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Abstract

We develop a split representation for celestial amplitudes in celestial holography,

by cutting internal lines of Feynman diagrams in Minkowski space. More explicitly,

the bulk-to-bulk propagators associated with the internal lines are expressed as a prod-

uct of two boundary-to-bulk propagators with a coinciding boundary point integrated

over the celestial sphere. Applying this split representation, we compute the conformal

partial wave and conformal block expansions of celestial four-point functions of mass-

less scalars and photons on the Euclidean celestial sphere. In the t-channel massless

scalar amplitude, we observe novel intermediate exchanges of staggered modules in the

conformal block expansion.
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1 Introduction

Celestial holography is a duality between a d+2-dimensional quantum field theory or quan-

tum gravity in an asymptotic Minkowski space and a hypothetical d-dimensional celestial

conformal field theory (CCFT) on the celestial sphere at null infinity [1–3]. More concretely,

scattering amplitudes in the “bulk” theory when expanding in the conformal primary basis,

that manifests the d-dimensional conformal symmetry (d+2-dimensional Lorentz symmetry),

are conjectured to correspond to correlation functions in the “boundary” theory [1].

Besides conformal symmetry, perhaps the most important property that a CCFT should

obey is locality. On the level of correlation functions, locality means that singularities arise

exclusively when operators coincide and are captured by the operator product expansions

(OPEs). Indeed, the analysis of the celestial OPEs of gluons and gravitons shows that the

coinciding point singularities on the celestial sphere correspond to the colinear singularities

of the scattering amplitudes [4]. However, it is unknown whether all the singularities of the

celestial amplitudes are of this type, and it is well-known that generally singularities can

occur at configurations where no pair of incoming or outgoing particles are colinear [5].

To examine the singularity structure of celestial amplitudes, it is convenient to fully

utilize the conformal symmetry by expanding them in terms of conformal partial waves or

conformal blocks. The conformal partial wave and conformal block expansions of the celestial

four-point massless scalar amplitudes were studied in [6–9] using the completeness relation

of the conformal partial waves. However, such a method is difficult to generalize to higher

points due to the complicated integrals over the space of conformal cross ratios. To address

this problem, we draw lessons from the anti-de Sitter (AdS) holography, where a powerful

technique of computing AdS Witten diagrams and their conformal block expansions is the

split representation of the AdS bulk-to-bulk propagators [10, 11]. In this paper, we develop

a novel split representation for computing celestial amplitudes.

In perturbation theory, celestial amplitudes can be computed in a way similar to the

computation of Witten diagrams in AdS using a set of Feynman rules conveniently formulated

in position space (see a review in Section 3.1). In a Feynman diagram computing a celestial

amplitude, an external line attaching a “boundary point” from the celestial sphere at the

null infinity to a “bulk point” in Minkowski space is a bulk-to-boundary propagator that

is identical to the conformal primary wave function. An internal line connecting two bulk

points is a bulk-to-bulk propagator, which is the Fourier transform of the usual Feynman

propagator from momentum space to position space. The internal and external lines are

joined at bulk vertices, which are given by the interaction terms in the bulk action, and

integrated over the entire Minkowski space.

To derive a split representation for the bulk-to-bulk propagator, we divide the Fourier
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integral in momentum space into integrals over the regions inside and outside the light cone

of an observer at the origin (p = 0) as shown in Figure 1. The regions inside the past or

future light cones are foliated by d + 1-dimensional Euclidean anti-de Sitter (EAdS) slices,

and the region outside the light cones is foliated by d + 1-dimensional de Sitter (dS) slices.

We then separately apply the EAdS and dS split representations (see Section 2) for the part

of the bulk-to-bulk propagator on the EAdS and dS slices. After putting things together,

the final result is a split representation for the bulk-to-bulk propagator into a product of two

bulk-to-boundary propagators with a common boundary point integrated over the celestial

sphere (see (4.9) in Section 4).

EAdSd+1

dSd+1

R1,d+1

dSd+1

Figure 1: Hyperbolic slicing of momentum space R1,d+1. Each blue curve is a EAdSd+1, and

each left-right pair of red curves is a dSd+1.

Applying our split representation to the internal propagators of a celestial amplitude

reduces it into an integral of products of lower point amplitudes. Repeating the above step,

we could reduce a higher point celestial amplitude to three-point amplitudes and obtain

a conformal partial wave or conformal block expansion. We demonstrate this in various

examples of four-point amplitudes (see Section 5), including the s-channel massless scalar

amplitude, the s-channel Compton amplitude, the t-channel massless scalar amplitude, and

the contact scalar amplitude. It is important to note that our split representation naturally

produces expansions in terms of conformal blocks on the Euclidean celestial sphere. In

particular, for d = 2, we achieve an expansion of the t-channel massless scalar amplitude in

terms of the SL(2,C) blocks. This is in contrast to the expansion of the same amplitude in
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terms of SL(2,R) × SL(2,R) blocks [7], which are the conformal blocks on the Lorentzian

celestial torus. In both cases, there are extra contributions to the expansion beyond the

conformal blocks of unitary Verma modules. Notably, In the SL(2,C) block expansion, we

find chiral staggered modules, contrasting with the light-ray states identified in the SL(2,R)×
SL(2,R) block expansion [7].

The rest of this paper is organized as follows. Section 2 and Appendix D derive the

split representations in EAdS and dS spaces. Section 3 reviews the computation of celestial

amplitudes in perturbation theory using Feynman diagrams and Feynman rules involving

the bulk-to-boundary and bulk-to-bulk propagators. Section 4 presents our main result, the

split representation for the scalar bulk-to-bulk propagator. Section 5 applies the split rep-

resentation to various celestial four-point amplitudes. Section 6 ends with some concluding

remarks.

2 Split representations in EAdS and dS spaces

For the EAdS spacetime, the (scalar) bulk-to-bulk propagator G∆(X,X
′) is related to the

product of two bulk-to-boundary propagators K∆(X,P )K∆̃(X
′, P ) with the common point

P integrated over the boundary [10, 12–14]. This is called the split representation of the

scalar propagator, and is a special case of the split representation of the Dirac delta function,

i.e. the resolution of identity on the space of normalizable functions on EAdSd+1,

δ(X,X ′) =
1

2πi

∫ d
2
+i∞

d
2

d∆

µ(∆)

∫
dP K∆(X,P )K∆̃(X

′, P ), (2.1)

where X,X ′ are bulk points, P is a boundary point parametrized by P = (1+x2

2
, x, 1−x2

2
) , x ∈

Rd, ∆̃ is the shadow weight ∆̃ = d−∆, K∆(X,P ) is the bulk-to-boundary propagator,

K∆(X,P ) = (−2X · P )−∆, (2.2)

and µ−1(∆) is called the Plancherel measure,

µ(∆) =
πdΓ(∆− d

2
)Γ(∆̃− d

2
)

Γ(∆)Γ(∆̃)
. (2.3)

The idea behinds the split representation is as follows.

By the spectrum theorem, for a manifold M and a self-adjoint differential operator D on

M , given an orthnormal basis {ei(x) : i ∈ I} of D: Dei = λiei, the resolution of identity

δ(x, x′) =
∑
i∈I

e∗i (x
′)ei(x), (2.4)
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is equivalent to the completeness of the basis. The propagator G is the operator inverse of

D: DG = δ, and

G(x, x′) =
∑
i∈I

1

λi
e∗i (x

′)ei(x). (2.5)

If further M admits a transitive symmetry G, i.e. M = G/H, then different eigenspaces of

D carry inequivalent representations of G labeled by i with the same λi.

For EAdSd+1, choosing the differential operator as the Laplacian, the eigenspaces are

unitary principal series representations E∆ of the isometry group SO(d + 1, 1). For any

boundary point P , the bulk-to-boundary propagator K∆(X,P ) is an eigenfunction of the

Laplacian, and the integration over P resolves the degeneracy of the eigenspaces.

The appearance of the bulk-to-boundary propagator K∆(X,P ) in the split representation

(2.1) is quite natural from the perspective of harmonic analysis, see Appendix D. For a

normalizable function f(X) on EAdS, the Fourier transform F∆ is

F∆[f(X)](P ) =

∫
dX K∆(X,P )f(X), (2.6)

and for a normalizable function f(P ) on the boundary, the Poisson transform F †
∆ is

F †
∆[f(P )](X) =

∫
dP K∆̃(X,P )f(P ). (2.7)

Then the composition maps P∆ = F †
∆F∆ are projectors that decompose f(X) according to

the unitary principal series representations E∆,

P∆[f(X
′)](X) =

∫
dX ′ ϕ∆(X,X

′)f(X ′), (2.8)

where the integral kernel ϕ∆(X,X
′) is called the spherical function on EAdS,

ϕ∆(X,X
′) =

∫
dP K∆(X,P )K∆̃(X,P ). (2.9)

The inversion formula ensures the decomposition is complete,

f(X) =
1

2πi

∫ d
2
+i∞

d
2

d∆

µ(∆)
P∆[f(X)], (2.10)

and is equivalent to the resolution of identity (2.1). The physical interpretations are as

follows: the spherical function is the Wightman function of the free scalar; the Poisson

transform is the Euclidean counterpart of the HKLL reconstruction of the free scalar [15,

16]; the Fourier transform is the Dobrev intertwining relation [17], which motivates the split

representation on EAdS [12].
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The preceding discussions inspire the question: is there a similar relation to (2.1) on

the dS spacetime? The answer is affirmative with two new features: the quantity X · P is

indefinite for X ∈ dSd+1 and K∆(X,P ) in (2.2) is ill-defined; the spectrum of the Laplacian

contains both continuous and discrete parts. The split representation in dS is

δ(X,X ′) =
1

2πi

∑
ϵ=0,1

∫ d
2
+i∞

d
2

d∆

2µ(∆)

∫
dP K∆,ϵ(X,P )K∆̃,ϵ(X

′, P )

+ αd

∑
Res

(∆,ϵ)∈DdS

1

2µ(∆)

∫
dP K∆,ϵ(X,P )K∆̃,ϵ(X

′, P ).

(2.11)

where αd = 1 for odd d and αd =
1
2
for even d, the analog of the bulk-to-boundary propagator

is

K∆,ϵ(X,P ) = | − 2X · P |−∆,ϵ ≡ | − 2X · P |−∆ sgnϵ(−2X · P ), (2.12)

and the discrete spectrum is

DdS = {(∆ ∈ Z, ϵ) : ∆ >
d

2
and ϵ = 1 + d+∆ modZ2}. (2.13)

The derivation requires the harmonic analysis on the symmetric spaces, and we leave it to

the appendices. In Appendix C we review the spherical function method in the harmonic

analysis. In Appendix D we derive the split representations on EAdS/dS from the spherical

function method. The result (2.11) is not new, but appears in different forms in the old

literature [18–22].

3 A brief review of celestial amplitudes

3.1 Feynman rules for celestial amplitudes

In a d-dimensional celestial CFT, celestial amplitudes are scattering amplitudes expanded

on the basis of conformal primary wavefunctions [1, 23] instead of the usual plane-waves. For

instance, given an amputated amplitude M(Xj) of massless scalars in the position space,

we obtain a celestial scalar amplitude A(xi) by changing the basis as the integral

A(xi) =

( k+n∏
j=1

∫
dd+2Xj

)( k∏
j=1

ϕ+
∆j
(xj;Xj)

)( k+n∏
j=k+1

ϕ−
∆j
(xj;Xj)

)
M(Xi) , (3.1)

where ϕ±
∆(x;X) are the incoming (+) and outgoing (−) massless scalar conformal primary

wave functions with the conformal dimension ∆. Since the conformal primary basis connects

a bulk point X in the (d+ 2)-dimensional Minkowski space and a boundary point x on the
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d-dimensional celestial sphere, we will also call it a bulk-to-boundary propagator. We

will review the explicit forms of the bulk-to-boundary propagators in the next subsection.

In perturbation theory, the amplitude M(Xj) can be computed by Feynman rules. The

propagators and interaction vertices are simply given by Fourier transforms of those in the

momentum space. For instance, a scalar propagator in the position space, connecting two

bulk points X1 and X2, is given by1

Km(X1, X2) =

∫
dd+2p

(2π)d+2

i

p2 +m2 − iϵ
e−ip·(X1−X2) , (3.2)

which satisfies the Green’s function equation

(∂2X +m2)Km(X, Y ) = iδ(d+2)(X − Y ) . (3.3)

We will call it a bulk-to-bulk propagator.

We will focus on tree-level amplitudes with scalars and photons. For example, the 2 → 2

contact celestial scalar amplitude is given by

A∆i

100+200→300+400
(xi) =

∫
dd+2X ϕ+

∆1
(x1, X)ϕ+

∆2
(x2, X)ϕ−

∆3
(x3, X)ϕ−

∆4
(x4, X) . (3.4)

We have introduced the notation

ism for i-th, mass m, helicity/spin s particle. (3.5)

Another example is the s-channel tree-level celestial amplitude with two incoming and two

outgoing massless scalars and a massive scalar exchange. Using the bulk-to-bulk and bulk-

to-boundary propagators, this amplitude can be computed by

sA∆i

100+200→300+400
(xi) =

∫
dd+2X1d

d+2X2

( 2∏
i=1

ϕ+
∆i
(xi, X1)

)
Km(X1, X2)

( 4∏
i=3

ϕ−
∆i
(xi, X2)

)
. (3.6)

Similarly, the t-channel tree-level 2 → 2 celestial scalar amplitude is

tA∆i

100+200→300+400
(xi) =

∫
dd+2X1d

d+2X2

× ϕ+
∆1
(x1, X1)ϕ

+
∆2
(x2, X2)Km(X1, X2)ϕ

−
∆3
(x3, X1)ϕ

−
∆4
(x4, X2) .

(3.7)

Finally, we consider the s-channel Compton amplitude. In the plane-wave basis, the ampli-

tude in four-dimensional Minkowski space is

Mµν = (2q1µ + q2µ)
1

(q1 + q2)2 − iϵ
(2q3ν + q4ν) . (3.8)

1We use the most positive metric in this paper, i.e. gµν = diag(−1,+1,+1, · · · ,+1).
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The corresponding celestial amplitude is

sA∆i

100+2−0 →300+4−0
(xi)

=
1

(2π)8

∫
d4X1d

4X2

[
2∂µX1

ϕ+
∆1
(x1, X1)ϕ

+
∆2;µ−(x2, X1) + ϕ+

∆1
(x1, X1)∂

µ
X1
ϕ+
∆2;µ−(x2, X1)

]
×Km=0(X1, X2)

[
2∂νX2

ϕ−
∆3
(x3, X2)ϕ

−
∆4;ν−(x4, X2) + ϕ−

∆3
(x3, X2)∂

ν
X2
ϕ−
∆4;ν−(x4, X2)

]
,

(3.9)

where ϕ±
∆;µa is the bulk-to-boundary photon propagator.

