in the vicinity of Γ. The key differ-
ence is the fitting procedure. The full zone models fit the
bands over the full Brillouin zone, while in our approach
we consider only the direct ab-initio matrix elements of
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Figure 8. Convergence of the second order coefficients cj as a function of the number of remote bands for (a) spinless graphene,
(b) MoS2, (c) GaN, and (d) GaP. On top (a1–d1), each panel shows the coefficients cj for different material. On panels (c1)
and (d1) we omit the legends because there are 30 distinct coefficients, ranging from c22 to c51, which make their individual
identification cumbersome, and it is sufficient to visualize that they all lines become nearly flat for a large number of remote
bands. On the bottom (a2–d2), for each material, the evolution of the coefficients cj are combined into convergence metric set
by Eq. (35) (blue dots). Due to the noise induced by the discrete derivative in this metric, we plot the moving average of the
data as guide for the eyes.

π = p+ pSOC without further manipulation.
If one needs a full zone model, we suggest using our

results as the initial guess for the parameters used on a
band fitting algorithm. Moreover, since the fitted param-
eters must not deviate significantly from our ab-initio re-
sults, our calculated values provide an important bench-
mark for the fitting results. Alternatively, it might be
possible to develop multi-valley k ·p models [68, 70, 134]
and extract its parameters directly from DFT matrix el-
ements without numerical fitting procedures, but this is
beyond the scope of this work.

VI. CONCLUSIONS

We have implemented a numerical framework to cal-
culate the k · p Kane and Luttinger parameters and op-
timal symmetry-adapted effective Hamiltonians directly
from ab initio wave-functions. The code is mostly writ-
ten in python, but also contains a patch to modify the
Quantum ESPRESSO code, such that its bands.x post
processing tool is used to calculate the matrix elements
Pm,n = ⟨m|π |n⟩, which is the central quantity in our
methodology. Consequently, this first version works only
with Quantum ESPRESSO. Equivalent calculations can
be done in other DFT codes (e.g. VASP [5], Wien2k [6]),
but it requires further developments. The code is open
source and it is available at Ref. [89].

Here, we have illustrated the capabilities of our code

applying it to a series of relevant and well known materi-
als. The resulting effective models yield band structures
that match well the DFT data in the low energy sector
near the k point used for the wave-function expansion.
Therefore, our code provides an ab initio approach for
the k · p numerical parameters, which can be contrasted
with fitting methods [60, 76–78, 133], in which the numer-
ical coefficients are obtained by numerically minimizing
the residue difference between the DFT and model band
structures over a selected range of the Brillouin zone.
These fitting procedures work well in general, but require
a careful verification if the fitted parameters are reason-
able. In contrast, our ab initio approach is automatic
and fully reliable. Nevertheless, fitting procedures can
improve the agreement between DFT and model band
structures significantly. In this case, we suggest that our
code can be used (i) to generate the initial values for the
fitting parameters, and (ii) to verify if the fitted param-
eters show reasonable values. One should expect that
fitted parameters must not deviate much from our ab
initio values.

Here we do not perform a thorough comparison of our
numerical parameters with experimental data. Typically,
to obtain precise agreement with experimental data, one
needs to fix the gap issue by using either hybrid func-
tionals or GW calculations, which are beyond the scope
of this first version of the code. Instead, here we use
only PBE functionals [128] for simplicity, which is reli-
able enough to validate our approach. Consequently, our
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numerical parameters are limited by the precision of the
DFT simulation, and we would not expect remarkable
agreement with experimental data for most materials at
this stage. Nevertheless, for novel materials, for which
there is no experimental data available, our code can
be used to generate reliable numerical parameters that
can be improved later, either in comparison with future
experiments, or by extending our method to work with
hybrid functionals or GW calculations.

As a final disclaimer, we would like to state that after
developing the first version of the code, we have found
that Ref. [86] recently proposes an equivalent approach
to build k · p models from DFT, but the authors do not
provide an open source code. In any case, despite the
similarities, the development of our code was done inde-
pendently from their proposal. In practice, the only sig-
nificant difference between the proposals is the approach
to calculate the transformation matrix U (see Section
IIC). While the authors of Ref. [86] follow the method
from [95], here we propose a different method that is more
efficient for transformations involving reducible represen-

tations, which is necessary when dealing with nearly de-
generate bands of different irreps (e.g., spinful graphene).
Additionally, after the initial submission of our paper, a
new code VASP2kp [135] was released with functionalities
similar to ours, but designed for VASP [5] instead of QE.
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Appendix A: Mass-velocity corrections are negligible

Consider the full Hamiltonian with all fine structure
corrections as

H = p2 + V (r) +HMV +HD +HSOC, (A1)

HMV = −α
2p4

4
, (A2)

HD =
α2

8
∇2V (r), (A3)

HSOC =
α2

4
[σ ×∇V (r)] · p. (A4)

Applying the Bloch theorem ψκ(r) = eik·rϕk0,k(r) for
κ = k0 + k, the k · p Hamiltonian becomes Hkp = H0 +
k2 + H ′, where H0 = p2 + V (r) + 2k0 · π + HSR, and
HSR contain the k = 0 contributions from HMV+HD, as
presented in the main text. The perturbation for finite
k ̸= 0 is H ′ = 2k · π + H ′

MV, where H ′
MV contains the

finite k contributions from the mass velocity term, and
it reads as

H ′
MV = −α

2

4

[
4(k · p)p2 + 4(k · p)2

+ 4(k)2(k · p) + 2k2p2 + k4
]
. (A5)

These corrections are negligible for small k, i.e. |H ′
MV| ≪

|2k · π|. Notice that the SOC term in 2k · π has two
contributions, one is of order ∼ |kp| and the other is
∼ |kα2|. In contrast, the contributions to H ′

MV are ∼
|α2kp3|, ∼ |α2k2p2|, ∼ |α2k3p|, and ∼ |α2k4|. Therefore,
all terms in H ′

MV are of higher order than those in 2k ·π,
and we can safely assume H ′ ≈ 2k · π.

Appendix B: DFT parameters

The first principles calculations are performed using
the density functional theory (DFT) [1, 2] within the gen-
eralized gradient approximation (GGA) for the exchange
and correlation functional, employing the Perdew-Burke-
Ernzerhof (PBE) parametrization [128]. We employ the
non-colinear spin-DFT formalism self-consistently with
fully relativistic j-dependent ONCV (Optimized Norm-
Conserving Vanderbilt) pseudopotential [99]. The Quan-
tum ESPRESSO (QE) package [3, 4] was used, with a
plane waves base configured with a given cut-off energy
and the Brillouin zone sampled with a number of k-points
(Monkhorst-Pack grid) so that the total energy con-
verged within the meV scale (see Table VI). The ONCV
pseudopotentials compatible with Quantum ESPRESSO
package are available in the repository [109]. The vac-
uum space in two-dimensional materials was set to 15
Å. Atomic structures were optimized with a criterion
that requires the force on each atom being less than 0.01
eV/Å. Additional parameters used in our simulations in-
cluding QE input and output files can be found in the
Examples folder of the code repository [89].

Table VI. Criteria used for the convergence of the total en-
ergy: cut-off energy for the expansion in plane waves and the
number of k-points taken for sampling the Brilhouin zone us-
ing the Monkhorst-Pack technique.

Material cut-off energy BZ sample

Graphene 80 Ry 12x12x1

GaAs 100 Ry 8x8x8

HgTe 50 Ry 8x8x8

CdTe 60 Ry 8x8x8

GaN 100 Ry 8x8x8

GaP 150 Ry 8x8x8

InP 100 Ry 7x7x7

PbSe 100 Ry 7x7x7

SnTe 100 Ry 8x8x8

MoS2 100 Ry 8x8x1

Bi2Se3 60 Ry 7x7x7

GaBiCl2 100 Ry 8x8x1

Appendix C: Effective Hamiltonians and coefficients

Here we present the large Hamiltonians and table of
parameters for the materials presented in the main text.
These correspond to the zincblende crystals for Fig. 3,
wurtzite crystals of Fig. 4, and rock-salt crystals of Fig. 6.
For the other examples shown in Fig. 7, the correspond-
ing Hamiltonians and numerical parameters can be seen
in Examples folder in the code repository.

Table VII. Table of parameters for the zincblende materials,
where the coefficients cn refer to the terms of HZB in the
equation listed in Table X. The coefficient c0 is negative for
HgTe due to the Γ6–Γ8 band inversion.

Zincblende GaAs HgTe CdTe
c0 (eV) 0.403 -1.16 0.36
c1 (eV) 0.00011 2.23e-05 3.68e-05
c2 (eV) -0.335 -0.773 -0.851

c3 (eV nm) 0.000486 -0.0117 0.00232
c4 (eV nm) 0.00268 -0.023 0.00499
c5 (eV nm) -0.635 -0.543 0.559
c6 (eV nm) -0.436 0.341 0.363
c7 (eV nm2) 0.0293 0.0354 0.0347
c8 (eV nm2) -0.0978 -0.0772 -0.0577
c9 (eV nm2) -0.0437 -0.0339 -0.0262
c10 (eV nm2) -0.0321 0.0128 -0.0153
c11 (eV nm2) -0.0608 -0.0375 -0.0303
c12 (eV nm2) -0.000588 -0.0036 -0.000109
c13 (eV nm2) 0.0632 0.0558 0.0398
c14 (eV nm2) 0.0397 -0.0259 0.0231
c15 (eV nm2) -0.0362 0.0479 0.0361
c16 (eV nm2) -0.0275 -0.0349 0.0261
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The numerical coefficients for the zincblende, wurtzite
and rock-salt materials are shown in Tables VII, IX,
and VIII, respectively. These correspond to the effec-
tive Hamiltonians shown in Tables X, XI, and XII. In
all cases we use k± = kx ± iky, k2 = k2x + k2y + k2z ,
k2∥ = k2x+k

2
y, K̂ = k2x−k2y, which is also used in Appendix

C of Ref. [15].

Table VIII. Table of parameters for the rock-salt materials,
where the coefficients cn refer to the terms of HRS in the
equation listed in Table XII.

Rock-salt PbSe SnTe
c0 (eV) 0.235 0.125
c1 (eV) 0.284 0.000141

c2 (eV nm) 0.168 0.193
c3 (eV nm) -0.122 -0.111
c4 (eV nm2) -0.134 -0.713
c5 (eV nm2) 0.223 0.214
c6 (eV nm2) 0.119 0.637
c7 (eV nm2) -0.151 -0.158

Table IX. Table of parameters for the wurtzite materials,
where the coefficients cn refer to the terms of HWZ in the
equation listed in Table XI.

Wurtzite GaP GaN InP
c0 (eV) 1.75 1.76 0.457
c1 (eV) 9.73e-06 -1.16e-07 1.4e-07
c2 (eV) -6.28e-06 -5.09e-09 -4.07e-06
c3 (eV) 1.31 4.11 1.1
c4 (eV) -0.208 -0.0405 -0.162
c5 (eV) 4.7e-08 0.000658 6.89e-09
c6 (eV) -0.0442 -0.00602 -0.0395
c7 (eV) 7.82e-05 -7.29e-05 8.11e-05

c8 (eV nm) 0.00448 0.00586 -0.0112
c9 (eV nm) 0.00214 0.00075 0.0137
c10 (eV nm) 0.118 -0.0733 -0.184
c11 (eV nm) 0.455 -0.372 -0.392
c12 (eV nm) -0.472 -0.381 0.436
c13 (eV nm) -0.00429 -0.00428 -0.0195
c14 (eV nm) 0.00811 0.0024 0.0223
c15 (eV nm) 0.0234 0.0128 0.0301
c16 (eV nm) -0.0268 0.0134 -0.0428
c17 (eV nm) -0.0112 -0.00416 -0.0377
c18 (eV nm) 0.0055 -0.00109 0.0202
c19 (eV nm) 0.801 -0.568 -0.616
c20 (eV nm) 0.214 -0.116 -0.298
c21 (eV nm) -0.00918 -0.00423 -0.0294
c22 (eV nm2) 0.0203 0.0266 0.0282
c23 (eV nm2) 0.0182 0.00155 -0.0109
c24 (eV nm2) 0.00486 0.000225 -0.00585
c25 (eV nm2) -2.32e-05 8.08e-05 -0.000406
c26 (eV nm2) 0.273 0.128 0.264
c27 (eV nm2) -0.0267 -0.0151 -0.0262
c28 (eV nm2) 0.00735 0.00235 0.00881
c29 (eV nm2) -0.00672 0.00214 -0.00733
c30 (eV nm2) -0.0558 -0.0259 -0.0411
c31 (eV nm2) 0.0285 -0.0109 0.0178
c32 (eV nm2) -0.0581 -0.0255 -0.0433
c33 (eV nm2) -0.000342 0.00025 0.000387
c34 (eV nm2) 0.00537 -0.00331 -0.00541
c35 (eV nm2) 0.0223 -0.0176 -0.017
c36 (eV nm2) 0.0241 0.0197 -0.0248
c37 (eV nm2) 0.00671 0.000335 -0.00687
c38 (eV nm2) 0.0214 0.00371 -0.00757
c39 (eV nm2) -0.0229 0.0034 0.0112
c40 (eV nm2) 0.00903 -0.000739 0.00432
c41 (eV nm2) -0.00964 -0.000377 -0.0054
c42 (eV nm2) 0.00366 -0.000194 0.00471
c43 (eV nm2) -7.74e-05 4.97e-06 0.000177
c44 (eV nm2) 0.0266 0.0241 0.0318
c45 (eV nm2) -0.0156 -0.00776 0.00148
c46 (eV nm2) -0.00304 -0.00173 -0.0025
c47 (eV nm2) 0.0326 0.0175 0.031
c48 (eV nm2) -0.0661 -0.0482 -0.0636
c49 (eV nm2) -0.0107 -0.00713 -0.0205
c50 (eV nm2) -0.0334 -0.0158 -0.0379
c51 (eV nm2) -0.0294 -0.0139 -0.0242
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Table XII. Effective Hamiltonian for rock-salt crystals considering the 4× 4 model composed by the L±
6 irreps of D3D.

HRS =


c0 + c4k

2 + c6 (kxky + kxkz + kykz) 0
0 c0 + c4k

2 + c6 (kxky + kxkz + kykz)
−c2 (kx − ky)− ic3 (kx + ky + kz) c2 (−ik− + kz (1 + i))

c2 (ik+ + kz (1− i)) c2 (kx − ky)− ic3 (kx + ky + kz)

−c2 (kx − ky) + ic3 (kx + ky + kz) c2 (−ik− + kz (1 + i))
c2 (ik+ + kz (1− i)) c2 (kx − ky) + ic3 (kx + ky + kz)

c1 + c5k
2 + c7 (kxky + kxkz + kykz) 0

0 c1 + c5k
2 + c7 (kxky + kxkz + kykz)


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The k · p methodand group theoryprovide straightforward analytical expressions for
:
,
::::::::
combined

::::
with

:::::
group

::::::
theory,

::
is

::
an

:::::::
efficient

::::::::
approach

:::
to

:::::
obtain

:
the low energy effective Hamiltonians of crys-

talline materials, however it does not provide the numerical values for its coefficients . These are
typically cast

:
.
::::::::
Although

:::
the

:::::::::::
Hamiltonian

:::::::::
coefficients

:::
are

::::::
written

:
as matrix elements of the general-

ized momentum operator π = p+ pSOC , which includes
::::::::
(including

:
spin-orbit coupling corrections.