3.2 Bulk-to-boundary propagators

The bulk-to-boundary propagators (conformal primary wave functions) ϕ±
∆,m(x;X) and ϕ±

∆(x;X)

for massive and massless scalars with mass m are given by

ϕ±
∆,m(x;X) =

∫
dd+1p̂′

p̂′0
1

(−q̂ · p̂′)∆
e±imp̂′·X ,

ϕ±
∆(x;X) =

∫ +∞

0

dω ω∆−1e±iωq̂·X−ϵω = N±
∆

1

(−q̂ ·X ∓ iϵ)∆
,

(3.10)

where N±
∆ is a constant factor given by

N±
∆ = (∓i)∆Γ[∆] . (3.11)

qµ and q̂ are massless and massive on-shell momenta with the parameterizations2

qµ(ω, x) = ωq̂µ(x) = ω(1 + x2, 2x⃗, 1− x2) = 2ωP µ ,

pµ(m, y, x) = mp̂µ(y, x) =
m

2y
(1 + y2 + x2, 2x⃗, 1− y2 − x2) .

(3.12)

There is another set of bulk-to-boundary propagators given by the shadow transform of

the wave functions in (3.10). As shown in [23], the shadow transform of ϕ±
∆,m(x;X) is simply

ϕ±
d−∆,m(x;X). The shadow transformation of ϕ±

∆(x;X) is

ϕ̃±
∆(x;X) =

Γ[d−∆]

π
d
2Γ[d

2
−∆]

∫
ddx′

ϕ±
d−∆(x

′;X)

|x− x′|2∆
=
N±

d−∆

N±
∆

(−X2)∆− d
2ϕ±

∆(x;X) . (3.13)

As we will see later in Section 4, in the split representation, the bulk-to-bulk propagator

would also factorize into bulk-to-boundary propagators with imaginary mass, im. Hence, we

2We note that the coordinates P defined in Section 2 is related to q̂ by q̂ = 2P .
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introduce the bulk-to-boundary propagators for tachyonic scalar as3

ϕ∆,im,ϵ(x;X) =

∫
dd+1k̂′

|k̂′+|
1

|q̂ · k̂′|∆
sgnϵ(q̂ · k̂′)e−imk̂′·X (3.14)

with k
′2 = m2 and ϵ = 0, 1. Note that there is no distinction between incoming and outgoing

for tachyons. The bulk-to-boundary propagators ϕ∆,im,ϵ(x;X) are conformally covariant and

satisfy the tachyonic Klein-Gordon equation (∂2X +m2)ϕ∆,im,ϵ(x;X) = 0.

The bulk-to-boundary propagator (conformal primary wavefunctions) for massless spin-

one particles is [23, 24]

ϕ∆,±
µa (q̂;X) =

∂aq̂µ
(−q̂ ·X ∓ iϵ)∆

+
q̂µ∂aq̂ ·X

(−q̂ ·X ∓ iϵ)∆+1

≡ V ∆,±
µa (x,X) +W∆,±

µa (x,X) .

(3.15)

The shadow transform of ϕ∆,±
µa is related to itself and we have

ϕ̃∆,±
µa = (−X2)∆−1ϕ∆,±

µa =
(−X2)∆−1∂aq̂

µ

(−q̂ ·X ∓ iϵ)∆
+

(−X2)∆−1q̂µ∂aq̂ ·X
(−q̂ ·X ∓ iϵ)∆+1

. (3.16)

Up to a pure gauge, ϕ∆,±
µa (q̂;X) can be written as a Mellin transform of a plane-wave as

ϕ∆,±
µa (q̂;X) =

∆− 1

∆N±
∆

∂aq̂
µ

∫ ∞

0

dω ω∆−1e±iωq̂·X−ϵω + ∂µα
∆,±
a . (3.17)

4 Split representation in CCFT

We are now ready to derive the split representation for the bulk-to-bulk propagatorKm(X1, X2)

in (3.2) in celestial holography, by combining the split representations in EAdS and dS de-

veloped in Section 2 (with more details in Appendix D). As discussed in the introduction,

we divide the Fourier integral of the bulk-to-bulk propagator (3.2) into integrals over the

regions p2 > 0 and p2 < 0 as

Km(X1, X2) = K+
m(X1, X2) +K−

m(X1, X2) , (4.1)

where K+
m(X1, X2) and K−

m(X1, X2) are given by

K+
m(X1, X2) =

∫
p2>0

dd+2p

(2π)d+2

i

p2 +m2
e−ip·(X1−X2) , (4.2)

K−
m(X1, X2) =

∫
p2<0

dd+2p

(2π)d+2

i

p2 +m2
e−ip·(X1−X2) . (4.3)

3One may also define the tachyonic basis using e+imk̂′·X instead of e−imk̂′·X in (3.14). It is easy to check

that this definition gives (−1)ϵϕ∆,im,ϵ(x;X).
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Let us first compute K−
m. We define pµ ≡Mp̂µ with p̂2 = −1 and p̂0 > 0. This leads to

K−
m(X1, X2) =

∫ +∞

−∞

dM

(2π)d+2

i|M |d+1

−M2 +m2

∫
dd+1p̂1
p̂01

∫
dd+1p̂2
p̂02

p̂02δ
(d+1)(p̂1 − p̂2)e

−iMp̂·(X1−X2) ,

(4.4)

where we inserted a delta function. Using the resolution of identity (2.1) in EAdSd+1 we can

rewrite K−
m as

K−
m(X1, X2) =

1

2πi

∫ +∞

0

dM

(2π)d+2

iMd+1

−M2 +m2

∫ d
2
+i∞

d
2

d∆

µ(∆)
(4.5)

×
∫
ddx

[
ϕ−
∆,M(x;X1)ϕ

+
d−∆,M(x;X2) + ϕ+

∆,M(x;X1)ϕ
−
d−∆,M(x;X2)

]
.

Next, let us consider K+
m. We can define k = Rk̂ with R > 0, k̂2 = 1. The invariant

measure becomes ∫
p2>0

dd+2p =

∫ +∞

0

dR Rd+1

∫
dd+1k̂

|k̂+|
, (4.6)

where we introduced the notation dd+1k̂ ≡ dk̂+dk̂1 · · · dk̂d and k̂+ = k̂0 + k̂d+1. As a result,

K+
m(X1, X2) can be written as

K+
m =

∫ +∞

0

dR

(2π)d+2

iRd+1

R2 +m2

∫
dd+1k̂1

|k̂+1 |

∫
dd+1k̂2

|k̂+2 |
|k̂+2 |δ(k̂+1 − k̂+2 )δ

(d)(k̂1 − k̂2)e
−iRk̂1·(X1−X2) .

(4.7)

Using the resolution identity (2.11) in dSd+1 we can re-write K+
m as

K+
m =

1

2

∫ ∞

0

dR

(2π)d+2

iRd+1

R2 +m2

(
1

2πi

∑
ϵ=0,1

∫ d
2
+i∞

d
2

(−1)ϵd∆

µ(∆)

∫
ddxϕ∆,iR,ϵ(x;X1)ϕd−∆,iR,ϵ(x;X2)

+ αd

∑
(∆,ϵ)∈Dds

Res
(−1)ϵ

µ(∆)

∫
ddxϕ∆,iR,ϵ(x;X1)ϕd−∆,iR,ϵ(x;X2)

)
, (4.8)

where ϕ∆,iR,ϵ are the tachyon wave functions introduced in (3.14).

Putting everything together, we thus conclude that the bulk-to-bulk propagatorKm(X1, X2)
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has the following split representation4

Km(X1, X2)

=
1

2πi

∫ +∞

0

dM

(2π)d+2

iMd+1

−M2 +m2

∫ d
2
+i∞

d
2

d∆

µ(∆)

∫
ddx

(
ϕ−
∆,Mϕ

+
d−∆,M + ϕ+

∆,Mϕ
−
d−∆,M

)
+

1

2

∫ ∞

0

dM

(2π)d+2

iMd+1

M2 +m2

(
1

2πi

∑
ϵ=0,1

∫ d
2
+i∞

d
2

(−1)ϵd∆

µ(∆)

∫
ddxϕ∆,iM,ϵϕd−∆,iM,ϵ

+ αd

∑
(∆,ϵ)∈DdS

Res
(−1)ϵ

µ(∆)

∫
ddxϕ∆,iM,ϵϕd−∆,iM,ϵ

)
.

(4.9)

From the above formula, we see that the bulk-to-bulk propagator in Minkowski space can

be thought of as a superposition of a product of two massive (tachyonic) bulk-to-boundary

propagators over a range of real (imaginary) mass (i)M . Specifically, the first line in (4.9)

is the contribution from propagating a massive scalar with mass M , while the last two lines

are the contribution from propagating a tachyonic scalar with imaginary mass iM .

5 Examples

Let us apply the split representation (4.9) to the various celestial amplitudes introduced in

Section 3.1, and find the conformal partial wave expansions for these celestial amplitudes.

5.1 s-channel massless scalar four-point amplitude

Let us consider the amplitude (3.6), which is a s-channel tree-level 2 → 2 celestial scalar

amplitude with a massive scalar exchange. We note that in this case, the internal momentum

p = q1 + q2 satisfies p2 ⩽ 0. Thus only the first line in (4.9) contributes. Using the split

representation, we find that

sA∆i

100+200→300+400
=

1

2πi

∫ ∞

0

dM

(2π)d+2

iMd+1

−M2 +m2

∫ d
2
+i∞

d
2

d∆

µ(∆)

∫
ddx0 A∆1,∆2,∆

100+200→00M
Ad−∆,∆3,∆4

00M→300+400
,

(5.1)

where A∆1,∆2,∆

100+200→00M
and Ad−∆,∆3,∆4

00M→300+400
are three-point celestial amplitudes, given by

A∆1,∆2,∆

100+200→00M
=

∫
dd+2X1 ϕ

+
∆1
(x1, X1)ϕ

+
∆2
(x2, X1)ϕ

−
∆,M(x0, X1) , (5.2)

4A similar split representation of the bulk-to-bulk propagator was also studied previously in [25]. However,

the contributions from the discrete part in (2.11) were missing.
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Ad−∆,∆3,∆4

00M→300+400
=

∫
dd+2X2 ϕ

+
d−∆,M(x0, X2)ϕ

−
∆3
(x3, X2)ϕ

−
∆4
(x4, X2) . (5.3)

After performing the Xi integrals, they take the standard form of scalar three-point correla-

tion functions in CFTs, i.e.

A∆1,∆2,∆

100+200→00M
=

C∆1,∆2,∆3

100+200→30M

|z12|∆1+∆2−∆3 |z13|∆1−∆2+∆3|z23|∆2+∆3−∆1
, (5.4)

A∆3,∆1,∆2

30M→100+200
=

C∆3,∆1,∆2

30M→100+200

|z12|∆1+∆2−∆3 |z13|∆1−∆2+∆3|z23|∆2+∆3−∆1
. (5.5)

Here, the three-point coefficients C∆1,∆2,∆3

100+200→30M
and C∆3,∆1,∆2

30M→100+200
are

C∆1,∆2,∆3

100+200→30M
= C∆3,∆1,∆2

30M→100+200
=
M∆1+∆2−d−2Γ[∆12+∆3

2
]Γ[−∆12+∆3

2
]

2∆1+∆2Γ[∆3]
, (5.6)

where we defined ∆ij ≡ ∆i − ∆j. Substituting (5.4) into (5.1) then leads to following the

conformal partial wave expansion of sA∆i

100+200→300+400
(xi)

sA∆i

100+200→300+400
=

1

2πi

∫ ∞

0

dM

(2π)d+2

iMd+1

−M2 +m2

∫ d
2
+i∞

d
2

d∆

µ(∆)
C∆1,∆2,∆

100+200→00M
Cd−∆,∆3,∆4

00M→300+400
Ψ∆12,∆34

∆,J=0 ,

(5.7)

which agrees with the results in [6] for d = 1 and in [26] for d = 2.

5.2 s-channel Compton amplitude

Let us apply the split representation to the s-channel celestial Compton amplitude (3.9).

For simplicity, we will focus on two-dimensional CCFT, i.e. we choose d = 2. We

stress here that the helicity + or − in this paper indicates the helicity in four-dimensional

Minkowski space. For conformal primary basis, the helicity in two-dimensional CCFT coin-

cides with the helicity [spin?] in four-dimensional Minkowski space. On the other hand, for

shadow conformal primary basis, the helicity in two-dimensional CCFT gets flipped com-

pared with the helicity in four-dimensional Minkowski space. This is because the shadow

transformation flips the helicity.

Applying integration by parts on the integral in (3.9) and using the Lorentz gauge con-

dition ∂µXϕ
±
∆;µa(x,X) = 0, we find

sA∆i

100+2−0 →300+4−0
=

4

(2π)8

∫
d4X1d

4X2∂
µ
X1
ϕ+
∆1
(x1, X1)ϕ

+
∆2;µ−(x2, X1)

×Km=0(X1, X2)∂
ν
X2
ϕ−
∆3
(x3, X2)ϕ

−
∆4;ν−(x4, X2) .

(5.8)
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With the help of split representation (4.9), sA∆i

100+2−0 →300+4−0
(xi) can be written as

sA∆i

100+2−0 →300+4−0
(xi) =− 4

2πi

∫ ∞

0

dM

(2π)12
iM3

−M2 + iϵ

×
∫ 1+i∞

1

d∆
(∆− 1)2

π2

∫
d2x0A∆1,∆2,∆

100+2−0 →00M
A2−∆,∆3,∆4

00M→300+4−0
,

(5.9)

where the three-point celestial amplitudes A∆1,∆2,∆

100+2−0 →00M
and A2−∆,∆3,∆4

00M→300+4−0
are

A∆1,∆2,∆

100+2−0 →00M
=

∫
d4X1∂

µ
X1
ϕ+
∆1
(x1, X1)ϕ

+
∆2;µ−(x2, X1)ϕ

−
∆,M(x0, X1) , (5.10)

and

A2−∆,∆3,∆4

00M→300+4−0
=

∫
d4X2∂

ν
X2
ϕ−
∆3
(x3, X2)ϕ

−
∆4;ν−(x4, X2)ϕ

+
2−∆,M(x0, X2) . (5.11)

To compute A∆1,∆2,∆

100+2−0 →00M
, we use (3.15) to reach

A∆1,∆2,∆

100+2−0 →00M
=
∆1N

+
∆1

N+
∆1+1

∫
d4X1ϕ

+
∆1+1(x1, X1)ϕ

−
∆,M(x0, X1)

× q̂µ1 (x1)

[
V +
∆2;µ−(z2, X1) +W+

∆2;µ−(z2, X1)

]
.

(5.12)

The term involves V +
∆2;µ−(z2, X1) is given by

∆1N
+
∆1

N+
∆1+1

∫
d4X1ϕ

+
∆1+1(z1, X1)q̂

µ
1V

+
∆2;µ−(z2, X1)ϕ

−
∆,M(z0, X1)

=
2∆1N

+
∆1

N+
∆1+1N

+
∆2

z12

∫
d4X1ϕ

+
∆1+1(z1, X1)ϕ

+
∆2
(z2, X1)ϕ

−
∆,M(z0, X1)

=
2∆1N

+
∆1

N+
∆1+1N

+
∆2

z12A∆1+1,∆2,∆

100+200→00M
.

(5.13)

Moreover we note that the term involves W+
∆2;µ−(z2, X1) can be computed from

∆1N
+
∆1

N+
∆1+1

∫
d4X1ϕ

+
∆1+1(z1, X1)q̂

µ
1W

+
∆2;µ−(z2, X1)ϕ

−
∆,M(z0, X1)

=
−2∆1N

+
∆1

∆2N
+
∆1+1N

+
∆2

|z12|2∂z2
∫
d4X1ϕ

+
∆1+1(z1, X1)ϕ

+
∆2
(z2, X1)ϕ

−
∆,M(z0, X1)

=
−2∆1N

+
∆1

∆2N
+
∆1+1N

+
∆2

|z12|2∂z2A
∆1+1,∆2,∆

100+200→00M
.

(5.14)
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With the help of (5.4) and (5.6), we get

A∆1,∆2,∆3

100+2−0 →30M
=

C∆1,∆2,∆3

100+2−0 →30M

zh1+h2−h3
12 zh1−h2+h3

13 zh2+h3−h1
23 zh1+h2−h3

12 zh1−h2+h3
13 zh2+h3−h1

23

, (5.15)

where C∆1,∆2,∆3

100+2−0 →30M
is

C∆1,∆2,∆3

100+2−0 →30M
=
(2π)4∆1N

+
∆1
M∆1+∆2−∆3−1Γ[∆12+∆3+1

2
]Γ[−∆12+∆3+1

2
]

2∆1+∆2−2N+
∆1+1N

+
∆2
∆2Γ[∆3]

. (5.16)

and the conformal weights are (h1, h1) = (∆1/2,∆1/2), (h2, h2) = ((∆2 − 1)/2, (∆2 + 1)/2),

and (h3, h3) = (∆3/2,∆3/2). As a result, the celestial amplitude sA∆i

100+2−0 →300+4−0
(zi) takes

the form as

sA∆i

100+2−0 →300+4−0
=
−4

2πi

∫ +∞

0

dM

(2π)12
iM3

−M2 + iϵ

×
∫ 1+i∞

1

d∆
(∆− 1)2

π2
C∆1,∆2,∆3

100+2−0 →30M
C2−∆,∆3,∆4

00M→300+4−0
Ψh12,h34;h12,h34

∆,J=0 .

(5.17)

5.3 t-channel massless scalar four-point amplitude

Let us apply the split representation (4.9) to the t-channel celestial scalar amplitude (3.7).

We note that in this case, the internal momentum p = q1 − q2 satisfies p2 ⩾ 0. Thus only

the last two lines in (4.9) contribute. We find

tA∆i

100+200→300+400
(xi)

=
1

2

∫ ∞

0

dM

(2π)d+2

iMd+1

M2 +m2

[
1

2πi

∑
ϵ=0,1

∫ d
2
+i∞

d
2

d∆

µ(∆)

∫
ddx0 A∆1,∆3,∆

100→300+00iM,ϵ
Ad−∆,∆2,∆4

00iM,ϵ+200→400

+ αd

∑
(∆,ϵ)∈DdS

Res

(
1

µ(∆)

∫
ddx0A∆1,∆3,∆

100→300+0iM,ϵ
Ad−∆,∆2,∆4

00iM,ϵ+200→400

)]
.

(5.18)

Here, A∆1,∆3,∆

100→300+00iM,ϵ
and Ad−∆,∆2,∆4

00iM,ϵ+200→400
are three-point celestial amplitudes involving two mass-

less scalars and one tachyonic scalar with imaginary mass iM :

A∆1,∆3,∆

100→300+00iM,ϵ
=

∫
dd+2X1ϕ

+
∆1
(x1, X1)ϕ

−
∆3
(x3, X1)ϕ∆,iM,ϵ(x0, X1) , (5.19)

and

Ad−∆,∆2,∆4

00iM,ϵ+200→400
= (−1)ϵ

∫
dd+2X2ϕ

+
∆2
(x2, X2)ϕd−∆,iM,ϵ(x0, X2)ϕ

−
∆4
(x4, X2) , (5.20)
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where the integrals are evaluated in Appendix E. Using the results from Appendix E, we

find that tA∆i

100+200→300+400
(xi) can be written as

tA∆i

100+200→300+400
(xi)

=
1

2

∫ ∞

0

dM

(2π)d+2

iMd+1

M2 +m2

[
1

2πi

∑
ϵ=0,1

∫ d
2
+i∞

d
2

d∆

µ(∆)
C∆1,∆3,∆

100→300+00iM,ϵ
Cd−∆,∆2,∆4

00iM,ϵ+200→400
Ψ∆13,∆24

∆,J=0

+ αd

∑
(∆,ϵ)∈DdS

Res

(
1

µ(∆)
C∆1,∆3,∆

100→300+00iM,ϵ
Cd−∆,∆2,∆4

00iM,ϵ+200→400
Ψ∆13,∆24

∆,J=0

)]
,

(5.21)

where C∆1,∆3,∆

100→300+00iM,ϵ
and Cd−∆,∆2,∆4

00iM,ϵ+200→400
are three-point coefficients appearing in A∆1,∆2,∆

100→300+00iM,ϵ
and

Ad−∆,∆2,∆4

00iM,ϵ+200→400
, given by

C∆1,∆3,∆

100→300+00iM,ϵ
=
M∆1+∆3−d−2Γ[1−∆]Γ[∆−∆13

2
]Γ[∆+∆13

2
]

2∆1+∆3−1π

×
(
cos[

∆

2
π] sin[

∆13

2
π]

)ϵ(
sin[

∆

2
π] cos[

∆13

2
π]

)1−ϵ

,

(5.22)

and

Cd−∆,∆2,∆4

00iM,ϵ+200→400
=
M∆2+∆4−d−2Γ[1− d+∆]Γ[d−∆−∆42

2
]Γ[d−∆+∆42

2
]

2∆2+∆4−1π

×
(
cos[

d−∆

2
π] sin[

∆42

2
π]

)ϵ(
sin[

d−∆

2
π] cos[

∆42

2
π]

)1−ϵ

.

(5.23)

Extracting theM -dependence in the three-point coefficients, we can compute theM -integral,

giving

tA∆i

100+200→300+400
=

iπmβ−d

4(2π)d+2
csc[

π

2
(d− β)]

[
1

2πi

∑
ϵ=0,1

∫ d
2
+i∞

d
2

d∆

µ(∆)
C∆1,∆3,∆

100→300+00i,ϵ
Cd−∆,∆2,∆4

00i,ϵ+200→400
Ψ∆13,∆24

∆,J=0

+ αd

∑
(∆,ϵ)∈DdS

Res

(
1

µ(∆)
C∆1,∆3,∆

100→300+00i,ϵ
Cd−∆,∆2,∆4

00i,ϵ+200→400
Ψ∆13,∆24

∆,J=0

)]
, (5.24)

where we defined β =
∑4

i=1∆i − 4.

We can see that the t-channel four-point celestial amplitudes tA∆i

100+200→300+400
(xi) directly

factorize into two three-point celestial amplitudes involving one tachyon. As a result, we

find that apart from the Plancherel measure µ−1(∆) the coefficient in the conformal partial

wave expansion (5.24) is factorized into a product of two three-point coefficients. To further

get the conformal block expansion, we use the following expression of the conformal partial

wave Ψ∆13,∆24

∆,J :

Ψ∆13,∆24

∆,J (xi) = I13−24(xi)

(
K∆2,∆4

d−∆,JG
∆13,∆24

∆,J (u, v) +K∆1,∆3

∆,J G∆13,∆24

d−∆,J (u, v)

)
, (5.25)
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where I13−24(xi) is the kinematic factor that encodes the scaling behaviour and G∆13,∆24

∆,J (u, v)

are the t-channel conformal blocks, which are functions of conformal cross-ratios

u =
x213x

2
24

x212x
2
34

, v =
x214x

2
23

x212x
2
34

, (5.26)

and the coefficients K∆1,∆2

∆,J are given by

K∆1,∆2

∆,J =

(
−1

2

)J π
d
2Γ[∆− d

2
]Γ[∆ + J − 1]Γ[d−∆+∆12+J

2
]Γ[d−∆−∆12+J

2
]

Γ[∆− 1]Γ[d−∆+ J ]Γ[∆+∆12+J
2

]Γ[∆−∆12+J
2

]
. (5.27)

To get the conformal block expansion, we should first learn the pole structures of co-

efficients appearing in the partial wave expansion (5.24). The existence of trigonometric

functions in the three-point coefficients makes the pole structures different for even and odd

d. When d is odd, i.e., d = 2s+ 1 with s = 0, 1, 2, . . . , we get

1

µ(∆)
C∆1,∆3,∆

100→300+00i,ϵ
Cd−∆,∆2,∆4

00i,ϵ+200→400
K∆2,∆4

d−∆,0

=
(−1)sΓ[2s+ 1−∆]Γ[∆− 2s]Γ[∆−∆13

2
]Γ[∆+∆13

2
]Γ[∆−∆42

2
]Γ[∆+∆42

2
]

2β+3π
2s+3

2 Γ[∆]Γ[∆− s− 1
2
]

×
(
sin[

∆13

2
π] sin[

∆42

2
π]

)ϵ(
cos[

∆13

2
π] cos[

∆42

2
π]

)1−ϵ

,

(5.28)

and

1

µ(∆)
C∆1,∆3,∆

100→300+00i,ϵ
Cd−∆,∆2,∆4

00i,ϵ+200→400
K∆1,∆3

∆,0

=
(−1)sΓ[∆− 2s]Γ[2s+1−∆−∆13

2
]Γ[2s+1−∆+∆13

2
]Γ[2s+1−∆−∆42

2
]Γ[2s+1−∆+∆42

2
]

2β+3π
2s+3

2 Γ[s−∆+ 1
2
]

×
(
sin[

∆13

2
π] sin[

∆42

2
π]

)ϵ(
cos[

∆13

2
π] cos[

∆42

2
π]

)1−ϵ

.

(5.29)

Thus for odd d, enclosing the contour in the first line of (5.24) into right-hand ∆-plane only

pick up simple poles at ∆ = 2s + 1 + n with n = 0, 1, 2, · · · . Also, it can be checked that

only simple poles contribute to the discrete series in the second line of (5.24) for odd d since

conformal blocks only have simple poles in odd d.

On the other hand, when d is even, i.e., d = 2s with s = 1, 2, . . . , we get

1

µ(∆)
C∆1,∆3,∆

100→300+00i,ϵ
Cd−∆,∆2,∆4

00i,ϵ+200→400
K∆2,∆4

d−∆,0

=
(−1)s+1−ϵΓ[2s−∆]Γ[1−∆]Γ[1− 2s+∆]Γ[∆−∆13

2
]Γ[∆+∆13

2
]Γ[∆−∆42

2
]Γ[∆+∆42

2
]

2β+2πs+2Γ[∆− s]

×
(
cos[

∆

2
π]2 sin[

∆13

2
π] sin[

∆42

2
π]

)ϵ(
sin[

∆

2
π]2 cos[

∆13

2
π] cos[

∆42

2
π]

)1−ϵ

,

(5.30)
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and

1

µ(∆)
C∆1,∆3,∆

100→300+00i,ϵ
Cd−∆,∆2,∆4

00i,ϵ+200→400
K∆1,∆3

∆,0

=
(−1)s+1−ϵΓ[∆]Γ[1−∆]Γ[1− 2s+∆]Γ[2s−∆−∆13

2
]Γ[2s−∆+∆13

2
]Γ[2s−∆−∆42

2
]Γ[2s−∆+∆42

2
]

2β+2πs+2Γ[s−∆]

×
(
cos[

∆

2
π]2 sin[

∆13

2
π] sin[

∆42

2
π]

)ϵ(
sin[

∆

2
π]2 cos[

∆13

2
π] cos[

∆42

2
π]

)1−ϵ

.

(5.31)

Thus for even d, enclosing the contour in the first line of (5.24) into right-hand ∆-plane pick

up both simple poles at ∆ = 1, 2, · · · , 2s − 1 and double poles at ∆ = 2s + n with n =

0, 1, 2, · · · . Moreover, it can be checked that both simple poles and double poles contribute

to the discrete series in the second line of (5.24) for even d since conformal blocks have

double poles in even d.

In the next two subsections, we will focus on d = 1 and d = 2 and derive the conformal

block expansions of tA∆i

100+200→300+400
(xi).

5.3.1 d = 1

We first focus on the amplitude in three-dimensional Minkowski spacetime, with a one-

dimensional celestial circle. Setting s = 0 in (5.28) and (5.29) and enclosing the contour into

the right-hand ∆-plane, the continuous part can be written as the form of conformal block

expansion. The exchange operators are scalars and have conformal dimension ∆ = 1 + n

with n = 0, 1, 2, · · · . The corresponding coefficients are

iπmβ−1

4(2π)3
sec[

βπ

2
]
(−1)nΓ[1+n−∆13

2
]Γ[1+n+∆13

2
]Γ[1+n−∆24

2
]Γ[1+n+∆24

2
]

2β+3π
3
2n!Γ[n+ 1

2
]

cos[
∆13 −∆42

2
π] . (5.32)

Expanding the conformal partial wave in the discrete part as a sum of conformal block and

shadow conformal block, we find that the conformal block part contributes to the conformal

block expansions with the same exchange operators. The corresponding coefficients are

iπmβ−1

4(2π)3
sec[

βπ

2
] sin[

∆13 + n

2
π] sin[

∆42 + n

2
π]

×
(−1)n+1Γ[1+n−∆13

2
]Γ[1+n+∆13

2
]Γ[1+n−∆24

2
]Γ[1+n+∆24

2
]

2β+3π
3
2n!Γ[n+ 1

2
]

.