Their numerical values are usually obtained by fitting either experimental data, or fitting the
:
),

::::
their

::::::::
numerical

::::::
values

:::::
must

:::
be

::::::::::
determined

::::
from

:::::::
outside

:::::::
sources,

::::
such

:::
as

::::::::::
experiments

:::
or

:
ab ini-

tio band structure. Here
:::::::
methods.

::::::
Here, we develop a code to explicitly calculate the Kane and

Luttinger
::::::
(linear

::
in

::::::
crystal

:::::::::::
momentum)

::::
and

::::::::
Luttinger

:::::::::
(quadratic

:::
in

::::::
crystal

::::::::::
momentum)

:
param-

eters of k · p effective Hamiltonians directly from ab initio wave-functions provided by Quantum
Espresso

::::::::::
ESPRESSO. Additionally, the code analyzes the symmetry transformations of the wave-

functions to optimize the final Hamiltonian. This an optional step in the code, where it numerically
finds the unitary transformation U that rotates the basis towards an optimal

:::::::::::::::
symmetry-adapted

representation informed by the user. Throughout the paper we present the methodology in detail,
and illustrate the capabilities of the code applying it to a selection of relevant materials. Particularly,
we show a “hands on” example on how to run the code for graphene

::::
(with

::::
and

::::::
without

:::::::::
spin-orbit

::::::::
coupling). The code is open source and available at https://gitlab.com/dft2kp/dft2kp.

I. INTRODUCTION

The band structure of crystalline materials define most
of its electronic properties, and its accurate description
is essential to the development of novel devices. For this
reason, the ab initio density functional theory (DFT)
[1, 2] provides one of the most successful tools for the
development of electronics, spintronics, optoelectronics,
etc. The DFT methods have been implemented in a se-
ries of codes (e.g., Quantum Espresso

:::::::::::
ESPRESSO [3, 4],

VASP [5], Wien2K [6], Gaussian [7], DFTB+ [8], Siesta
[9, 10], ...), which differ by the choice of basis functions
(e.g., localized orbitals or plane-waves), pseudo-potential
approximations, and other functionalities. Nevertheless,
all DFT implementations provide methods to obtain the
equilibrium (relaxed) crystalline structure, phonon dis-
persion, and electronic band structures. Complementary,
few bands effective models are essential to further study
transport, optical, and magnetic properties of crystalline
materials. These can be developed either via the tight-
binding (TB) [11–13] or k ·p method [14, 15], which com-
plement each other.

On the one hand, the TB method has an “atomistic”
nature, since it is built upon localized basis sets (e.g.,
maximally-localized Wannier functions [16], or atomic or-
bitals), which makes this method optimal for numerical
modeling of transport, optical and other properties of
complex nanomaterials [17–20].

On the other hand, the k · p method uses basis sets of
extended waves, which are exact solutions of the Hamilto-
nian at the relevant

:
a
:
quasi-momentum

:
of

:::::::
interest, typ-

ically at a high symmetry point of the Brillouin zone.
While this characteristic may limit the k · p descrip-

tion to a narrow region of the energy-momentum space,
the k · p Hamiltonians are easier to handle analytically
and, specially, are very suitable to study mesoscopic sys-
tems using the envelope function approximation [21–26].
For example, the k.p framework has been successfully
applied to study nanostructures (quantum wells, wires,
and dots) [27? , 28]

::::::
[27–29], topological insulators [30–

32], spin-lasers [33, 34], polytypism [35–37], as well as a
large variety of two-dimensional van der Waals materi-
als [38–41]. Moreover, recent developments in the field
of transition metal dichalcogenides (TMDCs) have com-
bined DFT and k ·p methodologies to explore the valley
Zeeman physics in TMDC monolayers and their van der
Waals heterostructures [42–45].

Both the TB and k · p Hamiltonians are defined in
terms of arbitrary coefficients. In the TB case, these are
local site energies and hopping amplitudes described by
Slater-Koster matrix elements [11]. For the k · p Hamil-
tonians, these are the Kane [46, 47] and Luttinger [48]
parameters, which are matrix elements of the momen-
tum and spin-orbit coupling operators. In all cases, the
coefficients are typically obtained either (i) comparing
the theoretical predictions (band structure, transport, or
optical properties) to available experimental data [15, 49]
, or (ii)

::::
both

::::::::
methods

::::
(TB

:::
or

:
k · p

:
),

::::
the

::::::
values

::
of

:::::
these

::::::::
arbitrary

::::::::::
coefficients

:::::
must

:::
be

:::::::::::
determined

:::::
from

:::::::
outside

:::::::
sources,

:::::
which

::::::::
strongly

:::::::
depend

::
on

::::
the

:::
size

::::
and

:::::::::
analytical

:::::::::
properties

::
of
::::

the
::::::::::

particular
::::::
model

:::::::::::::
Hamiltonian.

:::::
For

::::::::
instance,

:::::
early

:::::::
studies

::::::
within

::::
the

:
k · p

:::::::::
framework

:::::
have

:::::
shown

:::::
that

::::
for

:::::::::
parabolic

::::::
single

:::::
band

::::::::::::
descriptions,

:::
or

::::::
weakly

::::::::
coupled

::::::::
models,

:::
it

:::
is

::::::::
possible

:::
to

::::::
write

::::
the

::::::::
quadratic

::::::::::
coefficients

:::
in

:::::
terms

:::
of

:::::::
effective

:::::::
masses,

::::::
which

:::
can

:::
be

:::::::::::::
experimentally

::::::::::
determined

:::
by

::::::::
cyclotron

:::::::::
resonance

https://gitlab.com/dft2kp/dft2kp
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:::::::::::
experiments

::::::::::
[46, 50–53]

:
.
:::::::::::

Moreover,
::::::
energy

::::::::::
splittings,

::::
such

:::
as

:::::
band

::::::
gaps,

::::
can

:::
be

::::::::
directly

:::::::::::
determined

:::::
from

::::::
optical

:::::::::::
experiments

:::::::
[54–58]

:
.
:::::

For
:::::
III-V

::::::::::::::
semiconductors

::::
with

::::::::::
zinc-blend

:::::::::
structure

:::::
and

:::::::::::::
nitride-based

::::::::
wurtzite

::::::::::
compounds,

::
a
:::::
useful

:::::::::
database

::
for

:
k·p

::::::::::
parameters

:::::::
inspired

::
by

::::::::::::::
experimentally

:::::::::
available

::::::::
datasets

::::
can

:::
be

::::::
found

:::
in

::::
Ref.

:::
[49]

:
.
:::::::::::
Conversely,

:::
for

:
k · p

:::::::::::
Hamiltonians

:::::
that

:::
do

:::
not

::::
allow

::::::::::
analytical

:::::::::
solutions,

::::
but

::::
still

:::::
have

::
a
::::
low

:::::::
number

::
of

::::::
bands

:::::::
(∼ 10),

:::
it

::
is
::::::::

possible
:::

to
:::::::::

perform
:::::::::
numerical

:::::
fitting

:::::::::::
techniques

:::
to

:::::
DFT

:::::::::::
calculations

::::::::::::::
[39, 41, 59–65]

:
.
:::::

For
::::::
larger

:
k · p

::::::::::::
Hamiltonians

::::::
(> 30

::::::::
bands),

:
fitting

to the DFT data [39, 41, 59, 61, 63? ]. For instance,
the

:::::::::
procedures

:::::
may

::::
also

:::
be

:::::::
applied

::::::::
[66, 67]

::
or

:::::::
directly

::::::::
extracted

::::::
from

::::
first

::::::::::
principles

::::::::::::
calculations

:::::
since

::::
the

::::
only

::::::
matrix

:::::::::
elements

::::::::
involved

:::
are

::::::
linear

:::
in

::::::::::
momentum

::::::
[68–70]

:
.
::::::::::::
Interestingly,

:::::
these

:::::
large

::::::
band k · p

::::::
models

::::
can

::::
even

:::
be

::::
used

:::
to

::::::::::
supplement

::::
and

::::::::
speedup

::::
first

:::::::::
principles

:::::::::::
calculations,

:::
as

::::::::::::
demonstrated

:::
in

:::::
Refs.

:::::::
[68–70]

:
.
:::

In
::::

TB
:::::::
models,

::::::
fitting

::::::::::
procedures

::::
can

::::
also

::
be

:::::::
applied

:::
to

::::::
obtain

:::
the

:::::::::
unknown

:::::::::::
parameters

:::::::
[71–75]

:
.
:::::::::::::

Conversely,
:::::
fully

:::::::::
automated

:::::::::::
procedures,

:::::::::
integrated

::::::
within

:::
ab

:::::
initio

:::::
codes,

::::
such

::
as

::::
the wannier90 code [76, 77] obtains optimal TB

models by fitting the DFT data. Additionally, TB
models can be numerically obtained directly

::::
code

:::::::
[76, 77]

:
,
::::
uses

:::::::::
localized

::::::::
Wannier

:::::::::
functions

:::::::::
computed

:
from the

DFT atomic orbitals by the explicitly
::::
wave

:::::::::
functions

::
to

::::::::
calculate

::::
TB

:::::::::::
parameters.

:::::::::::
Moreover,

:::::::
explicit

:
calcu-

lation of the Slater-Koster matrix elements (e.g., see
:::
are

::::::::::::
implemented

::
in

:
the paoflow [78] , and DFTB+ [8]

codes). In contrast, while
:
.

:::::
While

:
it is possible to extract k · p models from a

Taylor expansion on top of a TB model (e.g., via the
code tbmodels [79]), there are no available codes

:::::::
versatile

::::::::::::::
implementations

:
to calculate the k·p Kane and Luttinger

::::::
(linear

::
in

:::
k)

::::
and

:::::::::
Luttinger

::::::::::
(quadratic

::
in

:::
k)

:
parameters

directly from the DFT wave-functions.

:::
[80]

:
.
::

To calculate the k · p matrix elements from
the DFT wave-functions, one needs to account for how
the wave-function

:::::::::::::
wave-functions

:
are represented in the

DFT code [69, 81]. For instance, Quantum Espresso
::::::::::
ESPRESSO

:
and VASP implement pseudopotential ap-

proximations within the Projector Augmented Wave
(PAW) method [82–85]. Fortunately, Quantum Espresso
::::::::::
ESPRESSO

:
already provides a routine to calculate ma-

trix elements of the velocity operator (which is sufficient
to obtain k ·p models, as we see in Section B). Indeed, re-
cently, Jocić and collaborators [86] have successfully cal-
culated k · p models directly from QE’s wave-functions
(see disclaimer at our Conclusions).

In this paper, we present an open-source code that au-
tomatically calculates the numerical values for the k · p
Kane and Luttinger parameters using the wave-functions
provided by Quantum Espresso

::::::::::
ESPRESSO

:
(QE). For

this purpose, first, we develop a patch to instruct QE
to calculate and store the matrix elements of the gen-
eralized momentum π = p + pSOC, which includes the
spin-orbit corrections. Together with the eigenenergies
E0
n at k0, the matrix elements of π for a selected set of

N bands define the effective k ·p Hamiltonian HN×N (k)
for k near k0. Our python package reads these matrix
elements and QE’s wave-functions |n⟩ to automatically
build HN×N (k) using LÂwdin

:::::::
Löwdin’s partitioning

::::
[87]

for the folding down of all QE bands into the selected
N bands subspace. Additionally, the user has the option
to improve the appearance (or

::::::::::
appearance

:::
(or

:
shape

::::
form)

of the effective Hamiltonian via a symmetry optimization
process aided by the qsymm package [88], which builds the
symbolic Hamiltonian via group theory and the method
of invariants. To illustrate the capabilities of our code, we
show here a step-by-step “hands-on” tutorial on how to
run the code for graphene, and later we present results for
selected materials [zincblende, wurtzite, rock-salt, transi-
tion metal dichalcogenides (TMDC), and others]. In all
cases, the modeled band structure matches remarkably
well the DFT data at low energies near the expansion
point k0. Our code is open source and available at the
gitlab repository [89].

This paper is organized as follows. In Section II we
present our methodology starting with a brief review
of the k · p method, LÂwdin

:::::::
Löwdin

:
partitioning, the

method of invariants, the symmetry optimization pro-
cess, and the calculation of matrix elements using the
DFT data. Next, in Section III, we show the code in de-
tail using graphene as a practical example. Later, in Sec-
tion IV, we illustrate the results of the code for zincblend
(GaAs, CdTe, HgTe), wurtzite (GaP, GaN, InP), rock-
salt (SnTe, PbSe), a TMDC (MoS2), and other materials
(Bi2Se3, GaBiCl2). We finish the paper with an overview
of the results in Section V, and the conclusions.

II. METHODS

Our goal is to obtain the numerical values for the
coefficients of k · p effective Hamiltonians [14, 15].
Namely, these are the Kane [46, 47] and Luttinger [48]
parameters. To present our approach for this calculation,
let us start by briefly describing its fundamental steps.
First, we review the k · p method to show that these co-
efficients depend only upon matrix elements of the type
Pm,n = ⟨m|π |n⟩, where π = p+pSOC is the generalized
momentum operator with the spin-orbit corrections, and
{|n⟩} is the set of numerical wave-functions obtained
from the ab initio DFT simulations (e.g. via Quantum
Espresso

::::::::::
ESPRESSO

:
[3, 4]). However, the numerical

::::
DFT

:
basis given by {|n⟩} does not match, a priori,

the optimal
::::::::::::::::
symmetry-adapted

:
basis set that yields the

desired shape for
::::
form

:::
for

:::
the

:
effective k ·p Hamiltonian.

Therefore, to properly identify the Kane and Luttinger
parameters, we perform a symmetry optimization, which
rotates the arbitrary numerical basis into the optimal
::::::::::::::::
symmetry-adapted

:
form. This symmetry optimization

is performed via group theory [90, 91] by enforcing that
the numerical DFT basis transform under the same
representation of an optimal

::::::::::::::::
symmetry-adapted

:
basis,

which is informed by the user.
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In summary, the algorithm steps are:

1. Read the QE/DFT data: energies E0
n and eigen-

states |n⟩ at the selected k0 point.

2. Calculate or read the matrix elements of Pm,n =
⟨m|π |n⟩ for all bands (m,n).

3. Select the bands of interest (set α
:
A). The code will

identify the irreducible representations of the bands
using the IrRep python package [92], and present
it as a report to the user. Additionally, the code
calculates the model folded down into the selected
set α

::
A via Löwdin partitioning.

4. Build the optimal effective model from symmetry
constraints using the Qsymm python package [88] un-
der an optimal

:::::::::::::::::
symmetry-adapted basis informed

by the user. This optimal basis must be in a set of
representations equivalent to the ones identified in
step 3.

5. Calculate the representation matrices for the sym-
metry operators in the original QE basis |n⟩. The
code verifies if the representations of numerical QE
basis are equivalent to the representations of the
optimal

:::::::::::::::::
symmetry-adapted basis from step 4.