(5.33)

Moreover, using the fact that
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Res∆=1+nG
∆13,∆24

1−∆ =− Γ[1 + n−∆13]Γ[1 + n−∆42]

2Γ[2n+ 2]Γ[n+ 1]Γ[−n−∆13]Γ[−n−∆42]
G∆13,∆24

1+n (5.34)

=−
24n+1Γ[1+n−∆13

2
]Γ[2+n−∆13

2
]Γ[1+n−∆42

2
]Γ[2+n−∆42

2
]

Γ[2n+ 1]Γ[2n+ 2]Γ[−n−∆13

2
]Γ[1−n−∆13

2
]Γ[−n−∆42

2
]Γ[1−n−∆42

2
]
G∆13∆24

1+n ,

we find that the shadow conformal block part contributes to the conformal block expansions

with the same exchange operators. The corresponding coefficients are

iπmβ−1

4(2π)3
sec[

βπ

2
] cos[

∆13 + n

2
π] cos[

∆42 + n

2
π]

×
(−1)nΓ[1+n−∆13

2
]Γ[1+n+∆13

2
]Γ[1+n−∆42

2
]Γ[1+n+∆42

2
]

2β+3π
3
2n!Γ[n+ 1

2
]

,

(5.35)

where we used the identity

Γ[z]Γ[z +
1

2
] = 21−2zπ

1
2Γ[2z] . (5.36)

Adding all three contributions together, we get the following conformal block expansions

tA∆i

100+200→300+400
(xi) = I13−24

+∞∑
n=0

C∆i
1+nG

∆13,∆24

1+n (χ) , (5.37)

where the conformal cross-ratio χ = z13z24
z12z34

and C∆i
1+n is given by

C∆i
1+n =

iπmβ−1

2β+4(2π)3
sec[

βπ

2
]
(−1)n22nΓ[1+n−∆13

2
]Γ[1+n−∆42

2
]

Γ[2n+ 1]Γ[1−n−∆13

2
]Γ[1−n−∆42

2
]
. (5.38)

In the Appendix F, we compute the conformal block expansion of tA∆i

100+200→300+400
in one

dimensional CCFT by using the alpha-space approach and find the results agree with (5.38).

5.3.2 d = 2

Now, we consider the amplitude in four-dimensional Minkowski spacetime, with a two-

dimensional celestial sphere. When d = 2, after defining f∆i,∆
ϵ as

f∆i,∆
ϵ =

(−1)ϵΓ[∆−∆13

2
]Γ[∆+∆13

2
]Γ[∆−∆24

2
]Γ[∆+∆24

2
]

2β+2π3

×
(
cos[

∆

2
π]2 sin[

∆13

2
π] sin[

∆42

2
π]

)ϵ(
sin[

∆

2
π]2 cos[

∆13

2
π] cos[

∆42

2
π]

)1−ϵ

,

(5.39)

we have

1

µ(∆)
C∆1,∆3,∆

100→300+00i,ϵ
C2−∆,∆2,∆4

00i,ϵ+200→400
K∆2,∆4

2−∆,0 = Γ[2−∆]Γ[1−∆]f∆i,∆
ϵ , (5.40)
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and

1

µ(∆)
C∆1,∆3,∆

100→300+00i,ϵ
C2−∆,∆2,∆4

00i,ϵ+200→400
= Γ[∆]Γ[∆− 1]f∆i,2−∆

ϵ . (5.41)

Enclosing the contour into the right-hand ∆-plane leads to 5

tA∆i

100+200→300+400
(xi)

=
iπmβ−2

4(2π)4
csc[

πβ

2
]

[
f∆i,1
0 G∆13,∆24

1
2
, 1
2

− 1

2

+∞∑
n=0

Res∆=2+n

(
Γ[2−∆]Γ[1−∆]f∆i,∆

n+1mod 2 G
∆13,∆24
∆
2
,∆
2

)

− 1

2

+∞∑
n=0

Res∆=−n

(
Γ[2−∆]Γ[1−∆]f∆i,∆

n+1mod 2 G
∆13,∆24
∆
2
,∆
2

)]
, (5.42)

where we used the fact that

+∞∑
n=1

Res∆=1+n

(
Γ[∆]Γ[∆− 1]f∆i,2−∆

nmod2 G∆13,∆24
2−∆
2

, 2−∆
2

)

= −
+∞∑
n=0

Res∆=−n

(
Γ[2−∆]Γ[1−∆]f∆i,∆

n+1mod 2 G
∆13,∆24
∆
2
,∆
2

)
.

(5.43)

We note that the conformal block G∆13,∆24
∆
2
,∆
2

itself has double poles located at ∆ = −n. Near
these poles, the conformal block G∆13,∆24

∆
2
,∆
2

can be expanded as (G.31). This leads to

− 1

2

+∞∑
n=0

Res∆=−n

[
Γ[2−∆]Γ[1−∆]f∆i,∆

n+1mod 2 G
∆13,∆24
∆
2
,∆
2

]
(5.44)

= −1

2

+∞∑
n=0

[
f∆i,n+2
n+1mod 2

n!(n+ 1)!

(
(Bhi

n + B̃hi
−n − ψ(1 + n)− ψ(2 + n))G∆13,∆24

n+2
2

,n+2
2

+
∂G∆13,∆24

∆
2
,∆
2

∂∆

∣∣∣∣
∆=n+2

)
+ Γ[n+ 1](−n

2
− h13)n+1(−

n

2
+ h24)n+1f

∆i,−n
n+1mod 2

(
G∆13,∆24

sta,−n
2
,n
2
+1 +G∆13,∆24

sta,n
2
+1,−n

2

)]
,

where we used the fact that

(−n
2
− h13)

2
n+1(−

n

2
+ h24)

2
n+1f

∆i,−n
n+1mod 2 = f∆i,n+2

n+1mod 2 . (5.45)

The constant B̃hi
−n is

B̃hi
−n =

ψ(−n
2
− h13) + ψ(−n

2
+ h13) + ψ(−n

2
− h24) + ψ(−n

2
+ h24)

2
, (5.46)

5We use the notation G∆13,∆24

h,h
to denote the two dimensional t-channel conformal block with external

conformal dimension ∆i and spin J = 0 and internal weight (h, h).
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where ψ(x) is the digamma function. On the other hand, we have

− 1

2

+∞∑
n=0

Res∆=2+n

[
Γ[2−∆]Γ[1−∆]f∆i,∆

n+1mod 2 G
∆13,∆24
∆
2
,∆
2

]
(5.47)

= −1

2

+∞∑
n=0

f∆i,n+2
n+1mod 2

n!(n+ 1)!

(
(−B̃hi

2+n + ψ(1 + n) + ψ(2 + n))G∆13,∆24
n+2
2

,n+2
2

−
∂G∆13,∆24

∆
2
,∆
2

∂∆

∣∣∣∣
∆=n+2

)
.

As a result, we finally get that

tA∆i

100+200→300+400
(xi) (5.48)

=
iπmβ−2

4(2π)4
csc[

πβ

2
]

{
f∆i,1
0 G∆13,∆24

1
2
, 1
2

− 1

2

+∞∑
n=0

[
f∆i,n+2
n+1mod 2

n!(n+ 1)!
(Bhi

n + B̃hi
−n − B̃hi

2+n)G
∆13,∆24
n+2
2

,n+2
2

+ Γ[n+ 1](−n
2
− h13)n+1(−

n

2
+ h24)n+1f

∆i,−n
n+1mod 2

(
G∆13,∆24

sta,−n
2
,n
2
+1 +G∆13,∆24

sta,n
2
+1,−n

2

)]}
,

where the conformal blocks G∆13,∆24

sta,−n
2
,n
2
+1 and G

∆13,∆24

sta,n
2
+1,−n

2
associated with the staggered module

are defined in (A.3) and (A.6).

We note that in the conformal block expansion of tA∆i

100+200→300+400
there are scalar exchanges

with conformal dimension ∆ = n for n = 1, 2, 3, · · · . These scalar exchanges have also been

observed in the conformal block expansion of tA∆i

100+200→300+400
in Klein space [7]. Besides the

scalar exchanges, the staggered modules, which are absent in the Klein space, appear in

the conformal block expansion of tA∆i,m

100+200→300+400
in Minkowski space. As we have shown in

Appendix A, the staggered modules are generated by two operatorsO1 andO2. The operator

O1, which has conformal dimension one and integer spin, is primary, while the operator O2,

which has conformal dimension n+2 and spin-zero, is neither primary nor descendant. The

physical correspondence of operators O1 and O2 in Minkowski space is obscure. One possible

interpretation is that O1 and O2 may correspond to soft particles and their Goldstone bosons

in the Minkowski space. We will leave this in the future work [27].

5.4 Contact scalar four-point amplitude

The split representation can also be used to compute the conformal partial wave expansion

of four-point contact amplitude. We take massless scalar four-point contact amplitude as an

example. The corresponding celestial amplitude cA∆i

100+200→300+400
is

cA∆i

100+200→300+400
=

∫
d4Xϕ+

∆1
(x1, X)ϕ+

∆2
(x2, X)ϕ−

∆1
(x3, X)ϕ−

∆4
(x1, X) . (5.49)
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Using the fact that

∂2XKm=0(X, Y ) = iδ(4)(X − Y ) , (5.50)

we find that cA∆i

100+200→300+400
can be re-written as

cA∆i

100+200→300+400
=− i

∫
d4X1d

4X2ϕ
+
∆1
(x1, X1)ϕ

+
∆2
(x2, X1)

× ∂2X1
Km=0(X1, X2)ϕ

−
∆3
(x3, X2)ϕ

−
∆4
(x4, X2) .

(5.51)

Integrating by parts and using the equation of motion ∂2Xϕ
±
∆(x,X) = 0 leads to

cA∆i

100+200→300+400
=− 2i

∫
d4X1d

4X2∂X1µϕ
+
∆1
(x1, X1)∂

µ
X1
ϕ+
∆2
(x2, X1)

×Km=0(X1, X2)ϕ
−
∆3
(x3, X2)ϕ

−
∆4
(x4, X2)

=
2i∆1∆2N

+
∆1
N+

∆2

N+
∆1+1N

+
∆2+1

x212 sA∆1+1,∆2+1,∆3,∆4

100+200→300+400

∣∣∣∣
m=0

.

(5.52)

(5.52) relates the four-point contact diagrams to the s-channel amplitude. Using (5.7), we

get

cA∆i

100+200→300+400
(5.53)

=
−2i∆1∆2N

+
∆1
N+

∆2

N+
∆1+1N

+
∆2+1(2π)

d+2
δ(β − d+ 2)

∫ d
2
+i∞

d
2

d∆

µ(∆)
C∆1+1,∆2+1,∆

100+200→001
Cd−∆,∆3,∆4

001→300+400
Ψ∆12,∆34

∆,J=0 .

We can also relate the four-point contact diagrams to the t-channel amplitude by noting that

cA∆i

100+200→300+400
=− i

∫
d4X1d

4X2ϕ
+
∆1
(x1, X1)ϕ

−
∆3
(x3, X1)

× ∂2X1
Km=0(X1, X2)ϕ

+
∆2
(x2, X2)ϕ

−
∆4
(x4, X2) .

(5.54)

Integrating by parts and using the equation of motion ∂2Xϕ
±
∆(x,X) = 0 leads to

cA∆i

100+200→300+400
=

2i∆1∆3N
+
∆1
N−

∆3

N+
∆1+1N

−
∆3+1

x213 tA∆1+1,∆2,∆3+1,∆4

100+200→300+400

∣∣∣∣
m=0

. (5.55)

With the help of (5.21), we get

cA∆i

100+200→300+400
(5.56)

=
−∆1∆3N

+
∆1
N−

∆3

N+
∆1+1N

−
∆3+1(2π)

d+1
δ(β − d+ 2)

[
1

2πi

∑
ϵ=0,1

∫ d
2
+i∞

d
2

d∆

µ(∆)
C∆1+1,∆3+1,∆

100→300+00i,ϵ
Cd−∆,∆2,∆4

00i,ϵ+200→400
Ψ∆13,∆24

∆,J=0

+ αd

∑
(∆,ϵ)∈DdS

Res

(
1

µ(∆)
C∆1+1,∆3+1,∆

100→300+00i,ϵ
Cd−∆,∆2,∆4

00i,ϵ+200→400
Ψ∆13,∆24

∆,J=0

)]
.
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6 Conclusion

In this paper, we derived the split representation (4.9) of the Feynman propagator in

Minkowski space. Roughly, the Feynman propagator in Minkowski space can be written

as a product of a pair of (tachyonic) massive conformal primary bases with conformal di-

mensions ∆ and d − ∆, and with the common boundary point, the parameter ∆ and the

(imaginary) mass integrated.

Using the split representation, we computed the conformal partial wave expansion of

various celestial amplitudes, including the s-channel massless scalar celestial amplitude (5.7),

the s-channel celestial Compton amplitude (5.17), the t-channel massless scalar celestial

amplitude (5.24), and the contact four-point amplitude (5.53) and (5.56). We found that

the split representation leads to the conformal partial wave expansions of these amplitudes.

For the four-point tree-level celestial amplitudes, apart from the Plancherel measure the

coefficient in the conformal partial wave expansion is factorized into a product of two three-

point coefficients involving massive or/and tachyonic scalars. Without much effort, one

can verify that similar factorizations also occur in the conformal partial wave expansion of

higher-point tree-level celestial amplitudes.

With the conformal partial wave expansion in hand, we obtained the conformal block

expansion (5.48) of the t-channel massless scalar celestial amplitude in two-dimensional Eu-

clidean celestial CFT. Interestingly, we found that a new class of modules — the chiral stag-

gered modules — appear in the spectrum of the conformal block expansion. The staggered

modules are extensions of Verma modules and contain operators that are neither primary

nor descendent. It is noteworthy that staggered modules also appear in Carrollian CFTs

[28], and one can explore if there are possible relations of the staggered modules in celestial

and Carrollian CFTs.

Although we used the conformal primary basis given by a Mellin transform on the plane

waves for massless particles in this paper, the split representation does not depend on the

choice of the conformal primary basis for external operators. Recently, the celestial ampli-

tudes of massless particles have been studied using shadow conformal primary basis, see e.g.

[26, 29, 30] and the references therein. Our computations can be easily generalized to these

cases.

Our work leads to many directions for future research. Firstly, the split representation

(4.9) can be used to compute the conformal block expansion of more general celestial ampli-

tudes such as those of higher points and/or with loops.6 As mentioned in the introduction,

studying the pole structures of general celestial amplitudes is significantly important for un-

6Recent progress on the computation of two-dimensional M -point global conformal blocks can be found

in [31–33] and references therein.
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derstanding locality in celestial holography. In addition, by taking the three-colinear limit

in the higher-point scattering amplitudes followed by a Mellin transform, the authors of [34]

showed that the celestial OPE between two particles contains a term with a branch cut

which is conjectured to describe multi-particle states. Armed with the split representation,

it would be interesting to study this branch cut by taking the OPE limit directly in the

conformal block expansion of higher-point celestial amplitudes.