6. Calculates the transformation matrix U that ro-
tates the original QE basis into the optimal
::::::::::::::::
symmetry-adapted

:
basis set on step 4. Applies

the transformation U and calculates the opti-
mal

::::::::::::::::
symmetry-adapted

:
numerical effective Hamil-

tonian.

7. Convert values from Rydberg atomic units into
meV and nm units, and presents a report with val-
ues for the k · p parameters.

In the next sections we describe the relevant details of
the steps above, but not following the algorithmic order
above. More specifically, in Section IIA, we briefly review
the k · p formalism to show that Pm,n = ⟨m|π |n⟩ plays
a central role in our approach. Incidentally, we introduce
the folding down via Löwdin partitioning

:::
[87]. Next, we

define what is the optimal shape
:::::::::::::::::
symmetry-adapted

::::
form

of the Hamiltonian via method of invariants [15, 93] in
Section II B. In Section II C, we present the symmetry op-
timization approach to calculate the transformation ma-
trix U that yields our final Hoptimal = U ·HDFT ·U†. At
last, in Section IID we discuss how Pm,n = ⟨m|π |n⟩ is
calculated.

Throughout the paper we use atomic Rydberg units
(a.u.), thus the reduced Planck constant, bare electron
mass and charge are ℏ = 2m0 = e2/2 = 1, the per-
mittivity of vacuum is 4πε0 = 1, the speed of light is
c = 2/α ≈ 274, and α ≈ 1/137 is the fine structure
constant.

A. The k · p model

In this section we briefly review the k · p method [14,
15, 46–48] and the folding down via Löwdin partitioning
[15, 93]

::::::::::
[15, 87, 93] to establish our notation.

We are interested in the effective Hamiltonian near a
high symmetry point k0 of the Brillouin zone. Therefore,
we write the quasi-momentum as κ = k0+k, such that k
is the deviation from k0. The Bloch theorem allow us to
decompose the wave-function as ψκ(r) = eik·rϕk0,k(r),
with ϕk0,k(r) = eik0·ruk0+k(r), where uk0+k(r) ≡ uκ(r)
is the periodic part of the Bloch function, while ϕk0,k(r)
carries the phase given by k0 and obeys the Schrödinger
equation [H0 +H ′(k)]ϕk0,k(r) = [E − k2]ϕk0,k(r), with

H0 = p2 + V (r) + 2k0 · π +HSR, (1)
H ′(k) = 2k · π, (2)

π = p+
α2

8
σ ×∇V (r), (3)

where H0 is the Hamiltonian at k = 0,
::::
V (r)

::
is
::::

the
:::::::
periodic

:::::::::
potential,

:
H ′(k) carries the k-dependent con-

tributions that will be considered as a perturbation here-
after, and π is the generalized momentum that includes
the spin-orbit contributions (SOC)

:
,
::::
and

::::::::::::::
σ = (σx, σy, σz)

:::
are

:::
the

::::::
Pauli

::::::::
matrices

:::
for

::::
the

::::::::
electron

::::
spin. For sim-

plicity, we consider only leading order corrections of the
fine structure terms. Namely, at k = 0, the HSR car-
ries the scalar relativistic terms, composed by the Dar-
win, HD = α2

8 ∇2V (r), and the mass-velocity corrections,
HMV = −α2p4/4. In the ab initio DFT data, these are
implied in the numerical eigenvalues E0

n of H0. For fi-
nite k ̸= 0, we keep only the SOC contribution in π, and
neglect the higher order mass-velocity corrections (see
Appendix A).

The DFT data, as shown in the next section, provide us
with a set {|n⟩} of eigenstates ofH0, i.e. H0 |n⟩ = E0

n |n⟩.
From these

:::
this

:::::
crude

:::::
DFT

:::::
basis, we define a crude

:::
an all

bands model HDFT
all (k), with matrix elements

⟨m|HDFT
all |n⟩ = E0

nδm,n + 2k · Pm,n, (4)

where Pm,n = ⟨m|π |n⟩. We refer to this as the crude
model because it is calculated from the original numerical
DFT wave-functions, which is does not have an optimal
shape

::::::::::::::::
symmetry-adapted

:::::
form

:
(more detail in Section

IIC). Nevertheless, it already shows that E0
n and Pm,n

are central quantities, and both can be extracted from
DFT simulations, as shown in Section II D.

Next, we want to fold down HDFT
all into a subspace of

N bands near the Fermi energy to obtain our reduced,
but still crude

:::::
crude, effective model HDFT

N×N . This is done
via Löwdin partitioning [15, 93]

:::::::::
[15, 87, 93]. First, the

user must inform the set of N bands of interest, which
we refer as set α

::
A. Complementary, the remaining re-

mote bands compose set β
:
B. Considering the diagonal

basis H0 |n⟩ = E0
n |n⟩, and the perturbation H ′(k), the
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Löwdin partitioning leads to the effective Hamiltonian
HDFT
N×N defined by the expansion

[HDFT
N×N ]m,n(k) =

(
E0
n + k2

)
δm,n +H ′

m,n(k)

+
1

2

∑
r∈βr∈B

:::
H ′
m,r(k)H

′
r,n(k)

(
1

E0
m − E0

r

+
1

E0
n − E0

r

)
+· · ·

(5)

with H ′
m,n(k) = ⟨m|H ′(k) |n⟩ = 2k · Pm,n. Here, the

indices m,n ∈ α
:::::::
m,n ∈ A

:
run over the bands we want to

model (set α
::
A), while r ∈ β

:::::
r ∈ B run over the remote

bands. The expansion above is shown up to second order
in H ′, but higher order terms can be found in Ref. [15].
::::::::::::
Alternatively,

:::
the

::::::
recent

:::::::
python

:::::::
package

::::::::::
pymablock

::::
[94]

::::::::::
implements

:::
an

:::::::
efficient

:::::::::
numerical

:::::::
method

::
to

::::::::
compute

:::
the

:::::::
LÂwdin

:::::::::::
partitioning

::
to

:::::::::
arbitrary

::::::
order.

B. The optimal shape
::::::::::::::::::
symmetry-adapted

:::::
form of H

The selection rules from group theory allow us identify
which matrix elements of an effective Hamiltonian are
finite [90]. More interestingly, the method of invariants
[15, 93] can be used to directly obtain the most general
shape

::::
form

:
of Hoptimal

N×N (k) allowed by symmetry. To de-
fine this shape

::::
form, consider a Taylor series expansion

Hoptimal
N×N (k) =

∑
i,j,l

hi,j,l k
i
x k

j
y k

l
z, (6)

where hi,j,l are constant matrices that multiply the
powers of k = (kx, ky, kz) as indicated by its in-
dices l, j, k = {0, 1, 2, . . . }

:::::::::::::::::
i, j, l = {0, 1, 2, . . . }. To find

the symmetry allowed hi,j,l, we recall that the space
group G of the crystal is defined by symmetry opera-
tions that keep the crystalline structure invariant. Par-
ticularly, at a high symmetry point κ = k0, one must
consider the little group Gk0 ∈ G of symmetry opera-
tions that maintain k0 invariant (the star of k0). Hence,
Hoptimal
N×N (k) must commute with the symmetry opera-

tions of Gk0 . Namely

Hoptimal
N×N (Dk(S)

:::::
k) = Dψ(S)Hoptimal

N×N (Dk(S−1)k)Dψ(S−1),

(7)
where Dψ(S) are the representation matrices for each
symmetry operator S ∈ Gk0

in the subspace defined by
the wave-functions of set α

:
A, and Dk(S) are the repre-

sentation matrices acting on the vector k = (kx, ky, kz).
The set of equations defined by this relation for all
S ∈ Gk0 leads to a linear system of equations that con-
strain the symmetry allowed shape

:::::
form of Hoptimal

N×N (k),
i.e., it defines which of constant matrices hi,j,l are allowed
up to a multiplicative factor. Ultimately, these multi-
plicative factors are the Kane and Luttinger parameters
that we want to calculate numerically.

The python package Qsymm [88] implements an efficient
algorithm to find the shape

::::
form

:
of Hoptimal

N×N (k) solving
the equation above and returns the symmetry allowed
hi,j,l. Qsymm refers to these as the Hamiltonian family.
:
.
:
To perform the calculation, the user must inform the

representation matrices Dψ(S) for the generators of Gk0 .
Notice that the choice of representation is arbitrary, and
different choices lead to effective Hamiltonians with dif-
ferent shapes

:::::
forms. This ambiguity is the reason why the

next step, the symmetry optimization, is necessary.

C. Symmetry optimization

In the previous section, the matrix representations for
generators S ∈ Gk0 are implicitly written in an opti-
mal

::::::::::::::::
symmetry-adapted

:
basis, which we will now label

with a B
::
O

:
index, as in {|nB⟩}::::::

{|nO⟩}, to distinguish
from the crude

::::
DFT numerical basis, which we now la-

bel with an A
:
C
:
index, as in {|nA⟩} :::::

{|nC⟩}. The ma-
trix representations of S written in these two basis are
equivalent

:::::::::
equivalent

:
up to an unitary transformation U ,

i.e. DB(S) = U ·DA(S) · U†
::::::::::::::::::::::
DO(S) = U ·DC(S) · U†.

Indeed, this same matrix U transforms the crude
::::
DFT numerical Hamiltonian into the desired optimal
shape

:::::::::::::::
symmetry-adapted

:::::
form, i.e. Hoptimal

N×N = U ·HDFT
N×N ·

U†. Therefore, our goal here is to find this transforma-
tion matrix U .

For each symmetry operator Si ∈ Gk0 , let us de-
fine Ai ≡ DA(Si) and Bi ≡ DB(Si) :::::::::::

Ci ≡ DC(Si)::::
and

::::::::::::
Oi ≡ DO(Si) :

as the representation matrices under
the original numerical DFT basis (A

:
C), and under

the desired optimal representation (B
::::::::::::::::
symmetry-adapted

::::::::::::
representation

::::
(O), respectively. For irreducible repre-

sentations, this U is unique (modulo a phase factor) and
an efficient method to obtain it was recently developed
[86, 95].Here

::::
[95]

:::
and

:::::
used

::
in

:::::
Ref.

::::
[86]

::
to

::::::::::
transform

:::
the

:::::::
effective

::::::
model

:::::
into

:::
the

:::::::::
desired

:::::
form.

::::::
The

:::::::::
procedure

::::::::
described

:::
in

::::
Ref.

:::::
[95]

:
is
:::::::

exact,
::::
but

:::::
relies

:::
on

::
a
:::::::
critical

::::
step

::::::
where

:::
one

::::
has

:::
to

::::
find

:::
for

::::::
which

:::::::
indices

::::::
(a, b)

:::
the

::::::
weight

::::::
matrix

::::
ra,b ::

is
:::::
finite.

::::
For

:::::::::::::::
transformations

:::::::
between

:::::
irreps,

:::::
any

::
of

::::
the

:::::
finite

::::
ra,b::::

lead
:::

to
::::::::::
equivalent

:::::::
unitary

::::::::::::::
transformations.

::::::::::
However,

:::
for

::::::::::::::
transformations

::::::::
between

::::::::
reducible

::::::::::::::
representations

::::
one

::::::
needs

:::
to

::::::::
identify,

::::::
within

:::
the

:::
set

:::
of

:::::
finite

::::
ra,b,::::

the
:::::
ones

::::
that

:::::
yield

:::::::::::::
nonequivalent

:::::::::::::
transformation

::::::::
matrices

:::::
that

::::::::
combine

::
to

:::::
form

::::
the

::::
final

:::::::::::::
transformation

::::::::
matrices

:::
U .

:::::
This

::::
can

:::
be

::
a
:::::::::::
complicated

:::::::::
numerical

:::::
task.

:::::::
Here,

:::::::
instead, however, we propose

an alternative method that applies more easily to re-
ducible representations .

:::
and

::::::
allow

:::
us

:::
to

::::::
obtain

::::
the

:::::::::::::
transformation

:::::::
matrix

::
U
:::::

with
::

a
:::::::::::

systematic
:::::::::
approach.

:::::
Next,

:::
we

::::::::
describe

::::
the

::::::::
method,

::::
and

:::::
later

:::
in

::::
Sec.

:::::
III C

::
we

:::::::::
illustrate

:::
its

:::::::::::
capabilities

:::::
using

::::
the

::::::
spinful

:::::::::
graphene

::::::::
example.

:

The set of unitary transformations Bi = U ·Ai · U†

::::::::::::::
Oi = U · Ci · U† for each Si ∈ Gk0

compose a system of
equations for U . These can be written in terms of the its
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matrix elements in a linearized
::::::::
linearized

:
form that reads

as ∑
j

Um,jAC:
i
j,n−B−O

:::

i
m,jUj,n = 0. (8)

Defining a vector V = {U1,1, U1,2, · · · , U2,1, · · · , UN,N}T ,
where N is the order of the representations (number
of bands in set α

::
A), allow us to cast the equation

above as Qi · V = 0, with Qi = 1N ⊗ (Ai)T −Bi ⊗ 1N

::::::::::::::::::::::::
Qi = 1N ⊗ (Ci)T −Oi ⊗ 1N:

of size N2 ×N2, and 1N as
the N × N identity matrix. Since the same similarity
transformation U must apply for all Si, we stack each
Qi into a rectangular matrix Q = [Q1,Q2, · · · ,Qq]

T of
size (qN2) × N2. The full set of equations now read as
Q · V = 0, such that the solution V =

∑NQ

j=1 cjvj is a
linear combination of the nullspace {vj} of Q, with coeffi-
cients cj and nullity NQ. The matrix U can be recovered
from the elements of V , which follow from its definition
above. If uj ::

uj :is the matrix reconstructed form of vj ,
we can write U =

∑NQ

j=1 cjuj::::::::::::::
U =

∑NQ

j=1 cjuj .
Additionally, it is interesting to consider anti-unitary

symmetries. These can be either the time-reversal
symmetry (TRS) itself, or combinations of TRS and
space group operations (magnetic symmetries) [90, 91].
For instance, in spinful graphene neither TRS nor spa-
tial inversion are symmetries of the K point, but their
composition is an important symmetry that enforces a
constraint on the allowed SOC terms .

::::
(see

::::
Sec.

::::::
III C).

Following a notation similar to the one above, let us refer
to these magnetic symmetries as Āi = DA(S̄i)K ≡ ÃiK
and B̄i = DB(S̄i)K ≡ B̃iK

:::::::::::::::::::
C̄i = DC(S̄i)K ≡ C̃iK

:::::
and

::::::::::::::::::::
Ōi = DO(S̄i)K ≡ ÕiK, where K is the complex conju-
gation, and (Ãi, B̃i)

:::::::
(C̃i, Õi)

:
are the unitary parts of

(Āi, B̄i)
::::::
(C̄i, Ōi). Now the basis transformation for these

symmetries read as B̃i = U∗ · Ãi · U†
:::::::::::::::
Õi = U∗ · C̃i · U†,

where we choose to apply K to the left (this choice is for
compatibility with the python package IrRep [92]). To
add this equation to the Q matrix above, we consider
U and U∗ as independent variables. Then, as above, it
follows the linearized

::::::::
linearized

:
form∑

j

U∗
m,j C̃ij,n − Õi

m,jUj,n = 0. (9)

In all cases, the expression for the transforma-
tion matrix is U =

∑NQ

j=1 cjuj :::::::::::::
U =

∑NQ

j=1 cjuj , where
the coefficients cj are arbitrary. Their absolute
values |cj | are arbitrary due to the linearized
form of Eqs. (8)and (9)

:
so

::::
far

:::::::::::
undefined.

::::::
To

:::
find

::::::
these

:::::::::::
coefficients

:::
cj ,::::

we
:::::::::::
numerically

:::::::::::
minimizing

:::
the

:::::::::
residues

::::::::::::::::::::::::::::::::
R({cj}) =

∑
i ||Oi − U · Ci · U†||2,

:::::
and

:::::::::::::::::::::::::::::::
R̃({cj}) =

∑
i ||Õi − U∗ · C̃i · U†||2.

:::::
The

::::::
global

:::::::
minima

::
of

::::::
these

:::::::::
residues,

::::::::::::::::::::::
R({cj}) = R̃({cj}) ≡ 0,

:::::::
yields

:::
a

:::::::
solution

::::::::
U({cj}),:::::

such
:::::
that

:::::
small

:::::::::::::
perturbations

:::
to

:::
the

:::::::::
coefficients

:::::::::::::
cj → cj + δcj:::::

lead
:::
to

:::::::::
quadratic

::::::::::
deviations

::::
from

:::
the

::::::::
minima,

::::
e.g.,

:::::::::::
R ∝ |δcj |2. ::::

This
::::::::::
procedure

:::::
opens

:
a
::::::::
question

::
of

::::::::
whether

::
or

::::
not

:::
the

::::::::
solution

:::::::
U({cj}):::

at
:::
the

:::::
global

:::::::
minima

::
is
::::::::
unique.

:::::
Since

:::
U

::::::::::
represents

::
a
::::::::::::::

transformation
:::::::::

between
::::
two

::::
basis

:::::
sets

::
(
:::
e.g.

:
,
:::::::::::::::
|nO⟩ = U |nC⟩),:::

it
:::::::::

expected
::::

to
:::
be

::::::
unique. However, their phases are arbitrary even in the
quadratic forms Bi = U ·Ai · U† and B̃i = U∗ · Ãi · U†,
which is due to free relative phases between the basis
functions of different irreps. For the

:::
the

::::::::
problem

::::
here

::
is
:::::::::::

formulated
:::::
such

:::::
that

::::
we

:::::::::
explicitly

:::::
have

::::
the

:::::::::
eigenstates

:::::
|nC⟩::::

that
:::::::::
compose

:::
the

::::::
crude

:::::
DFT

:::::
basis

:::
set

::
C,

:::::
while

:::
for

::::
the

:::::::
optimal

:::::::::::::::::
symmetry-adapted

::::::
basis

:::
set

::
O

::
we

::::::
know

:::::
only

::::
how

:::
we

:::::::
expect

::::
the

::::::::::
eigenstates

:::::
|nO⟩:::

to
:::::::::
transform

:::::
under

::::
the

:::::::::
symmetry

::::::::::
operations

::
of

::::
the

::::::
group.

:::::::::
Therefore,

:::::::
instead

:::
of

:::::::
solving

::::
for

::
U
::::::::

directly
:::::
from

::::
the

:::::
linear

:::::
basis

::::::::::::::
transformation

::::::::::::::
|nO⟩ = U |nC⟩,::::

we
::::
rely

:::
on

:::
the

:::::::::
quadratic

:::::::::
equations

:::
for

::::
the

:::::::::::::
transformation

::::::::
between

:::
the

:::::::::
symmetry

:::::::::
operators

:
(
:::
e.g.

:
,
:::::::::::::::::::::::
DO(S) = U ·DC(S) · U†),

::
or

:::::
their

:::::::::
linearized

::::::
forms

::
in

::::
Eq.

:::
(8)

::::
and

::::
Eq.

::::
(9).

::::::
First,

::
let

:::
us

:::::::::
consider

:::::
that

::
O
:::::

and
::
C
:::::

refer
:::

to
:::::::::

distinct,
::::
but

:::::::::
equivalent

::::::
irreps.

:::
As

:::::::::::
emphasized

::
in

::::
[95]

:
,
::
it

::::::
follows

:::::
from

::::::
Schur’s

:::::::
lemma

:::::
that

::::
the

:::::::::::::::
transformation

::
U
:::

is
:::::::

unique
::::::
modulo

:::
a

::::::
phase.

::::::::
Indeed,

::::
for

::::
the

:
unitary constraints,

Bi = U ·Ai · U†
::::::::::::::
Oi = U · Ci · U†, the solution U is invari-

ant under U → eiθU for any real θ, while for the anti-
unitary constraint, B̃i = U∗ · Ãi · U†

::::::::::::::
Õi = U∗ · C̃i · U†, U

is invariant only for θ = 0 or π. This arbitrarity might
lead the

:::::
Next,

:::::::
without

::::
loss

::
of

::::::::::
generality,

:::
let

::
us

::::::::
consider

::::
that

::
O

::::
and

::
C
:::::
refer

::
to

:::::::::
reducible

::::::::::::::
representations

:::::::
already

:::
cast

:::
in

:::::::::::::
block-diagonal

:::::::
forms.

:::
In

::::
this

:::::
case,

:::
the

::::::::
solution

::::::::::::::::
U = U1 ⊕ U2 ⊕ · · ·

:::::
also

::::::
takes

:::
a

::::::::::::::
block-diagonal

:::::
form

:::::
where

:::::
each

::::::
block

:::
Uj:::::::::::

correspond
:::
to

::
a
::::::::::::::
transformation

::::::
within

::
a

::::::
single

:::::
irrep

:::::::::
subspace.

::::
It
:::::::

follows
:::::

that
:::::

each
::
Uj:::

is
:::::::
unique

:::::::
modulo

::::
the

:::::::
phases

:::::::
above.

:::::
The

:::::::
overall

:::::
global

::::::
phase

:::
of

:::
U

:::::
does

::::
not

::::::
affect

::::
the

::::::::::
calculation

:::
of

:::
our

:::::::
matrix

:::::::::
elements.

::::::::::
However,

::::
the

:::::::::
arbitrary

:::::::
relative

::::::
phases

::::::::
between

:::
the

:::::::
blocks

:::
Uj ::::::

might
::::
lead

:::
to ill defined

phases of matrix elements between basis functions
:::::::::
eigenstates

::
of different irreps if the anti-unitary sym-

metries are not informed. In contrast, if anti-unitary
symmetries are used, the undefined phase factor in the
matrix elements is just a sign. In any case, to find the
coefficients cj , we numerically solve for cj by minimizing
the residues R({cj}) =

∑
i ||Bi − U ·Ai · U†||, and

R̃({cj}) =
∑
i ||B̃i − U∗ · Ãi · U†||.

D. Matrix elements via DFT

As shown above, our approach to obtain a k · p model
directly from the DFT data relies on two quantities: (i)
the band energies E0

n at the k ·p expansion point k0; and
(ii) the matrix elements Pm,n = ⟨m|π |n⟩ also calculated
at k0 for all bands {|n⟩}. The band energies E0

n are a
straightforward output of any DFT code. Therefore, here
we discuss only the calculation of Pm,n = ⟨m|π |n⟩.

We focus on the Quantum Espresso
::::::::::
ESPRESSO

:
(QE)

[3, 4] implementation of ab initio DFT [1, 2]. The Hamil-
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tonian in QE is split into the core and inter-core re-
gions via the Projector Augmented Wave (PAW) method
[82–84], which is backwards compatible with ultrasoft
(USPPs) [83, 96] and norm-conserving pseudo-potentials
(NCPP) [97–99]. In these approaches, the atomic core
region is replaced by pseudopotentials, which are con-
structed from single-atom DFT simulations with the
Dirac equation in the scalar relativistic or full relativistic
approaches. Thus, for molecules or crystals, QE solves a
pseudo-Schrödinger equation, with the atomic potentials
replaced by the pseudopotentials. Here we shall not go
through details of the PAW and pseudopotential meth-
ods. For the interested reader, we suggest Refs. [82–
84]. Instead, for now, it is sufficient to conceptually un-
derstand that QE provides numerical solutions for the
Schrödinger equation with the fine structure corrections,
which can be expressed by the Hamiltonian

H ≈ p2 + V (r) +HSR +
α2

4
(σ ×∇V ) · p, (10)

where HSR = HD +HMV contain the Darwin and mass-
velocity contributions, as presented above, and the last
term is the spin-orbit coupling.

1. Matrix elements of the velocity

Fortunately, the QE code already provides tools to
calculate the matrix elements of the velocity operator
1
2v = i

2 [H, r], which reads as

v

2
=

1

2

∂H

∂p
= π +

1

2

∂HMV

∂p
≈ π, (11)

where we neglect the mass velocity corrections (see Ap-
pendix A). Thus, we find that Pm,n = ⟨m|π |n⟩ ≈
⟨m| 1

2v |n⟩. The calculation of Pm,n is already par-
tially included in the post-processing tool bands.x (file
PP/src/bands.f90), within the write_p_avg subrou-
tine (file PP/src/write_p_avg.f90). This calculation
includes the necessary PAW, USPPs, or NCPPs correc-
tions, which are critical for materials where the wave-
function strongly oscillates near the atomic cores [100].
However, the write_p_avg subroutine only calculates
|Pm,n|2 form in the valence bands (below the Fermi level)
and n in the conduction bands (above the Fermi level).
To overcome this limitation, we have built a patch that
modifies bands.f90 and write_p_avg.f90 to calculate
Pm,n for all bands. This leads to a modified bands.x with
options to follow with its original behavior, or to calcu-
late Pm,n accordingly to our needs. This is controlled
by a new flag lpall = False/True added to the input
file of bands.x in addition to the lp = True. Its default
value (lpall = False) runs bands.x with its original
code, while the option lpall = True intructs bands.x
to store all Pm,n into the file indicated by the input pa-
rameter filp.

In contrast,
:::::::
general,

:::
it

::
is

::::::::::
preferable

:::
to

::::::
patch

::::
QE

::
to

::::
use

::::
the

:::
full

::::::
Pm,n::::::::

instead,
:::::
since

::::
the

:::::::::::
calculation

::
is

:::::
faster

::::
and

:::::
more

:::::::
precise.

::::::::::::
Nevertheless,

:
if the user prefers

not to apply our patch to modify QE, our code can
calculate an approximate Pm,n using only the plane-
wave components outputted by the QE code. In this
case, we consider that the pseudo-wavefunction is a rea-
sonable approximation for the all electron

:::::::::
all-electron

wavefunction, thus neglecting PAW corrections. Under
this approximation, Pm,n will not account for the
SOCcorrections, i.e. it calculates Pm,n ≈ ⟨m|p |n⟩,
:::::
which

::::
are

:::::::::
necessary

::
to

::::::::
account

:::
for

:::::
SOC. Therefore, it

is preferable to patch QE to use the full
:::::
under

::::
this

:::::::::::::
approximation,

::::::::::::::::
Pm,n ≈ ⟨m|p |n⟩.

::::
The

:::::::::
relevance

::
of

:::::
these

::::::::::
PAW/SOC

:::::::::::
corrections

:::
to

:
Pm,n instead.Nevertheless,

within
:::
are

:::::::::
presented

::
in

:::
the

::::::::
example

::::::
shown

::
in

::::
Sec.

::::::
IV B1.

::::::
Within

:
this approximation, the wave-function ψn,k(r) for

band n at quasi-momentum k, and Pm,n read as

ψn,k(r) ≈
1√
V

1√
Ω

:::

∑
G

cn(G)ei(k+G)·r, (12)

Pm,n ≈
∑
G

(k +G)c†m(G)cn(G), (13)

where cn(G) are the plane-wave expansion coefficients
(spinors in the spinful case), V

:
Ω
:
is the normalization

volume, and G are the lattice vectors in reciprocal space.
To implement this calculation, and the one shown next,
we use the IrRep python package [92], since it already
have efficient routines to read and manipulate the QE
data.

2. Matrix elements of the symmetry operators

To calculate the matrix elements of the symme-
try operators, it is sufficient to consider ψn,k(r) from
Eq.(12)

::::
(12). In this case it is safe to neglected PAW

corrections, since they must transform identically to the
plane-wave parts under the symmetry operations of the
crystal space group. For a generic symmetry operation
S ∈ Gk0 , its matrix elements read as

Dψ
m,n(S) =

∑
G,G′

c†m(G′)cn(G)

∫
e−i(k+G′)·re−iS

−1(k+G′)·r

V
d3re−i(k+G′)·re−iS

−1(k+G′)·r
::::::::::::::::::::::

d3r

Ω
.

(14)

Using the plane-wave orthogonality, one gets

Dψ
m,n(S) =

∑
G

c†m
(
− k + S−1 · (k +G)

)
cn(G), (15)

where S−1 is the inverse of S, and S−1 · (k + G) is its
action on the (k + G) vector. For instance, if S = I is
the spatial inversion symmetry, S−1 · (k+G) = −k−G,
and Dψ

m,n(S) =
∑

G c†m(−2k −G)cn(G).
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III. HANDS ON EXAMPLE: GRAPHENE

In this section we present a detailed example and re-
sults for spinless graphene. ,

:::::
and

::
a

:::::::
shorter

:::::::::
discussion

::
on

:::::::
spinful

:::::::::
graphene

::
in

:::::
Sec.

:::::
III C

::
to

:::::::::
illustrate

::::
the

::::
case

::
of

:::::::::::::::
transformations

::::::::
between

:::::::::
reducible

:::::::::::::::
representations.

Graphene [101, 102] is nowadays one of the most stud-
ied materials due to the discovery of its Dirac-like ef-
fective low energy model, which read as H = ℏvFσ · k.
Here, σ = (σx, σy, σz) are Pauli matrices acting on the
lattice subspacethat will be better defined below

:::
the

::
σ

:::::
Pauli

::::::::
matrices

:::
act

:::
on

::::
the

::::::
orbital

:::::::::::
pseudo-spin

:::::::::
subspace,

k = (kx, ky) is the quasi-momentum, and vF is the Fermi
velocity, which is the unknown coefficient that we want
to calculate in this example. For this purpose, in this
first example we follow a pedagogical route. First, we
present the symmetry characteristics of the graphene
lattice and its wave-functions at the K point. Then,
we show the results for the representation matrices and
Hamiltonian in the crude and optimal

:::::
crude

::::
and

:::::::
optimal

::::::::::::::::
symmetry-adapted

:
basis to illustrate how the symmetry

optimization of Section IIC is used to build the optimal
::::::::::::::::
symmetry-adapted

:
Hamiltonians and identify the numer-

ical values for its coefficients. Later, in Section III B we
show a step-by-step tutorial on how to run the code. This
example was chosen for its simplicity, which allow for a
clear discussion of each step. Later, in Section IV we
present a summary of examples for other materials of
current interest.

Before discussing the details, we summarize the results
for the band structure of graphene in Fig.