Secondly, it would be of great interest to study the bulk correspondence of the staggered

module we have found. Since the conformal dimensions of the two operators in the stag-

gered module are integers, one possibility is that the two operators may correspond to soft

particles and their Goldstone modes in the Minkowski space. Another observation is that

the conformal primary basis may not be suitable for transforming the neither primary nor

descendant operator in the staggered module to certain bulk operator, and it is necessary to

find a new basis to resolve this obstacle.

Another avenue is to generalize the split representation in our paper to spinning Feynman

propagators. In this paper we only derived the split representation for the spinless Feynman

propagator. In order to compute the celestial amplitudes involving spinning propagators, it

would be important to derive the split representations for spinning Feynman propagators.

Based on the split representations for spinning Feynman propagators, one can study the

conformal block expansion of celestial amplitudes with exchanged photons and gravitons,

and possibly find a new spectrum in the celestial holography.

Finally, one may generalize the split representation in our paper to Klein space. The

Klein space can be foliated by AdS3 /Z, and similar to the dS spacetime, the resolution

of identity on AdS3 /Z contains both continuous and discrete parts [22]. Conformal block

expansion of celestial massless t-channel amplitude in Klein space has been obtained in [7]

by using the alpha-space approach. We expect that the split representation can provide a

more efficient way to get the conformal block expansions for celestial amplitudes in Klein

space.

Acknowledgements

We thank Prahar Mitra and Tianqing Zhu for the inspiring discussions. CC is grateful to

the organizers of the Kickoff Workshop of the Simons Collaboration on Celestial Holography.

CC is partly supported by National Key R&D Program of China (NO. 2020YFA0713000).

24



A Staggered modules of 2d global conformal algebra

The staggered modules appear in the study of logarithmic CFTs with Virasoro conformal

symmetry [35–38] and Carrollian CFTs [28, 39–41]. Unlike the Verma modules, they are

generically non-unitary and contain neither primary nor descendant operators. In this ap-

pendix we discuss the staggered modules for the 1d/2d global conformal symmetry.

In one dimensional CFTs, for ∆ = −n
2
, n ∈ N, we find the following staggered module

generated by two operators O1 and O2, which satisfy

L0|O1⟩ = ∆|O1⟩, L1|O1⟩ = 0, (A.1)

L0|O2⟩ = (1−∆)|O2⟩, L1|O2⟩ = aL−2∆
−1 |O1⟩.

The actions on the descendants |n, 1⟩ := Ln
−1|O1⟩, |n, 2⟩ := Ln

−1|O2⟩ are

L0|n, 1⟩ = (∆ + n)|n, 1⟩, (A.2)

L1|n, 1⟩ = n(2∆ + n− 1)|n− 1, 1⟩,
L0|n, 2⟩ = (1−∆+ n)|n, 2⟩,
L1|n, 2⟩ = n(−2∆ + n+ 1)|n− 1, 2⟩+ a|n− 2∆, 1⟩.

It is easy to check that there is a gauge redundancy of |O2⟩: the actions (A.1) and (A.2) are

invariant under the redefinition |O2⟩ → |O2⟩+ bL1−2∆
−1 |O1⟩.

The primary state |O1⟩ generates the submodule, while |O2⟩ is neither a primary state

nor a descendant of any other state. The action of L0 is diagonal and the operator mixing

only happens for L1|n, 2⟩. As a result, the action of the Casimir element is not diagonal:

C|n, 1⟩ = 0 and C|n, 2⟩+ a|n− 2∆ + 1, 1⟩ = 0, or equivalently C2|n, 2⟩ = 0.

The four-point conformal block G∆13,∆24

sta,−n
2
(χ) with external scalar primaries and the ex-

changed staggered module can be computed by either solving the Casimir equations or using

the operator product expansion [27]. The results are given by

G∆13,∆24

sta,−n
2
(χ) =

n∑
k=0

(−1)k(−n
2
−∆13)k(−n

2
+∆24)k(n− k)!

n!Γ[k + 1]
χk−n

2

+
n∑

s=0

∞∑
k=0

(−1)n(−n
2
−∆13)k+n+1(−n

2
+∆24)k+n+1

n!Γ[k + n+ 2]Γ[k + 1](k + 1 + s)
χk+n+2

2 .

(A.3)

In two dimensional CFTs, by the factorization so(2, 2) ≃ so(2, 1) × so(2, 1), we define

two chiral staggered modules with two operators O1 and O2. In the first chiral staggered

module, the operator O1 is a primary operator with (h, h) = (−n
2
, n+2

2
) for n ∈ N,

L0|O1⟩ = −n
2
|O1⟩ , L0|O1⟩ = n+ 2

2
|O1⟩

L1|O1⟩ = L1|O1⟩ = 0,
(A.4)
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and the operator O2 is neither primary nor descendant,

L0|O2⟩ = n+ 2

2
|O2⟩ , L0|O2⟩ = n+ 2

2
|O2⟩

L1|O2⟩ = aLn
−1|O1⟩ , L1|O2⟩ = 0.

(A.5)

Then the operator O1 has conformal dimension ∆ = 1 and spin J = −n, while O2 has

conformal dimension ∆ = 1 + n and spin J = 0.

In a similar way, one can define the second chiral staggered module by switching Ln and

Ln in (A.4) and (A.5), and the operator O1 has conformal dimension ∆ = 1 and spin J = n,

while O2 has conformal dimension ∆ = 1 + n and spin J = 0.

Armed with (A.3), the conformal blocks G∆13,∆24

sta,−n
2
,n+2

2

(χ, χ) and G∆13,∆24

sta,n+2
2

,−n
2

(χ, χ) with ex-

ternal scalar primaries and exchanged chiral staggered module are

G∆13,∆24

sta,−n
2
,n
2
+1(χ, χ) = Gh13,h24

sta,−n
2
(χ)Gh13,h24

n
2
+1 (χ) ,

G∆13,∆24

sta,n
2
+1,−n

2
(χ, χ) = Gh13,h24

n
2
+1 (χ)Gh13,h24

sta,−n
2
(χ) ,

(A.6)

where hi = hi =
∆i

2
for external scalars.

B Tempered distributions

In this appendix we summarize the different basis of homogeneous (tempered) distributions,

see e.g. [42]. There are two independent distributional solutions of the functional equation

f(λx) = λaf(x), λ > 0 on the real line R:

xa+ = θ(x)|x|a, xa− = θ(−x)|x|a, (B.1)

and we can also recombine them as

|x|a,0 := |x|a = xa+ + xa−, |x|a,1 := |x|a sgn(x) = xa+ − xa−, (B.2)

where θ(x) is the Heaviside step function and sgn(x) is the sign function. The redundant

superscript 0 is to stress the companion of |x|a,0 to |x|a,1.

The above distributions are actually meromorphic functions of a ∈ C, and there can be

simple poles at a = −1,−2, . . . with residues proportional to the delta distributions δ(n)(x).

To cancel the poles we can either multiply them by Gamma functions, or choose suitable

linear combinations. The first approach leads to the regularization of distributions [42],
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see also the appendices of [43, 44]. The following normalized distributions are holomorphic

functions of a ∈ C,

1

Γ(a+ 1)
xa+,

1

Γ(a+ 1)
xa−,

1

Γ(a+1
2
)
|x|a,0, 1

Γ(a+2
2
)
|x|a,1. (B.3)

and the values at the removable poles are listed in table 2.

The second approach is related to boundary values of meromorphic functions, i.e. iϵ-

prescription. The basis is (x± iϵ)a and the relations to other bases are

(x+ iϵ)a = xa+ + eiaπxa− =
1

2
(1 + eiaπ)|x|a,0 + 1

2
(1− eiaπ)|x|a,1, (B.4)

(x− iϵ)a = xa+ + e−iaπxa− =
1

2
(1 + e−iaπ)|x|a,0 + 1

2
(1− e−iaπ)|x|a,1. (B.5)

The poles at a = −1,−2, . . . get canceled due to the factor eiaπ = (−1)a, hence (x± iϵ)a are

holomorphic functions with respect to a, see table 2. The inverse relations are

|x|a,0 = (x+ iϵ)a + eiπa(x− iϵ)a

1 + eiπa
, |x|a,1 = (x+ iϵ)a − eiπa(x− iϵ)a

1− eiπa
. (B.6)

For higher dimensions, the spherical-symmetric solution of f(λx) = λaf(x) on Rd is

|x|a. In the spherical coordinates x = rx̂, x̂ ∈ Sd−1, the action of |x|a on a test function is

(|x|a, f(x)) =
∫
Sd−1 dx̂

∫
dr ra+d−1f(rx̂), hence the possible poles are at a = −d− n, n ∈ N.

scaling a = −2 −2 < a < −1 a = −1 · · ·

parity-even 1
x2 |x|a δ(x) = ϵ|x|−1+2ϵ · · ·

parity-odd δ′(x) = −ϵ|x|−2+2ϵ,1 |x|a,1 1
x

· · ·

half-line / xa+, x
a
− / · · ·

iϵ-prescription 1
(x±iϵ)2

(x± iϵ)a 1
x±iϵ

· · ·

Table 1: Three bases of homogeneous distributions on R.
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distributions values (n ∈ N) removed poles

1
Γ(a+1)

xa+ δ(n)(x) a = −1− n

1
Γ(a+1)

xa− (−1)nδ(n)(x) a = −1− n

1
Γ(a+1

2
)
|x|a,0 (−1)nn!

(2n)!
δ(2n)(x) a = −1− 2n

1
Γ(a+2

2
)
|x|a,1 (−1)n+1n!

(2n+1)!
δ(2n+1)(x) a = −2− 2n

(x+ iϵ)a x−n−1 − iπ (−1)n

n!
δ(n)(x) a = −1− n

(x− iϵ)a x−n−1 + iπ (−1)n

n!
δ(n)(x) a = −1− n

1
Γ(a+d

2
)
|x|a on Rd (−1)nπ

d
2

22nΓ( d
2
+n)

□nδ(x) a = −d− 2n

Table 2: Regularized distributions holomorphic to a.
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C Harmonic analysis on semisimple symmetric spaces

This appendix serves as the mathematical background of the Appendix D. We provide a

comprehensive review of the harmonic analysis on the semisimple symmetric spaces, see e.g.

[45–47]. We first introduce the semisimple symmetric spaces and their quasi-regular repre-

sentations, then sketch the spherical function method of decomposing quasi-regular represen-

tations, along with the Fourier transforms and the inversion formulas. To get intuitions, the

reader can consider the semisimple symmetric space G/H as the sphere S2 = SO(3)/ SO(2).

The notations and conventions in this appendix are listed below:

• G - a semisimple Lie group with finite center7;

• K - the maximally compact subgroup of G;

• H - a closed subgroup of G;

• G/H - the homogeneous space of the pair (G,H);

• π - a unitary irreducible representation (abbr. irrep) of G on a Hilbert space Hπ.

• ρ - the quasi-regular representation on the Hilbert space L2(G/H);

• G̃ - the unitary dual - the set of inequivalent unitary irreps of G;

• G̃0 - the tempered unitary dual - the set of inequivalent unitary irreps in L2(G);

• G̃H - the set of inequivalent unitary irreps in L2(G/H).

The inner product ⟨x|y⟩ or (x, y) is anti-linear with respect to the first argument. The

distributions are tempered in the sense of Schwartz. Besides, it is nontrivial to generalize

various concepts and tools from finite-dimensional representations to infinite-dimensional,

and we shall ignore the technical details of functional analysis and apply the final results

directly.

C.1 Basic ingredients

In this appendix we recall the necessary concepts of the harmonic analysis on the semisimple

symmetric spaces.

7This finiteness condition excludes the Lorentzian conformal group S̃O(d, 2). As the universal covering

of SO(d, 2), S̃O(d, 2) is nonlinear, i.e. not a subgroup of any GL(N).
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Motivation. Back to the discussion of Euclidean inversion formula [48–51], the cor-

relation function f(x1) := ⟨O(x1) . . .⟩ lives on the homogeneous space Sd = G/P , where

G = SO(d+1, 1) is the Euclidean conformal group and P is the one-point stabilizer subgroup

including dilatation, rotations and special conformal transformations. Then for sufficiently

nice f(x1) we can lift it to a function f(x) ∈ L2(G) invariant under the right action of P ,

and decompose f(x) by the Plancherel theorem of G,

L2(G) ≃
∫ ⊕

G̃0

dπHπ, =⇒ f(x) =
∑
J

∫
d∆

N(∆, J)
I(∆, J)Ψ∆,J(x) + discrete part. (C.1)

Here G̃0 ⊂ G̃ is the tempered unitary dual, N−1(∆, J) is the Plancherel measure on G̃0 ensur-

ing that the isomorphism is an isometry, Ψ∆,J(x) is the conformal partial wave and I(∆, J) =

(Ψ∆,J(x), f(x)) is the inversion function. According to the dimension, the Plancherel mea-

sure of the conformal group may contain both continuous and discrete parts, corresponding

to the principal and discrete series representations.

Actually, the lifting procedure is quite technical and can fail for homogeneous spaces,

e.g. the dS spacetimes. To overcome this difficulty, the harmonic analysis of Lie groups

is generalized to that of homogeneous spaces, and the aim is to decompose quasi-regular

representations on homogeneous spaces as direct integrals of unitary irreps. Without further

conditions this is still an open problem. One of the best-understood cases is the reduc-

tive symmetric spaces of Harish-Chandra class, for which the harmonic analysis has been

systematically established in [52–54].

Semisimple symmetric space. For a closed subgroup H ⊂ G, the homogeneous space

G/H is identified as the left coset space G/H = {gH : g ∈ G}/ ∼. The origin e of G/H is the

coset of identity eH, and H is the stabilizer subgroup (i.e. little group) around this origin.

When there is an involutive diffeomorphism of G fixing H invariant, there exists a unique

G-invariant pseudo-Riemannian metric on G/H with constant sectional curvature, and G/H

is called a symmetric space. At this step there is no need to require the semisimpleness of

G, and if G is semisimple indeed, G/H is called a semisimple symmetric space.

For simplicity, we only consider the semisimple symmetric spaces satisfying one of the

following conditions:

1. compact case: G and H are compact, e.g. the spheres;

2. Riemannian case: G is non-compact and H = K is maximally compact in G, e.g. the

Euclidean AdS spaces;

3. non-Riemannian rank-one case: G and H are non-compact and the rank of G/H is

one, e.g. the dS spacetimes;
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4. group case: G is of the form G′ × G′ and H is the diagonal subgroup H ≃ G′, e.g.

AdS3 /Z = SL(2,R).

These cases belong to the reductive symmetric spaces of Harish-Chandra class mentioned

above, and are broad enough to include the spheres and the real hyperbolic spaces.