:
1, which com-

pares the DFT data with our two main models. The
black lines are calculated from the crude all bands model
from Eq.(4), which include all bands from the DFT data
and

::::
(4),

::::::
which

:
uses the matrix elements Pm,n in the

original crude QE/
::::
crude

:
DFT basis without further pro-

cessing. In contrast, the red lines are the band structure
calculated with the folded down Hamiltonian for a set
α

::
A composed by the two bands near the Fermi energy

that defines the Dirac cone, and considers the symme-
try optimization process to properly identify the k · p
parameters. This optimal

:::::::::::::::::
symmetry-adapted Hamilto-

nian is shown in Eq.(21)
::::
(21)

:
below, and the numerical

value for its parameters is shown at Step 7 in Section
(III B)

::::
III B.

A. Overview of the theory and symmetry
optimization

The crystal structure of graphene is an hexagonal
monolayer of carbon atoms, as shown in Figs. 1(a) and
1(b), which is invariant under the P6/mmm space group
(#191). However, since its Dirac cone is composed of
pz orbitals only, it is sufficient to consider the C6V fac-
tor group to describe the lattice. Particularly, at the K
point [see Fig.

:
1(c)], the star of K corresponds to the

little group C3V , which is generated by a 3-fold rotation

Figure 1. Graphene lattices emphasizing the Dirac cone eigen-
states at the K point, where (a) |A⟩ = |(X + iY )Z⟩ and (b)
|B⟩ = |(X − iY )Z⟩. Both eigenstates are composed by pz
orbitals centered at the colored sites (A and B lattices) with
the Bloch phase factors indicated within the circles, where
τ = exp(i2π/3). (c) The first Brillouin zone marking the path
Γ−K −M used to plot the bands in (d). (d) Band structure
for graphene calculated via QE/DFT (blue circles), all bands
model [Eq.

:::
(4)] (black lines), and optimal

:::::::::::::::
symmetry-adapted

model [Eq.
::::
(21)] for the two bands forming the Dirac cone

(red). Here, the QE/DFT simulation was performed with
300 bands.

C3(z) and a mirror My. The Dirac bands of graphene are
characterized by the irrep E of C3V (or irrep K6 from
P6/mmm [103]), which is composed by basis functions
(xz, yz).

To build the optimal
:::::::::::::::::
symmetry-adapted

:
effective

model via the method of invariants, we need to
specify a basis and calculate the matrix representa-
tion of the symmetry operations mentioned above.
Since the wave-functions of the Dirac cone transform
as the irrep E of C3V , a naive choice would be
|Y Z⟩}Aunconv ={|XZ⟩ ,|Y Z⟩} , which corresponds to
a set α A in Section II A. This choice of basis refers
to a possible B C representation in Section II C, and
it yields

Dunconv(C3(z)) =

(
cos θ − sin θ
sin θ cos θ

)
, (16)

Dunconv(My) =

(
1 0
0 −1

)
, (17)

Hunconv ≈
(
c0 − c1kx c1ky
c1ky c0 + c1kx

)
, (18)

where θ = 2π/3. Here Hunconv is obtained via Qsymm
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up to linear order in k, for brevity. While the eigenen-
ergies of Hunconv represent correctly the Dirac cone as
E± = c0 + |c1|

√
k2x + k2y, the Hamiltonian Hunconv takes

an undesirable unconventional form.
A more convenient choice is αconv = {|(X + iY )Z⟩ ,

Aconv = {|(X + iY )Z⟩ , |(X − iY )Z⟩}, which is illus-
trated in Figs. 1(a) and 1(b). This choice of basis leads
to

Dconv(C3(z)) =

(
eiθ 0
0 e−iθ

)
, (19)

Dconv(My) =

(
0 1
1 0

)
, (20)

Hconv ≈
(

c0 c1k−
c1k+ c0

)
+

(
c2k

2 c3k
2
+

c3k
2
− c2k

2

)
, (21)

where k± = kx ± iky. Now, up to linear order in k, we
see that Hconv ≈ c0 + c1σ · k, where σ act on the sub-
space set by αconv Aconv , and we identify c1 = ℏvF .
Additionally, the k-quadratic terms that lead to trigonal
warping corrections. Notice that both choices, αunconv

and αconv Aunconv and Aconv , are equivalent represen-
tations, but the conventional one leads to the familiar
shape form of the graphene Hamiltonian. These two
basis sets are related by an unitary transformation U ,
such that αconv = Uαunconv Aconv = U · Aunconv and
Hconv = UHunconvU

†, with

Uunconv→conv =
1√
2

(
1 i
1 −i

)
. (22)

Next, let us analyze the set αQE AQE of nu-
merical wave-functions from QE. Do they correspond
to αQE = αconv or αQE = αunconv AQE = Aconv or
AQE = Aunconv ? The answer is neither. Since it is a
raw numerical calculation, typically diagonalized via the
Davidson algorithm [104], a degenerate or nearly degen-
erate set of eigenstates might be in any linear combina-
tion of its representative basis. Therefore, the symmetry
optimization step is essential to find the matrix transfor-
mation U that yields αconv = UαQE Aconv = U · AQE

. To visualize this, let us check the matrix representa-
tions of the symmetry operators above, and the effective
Hamiltonian calculated from the crude crude QE data.
For the symmetry operators, we find

DQE(C3(z)) ≈
(

−0.5 −0.35 + 0.79i
0.35 + 0.79i −0.5

)
, (23)

DQE(My) ≈
(

+0.5 0.35− 0.79i
0.35 + 0.79i −0.5

)
, (24)

While this cumbersome numerical representation does
not resemble neither αconv nor αunconv Aconv nor Aunconv

, our symmetry optimization process correctly finds a
transformation matrix U that returns αconv = UαQE

Aconv = U ·AQE , where

U ≈
(

0.7i −0.28 + 0.65i
−0.6 + 0.37i 0.7− 0.1i

)
. (25)

Finally, for the Hamiltonian, up to linear order in k and
in the original QE basis, we find

HQE ≈
(

−0.37 −0.25 + 0.57i
−0.25− 0.57i 0.37

)
kx

+

(
0.62 0.15− 0.34i

0.15 + 0.34i 0.62

)
ky, (26)

which takes a cumbersome shape form in this raw
numerical basis. However, applying the transformation
U , the symmetry adapted model becomes

Hoptimal
N×N = UHDFT

N×NU
† ≈ 0.72σ · k. (27)

Here we identify ℏvF = 0.72 in Rydberg units, yielding
vF = 0.83 × 106 m/s. The resulting band structure cal-
culated from Hoptimal, including the k-quadratic terms,
is shown as red lines in Fig. 1(d) and it matches well
the QE/DFT data near K.

B. Running the code

The example presented here is available in the
Examples/graphene-nosoc.ipynb notebook in the code
repository, and shown in Algorithm 1. Here we
show only the minimal procedure to read the DFT
data, build an effective model from the symmetry con-
straints, and calculate the numerical values for the
model parameters. Complementary, the full code in
Examples/graphene-nosoc.ipynb shows how to plot
the data presented in our figures.

For now, we assume that the DFT simulation was
successful. The suggested steps to run QE and prepare
the data for our code is to run the calculation=‘scf’
and calculation=‘bands’ with pw.x. Then, run
bands.x to extract the bands and from QE’s output
and store it in gnuplot format to plot the figures. Here,
for graphene, we assume that the bands calculation was
run for a path Γ − K − M with 30 points between each
section, such that K is the 31st point in the list.

Next, we describe each step shown in Algorithm 1.

Step 1. After running QE, the first step is to read the
DFT data from the QE’s output folder. The command
dft2kp.irrep(...) uses the python package IrRep
[92] to read the data for the selected k point to be used in
the k · p expansion, as indicated by the parameters kpt
and kname. The data is read from the folder indicated by
the parameter dftdir, while outdir and prefix refer
to values used in the input file of QE’s pw.x calculation.
Additionally, the command dft2kp.irrep(...) also
accepts extra parameters from the package IrRep (see
code documentation).
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Step 2. In step 2, the code will either read or
calculate the matrix elements Pm,n to build the effective
models. If the user runs QE modified by our patch,
the QE tool bands.x will generate a file kp.dat that
already contains the values for Pm,n. In this case, the
user must inform the name of this file via the parameter
qekp. Otherwise, if qekp is omitted, our code calculates
an approximate value for Pm,n ≈ ⟨m|p |n⟩ from the
pseudo-wavefunction of QE, as in Eq.(13) (13) , which
neglects all SOC corrections.

Step 3. Next, the user must choose which set of bands
will be considered to build the model. This is the set α
A in Section II A. In this example we select bands 3 and
4, which correspond to the Dirac cone of graphene. The
code analyses the list of bands and identify their irre-
ducible representations (irreps) using the IrRep package
[92]. Here, the set α A must contain only complete
sets of irreps, otherwise the Löwdin perturbation theory
would fail with divergences [see Eq.(5) (5) ], since the
remote bands of set β B would have at least one band
degenerated with a band from set α A . If this condition
fails, the code stops with an error message. Otherwise,
if set α A is valid, the code outputs a report indi-
cating the space group of the crystal (e.g., P6/mmm),
the selected set of bands (e.g., [3,4]), their irrep (e.g., K6

[103]), and degeneracy (2). The report reads as

Space group 191 : P6/mmm
Verifying set A: [3 4]
Band indices: [3, 4] Irreps: (K6) Degeneracy: 2

Additionally, in this step the code also calculates the
crude crude effective model for the bands in set
α A via Löwdin partitioning [87] . It stores the
folded Hamiltonian in a python dictionary (kp.Hdict)
representing the matrices hi,j,l in the QE crude crude
DFT basis that define HDFT(k) =

∑
i,j,l hi,j,kk

i
xk
j
yk
l
z.

For instance, kp.Hdict[‘xx’] refers to the matrix h2,0,0
that defines the term h2,0,0k

2
x.

Step 4. In step 4 we build the optimal symmetry-
adapted model using Qsymm [88], which solves Eq.(7)
(7) for the method of invariants. In Algorithm 1, we

build the representations for the symmetry operations
C3(z), My, Mz, and T I. Above we have discussed only
the first two for simplicity. Here we also include the
mirror Mz, and the anti-unitary symmetry T I, which
is composed by the product of time-reversal and spatial
inversion symmetries. The mirror Mz has a trivial repre-
sentation Dψ(Mz) = −1, since the orbitals that compose
the Dirac bands in graphene are all of Z-like (odd in
z). The T I representation follows from αconv Aconv

presented above by recalling that spinles time-reversal
is simply the complex conjugation, and the spatial
inversion takes (X,Y, Z) → (−X,−Y,−Z). In this
particular example, the T I symmetry does not play an
important role, but it is essential for a spinful graphene
example, as it constrains the SOC terms at finite k (see

the graphene spinful example in the code repository
Sec. III C ). The command dft2kp.qsymm(...) calls
Qsymm to build the effective model from the list of
symmetries, indicated by symm, up to order k2, as
indicated by total_power. We recommend always
using dim=3 [three dimensions for k = (kx, ky, kz)]
because QE always work with the 3D space groups.
Additionally, the command dft2kp.qsymm(...) accepts
other parameters that are passed to the Qsymm package
(see code documentation). By default, this command
outputs the optimal symmetry-adapted Hamiltonian,
which matches the one in Eq.(21) (21) .

Step 5. Next, we start the symmetry optimization
process. The first call kp.get_symm_matrices() calcu-
lates, via Eq.(15) (15) , the matrix representation for
all symmetry operators identified in the QE data by the
IrRep package. However, neither QE nor IrRep account
for the anti-unitary symmetries. Therefore, we call here
the optional routine kp.add_antiunitary_symm(...),
which manually adds the anti-unitary symmetry to
the list of QE symmetries and match it with the
corresponding symmetry of Qsymm informed on its first
parameter. In this example, we add the T I symmetry
built with Qsymm above. This operator needs to be
complemented with a possible non-symmorphic transla-
tion vector, which is zero in this case, as shown by the
second parameter of kp.add_antiunitary_symm(...).
Both calls, kp.get_symm_matrices() and
kp.add_antiunitary_symm(...), calculate the matrix
representations in the crude crude QE basis.

Step 6. To calculate the transformation matrix
U , we compare the ideal matrix representations in-
formed via Qsymm (object qs) and the crude crude
QE matrix representations (object kp). The call
dft2kp.basis_transform(...) performs this com-
parison and returns an error if the symmetries in both
objects do not match. More importantly, it calculates
the transformation matrix U solving Eq.(8) (8) and
Eq.(9) (9) . The matrix U is stored in the object
optimal.U. If the calculation of U is successful, the
code applies U to rotate the hi,j,l terms in kp.Hdict
from the crude crude DFT basis into the optimal
symmetry-adapted basis. This allows for a direct
identification of the coefficients cn from Eq.(21) (21) ,
which are stored in optimal.coeffs. Additionally, the
code builds the numerical optimal symmetry-adapted
model and provides a callable object optimal.Heff(kx,
ky, kz) that returns the numerical optimal Hamilto-
nian Hoptimal

N×N for a given value of k = (kx, ky, kz).

Step 7. At last, the code prints a report with the
numerical values for the coefficients cn, which are sum-
marized in Table (I) I . As mentioned above, here we
identify ℏvF = 0.72 a.u., yielding vF = 0.83 × 106 m/s
after converting the units.
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Algorithm 1 Minimal example for spinless graphene.

1 import numpy as np
2 import pydft2kp as dft2kp

3 # import s0, sx, sy, sz: Pauli matrices
4 from pydft2kp.constants import s0, sx, sy, sz

5 # step 1: read DFT data
6 kp = dft2kp.irrep(dftdir='graphene-nosoc',
7 outdir='outdir',
8 prefix='graphene',
9 kpt=31,

10 kname='K')

11 # step 2: read or calculate matrix elements of p
12 kp.get_p_matrices(qekp='kp.dat')

13 # step 3: define the set alpha
14 # applies fold down via LÂwdin
15 setA = [3, 4]
16 kp.define_set_A(setA)

17 # step 4: builds optimal model with qsymm
18 phi = 2*np.pi/3
19 U = np.diag([np.exp(1j*phi), np.exp(-1j*phi)])
20 C3 = dft2kp.rotation(1/3, [0,0,1], U=U)
21 My = dft2kp.mirror([0,1,0], U=sx)
22 Mz = dft2kp.mirror([0,0,1], U=-s0)
23 TI = dft2kp.PointGroupElement(R=-np.eye(3),
24 conjugate=True,
25 U=sx)
26 symms = [C3, My, Mz, TI]
27 qs = dft2kp.qsymm(symms, total_power=2, dim=3);

28 # step 5: calculate the representation matrices
29 kp.get_symm_matrices()
30 # (optional): adds anti-unitary symmetry
31 kp.add_antiunitary_symm(TI, np.array([0,0,0]))

32 # step 6: calculates and applies
33 # the transformation U
34 optimal = dft2kp.basis_transform(qs, kp)

35 # step 7: print results
36 optimal.print_report(sigdigits=3)

Table I. Graphene parameters for the Hamiltonian of Eq. (21)
.

Coefficient Values in a.u. Values in (eV, nm)

c0 ∼ 0 ∼ 0 eV

c1 0.72 0.52 eV nm

c2 ∼ 0 ∼ 0 eV nm2

c3 0.82 0.031 eV nm2

C. Spinful graphene

To complement the example above, we consider
now the spinful graphene (full code available at
Examples/graphene.ipynb [89]). In this case, due to
the small spin-orbit coupling of graphene, the numerical
DFT basis functions from QE mixes two nearly degen-
erate irreps into a unintended reducible representation.
Nevertheless, our symmetry optimization procedure is
able to properly block diagonalize the symmetry oper-
ators accordingly to the intended representation.

Figure 2. Absolute value of the representation matrices
of the symmetry operations for the spinful graphene exam-
ple, as labeled on top of each column. The top line of
matrices are defined under the ideal basis informed by the
user, i.e. {|(X + iY )Z, ↑⟩, |(X − iY )Z, ↓⟩, |(X − iY )Z, ↑⟩,
|(X + iY )Z, ↓⟩}, as discussed in the text. The central line
shows the calculated representation matrices under the crude
DFT basis from QE, which does not split into the ideal
block-diagonal form due to the small SOC gap between the
bands. Applying our transformation U to the crude represen-
tation from the central line, we obtain the optimal symmetry
adapted basis that lead to the proper block-diagonal form of
the representation matrices shown in the bottom line.

To see this, let us first establish the ideal basis in
proper ordering that leads to the block-diagonal form of
the symmetry operators C3(z), My, Mz, and T I (consid-
ering the group generators only). Thus, considering the
spin, the basis functions now read as {|(X + iY )Z, ↑⟩,
|(X − iY )Z, ↓⟩, |(X − iY )Z, ↑⟩, |(X + iY )Z, ↓⟩}. Under
the P6/mmm double space group [103, 105], this set of
basis functions transform as the sum of two bidimensional
irreps [106], namely K̄7⊕ K̄9. Under this basis, the sym-
metry operators listed above take a block-diagonal form,
which are illustrated in the top row of Fig. 2. Alge-
braically, these read
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Dideal(C3)
::::::::

=

−τ∗ 0 0 0
0 −τ 0 0
0 0 −1 0
0 0 0 1

 ,

:::::::::::::::::::

(28)

Dideal(My)
:::::::::

=

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

:::::::::::::::::

(29)

Dideal(Mz)
:::::::::

=

i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 ,

::::::::::::::::

(30)

Dideal(T I)
:::::::::

=

 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

K.

::::::::::::::::::

(31)

In contrast to the block diagonal form of theDideal(· · · )
matrices above, the representation matrix for the C3(z)
calculated with the crude DFT basis from QE takes the
form

DQE(C3) ≈
::::::::::−0.9− 0.1i −0.0− 0.0i +0.1 + 0.1i −0.3− 0.3i
+0.0− 0.0i −0.9 + 0.1i −0.3 + 0.3i −0.1 + 0.1i
−0.2− 0.1i +0.0− 0.4i +0.4 + 0.5i +0.3 + 0.6i
+0.0 + 0.4i +0.2− 0.1i −0.3 + 0.6i +0.4− 0.5i

 .

:::::::::::::::::::::::::::::::::::::::::::::::

(32)

Similarly, the crude DFT representation for My, Mz and
T I also show non-block-diagonal forms in the central line
of Fig. 2.

The algorithm described in Sec. II C builds a system
of equations to find the transformation matrix U that
yields Dideal(S) = UDQE(S)U† for all symmetry S of
the group (i.e., S = {C3(z),My,Mz, T I} in this exam-
ple). The python code to implement this procedure is
nearly identical to Algorithm 1, requiring only (i) the ex-
pansion of setA , in Step 3 , to account for the 4
bands that compose the spinful Dirac cone (i.e., setA
= [6, 7, 8, 9 ] in this Example); and (ii) the re-
placement of the symmetry matrices from Step 4 for
the ones listed above. From these, in Step 6 we find
the transformation matrix

U ≈
:::+0.1− 0.0i −0.1 + 0.2i −0.6− 0.6i −0.4− 0.2i
+0.1− 0.2i −0.0− 0.1i +0.4 + 0.2i −0.9− 0.0i
+0.2 + 0.2i −0.9 + 0.1i −0.1 + 0.2i +0.0 + 0.1i
−0.6− 0.7i −0.3 + 0.0i −0.1 + 0.1i +0.1− 0.2i

 ,

:::::::::::::::::::::::::::::::::::::::::::::::

(33)

which precisely yields the transformation UDQE(S)U† =
Doptimal(S) ≡ Dideal(S), as illustrated in the bottom row
of Fig. 2.

The model resulting from the considerations above
read as

Hsfg =

 c0 0 −c2k− 0
0 c0 0 −c2k+

−c2k+ 0 c1 0
0 −c2k− 0 c1


::::::::::::::::::::::::::::::::::::

+

 c4k
2 0 −c5k2+ 0

0 c4k
2 0 −c5k2−

−c5k2− 0 c6k
2 0

0 −c5k2+ 0 c6k
2

 ,

::::::::::::::::::::::::::::::::

(34)

where k2 = k2x + k2y, k± = kx ± iky, and we omit kz-
dependent for 2D materials. Notice that if we do not
consider the composed magnetic anti-unitary symmetry
T I, the c2 and c5 terms above split into real and imag-
inary parts. Particularly for c2, the real part refers to
matrix elements of p, while the imaginary part would
carry contributions from psoc. Nevertheless, considering
T I, these coefficients are expected to be real and the psoc

contributions to the imaginary part vanish by symmetry.

The numerical values found for the parameters of Hsfg

in Eq. (34) are shown in Table II. The Fermi velocity
matches the one from spinless graphene above, and we
find that the intrinsic spin-orbit coupling is λI = c1−c0 ≈
1 µeV, which is much smaller than its established value of
λI ≈ 24 µeV obtained via all-electron full-potential DFT
implementations [107, 108]. This discrepancy is due to
limitations of the pseudo-potentials used here with QE
[109], which do not include d orbitals. Nevertheless, this
example serves to show that, whenever two irreps are
nearly degenerate, the DFT wavefunctions might always
be mixed into reducible representations and the symme-
try optmization procedure implemented here efficiently
rotates the DFT basis back into ideal form that yield
block-diagonal reducible representations.

Table II. Spinful graphene parameters for the Hamiltonian of
Eq. (34).

Coefficient Values in a.u. Values in (eV, nm)

c0 −1.39× 10−5 −0.000189 eV

c1 −1.40× 10−5 −0.000190 eV

c2 0.72 0.518 eV nm

c4 0.049 0.0018 eV nm2

c5 −0.82 -0.031 eV nm2

c6 0.049 0.0018 eV nm2
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IV. EXAMPLES

In this section we briefly show the results for a series of
selected materials without presenting a step-by-step tuto-
rial as above. More detail for each case below can be seen
in the code repository. Here we consider examples for
zincblende crystals (GaAs, HgTe, CdTe), wurtzite crys-
tals (GaN, GaP, InP), rock-salt crystals (SnTe, PbSe),
a transition metal dichalcogenide monolayer (MoS2), 3D
and 2D topological insulators (Bi2Se3, GaBiCl2). Addi-
tional examples can be found in the code repository. In
all cases the resulting models agree well with the DFT
bands near the k ·p expansion point and low energies, as
expected. The DFT parameters used in the simulations
are presented in Appendix B.

A. Zincblende crystals

We consider well known zincblende crystals: GaAs,
CdTe and HgTe. These crystals are characterized by lat-
tices that transform as the space group F4̄3m, but their
low energy bandstructure concentrates near the Γ point,
which can be described by the point group Td after factor-
izing the invariant subgroup of Bloch translations. The
basis functions and effective Kane model for these ma-
terials are well described in the literature [14, 15, 91].
Here, let us simply summarize this characterization to
establish a notation.

In all cases considered in this section, the first conduc-
tion band and the top valence bands transform either as
S or P = (X,Y, Z) orbitals, and in terms of the crystal-
lographic coordinates we define x ∥ [100], y ∥ [010], and
z ∥ [001]. In the single group Td, neglecting spin, the S-
like orbitals transform accordingly to the trivial A1 irrep
of Td, while the P-like orbitals transform as the T2 irrep.
Including spin, the double group representation for the
S-like orbitals become A1 ⊗ D1/2 = Γ̄6, where D1/2 is
the spinor representation, and it yields the spin 1/2 ba-
sis functions |S ↑⟩ and |S ↓⟩. For the P-like bands one
gets T2 ⊗D1/2 = Γ̄8 ⊕ Γ̄7, where Γ̄8 represents the basis
functions of total angular momentum 3/2, and Γ̄7 has
total angular momentum 1/2. These basis functions are
listed in Table III. For GaAs and CdTe the conduction
band is represented by Γ̄6 (S-type, and spin 1/2), the first
valence band is composed by P-type orbitals with total
angular momentum 3/2, which are described by the Γ̄8

irrep, and the split-off band contains P-type orbitals with
total angular momentum 1/2, which defines the irrep Γ̄7.
In contrast, for HgTe the Γ̄6 and Γ̄8 are inverted due to
fine structure corrections.

The basis from Table III diagonalizes the spinful ef-
fective Hamiltonian at k = 0, and leads to the well
known extended Kane Hamiltonian [15]. The expression
for the 8 × 8 Hamiltonian HZB is shown in Appendix C
in terms of the coefficients cj following the output of the
qsymm code, so that it matches Examples in our reposi-
tory. There, the notation for the powers of k follows from

Ref. [15], such that it can be directly compared to the
extended Kane model shown in their Appendix C. The
values for the coefficients cj are also shown in Appendix
C.
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Figure 3. (a) Zincblende lattice, and (b) its first Brillouin zone (FCC). The band structure for (c) GaAs, (d) HgTe, and (e)
CdTe are shown over a large energy scale on the main panels, while at the bottom of each panel we show a zoom over the
relevant low energy range. In all cases, the DFT data consider 1000 bands.

The band structures calculated from HZB are shown
in Fig. 3, which also shows the crystal lattice and the
first Brillouin zone in Figs. 3(a)and 3(b) a-b) . In
all cases, Figs. 3(c–e), the blue dots represent the DFT
results. The black lines are the crude crude model from
Eq. 4, which includes all DFT bands and approaches a
full zone description, but with a cost of a large N × N
model with typical N ≫ 100. More importantly, the
red lines represent effective 8× 8 Kane model from HZB,
which matches well the DFT data at low energies and
near Γ, as shown in the zoomed insets below each panel
for GaAs [Fig. 3(c)], HgTe [Fig. 3(c)], and CdTe
[Fig. 3(c)]. Particularly, for HgTe it is clear the band
inversion between the Γ̄6 and Γ̄8 irreps.

Table III. Basis functions for zincblende crystals. The first
column indicates the double group irreps for the Td point
group at Γ, which are induced from the single group irreps in
parenthesis. The second column lists the basis functions in
the basis of total angular momentum, and the third column
show their expressions in terms of the symmetry orbitals (S,
X, Y, Z) and spin (↑, ↓), which follows the definitions from
Ref. [15].

IRREP Td |J,mj⟩ |orb, spin⟩

Γ̄6(A1)

∣∣ 1
2
,+ 1

2

〉
|S, ↑⟩∣∣ 1

2
,− 1

2

〉
|S, ↓⟩

Γ̄8(T2)

∣∣ 3
2
,+ 3

2

〉
− 1√

2
|X + iY, ↑⟩∣∣ 3

2
,− 3

2

〉
+ 1√

2
|X − iY, ↓⟩∣∣ 3

2
,− 1

2

〉
+ 1√

6

[
2 |Z, ↓⟩+ |X − iY, ↑⟩

]
∣∣ 3
2
,+ 1

2

〉
+ 1√

6

[
2 |Z, ↑⟩ − |X + iY, ↓⟩

]
Γ̄7(T2)

∣∣ 1
2
,− 1

2

〉
+ 1√

3

[
|Z, ↓⟩ − |X − iY, ↑⟩

]
∣∣ 1
2
,+ 1

2

〉
− 1√

3

[
|Z, ↑⟩+ |X + iY, ↓⟩

]
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B. Wurtzite crystals

The wurtzite crystals form a lattice that is character-
ized by the space group P63mc, and the low energy band
structure appears near the Γ point only. Near Γ, one can
factorize the translations and the resulting factor group
is the C6V point group, which is generated by the C6

rotation around the z axis, and the mirror Mx. Here,
in terms of the crystallographic coordinates, x ∥ [100],
y ∥ [010], and z ∥ [001]. The unit cell and first Brillouin
zone for these materials are shown in Figs. 4(a) and 4(b).

To illustrate the results for wurtzite materials, we
consider the cases of GaN, GaP, and InP. Their band
structures are shown in Figs. 4(c–e). In all cases,
the top valence bands are characterized by the irreps
(A1 + E1) ⊗ D1/2 = Γ̄7 ⊕ 2Γ̄9. Here, A1 is the trivial
irrep of C6V (single group), which represents S-like and
Z-like orbitals, and E1 is the vector representation of C6V

that contains (X, Y)-like orbitals. These are composed
with the pure spinor representation D1/2 to define the
C6V double group irreps Γ̄7 and Γ̄9. Additionally, we
consider two conduction bands, which are characterized
by the irreps (A1 + B1) ⊗ D1/2 = Γ̄8 ⊕ Γ̄9. The orbital
basis function for the B1 irrep is odd under both C6 and
Mx, its representation on group character tables is cum-
bersome, so one defines it as

∣∣X(X2 − 3Y 2)
〉
≡ |V ⟩ [14].

Ultimately, we consider the double group representations
ordered as shown in Table IV.

Table IV. Basis functions for wurtzite crystals. The first col-
umn show the double group irreps of C6V , which are induced
from the single group irrep between parenthesis. The second
column show the basis representation in terms of the spherical
harmonics Y m

l and spin (↑, ↓), while the third column show
the representation in terms of the orbitals (S, X, Y, Z, V),
where V = X(X2 − 3Y 2) [14].

IRREP C6V |Y m
l , spin⟩ |orb, spin⟩

Γ̄c
9(A1)

∣∣Y 0
0 , ↑

〉
|S′, ↑⟩∣∣Y 0

0 , ↓
〉

|S′, ↓⟩

Γ̄c
8(B1)

∣∣Y 3
3 − Y −3

3 , ↑
〉

|V, ↑⟩∣∣Y 3
3 − Y −3

3 , ↓
〉

|V, ↓⟩

Γ̄v
9(A1)

∣∣Y 0
1 , ↑

〉
|Z′, ↑⟩∣∣Y 0

1 , ↓
〉

|Z′, ↓⟩

Γ̄v
9(E1)

∣∣Y 1
1 , ↑

〉
|X ′ + iY ′, ↑⟩∣∣Y −1

1 , ↓
〉

|X ′ − iY ′, ↓⟩

Γ̄v
7(E1)

∣∣Y −1
1 , ↑

〉
|X ′ − iY ′, ↑⟩∣∣Y 1

1 , ↓
〉

|X ′ + iY ′, ↓⟩

There the top indexes {c, v} refer to conduction and
valence bands. Notice that the Γ9 irrep appears in three
pairs of basis functions, which allows for the s–pz mixing
[110–112] Here, however, we always work in the diagonal
basis (HWZ is diagonal at k = 0), which is indicated
by the primes in the orbitals above. For a recent and
detailed discussion on this choice of representation and
the s–pz mixing, please refer to Ref. [113].