We explain the third and fourth cases further. For the third case, the rank-one condition

is a technical condition to simplify the later discussion. This is equivalent to the uniqueness

of G-left-invariant differential operators on G/H, i.e. the Laplacian operator, which helps

the decomposition of L2(G/H). It also has an equivalent geometric explanation: for any two

pairs of points (x1, x2) and (y1, y2) onG/H with equal geodesic distances d(x1, x2) = d(y1, y2),

there exists an isometry ι sending one pair to the other, ι(x1) = y1, ι(x2) = y2.

For the fourth case, the group G itself can be considered as the homogeneous space

G× G/Gd, where Gd = {(g, g) : g ∈ G} is the diagonal normal subgroup. For the quotient

map d : (g1, g2) ∈ G× G 7→ g1g
−1
2 ∈ G, the kernel is ker d = Gd and the image imd = G is

identified with the quotient space G × G/Gd. Then the map d induces an action of G × G

on G as (g1, g2) · g = g1gg
−1
2 . The quasi-regular representation of G × G/Gd captures the

left and right regular representations of G simultaneously, and its decomposition recovers

the Plancherel formula of G. And in this case, the spherical functions introduced later,

correspond to the characters of G. The physical relevant example is

AdS3 /Z ≃ SL(2,R) ≃ SL(2,R)left × SL(2,R)right/ SL(2,R)diag. (C.2)

Quasi-regular representation. The quasi-regular representation of a homogeneous

space G/H is a generalization of the regular representation of G. Choosing a G-invariant

measure dµ on G/H, the Hilbert space Hρ = L2(G/H) equipped with the inner product

(f, g) =
∫
G/H

dµ f ∗(x)g(x) is a unitary representation of G, and the action of G is given by

g · f(x) = f(g−1x) for g ∈ G, f(x) ∈ Hρ.
8 This is called a quasi-regular representation ρ of

G associated with (G/H, dµ). For a semisimple symmetric space G/H there exists a unique

G-invariant measure, and ρ is referred as “the” (quasi-)regular representation associated

with G/H.

Another useful viewpoint of ρ is the induced representation IndG
H 1 from the trivial one

of H to G. For a representation π of H on Hπ, the induced representation IndG
H π contains

H-right-covariant functions from G to Hπ,

IndG
H π = {f : G→ Hπ, f(gh

−1) = π(h)f(g), ∀h ∈ H}, (C.3)

and the action of G is given by (g · f)(x) = f(g−1x). Then choosing π as the trivial one,

IndG
H π contains H-right-invariant functions on G, equivalently, functions on G/H. The
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normalizable condition of f(x) ∈ L2(G/H) is achieved by refining (C.3) to the L2-induction.

Direct integral. For noncompact noncommutative Lie groups, the unitary irreps are all

infinite-dimensional Hilbert spaces, and it is necessary to extend the direct sum
⊕

i∈I on an

index set I to the direct integral
∫ ⊕
M
dµ on a measure space (M,dµ). The idea of the direct

integral is as follows.

In the Fourier analysis of the abelian group R, the regular representation ρ on L2(R) is
given by ρ(c)f(x) = f(x − c) for c ∈ R. The unitary irrep πp on a one-dimensional space

Hp is given by πp(c)v = eipcv for v ∈ Hp and c ∈ R. Then ρ is decomposed into the direct

integral L2(R) =
∫ ⊕
R̃

dp
2π
πp, where {πp : p ∈ R̃ ≃ R} is the set of one-dimensional unitary

irreps. At the level of functions, for any f(x) ∈ L2(R) we have the pair of Fourier transforms

f(x) =

∫
R

dp

2π
f̃(p)eipx, and f̃(p) =

∫
R
dx f(x)e−ipx. (C.4)

The Fourier component fp(x) := f̃(p)eipx associated with πp is not square-integrable, fp(x) /∈
L2(R). Hence for any p, πp is not a subrepresentation of ρ. Instead of direct sum, {πp}
behave like densities of subrepresentations and should be integrated together. Roughly, a

direct integral of Hilbert spaces {Hµ : µ ∈ M} with measure dµ contains square-integrable

series of vectors v = {vµ},
∫
M
dµ ∥vµ∥2 <∞, and the inner product is

(v1, v2) =

∫
M

dµ (v1,µ, v2,µ)µ. (C.5)

Similar to the scattering and bound states of self-adjoint operators, the measure dµ may

contain both continuous part and discrete part, and only the Hilbert spaces in the discrete

part are genuine subspaces of the direct integral. The direct sum
⊕

i∈I can be regarded as

a direct integral on I equipped with the counting measure.

Positive-definite distributions. To discuss the positive-definiteness of inner products

on Hilbert spaces, positive-definite matrices v∗iKijvj ⩾ 0, ∀v ∈ V are extended to positive-

definite distributions. For simplicity we consider distributions on the real line. If for any

test function f(x), the integral is positive,

(f, f) =

∫
R
dxdy f ∗(x)K(x− y)f(y) ⩾ 0, (C.6)

then the distributional kernelK is called positive-definite. Bochner-Schwartz theorem asserts

that the Fourier transform of a positive-definite distribution is a positive distribution, and

vice versa.

8If there is no G-invariant measure on G/H, the alternative is quasi-invariant measure that transforms

covariantly under G, dµgx = ∆(g, x)dµx. Then the action of G is modified by g ·f(x) =
√

∆(g, g−1x)f(g−1x)

to compensate the Jacobian factor.
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The motivation of Bochner-Schwartz theorem is as follows. If K is a function, the defi-

nition (C.6) is equivalent to the discretized one:

N∑
i,j

v∗iK(xi − xj)vj ⩾ 0 (C.7)

for any number of sample points xi and vi. By the Fourier transform of K, the left side of

(C.7) can be rewritten as

l.h.s =
∑
i,j

v∗i vj

∫
R

dp

2π
eip(xi−xj)K̃(p) =

∫
R

dp

2π

∣∣∣∣∣∑
i

e−ipxivi

∣∣∣∣∣
2

K̃(p) ⩾ 0. (C.8)

Then the Fourier transform K̃ is positive by the arbitraryness of xi and vi.

C.2 Method of spherical functions for compact H

In this appendix we consider the compact and Riemannian cases of semisimple symmetric

spaces, and the stabilizer group H is compact. We first introduce the H-fixed vector and

H-spherical function, then the Poisson and Fourier transforms, and finally the completeness

relation and the inversion formula.

H-fixed vector. When H is compact, we can define the averaging operator by the right

action of H, PH · f(x) =
∫
H
dh f(xh). It is a projector from L2(G) to L2(G/H). Hence

the set G̃H of unitary irreps in L2(G/H) is a proper subset of the tempered unitary dual

G̃0 of L2(G). To determine G̃H we formally apply the Frobenius reciprocity theorem to the

quasi-regular representation ρ = IndG
H 1: for any unitary irrep π of G on Hπ,

HomG(Ind
G
H 1, π) = HomH(1,Res

G
H π), (C.9)

where HomG(π1, π2) denotes the vector space of intertwining operators of G from π1 to π2.

The right side of (C.9) can be rephrased as the vector space of H-fixed vectors

HH
π := {v ∈ Hπ : π(h)v = v, ∀h ∈ H}. (C.10)

Hence the necessary and sufficient condition of an irrep π being in G̃H is the existence of

non-vanishing H-fixed vectors, and the multiplicity is equal to the dimension of HH
π :

G̃H = {π ∈ G̃ : dimHH
π ⩾ 1}. (C.11)
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H-spherical function. Another object closely related to the H-fixed vector is the

H-spherical function9. The H-left-invariant functions on G/H are defined by the condi-

tion f(h−1x) = f(x) for x ∈ G/H, h ∈ H. Equivalently, they are H-bi-invariant on G,

f(h−1
1 gh2) = f(g) for g ∈ G, h1, h2 ∈ H. For each H-fixed vector v, due to π(h)v = v there

is naturally a H-bi-invariant function ϕv(g) defined by

ϕv(g) := (π(g)v, v), for g ∈ G, (C.12)

and it reduces to a H-left-invariant function ϕv(x) on G/H for g = xh. These functions

arising from H-fixed vectors are called H-spherical functions on G/H.

The expression (C.12) can be written in a more symmetric form by introducing the

two-variable version of ϕv(x),

ϕv(g1, g2) := (π(g1)v, π(g2)v) = (π(g−1
2 g1)v, v) = ϕv(g

−1
2 g1), for g1, g2 ∈ G. (C.13)

Due to π(h)v = v and gi = xihi, ϕv(g1, g2) is a function ϕv(x1, x2) on G/H ×G/H. Further-

more, ϕv(x1, x2) is G-left-invariant, ϕv(x1, x2) = ϕv(gx1, gx2) for g ∈ G.

The relation between ϕv(x1, x2) and ϕv(x) from (C.13) is ϕv(x1, x2) = ϕv(x
−1
2 x1). This

is inconvenient for calculations since the group multiplication x−1
2 x1 is nonlinear. A more

practical relation is by the geodesic distance. The H-left-invariant functions on G/H depend

only on the geodesic distance d(x, e) between x and the origin e, and the two-variable version

is a function of d(x1, x2). They are related by left translations of G sending the pair (x1, x2)

to (x, e). The physical analog is that under the Poincare symmetry, the two-point functions

⟨ϕ(x1)ϕ(x2)⟩ depend only on (x1 − x2)
2.

For convenience, we list the useful properties of the spherical functions without further

explanations:

1. they are the images of H-fixed vectors under the Poisson transform introduced later;

2. they are eigenfunctions of G-left-invariant differential operators on G/H;

3. they are positive-definite and provide a canonical basis of all the H-left-invariant func-

tions on G/H;

4. they satisfy the following integral equation

ϕv(e)

∫
H

dhϕv(g1hg2) = ϕv(g1)ϕv(g2), for g1, g2 ∈ G. (C.14)

9In the literature, for compact H, ϕv(x) is called the H-/elementary/zonal spherical function, or spherical

function for short. According to the context, the terminology “spherical function” may refer to different

generalizations of the H-spherical functions.
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Poisson and Fourier transforms. For each H-fixed vector v in the irrep Hπ with

inner product (·, ·), we can construct an intertwining operator F †
v from Hπ to L2(G/H):

F †
v : w ∈ Hπ 7→ (π(x)v, w), for x ∈ G/H. (C.15)

The image ofHπ in L2(G/H) should be understood as a component of the direct integral. By

the Schur lemma and the irreducibility of π, F †
v is an embedding from Hπ into L2(G/H), also

called the Poisson transform. By the definition (F †
v [w], f(x)) = (w,Fv[f(x)]), the adjoint Fv

of the Poisson transform F †
v is the smearing operator

Fv : f(x) ∈ L2(G/H) 7→
∫
G/H

dx f(x)π(x)v, (C.16)

which is also called the Fourier transform of f(x). Then the projector Pv := F †
vFv extracts

the Hπ-part of f(x) ∈ L2(G/H):

Pv : f(x) 7→
∫
G/H

dy f(y)(π(x)v, π(y)v) =

∫
G/H

dy f(y)ϕv(y
−1x). (C.17)

In the last equality, we have used the fact that if f1 ∈ L2(G/H) and f2 is spherical, the

convolution on G/H is well-defined,

(f1 ∗ f2)(x) :=
∫
G/H

dy f1(y)f2(y
−1x), for f1, f2 ∈ L2(G/H). (C.18)

The Poisson transform maps the H-fixed vector v to the H-spherical function ϕv(x), and

the integral kernel of (C.17) is the two-variable version ϕv(x, y). The decomposition (C.17)

yearns a completeness relation of the set of projectors {Pv}.

Completeness relation. For the compact and Riemannian cases of semisimple sym-

metric spaces, the set of spherical functions ϕv(x) associated with H-fixed vectors provides a

complete orthogonal basis of H-left-invariant functions on G/H. For the Dirac delta distri-

bution δ(x) on G/H, from (C.17) we have Pv[δ(x)] = ϕv(x), and the completeness relation

can be written as

δ(x) =

∫
G̃H,c

|cc(v)|−2dv ϕv(x) +
∑
G̃H,d

|cd(v)|−2ϕv(x), (C.19)

where G̃H,c and G̃H,d are the continuous and discrete parts of G̃H in the decomposition of

L2(G/H). The density can be read off as

|cc(v)|2δ(u, v) = (v, v)−1(ϕu, ϕv) (C.20)

|cd(v)|2δu,v = (v, v)−1(ϕu, ϕv) (C.21)
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where the inner product of spherical functions is that of L2(G/H). From (C.17) and (C.19)

the inversion formula of f(x) ∈ L2(G/H) is

f(x) =

∫
G̃H,c

|cc(v)|−2dvPv[f(x)] +
∑
G̃H,d

|cd(v)|−2Pv[f(x)]. (C.22)

In the literature, c(v) and |c(v)|−2 are called the Harish-Chandra c-function and the Plancherel

measure of G/H respectively.

C.3 Noncompact H

H-fixed distribution. When H is noncompact, the averaging projector PH is divergent,

and normalizable functions in L2(G/H) are no longer normalizable in L2(G). In result, the

irreducible decomposition of L2(G/H) is not necessarily related to that of L2(G), and there

can be additional irreps in G̃H that are not present in G̃0.

This phenomenon occurs for the real hyperbolic space. There is a discrete part in the

regular representation L2(SO(p, q)) if pq is even, corresponding to the discrete series represen-

tations. In contrast, there is a discrete part in L2(Hp,q) for any q ⩾ 2, and the corresponding

irreps are degenerate principal series representations or their quotients. For the dS case

p = 1, they are scalar complementary and exceptional series representations.

Nevertheless, the construction of irreps in G̃H from H-fixed vectors still holds, but they

are incomplete to span the whole space L2(G/H). To describe the additional irreps in G̃H

but not in G̃0, the concept of H-fixed vectors should extend to H-fixed distributions. The

matrix element (π(x)v, w) still makes sense when w is in a dense subspace Hπ,0 ⊂ Hπ such

that π(g)Hπ,0 ⊂ Hπ,0, ∀g ∈ G and v is a distribution in the dual of Hπ,0. The subspace

Hπ,0 is usually chosen as the Garding space containing smooth vectors, and the H-fixed

distributions are defined thereby. For the semisimple symmetric spaces we considered, it

turns out that this generalization is sufficient: the spherical functions associated with H-

fixed distributions provide a complete orthogonal basis, and are in one-to-one correspondence

with the irreps in G̃H .

Rank-one condition and Completeness from Laplacian. In the preceding discus-

sion the completeness of spherical functions was not fully addressed. This problem is usually

more difficult, and one approach is the spectral decomposition of the Laplacian differential

operator.

For a Lie group G, the Casimirs correspond to bi-invariant differential operators {Di}
on G by the exponential map. They act as scalars on the irreps in the tempered unitary

dual G̃0, and the joint eigenspaces are identified with these irreps up to multiplicity. The
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self-adjointness of {Di} ensures the completeness of the decomposition of the regular repre-

sentation. In the same spirit, the G-left-invariant differential operators on G/H decompose

L2(G/H) into irreps up to multiplicity. For the semisimple symmetric spaces of rank one,

there is only one independent G-left-invariant differential operator - the Laplacian operator

L, and its spectral decomposition provides a complete classification of irreps in G̃H .

C.4 Example: S2 = SO(3)/ SO(2)

In this appendix, as a motivating example we apply the formal discussions to the sphere

S2 = SO(3)/ SO(2).

There is another equivalent version of the Poisson and Fourier transforms with respect

to the right coset space H\G,

Fv : f(x) ∈ L2(H\G) 7→
∫
H\G

dx f(x)π†(x)v, (C.23)

F †
v : w ∈ Hπ 7→ (π†(x)v, w), (C.24)

Pv : f(x) 7→
∫
H\G

dy f(y)ϕv(y
−1x). (C.25)

The spherical function is ϕv(x) = (v, π(x)v), i.e. the conjugate of (π(x)v, v), and the two-

variable version is ϕv(x, y) = (π(y)v, π(x)v) = ϕv(y
−1x).

For the abelian group R, the Fourier transform (C.16) and the projector (C.17) are

actually the conjugate of the usual ones: Fv : f(x) 7→
∫
R dx f(x)e

ipx and Pv : f(x) 7→∫
R dx

′ f(x′)eip(x
′−x), c.f. (C.4). The equivalence of the two conventions is because that the

set of plane-waves is closed under conjugation. In this sub-appendix only, to match the

Fourier analysis on R (C.4), we use the convention (C.23).

The SO(2)-fixed vector of integer spin representations Hj := {|j,m⟩ : m = −j, . . . , j} is

|j, 0⟩, while the half-integer spin representations contain no nonvanishing SO(2)-fixed vectors.

The matrix element (w1, π(g)w2) is the Wigner D-function

Dj
m1,m2

(θ, φ, ϕ) = ⟨j,m1|π(g)|j,m2⟩, (C.26)

then the Poisson transform (C.24) maps |j,m⟩ to the spherical harmonics

F †
j : |j,m⟩ 7→ Dj

0,m(ϕ, θ, φ) =

√
4π

2j + 1
Y j
m(θ, φ). (C.27)

Particularly the SO(2)-fixed vector |j, 0⟩ is mapped to the spherical function
√

4π
2j+1

Y j
0 (θ, φ) =

P j(cos θ), which is independent of φ.
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The Fourier transform and the projector are

Fj : f(θ, φ) 7→
√

4π

2j + 1

∫
S2
dµ f(θ, φ)Y j∗

m (θ, φ), (C.28)

Pj : f(θ, φ) 7→
∫
S2
dµ′ f(θ′, φ′)Pj(cos θ̃), (C.29)

where dµ = sin θdθdφ and θ̃ is the angle between the two points (θ, φ) and (θ′, φ′) on S2,

explicitly given by

cos θ̃ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′) . (C.30)

In (C.29) we have used the addition formula of spherical harmonics,

j∑
m=−j

4π

2j + 1
Y j∗
m (θ′, φ′)Y j

m(θ, φ) = Pj(cos θ̃). (C.31)

The left side corresponds to the two-variable spherical function and the right side is the

single-variable one.

The complete set of spherical functions is {P j(cos θ) : j = 0, 1, . . .} and the measure is

|c(j)|2 =
∫
S2
dµ (P j(cos θ))2 = 4π

2j+1
. Now the inversion formula (C.22) can be rewritten as

f(θ, φ) =
∞∑
j=0

j∑
m=−j

fj,mY
j
m(θ, φ), where fj,m =

∫
S2
dµ f(θ, φ)Y j∗

m (θ, φ). (C.32)

D Split representation on EAdS/dS from the harmonic

analysis

In this appendix, we derive the split representations on the EAdSd+1 and dSd+1 from the

harmonic analysis. From the formal discussions in Appendix C, the procedure of deriving

the split representation contains the following steps:

1. exhaust the unitary irreps containing H-fixed vectors/distributions;

2. determine the H-fixed vectors and the spherical functions;

3. derive the inversion formula and the split representation.

In the following, the volume of sphere is vol Sn = 2nπn/2Γ(n/2)
Γ(n)

; the symbol d = p + q − 2 is

referred to the dimension of CFT, and ∆̃ = d−∆ is the shadow dimension of ∆.
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D.1 Embedding formalism of the real hyperbolic spaces

The real hyperbolic space10 Hp,q = SO(p, q)/ SO(p, q − 1), p ⩾ 1 is a generalization of the

usual hyperbolic space Hd+1 and can be embedded as the hypersurface

X ·X = −X2
1 − · · · −X2

p +X2
p+1 + · · ·+X2

p+q = 1, (D.1)

in the ambient space X ∈ Rp,q. This includes AdS, Euclidean AdS, dS and Kleinian dS

spaces:

AdSd+1 /Z = Hd,2, EAdSd+1 = Hd+1,1 /Z2, dSd+1 = H1,d+1, KdSd+1 = H2,d, (D.2)

where the Kleinian dS space is referred as the tachyon mass shell in Kleinian spacetime, just

like the dS space can be identified with the tachyon mass shell in Lorentzian spacetime.

The lightcone P · P = 0, P ̸= 0, P ∈ Rp,q is denoted as LCp,q. Then the asymptotic

boundary of Hp,q is the projective lightcone PCp,q := LCp,q /R+ ≃ Sp−1× Sq−1 by the quotient

P ∼ λP, λ > 0. For the Euclidean AdS case, Hd+1,1, LCd+1,1 and PCd+1,1 contain two

connected components. We choose the upper ones xd+2 > 0 and denote them as Hd+1 =

EAdSd+1, LCd+1 and PCd+1 ≃ Sd respectively.

The coordinate systems are summarized in table 3 and are explained later11. The hat

notation denotes the spherical coordinates X̂ ∈ Sd ⊂ Rd+1. Similarly the check notation

denotes qX ∈ Hd ⊂ Rd,1 and the tilde notation denotes X̃ ∈ dSd ⊂ Rd,1.

name Hd+1 dSd+1 PCd+1

global (cosh t, X̂ sinh t) (sinh t, X̂ cosh t) (1, P̂ )

hyperbolic ( qX cosh t, sinh t) ( qX sinh t, cosh t) ( qP ,±1)

Poincare (1+z2+x2

2z
, x
z
, 1−z2−x2

2z
) (1−z2+x2

−2z
,−x

z
, 1+z2−x2

−2z
) (1+x2

2
, x, 1−x2

2
)

Table 3: Coordinate systems.

dS. The dS spacetime dSd+1 is embedded into R1,d+1 as the one-sheeted hyperboloid

−(X0)2 + (X1)2 + · · ·+ (Xd+1)2 = 1. (D.3)

10For p = 0 it’s the (q − 1)-dimensional sphere. The term “real” is to distinguish from the complex and

quaternion hyperbolic spaces: SU(p, q)/S(U(1)×U(p, q − 1)), Sp(p, q)/(Sp(p, q − 1)× Sp(1)).
11In celestial CFT, the common convention of the Poincare coordinates on the lightcone is (1+x2, 2x, 1−x2).
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The global coordinates of dSd+1 are X = (sinh t, X̂ cosh t) for t ∈ R, X̂ ∈ Sd, The Poincare

coordinates are (1−z2+x2

−2z
,−x

z
, 1+z2−x2

−2z
) for z ̸= 0, x ∈ Rd. The upper (lower) Poincare patch

corresponds to z < 0 (z > 0), with the future (past) infinity as the limit z → 0− (z → 0+).

We also need the hyperbolic coordinates that divide dSd+1 into three charts, see figure 2,

I ( qX
√
T 2 − 1, T ), for T = X ·X0 < −1, (D.4)

II (X̃
√
1− T 2, T ), for − 1 < T < 1, (D.5)

III ( qX
√
T 2 − 1, T ), for T > 1, (D.6)

where X0 = (0, . . . , 1) and the “radial” coordinate T can be further parametrized into

T = ± cosh t = cos θ in different charts. The geometric meaning is the geodesic flow starting

from X0: the points in the third (second) chart can be connected by a single timelike

(spacelike) geodesic from X0, while the points in the first chart cannot be connected by any

single geodesic starting from X0.

X0−X0

I

I

II II II

III

III

Figure 2: Penrose diagram of hyperbolic and Poincare charts of dSd+1. The upper Poincare

chart corresponds to the yellow triangle. The three hyperbolic charts correspond to the

region I, II and III. Each point in this diagram is half of Sd−1, and the two dashed vertical

lines should be identified, which doubles the usual dS Penrose diagram. −X0 is the antipodal

point of X0.

EAdS. To relate the discussion of dSd+1, we choose the ambient spacetime of Hd+1 as

R1,d+1 with the most-plus signature, which is contrary to (D.1). The Euclidean AdS is

embedded as the upper component of the two-sheeted hyperboloid

−(X0)2 + (X1)2 + · · ·+ (Xd+1)2 = −1, X0 > 0. (D.7)

The global coordinates of Hd+1 are X = (cosh t, X̂ sinh t) for t > 0, X̂ ∈ Sd. The Poincare

coordinates are (1+z2+x2

2z
, x
z
, 1−z2−x2

2z
) for z > 0, x ∈ Rd. The hyperbolic coordinates are

( qX cosh t, sinh t), for t ∈ R, qX ∈ Hd.
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Lightcone. The lightcone LC1,d+1 and the projective one PC1,d+1 satisfy

−(P 0)2 + (P 1)2 + · · ·+ (P d+1)2 = 0, (D.8)

and they contain two disconnected components, corresponding to the future and past in-

finities of the dS spacetime. The upper components are denoted as LCd+1 and PCd+1. The

lower component can be accessed by the antipodal map P → −P for the point P ∈ PCd+1.

In other words, we treat PC1,d+1 as the trivial double cover of PCd+1.

We choose three charts of the projective lightcone PCd+1: S
d (P 0 = 1), Rd (P 0+P d+1 =

1) and Hd ⨿Hd (P d+1 = ±1). The coordinates of the first chart are P = (1, P̂ ) =

(1, x̂ sin θ, cos θ) for P̂ ∈ Sd, x̂ ∈ Sd−1, 0 ⩽ θ ⩽ π. The coordinates of the second are

P = (1+x2

2
, x, 1−x2

2
) for x ∈ Rd. The last section contains two charts, each of which

covers half of PCd+1, and the coordinates are P = ( qP ,±1) = (cosh t, x̂ sinh t,±1) for

P ∈ Hd, x̂ ∈ Sd−1, t > 0. The three coordinate systems are related by the conformal

compactification x = x̂ tan θ
2
= x̂ tanh±1 t

2
.

The integrals on PCd+1 can be lifted onto the LCd+1 in a gauge invariant way, called the

conformal integrals in [55]:∫
LCd+1

d′P f(P ) =

∫
Sd
dP̂ fS(P̂ ) =

∫
Rd

ddx fF(x) =

∫
Hd

d qP
(
fH( qP , 1) + fH( qP ,−1)

)
(D.9)

Formally d′P = dP
volR is regularized by the volume of the scaling symmetry on LCd+1, and

the integrand f(P ) must be a homogeneous function with mass dimension [f ] = d.

Radial part of Laplacian. In the preceding we also need the radial part of the Laplacian

operator in EAdS/dS spacetime. In the global coordinates of EAdS spacetime, the Laplacian

eigenvalue equation is

∂2f

∂t2
+ d coth t

∂f

∂t
+

1

sinh2 t
□Sdf = ∆(∆− d)f. (D.10)

The little group at X0 = (1, 0, . . . ) is HX0 ≃ SO(d + 1), and if f is a HX0-left-invariant

function on EAdSd+1, the radial part gives the Sturm–Liouville equation

sinh−d t
d

dt

[
sinhd t

df

dt

]
= ∆(∆− d)f, (D.11)

and with T = −X ·X0 = cosh t ∈ (1,∞), the equation is transformed to(
T 2 − 1

)
f ′′(T ) + (d+ 1)Tf ′(T ) = ∆(∆− d)f(T ). (D.12)

In the hyperbolic coordinates of dS spacetime (D.4), the Laplacian eigenvalue equations

are

−∂
2f

∂t2
− d coth t

∂f

∂t
+

1

sinh2 t
□Hd

f = ∆(d−∆)f, in 1st/3rd chart, (D.13)
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∂2f

∂θ2
+ d cot θ

∂f

∂θ
+

1

sin2 θ
□dSdf = ∆(d−∆)f, in 2nd chart. (D.14)

The little group at X0 = (0, . . . , 1) is HX0 ≃ SO(1, d), and interestingly, if f is a HX0-

left-invariant function on dSd+1, the radial part is exactly the same as (D.12) with T =

X · X0 ∈ R. The only difference is that the T -coordinate covers (−∞,−1), (−1, 1) and

(1,∞), corresponding to the three hyperbolic charts (D.4) respectively.

D.2 Unitary irreducible representations of the Euclidean confor-

mal group

In this section we consider scalar unitary irreps of SO(d+1, 1), which can be cast into three

classes12: the principal, complementary, and exceptional series, see e.g. [48, 49, 56–58]. The

decomposition of quasi-regular representation on the Euclidean AdS space Hd+1 = SO(d +

1, 1)/ SO(d+1) includes only continuous part, and the corresponding irreps are the principal

series representations. The decomposition on the dS spacetime dSd+1 = SO(1, 1+d)/ SO(1, d)

includes both continuous and discrete parts. The continuous part is still the principal series,

and the discrete part can be identified with the complementary and exceptional series.

Principal series. The scalar unitary principal series representation E∆= d
2
+is,J=0, s ∈ R

is defined on the space of homogeneous functions f(λP ) = λ−∆f(P ), P ∈ LCd+1, λ > 0 by

the action

g · f(P ) = f(g−1P ), for g ∈ SO(d+ 1, 1). (D.15)

Equivalently, f transforms as a fictitious primary operator O(P ) with complex weight. The

homogeneous functions on the lightcone LCd+1 are determined by the values on the projective

lightcone PCd+1. Choosing different sections we get the representatives fS on Sd and fF on

Rd respectively, and they are related by the Weyl transform fS = (1+x2

2
)∆fF. The subscripts

labeling sections will be omitted in the following.