Using the basis functions from Table IV to calculate
the effective 10 × 10 model using qsymm, we obtain the
Hamiltonian HWZ shown in Appendix C. Here we always
consider two conduction bands, which leads to this 10×10
generic model HWZ. However, one can also opt to work
with traditional 8 × 8 models with a single conduction
band. Notice, however, that for GaP the first conduction
band transform as Γ̄8, while for GaN and InP the first
conduction band is Γ̄9. Therefore, one must be careful
when selecting the appropriate 8 × 8 model for wurtzite
materials. For the valence bands one always get Γ̄7⊕2Γ̄9,
however, the internal ordering of these valence bands may
change between materials and it can be highly sensible
to the choice of density functional [29, 60, 114, 115]. The
numerical coefficients cj found for GaN, GaP, InP are
shown in Appendix C, and the resulting band structures
are shown in Figs. 4(c–e). In all cases we see that the
crude crude model with 1000 bands (black lines) ap-
proaches a full zone description, but here we are more in-
terested in the reduced 10× 10 models (red lines), which
present satisfactory agreement with the DFT data at low
energies.

1. Effects of the SOC corrections on Pm,n

As introduced in Sec. II D 2, the matrix elements Pm,n
can be calculated with or without the PAW corrections,
pSOC, that carry the SOC contributions. For most of
the materials we have studied here, these corrections are
marginal and the results from both cases are nearly iden-
tical. Nevertheless, we emphasize that using our patched
bands.x within QE is faster than using the python
code to calculate Pm,n via Eq. (13).

To illustrate the effects of the PAW/SOC corrections
on the matrix elements Pm,n, Fig. 5 compares the mod-
els for GaN and GaP with and without these corrections.
For the conduction bands, we notice that the pSOC cor-
rections significantly improve the GaN effective mass, but
barely affects GaP. For the valence bands, both GaN and
GaP show moderate effects of pSOC. Indeed, this shows
that a precise calculation of Pm,n is critical to improve
the precision of the models [116].
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Figure 4. (a) Lattice and (b) Brillouin zone for wurtzite crystals. Band structures for (c) GaN, (d) GaP and (e) InP showing
the large energy range on top, and a zoom showing the top of the valence bands at the bottom of each panel. In all cases, the
DFT calculation considers 1000 bands.

Figure 5. Comparison between the DFT data and the ef-
fective models calculated with the full matrix element Pm,n

including PAW/SOC corrections (red lines) and the simpli-
fied Pm,n without PAW/SOC corrections (green lines) for (a)
GaN and (b) GaP.

C. Rock-salt crystals

The crystal lattice for rock-salt crystals is shown in
Fig. 6(a), which is an FCC lattice with two atoms in the
base, and it is described by the space group Fm3̄m. The

low energy band structure concentrates at the L point of
the Brillouin zone shown in Fig. 6(b), which trans-
forms as the D3D point group after factorizing the Bloch
translations. The basis functions for the first valence
and conduction bands transform as A1g ⊗ D1/2 = L̄+

6

and A2u ⊗ D1/2 = L̄−
6 , where A1g is the trivial ir-

rep for S-like orbitals, and A2u represent Z-like orbitals
[117]. Therefore, the basis functions for the L̄+

6 bands
are {|S, ↑⟩ , |S, ↓⟩}, and for L̄−

6 one gets {|Z, ↑⟩ , |Z, ↓⟩}.
Here, the x, y, and z coordinates are taken along the
[1̄1̄2], [11̄0],and [111] crystallographic directions.

Here we consider two examples of rock-salt crystals:
PbSe and SnTe. Their effective 4 × 4 Hamiltonian HRS

under the L̄±
6 basis, and its numerical parameters are

shown in Appendix C, and the comparison between DFT
and model band structures are shown in Figs. 6(c)–(d).
PbSe is a narrow gap semiconductor, where the conduc-
tion band transform as the L̄+

6 irrep, and the valence
band as L̄−

6 . In contrast, SnTe show inverted bands,
with L̄+

6 below L̄−
6 , yielding a topological insulator phase

[118, 119]. In both cases the low energy model captures
the main features of the bands, including the anisotropy.
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Figure 6. (a) The rock salt lattice and (b) its Brillouin zone
(FCC). Band structures for (c) PbSe and (d) SnTe. The bot-
tom of each panel zooms into the low energy range near the
Fermi level. Both DFT calculations were performed consid-
ering 500 bands.

D. Other examples

To finish the set of illustrative examples, we show here
the case for: (i) the monolayer MoS2, which is one of the
most studied transition metal dichalcogenides (TMDC)
[120–122]; (ii) the bulk bismuth selenide (Bi2Se3), which
is one of the first discovered 3D topological insulators
[123, 124]; and (iii) a monolayer of GaBiCl2, which is a
large gap 2D topological insulator [125].

The symmetry characteristics and basis functions for
the low energy bands of these materials mentioned above
are summarized in Table V.

Table V. Summary of space group, irreps and basis functions
for the low energy bands of MoS2, GaBiCl2, and Bi2Se3. The
first column lists the materials, the second indicates the lattice
space group and the little group at the relevant k point. The
third and fourth columns lists the irreps and basis functions
for the low energy bands in each case. The table show the
double group irreps and the corresponding single group irreps
between parenthesis.

Material Group info IRREP Basis

MoS2

Space group K̄11(E
′
1) |X + iY, ↑⟩

P6̄m2 K̄10(E
′
1) |X + iY, ↓⟩

Little group K̄8(A
′) |S, ↑⟩

K: C3h K̄9(A
′) |S, ↓⟩

GaBiCl2

Space group
Γ̄4(E) |X + iY, ↑⟩

Γ̄5(E) |X − iY, ↓⟩

P3m1
Γ̄6(E)

|X − iY, ↑⟩

Little group
|X + iY, ↓⟩

Γ̄6(A1)
|Z ↑⟩

Γ: C3V |Z ↓⟩

Bi2Se3

Space group
Γ̄+
6 (A1g)

|S, ↑⟩

R3̄m |S, ↓⟩

Little group
Γ̄−
6 (A2u)

|Z, ↑⟩

Γ: D3d |Z, ↓⟩

For MoS2, the first valence and conduction bands are
given by the single group irreps A′ and E′

1 of the C3h

group [39, 126], which can be represented as S-like and
(X + iY )-like orbitals. For GaBiCl2, the valence bands
are characterized by single group E irrep, and it splits
into E⊗D1/2 = Γ̄4⊕Γ̄5⊕Γ̄6 in the spinful case, while the
conduction band is given by the irrep A1⊗D1/2 = Γ̄6. For
Bi2Se3, a detailed derivation of the effective model can
be seen in Ref. [127], which shows that the first valence
and conduction bands are given by A1g⊗D1/2 = Γ+

6 , and
A2u ⊗D1/2 = Γ−

6 .
The effective Hamiltonians and its numerical coeffi-

cients for these materials can be found in the Examples
folder of the code repository. Here we show only the com-
parison between the DFT and model band structures in
Fig. 7. The MoS2 case, as shown in Fig. 7(a),
is challenging for a k · p method, since its band struc-
ture presents valleys in between high symmetry points.
Consequently, the optimal 4 bands model (red lines)
captures only the nearly parabolic dispersion at the K
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point.
However, the crude crude all bands model (black

lines, see Eq.4 (4) ) approaches a full zone description
and captures the the valley along the Γ–K direction. For
GaBiCl2, Fig. 7(c), the optimal 6 bands model
describes satisfactorily the low energy conduction and
valence bands. For Bi2Se3 in Fig. 7(b) the optimal 4
bands model captures well the low energy band structure
near Γ, including the hybridization between the inverted
bands.

V. DISCUSSIONS

Above, we have presented illustrative results of the ca-
pabilities of our code to calculate the k · p Kane and
Luttinger parameters for a series of relevant materials.
In all cases we see a patent agreement between the DFT
(QE) data and the low energy models near the relevant
k0 point. However, it is important to notice that here
we use only PBE functionals [128], consequently it often
underestimates the gap (e.g. 0.5 eV instead of 1.5 eV for
GaAs). Therefore, our models are limited by the quality
of the DFT bands, and the resulting numerical param-
eters might not match Kane and Luttinger parameters
for well known materials, for which these parameters are
typically chosen to match the experimental data, and not
the DFT simulations.

For instance, let us consider the zincblende crystals
Kane parameter EP = 2m0P

2/ℏ2, band gap Eg and ef-
fective mass for the conduction band m∗. For GaAs, the
experimental values are EP ∼ 24 eV, P ∼ 0.96 eVnm,
Eg ∼ 1.5 eV, and m∗ = 0.065m0 [49]. As mentioned
above, the DFT results with PBE functionals underes-
timates the gap, and we get Eg ∼ 0.5 eV. Moreover,
the Kane parameter can be written as P = −

√
6c5/2,

where the coefficient c5 = −0.635 eVnm is shown in
Appendix C. This value yields P ∼ 0.7 eVnm and
EP ∼ 16 eV. The effective mass for the conduction
band can be estimated from its spinless expression [47],
m0/m

∗ = 1+2m0P
2/Egℏ2, which give usm∗ = 0.031m0.

While these numbers to not match well with the exper-
imental values, we notice that if we fix the GaAs gap
(scissors-cut approximation) , but keep our value for P ,
we find m∗ = 0.058m0, which is already much closer to
the experimental value for the effective mass.

The number estimates shown above clearly indicates
that the quality of our models are limited the DFT sim-
ulations only. Particularly, the gap issue can be fixed if
one replaces the PBE functionals with hybrid functionals,
GW calculations, or other methods that improve the ma-
terial gap accuracy. These are beyond the scope of this
paper, but it is possible path for future improvements of
our code.

In all examples presented here, we always consider the
crude crude all bands model from Eq.4 (4) , and
the optimal symmetry-adapted (few bands) model from
Eq.5 (5) . This raises two interesting questions: (i)

how many bands are necessary for convergence? And (ii)
for a large number of bands, should we get a full zone
description? We discuss these questions below.
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Figure 7. Band structures for: (a) MoS2, (b) GaBiCl2, and (c) Bi2Se3 showing only the relevant low energy range. The DFT
calculations were performed for 1000, 500, 500 bands, respectively. (d) Rhombohedral lattice of Bi2Se3 and 2D hexagonal
lattice of (e) MoS2 and (f) GaBiCl2, where we have omitted the vacuum region (15 à) perpendicular to the plane formed by
vectors A1 and A2. (g) 2D Brillouin zone common to MoS2 and GaBiCl2, and (h) 3D BZ of Bi2Se3.

A. Convergence

The convergence threshold (how many bands are nec-
essary) strongly depends on the material. In some cases
∼ 300 bands is sufficient, but in others it often needs
∼ 1000 bands. We do not have a general rule to estab-
lish which materials will show a slow or fast convergence.
Nevertheless, we believe it is instructive to discuss the
outcomes of our convergence analysis.

Notice that the the Löwdin partitioning from Eq.5 (5)
has two distinct contributions. The first two terms in
Eq.5 (5) are the zeroth and first order perturbation
terms. These terms do not change as we increase the
number of DFT bands (provided that there are enough
bands to converge the DFT calculation itself). The ze-
roth order term is essentially given by the DFT eigen-
states, and the first order terms is given by the matrix
elements ⟨m|H ′(k) |n⟩ = 2k · Pm,n between eigenstates
of set α A , which is the low energy sector of interest.
In contrast, the third term defines the second order cor-
rections, which are quadratic in k (assuming a diagonal
basis at k = 0). In this case, the second order contribu-
tions depend explicitly on the sum over the remote set
of bands β B . These are the the terms that strongly
depend on the number of remote bands.

To check for the convergence, we plot the values of the
Hamiltonian coefficients cj associated with second order
corrections as a function of the number of remote bands.
In the Examples folder in the code repository, one finds
these plots for all cases presented in this paper. Here,
in Fig. the top panels of Fig. 8, we select a few
illustrative cases. First, for In the bottom panels of

Fig. 8 we combine the discrete derivatives of cj into a
single dimensionless metric for convergence C(N), which
read as

C(N)
::::

=

∑
j |cj(N + 1)− cj(N)|∑

j |cj(N)|
,

:::::::::::::::::::::::

(35)

where cj(N) refers to the coefficient calculated using N
remote bands. With increasing N , the coefficients are
expect to converge, consequently C(N) → 0. The data
for C(N) is shown in blue dots on the bottom panels of
Fig. 8, which is significantly noisy due to the discrete
jumps on the evolution of cj with increasing N . There-
fore, we also plot a moving average C(N) (orange lines)
to clearly show the convergence. For spinless graphene
in Fig. 8(a), there are only three two second order
cj terms , (neglecting terms with kz, since it is a 2D
material), and we see that it reaches convergence near
100 with less than 300 remote bands.

In contrast, for MoS2, the convergence requires at least
∼ 500 remote bands. Interestingly, it has been recently
shown that TMDC materials indeed require a large num-
ber of bands to converge the orbital angular momenta
[42–45]. This fact may be associated to the large number
of unoccupied bands with plane-wave character that ap-
pear due to the spatial extension of the vacuum region.
The GaN and GaP cases in Figs. 8(c)–(d) is an interest-
ing case, they belong to the same class of materials, but
GaP reaches convergence with ∼ 200 remote bands, while
GaN is not yet fully converged for ∼ 1000 remote bands,
which can be seen in the lower (pink) line in Fig. 8(c).
Surprisingly, unlike . Unlike monolayer materials, GaN
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Figure 8. Convergence of the second order coefficients cj as a function of the number of remote bands for (a) spinless graphene,
(b) MoS2, (c) GaN, and (d) GaP. On top (a1–d1), each panel shows the coefficients cj for different material. On panels (c1)
and (d1) we omit the legends because there are 30 distinct coefficients, ranging from c22 to c51, which make their individual
identification cumbersome, and it is sufficient to visualize that they all lines become nearly flat for a large number of remote
bands. On the bottom (a2–d2), for each material, the evolution of the coefficients cj are combined into convergence metric set
by Eq. (35) (blue dots). Due to the noise induced by the discrete derivative in this metric, we plot the moving average of the
data as guide for the eyes.

compound is not described by any vacuum region, and
therefore we speculate that such poor convergence may
be related to details of the pseudopotential [100] and N
electronegativity the electronegativity of Nitrogen .

B. Full zone kp

In Section II A we have presented the k·p method in its
traditional form, which considers a perturbative expan-
sion of the Bloch Hamiltonian at a reference momentum
k0, and a small set of bands near the Fermi energy. Usu-
ally, one expects the resulting effective model to be valid
only near k0 and only for a small energy range that en-
closes the bands of interest. In contrast, within the full
zone k ·p approach [66, 129–133] one considers a large set
of bands, such that the resulting low energy model agree
well with DFT or experimental bands over the full Bril-
louin zone, instead of only the vicinity of k0. However,
to achieve this precision, one needs to apply fitting pro-
cedures to assure that the bands match selected energy
levels at various k points over the Brillouin zone.

Here, in our code, we can easily select an arbitrary
number of bands to build the effective models. All ex-
amples presented above show sets of bands colored in red
and black, such that the red ones consider models built
from a small set of bands α A (from 4 to 10 bands),
while the black ones consider the full set of bands from
the DFT data (typically 500 or 1000 bands). This leads

to an interesting question: should our “all bands model”
all bands model match the full zone k · p models?

To answer this question, let us focus first on the
graphene results from Fig. 1. There, we have seen that
the QE/DFT and the model agree remarkably well at
low energies near the K point, as expected. Particularly,
the red line for the optimal symmetry-adapted model
describes precisely the low energy regime and Dirac cone
and the trigonal warping from the quadratic terms in
Eq. 21 (21) . In contrast, when we consider the crude
all bands model (black lines), we see that the model does
approaches a full zone agreement with 300 bands. What
if we consider more bands? Our numerical tests have
shown that increasing the number of bands does improve
the overall description, approaching the full zone full
zone agreement. However, this is a very slow conver-
gence and we never really reach a true full zone agree-
ment. This characteristic is seen in all other examples
shown here.

For GaAs, Gawarecki and collaborators [133] show an
excellent full zone agreement between model and DFT
bands considering 30 bands. In contrast, our results pre-
sented in Fig. 3(a) for 8 (red) and 1000 (black) bands
remain valid only in the vicinity of Γ. The key differ-
ence is the fitting procedure. The full zone models fit the
bands over the full Brillouin zone, while in our approach
we consider only the direct ab-initio matrix elements of
π = p+ pSOC without further manipulation.

If one needs a full zone full zone model, we suggest
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using our results as the initial guess for the parameters
used on a band fitting algorithm. Moreover, we expect
that since the fitted parameters must not deviate sig-
nificantly from our ab-initio values, which can be used as
a “sanity check” results, our calculated values provide
an important benchmark for the fitting results. Alter-
natively, it might be possible to develop multi-valley k ·p
models [68, 70, 134] and extract its parameters directly
from DFT matrix elements without numerical fitting pro-
cedures, but this is beyond the scope of this work.

VI. CONCLUSIONS

We have implemented a numerical framework to calcu-
late the k ·p Kane and Luttinger parameters and optimal
symmetry-adapted effective Hamiltonians directly from
ab initio wave-functions. The code is mostly written in
python, but also contains a patch to modify the Quantum
Espresso ESPRESSO code, such that its bands.x post
processing tool is used to calculate the matrix elements
Pm,n = ⟨m|π |n⟩, which is the central quantity in our
methodology. Consequently, this first version works only
with Quantum Espresso ESPRESSO . Equivalent calcu-
lations can be done in other DFT codes (e.g. VASP [5],
Wien2k [6]), but it requires further developments. The
code is open source and it is available at Ref. [89].

Here, we have illustrated the capabilities of our code
applying it to a series of relevant and well known materi-
als. The resulting effective models yield band structures
that match well the DFT data in the low energy sector
near the k point used for the wave-function expansion.
Therefore, our code provides an ab initio approach for
the k · p numerical parameters, which can be contrasted
with fitting methods [60, 76–78, 133], in which the numer-
ical coefficients are obtained by numerically minimizing
the residue difference between the DFT and model band
structures over a selected range of the Brillouin zone.
These fitting procedures work well in general, but require
a careful verification if the fitted parameters are reason-
able. In contrast, our ab initio approach is automatic
and fully reliable. Nevertheless, fitting procedures can
improve the agreement between DFT and model band
structures significantly. In this case, we suggest that our
code can be used (i) to generate the initial values for the
fitting parameters, and (ii) to verify if the fitted param-
eters show reasonable values. One should expect that
fitted parameters must not deviate much from our ab
initio values.

Here we do not perform a thorough comparison of our
numerical parameters with experimental data. Typically,
to obtain precise agreement with experimental data, one
needs to fix the gap issue by using either hybrid func-
tionals or GW calculations, which are beyond the scope
of this first version of the code. Instead, here we use
only PBE functionals [128] for simplicity, which is reli-
able enough to validate our approach. Consequently, our
numerical parameters are limited by the precision of the

DFT simulation, and we would not expect remarkable
agreement with experimental data for most materials at
this stage. Nevertheless, for novel materials, for which
there is no experimental data available, our code can
be used to generate reliable numerical parameters that
can be improved later, either in comparison with future
experiments, or by extending our method to work with
hybrid functionals or GW calculations.

As a final disclaimer, we would like to state that after
developing the first version of the code, we have found
that Ref. [86] recently proposes an equivalent approach
to build k · p models from DFT, but the authors do not
provide an open source code. In any case, despite the
similarities, the development of our code was done inde-
pendently from their proposal. In practice, the only sig-
nificant difference between the proposals is the approach
to calculate the transformation matrix U (see Section
IIC). While the authors of Ref. [86] follow the method
from [95], here we propose a different method that is more
efficient for transformations involving reducible represen-
tations, which is necessary when dealing with nearly de-
generate bands of different irreps (e.g., spinful graphene).
Additionally, after the initial submission of our paper, a
new code VASP2kp [135] was released with function-
alities similar to ours, but designed for VASP [5] instead
of QE.
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Appendix A: Mass-velocity corrections are negligible

Consider the full Hamiltonian with all fine structure
corrections as

H = p2 + V (rr) +HMV +HD +HSOC, (A1)

HMV = −α
2p4

4
, (A2)

HD =
α2

8
∇2V (r), (A3)

HSOC =
α2

4
(×∇U)

α2

4
[σ ×∇V (r)]

:::::::::::::

· p. (A4)

Applying the Bloch theorem ψκ(r) = eik·rϕk0,k(r) for
κ = k0 + k, the k · p Hamiltonian becomes Hkp = H0 +
k2 + H ′, where H0 = p2 + V (r) + 2k0 · π + HSR, and
HSR contain the k = 0 contributions from HMV+HD, as
presented in the main text. The perturbation for finite
k ̸= 0 is H ′ = 2k · π + H ′

MV, where H ′
MV contains the

finite k contributions from the mass velocity term, and
it reads as

H ′
MV = −α

2

4

[
4(k · p)p2 + 4(k · p)2

+ 4(k)2(k · p) + 2k2p2 + k4
]
. (A5)

These corrections are negligible for small k, i.e. |H ′
MV| ≪

|2k · π|. Notice that the SOC term in 2k · π has two
contributions, one is of order ∼ |kp| and the other is
∼ |kα2|. In contrast, the contributions to H ′

MV are ∼
|α2kp3|, ∼ |α2k2p2|, ∼ |α2k3p|, and ∼ |α2k4|. Therefore,
all terms in H ′

MV are of higher order than those in 2k ·π,
and we can safely assume H ′ ≈ 2k · π.

Appendix B: DFT parameters

The first principles calculations are performed using
the density functional theory (DFT) [1, 2] within the gen-
eralized gradient approximation (GGA) for the exchange
and correlation functional, employing the Perdew-Burke-
Ernzerhof (PBE) parametrization [128]. We employ the
non-colinear spin-DFT formalism self-consistently with
fully relativistic j-dependent ONCV (Optimized Norm-
Conserving Vanderbilt) pseudopotential [99]. The Quan-
tum Espresso ESPRESSO (QE) package [3, 4] was
used, with a plane waves base configured with a given
cut-off energy and the Brillouin zone sampled with a
number of k-points (Monkhorst-Pack grid) so that the
total energy converged within the meV scale (see Table
VI). The ONCV pseudopotentials compatible with Quan-
tum espresso ESPRESSO package are available in the
repository [109]. The vacuum space in two-dimensional
materials was set to 15 à. Atomic structures were op-
timized with a criterion that requires the force on each
atom being less than 0.01 eV/à. Additional parameters
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Table VI. Criteria used for the convergence of the total en-
ergy: cut-off energy for the expansion in plane waves and the
number of k-points taken for sampling the Brilhouin zone us-
ing the Monkhorst-Pack technique.

Material cut-off energy BZ sample

Graphene 80 Ry 12x12x1

GaAs 100 Ry 8x8x8

HgTe 50 Ry 8x8x8

CdTe 60 Ry 8x8x8

GaN 100 Ry 8x8x8

GaP 150 Ry 8x8x8

InP 100 Ry 7x7x7

PbSe 100 Ry 7x7x7

SnTe 100 Ry 8x8x8

MoS2 100 Ry 8x8x1

Bi2Se3 60 Ry 7x7x7

GaBiCl2 100 Ry 8x8x1

used in our simulations including QE input and output
files can be found in the Examples folder of the code
repository [89].

Appendix C: Effective Hamiltonians and coefficients

Here we present the large Hamiltonians and table of
parameters for the materials presented in the main text.
These correspond to the zincblende crystals for Fig. 3,
wurtzite crystals of Fig. 4, and rock-salt crystals of Fig. 6.
For the other examples shown in Fig. 7, the correspond-
ing Hamiltonians and numerical parameters can be seen
in Examples folder in the code repository.

Table VII. Table of parameters for the zincblende materials,
where the coefficients cn refer to the terms of HZB in the
equation listed in Table X. The coefficient c0 is negative for
HgTe due to the Γ6–Γ8 band inversion.

Zincblende GaAs HgTe CdTe
c0 (eV) 0.403 -1.16 0.36
c1 (eV) 0.00011 2.23e-05 3.68e-05
c2 (eV) -0.335 -0.773 -0.851

c3 (eV nm) 0.000486 -0.0117 0.00232
c4 (eV nm) 0.00268 -0.023 0.00499
c5 (eV nm) -0.635 -0.543 0.559
c6 (eV nm) -0.436 0.341 0.363
c7 (eV nm2) 0.0293 0.0354 0.0347
c8 (eV nm2) -0.0978 -0.0772 -0.0577
c9 (eV nm2) -0.0437 -0.0339 -0.0262
c10 (eV nm2) -0.0321 0.0128 -0.0153
c11 (eV nm2) -0.0608 -0.0375 -0.0303
c12 (eV nm2) -0.000588 -0.0036 -0.000109
c13 (eV nm2) 0.0632 0.0558 0.0398
c14 (eV nm2) 0.0397 -0.0259 0.0231
c15 (eV nm2) -0.0362 0.0479 0.0361
c16 (eV nm2) -0.0275 -0.0349 0.0261

The numerical coefficients for the zincblende, wurtzite
and rock-salt materials are shown in Tables VII, IX,
and VIII, respectively. These correspond to the effec-
tive Hamiltonians shown in Tables X, XI, and XII. In
all cases we use k± = kx ± iky, k2 = k2x + k2y + k2z ,
k2∥ = k2x+k

2
y, K̂ = k2x−k2y, which is also used in Appendix

C of Ref. [15].

Table VIII. Table of parameters for the rock-salt materials,
where the coefficients cn refer to the terms of HRS in the
equation listed in Table XII.

Rock-salt PbSe SnTe
c0 (eV) 0.235 0.125
c1 (eV) 0.284 0.000141

c2 (eV nm) 0.168 0.193
c3 (eV nm) -0.122 -0.111
c4 (eV nm2) -0.134 -0.713
c5 (eV nm2) 0.223 0.214
c6 (eV nm2) 0.119 0.637
c7 (eV nm2) -0.151 -0.158
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Table IX. Table of parameters for the wurtzite materials,
where the coefficients cn refer to the terms of HWZ in the
equation listed in Table XI.

Wurtzite GaP GaN InP
c0 (eV) 1.75 1.76 0.457
c1 (eV) 9.73e-06 -1.16e-07 1.4e-07
c2 (eV) -6.28e-06 -5.09e-09 -4.07e-06
c3 (eV) 1.31 4.11 1.1
c4 (eV) -0.208 -0.0405 -0.162
c5 (eV) 4.7e-08 0.000658 6.89e-09
c6 (eV) -0.0442 -0.00602 -0.0395
c7 (eV) 7.82e-05 -7.29e-05 8.11e-05

c8 (eV nm) 0.00448 0.00586 -0.0112
c9 (eV nm) 0.00214 0.00075 0.0137
c10 (eV nm) 0.118 -0.0733 -0.184
c11 (eV nm) 0.455 -0.372 -0.392
c12 (eV nm) -0.472 -0.381 0.436
c13 (eV nm) -0.00429 -0.00428 -0.0195
c14 (eV nm) 0.00811 0.0024 0.0223
c15 (eV nm) 0.0234 0.0128 0.0301
c16 (eV nm) -0.0268 0.0134 -0.0428
c17 (eV nm) -0.0112 -0.00416 -0.0377
c18 (eV nm) 0.0055 -0.00109 0.0202
c19 (eV nm) 0.801 -0.568 -0.616
c20 (eV nm) 0.214 -0.116 -0.298
c21 (eV nm) -0.00918 -0.00423 -0.0294
c22 (eV nm2) 0.0203 0.0266 0.0282
c23 (eV nm2) 0.0182 0.00155 -0.0109
c24 (eV nm2) 0.00486 0.000225 -0.00585
c25 (eV nm2) -2.32e-05 8.08e-05 -0.000406
c26 (eV nm2) 0.273 0.128 0.264
c27 (eV nm2) -0.0267 -0.0151 -0.0262
c28 (eV nm2) 0.00735 0.00235 0.00881
c29 (eV nm2) -0.00672 0.00214 -0.00733
c30 (eV nm2) -0.0558 -0.0259 -0.0411
c31 (eV nm2) 0.0285 -0.0109 0.0178
c32 (eV nm2) -0.0581 -0.0255 -0.0433
c33 (eV nm2) -0.000342 0.00025 0.000387
c34 (eV nm2) 0.00537 -0.00331 -0.00541
c35 (eV nm2) 0.0223 -0.0176 -0.017
c36 (eV nm2) 0.0241 0.0197 -0.0248
c37 (eV nm2) 0.00671 0.000335 -0.00687
c38 (eV nm2) 0.0214 0.00371 -0.00757
c39 (eV nm2) -0.0229 0.0034 0.0112
c40 (eV nm2) 0.00903 -0.000739 0.00432
c41 (eV nm2) -0.00964 -0.000377 -0.0054
c42 (eV nm2) 0.00366 -0.000194 0.00471
c43 (eV nm2) -7.74e-05 4.97e-06 0.000177
c44 (eV nm2) 0.0266 0.0241 0.0318
c45 (eV nm2) -0.0156 -0.00776 0.00148
c46 (eV nm2) -0.00304 -0.00173 -0.0025
c47 (eV nm2) 0.0326 0.0175 0.031
c48 (eV nm2) -0.0661 -0.0482 -0.0636
c49 (eV nm2) -0.0107 -0.00713 -0.0205
c50 (eV nm2) -0.0334 -0.0158 -0.0379
c51 (eV nm2) -0.0294 -0.0139 -0.0242
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Table XII. Effective Hamiltonian for rock-salt crystals considering the 4× 4 model composed by the L±
6 irreps of D3D.

HRS =


c0 + c4k

2 + c6 (kxky + kxkz + kykz) 0
0 c0 + c4k

2 + c6 (kxky + kxkz + kykz)
−c2 (kx − ky)− ic3 (kx + ky + kz) c2 (−ik− + kz (1 + i))

c2 (ik+ + kz (1− i)) c2 (kx − ky)− ic3 (kx + ky + kz)

−c2 (kx − ky) + ic3 (kx + ky + kz) c2 (−ik− + kz (1 + i))
c2 (ik+ + kz (1− i)) c2 (kx − ky) + ic3 (kx + ky + kz)

c1 + c5k
2 + c7 (kxky + kxkz + kykz) 0

0 c1 + c5k
2 + c7 (kxky + kxkz + kykz)


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