For f1, f2 ∈ E∆, the mass dimension of f ∗
1 (P )f2(P ) is d, hence the inner product

(f1, f2) =

∫
LCd+1

d′P f ∗
1 (P )f2(P ) (D.16)

is invariant under the action (D.15), which justifies the unitarity of E∆.
12The discrete series representations appear in the discrete part of the regular representation, and are not

directly related to the quasi-regular representations. For d = 1, 3 they are related to the exceptional series

of symmetric traceless tensors [49], while for higher d they are much harder to construct, see e.g. the brief

note [59] and the references therein.
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When ∆ ̸= d
2
+ is leaves off the unitary principal series, the representations are called

non-unitary principal series. They are reducible for certain ∆, and the inner product (D.16)

is not invariant under the group action due to ∆ +∆∗ ̸= d.

Shadow transform. The shadow transform is defined by

S : f(P ) ∈ E∆ 7→ csd(∆)

∫
LCd+1

d′P ′ (−P · P ′)−∆̃f(P ′) ∈ E∆̃, (D.17)

and the double shadow transform is proportional to the identity map13,

S2 =
(2π)dΓ(∆− d

2
)Γ(∆̃− d

2
)

Γ(∆)Γ(∆̃)
csd(∆)csd(∆̃) id . (D.18)

The integral kernel (−P · P ′)−∆̃ should be understood as a tempered distribution and

has simple poles at ∆ = d
2
− N, N ∈ N, see Appendix B. To ensure the shadow transform

free from divergence, the adjustable prefactor csd must contain 1
Γ(∆− d

2
)
. Then the princi-

pal/complementary series representation E∆ and its shadow E∆̃ are isomorphic by S.

Complementary series. When ∆ ∈ R, the homogeneity degrees of f ∗(P ) and f(P )

are equal, and the problem of inner product can be fixed by introducing a shadow transform

(f1, f2) = ccp(∆)

∫
LCd+1

d′P

∫
LCd+1

d′P ′ (−P · P ′)−∆̃f ∗
1 (P )f2(P

′). (D.19)

The positive-definiteness condition requires that ∆ ∈ (0, d). The group action is the same

as (D.15). This type of unitary irreps is called the complementary series.

Exceptional series. For ∆ = −N or ∆ = d+N,N ∈ N, the double shadow transform

vanishes due to the factor 1

Γ(∆)Γ(∆̃)
. This implies the shadow transform has a non-trivial kernel

and coimage, and the representation E∆ is reducible. The image Vd+N := E−N/ kerS ⊂ Ed+N

is irreducible for d ⩾ 2. The inner product of Vd+N turns out to be the residue of (D.19),

(f1, f2) = Res∆=−N cep(∆)

∫
LCd+1

d′P

∫
LCd+1

d′P ′ (−P · P ′)−∆̃f ∗
1 (P )f2(P

′). (D.20)

The group action is the same as (D.15). The resulting unitary irrep Vd+N is called the scalar

exceptional series.

For d = 1, the scalar exceptional series split into the direct sum of holomorphic and

antiholomorphic discrete series: VN+1 = DN+1 ⊕ DN+1. For d = 2, the unitary irreps are

labeled by (h, h) with ∆ = h+ h, J = |h− h| ∈ 1
2
N14. By the following isomorphisms

E(−N1,−N2)/E ′
(−N1,−N2)

≃ E(1+N1,−N2) ≃ E(−N1,1+N2), N1, N2 ∈
1

2
N, (D.21)

13Notice that the coefficient of id is different from (3.16) in [51] due to −P1 · P2 = 1
2 |x12|2.
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the scalar exceptional series VN+2 are isomorphic to another spinning principal series with

∆ = 1, J = N + 1.

D.3 Harmonic analysis on EAdS

In this subsection we rederive the split representation on the Euclidean AdS space [10, 12–14]

from the perspective of harmonic analysis. The reader can consider in mind the following

intuitive comparison to S2 = SO(3)/ SO(2): the analogs of the angular momentum j, the

magnetic number m and the spherical coordinates (θ, φ) are the weight (∆, J = 0), the

boundary coordinates P ∈ LCd+1 and the bulk coordinates X ∈ Hd+1 respectively.

Spherical function. Following the discussion in Appendix C, for H = SO(d + 1)

we determine the H-fixed vectors in the principal series E∆ and the spherical functions in

L2(Hd+1). Choosing a reference point X0 = (1, 0, . . . , 0) as the origin of dSd+1, the stabilizer

subgroup at X0 is H ≃ SO(d+ 1). Then the only normalized H-invariant function on Sd is

f∆(1, P̂ ) = 1, and by the homogeneity the unique H-fixed vector is

f∆(P ) = (P 0)−∆, for P ∈ LCd+1 . (D.22)

To obtain the spherical functions, we need an explicit expression of the matrix element

π(X)f∆(P ), X ∈ Hd+1. Due to the SO(d + 1)-invariance, we can choose a representative

of P such that X and P are in the same plane through the origin: P = (z, 0, . . . , 0, z) and

X = (cosh t, 0, . . . , 0, sinh t). Then by picking a boost B =
(
cosh t sinh t
sinh t cosh t

)
such that X = B ·X0,

the matrix element is π(X)f∆(P ) = f∆(B
−1 · P ) = (z cosh t− z sinh t)−∆ = (−X · P )−∆.

The matrix element π(X)f∆(P ) = (−X ·P )−∆ is exactly the bulk-to-boundary propaga-

tor. This can be understood that π(X)f∆(P ) should transform covariantly and simultane-

ously under the actions of the bulk isometric and the boundary conformal transformations.

And (−X · P )−∆ is the only covariant quantity that can be built from bulk and bound-

ary points and has mass dimension ∆. This fixes π(X)f∆(P ) to be the bulk-to-boundary

propagator uniquely.

For the principal series E d
2
+is, s ∈ R, the two-point spherical functions are derived in

Appendix D.6.1,

ϕ∆(X1, X2) =

∫
LCd+1

d′P (−X1 ·P )−∆̃(−X2 ·P )−∆ = vol Sd
2F1(∆, ∆̃,

d+ 1

2
,
1− T

2
), (D.23)

where T = −X1 · X2. The spherical functions satisfy ϕ∆(T ) = ϕ∆̃(T ), which reflects the

shadow symmetry E∆ ≃ E∆̃.
14The physics notation is related to [56] by h = 1−n1

2 , h = 1−n2

2 .
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Completeness from Laplacian. The spherical function (D.23) satisfies the eigenequa-

tion of the radial Laplacian (D.12), even for non-unitary principal series ∆ ∈ C. Using the

Sturm-Liouville theory, in Appendix D.5.1 we show that the spherical functions of principal

series provide a complete basis for the radial Laplacian. The orthogonality and completeness

relations of are

2πNH(∆1)δ(s1 − s2) =

∫ ∞

0

dt sinhd t ϕ∗
∆1
(t)ϕ∆2(t), (D.24)

sinh−d t δ(t1 − t2) =

∫ ∞

0

ds

2πNH(∆)
ϕ∗
∆(t1)ϕ∆(t2), (D.25)

where ∆i =
d
2
+ isi, si > 0, and the density NH(∆) will be derived later.

The integration over s can be rewritten as 1
2πi

∫
Γ

d∆
NH(∆)

, where the contour is half of the

principal series from ∆ = d
2
to ∆ = d

2
+ i∞. Then for normalizable functions we have the

decomposition and inversion formulas

f̃(∆) =

∫ ∞

0

dt sinhd t ϕ∗
∆(t)f(t), and f(t) =

1

2πi

∫
Γ

d∆

NH(∆)
f̃(∆)ϕ∆(t). (D.26)

They can be interpreted geometrically on the EAdS space Hd+1. The Hilbert space with

respect to the radial Laplacian contains normalizable SO(d+1)-invariant functions on Hd+1.

The spectral decomposition of the radial Laplacian ensures that the SO(d + 1)-invariant

functions can be decomposed and inverted by the spherical functions, which are called the

spherical transforms in the theory of Gelfand pairs.

Plancherel measure. The density NH(∆) can be read off by the following localization

technique. The integrand I(t,∆1,∆2) of the right side of (D.24) has the asymptotic form as

t→ ∞,

I(t,∆1,∆2) ∼ e−i(s1−s2)tc0c
∗(∆1)c(∆2) + ei(s1−s2)tc0c

∗(∆̃1)c(∆̃2) + terms with e±i(s1+s2)t.

(D.27)

where c(∆) is the leading coefficient of the spherical function (D.70) and the factor c0 = 2−d

is the leading coefficient of the measure sinhd t.

Using the substitution t → λt and taking the limit λ → ∞, the terms with e±i(s1+s2)t

do not contribute due to s1, s2 > 0, and the first two terms combine into
∫
R dt e

−i(s1−s2)t =

2πδ(s1 − s2). Hence the measure of the inversion formula (D.26) is

NH(∆) = c0|c(∆)|2 = c0c(∆)c(∆̃) =
(2π)dΓ(∆− d

2
)Γ(∆̃− d

2
)

Γ(∆)Γ(∆̃)
. (D.28)

In history [60, 61], Harish-Chandra was the first to establish the connection between the

Plancherel measure and the asymptotic behaviour of the spherical functions, and for this
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reason the leading coefficient is called the Harish-Chandra c-function. In the EAdS case, the

Plancherel measure of EAdSd+1 coincides with the prefactor of double shadow transform.

This fact is not accidental and holds for other semisimple groups, see [62, 63].

Fourier transform and inversion formula. The Poisson transform (C.15), the Fourier

transform (C.16) and the projector (C.17) on Hd+1 are

F †
∆ : f(P ) 7→

∫
LCd+1

d′P (−X · P )−∆̃f(P ) ∈ L2(Hd+1), (D.29)

F∆ : f(X) 7→
∫
Hd+1

dX (−X · P )−∆f(X) ∈ E∆, (D.30)

P∆ : f(X) 7→
∫
Hd+1

dX ′ ϕ∆(X,X
′)f(X ′), (D.31)

where the two-variable spherical function is

ϕ∆(X,X
′) =

∫
LCd+1

d′P (−X · P )−∆̃(−X ′ · P )−∆. (D.32)

From (C.22), the inversion formula reads as

f(X) =
1

2πi

∫
Γ

d∆

NH(∆)
P∆[f(X)], (D.33)

where the contour Γ is half of the principal series.

For the Dirac delta distribution we have the resolution of identity, i.e. the split repre-

sentation on the Euclidean AdS space

δ(X,X ′) =
1

2πi

∫
Γ

d∆

µ(∆)

∫
LCd+1

d′P (−2X · P )−∆̃(−2X ′ · P )−∆, (D.34)

where for later convenience we have introduced the factor

µ(∆) = 2−dNH(∆) =
πdΓ(∆− d

2
)Γ(∆̃− d

2
)

Γ(∆)Γ(∆̃)
. (D.35)

D.4 Harmonic analysis on dS

In this subsection we provide a derivation of the harmonic analysis on dSd+1, d ⩾ 2. The

main difference from the EAdS case is that the bulk-to-boundary covariant quantity X · P
is indefinite in the dS spacetime, and this allows the existence of two independent spherical

functions associated with the same unitary irrep E∆, ∆ = d
2
+ is, s ∈ R. For d = 1, the

discussion is slightly more complicated than that of d ⩾ 2 since the exceptional series split
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into two discrete series, but the resulting Fourier transform and inversion formula share the

same forms with d ⩾ 2.

Spherical function. The derivation of spherical functions is almost the same as that

on EAdS space. We choose a reference point X0 = (0, . . . , 0, 1) ∈ dSd+1 and H ≃ SO(d, 1)

is the stabilizer subgroup of X0. In the EAdS case, the lightcone is foliated into orbits of

the SO(d + 1)-action, P 0 = const., and homogeneous functions are completely determined

by values on one of the orbits P 0 = 1. While in the dS case, the SO(d, 1)-orbits are P d+1 =

const., and the homogeneous functions are determined by values on the two orbits P d+1 = ±1.

Hence there are two H-fixed homogeneous functions on LCd+1:

f∆,ϵ(P ) = |P d+1|−∆,ϵ = |P d+1|−∆ sgnϵ(P d+1), for P ∈ LCd+1 . (D.36)

where the superscript notation ϵ = 0, 1 follows from Appendix B and labels the parity of

f∆,ϵ(P ) under P → −P . The matrix element π(X)f∆(P ), X ∈ dSd+1 can be deduced

similarly: π(X)f∆,ϵ(P ) = |X · P |−∆,ϵ.

The functions f∆,ϵ(P ) have singularities along the hypersurface P d+1 = 0, and are not H-

fixed vectors but H-fixed distributions associated with E∆. For the principal series E d
2
+is, s ∈

R, The corresponding spherical functions are

ϕ∆,ϵ(T ) = ϕ∆,ϵ(X1, X2) =

∫
LCd+1

d′P |X1 · P |−∆̃,ϵ|X2 · P |−∆,ϵ, (D.37)

where T = X1 ·X2, and the derivations can be found in Appendix D.6.2. They respect the

parity symmetry and the shadow symmetry,

ϕ∆,ϵ(T ) = (−1)ϵϕ∆,ϵ(−T ) = ϕ∆̃,ϵ(T ). (D.38)

In the third hyperbolic chart T ∈ (1,∞), the spherical functions are

ϕ∆,ϵ(T ) = 2
d+1
2 π

d−1
2 Γ(1−∆)

[
Γ(−d+ 1 +∆)

(
(−1)ϵ sin

dπ

2
+ sin

(d− 2∆)π

2

)
ϕ1(T ) + 2ϕ2(T )

]
,

(D.39)

and in the second hyperbolic chart T ∈ (−1, 1), they are

ϕ∆,ϵ(T ) = 2
d+1
2 π

d−1
2 Γ(1−∆)Γ(−d+∆+1)

[
ϕ1(T ) ((−1)ϵ − cos π(d−∆)) + ϕ2(T )

2 sinπ(d−∆)

π

]
,

(D.40)

where ϕ1,2-s are proportional to the Legendre functions, see (D.60), (D.61), (D.62) and

(D.63), and we have set a1 = 1, a2 =
e−

1
2 iπ(d−1)

Γ(d−∆)
, a′1 = 1, a′2 = 1 therein.

As explained in Appendix B, theH-fixed distributions f∆,ϵ(P ) are meromorphic functions

of ∆ with simple poles at positive integers, and the regularized ones 1
Γ(−∆+ϵ+1

2
)
f∆,ϵ(P ) are
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holomorphic with respect to ∆. We introduce the regularized spherical functions φ∆,ϵ(T ),

which are well-defined for integer ∆-s,

φ∆,ϵ(T ) = A−1(∆, ϵ)ϕ∆,ϵ(T ), where A(∆, ϵ) = Γ(
−∆+ ϵ+ 1

2
)Γ(

−∆̃ + ϵ+ 1

2
). (D.41)

Completeness and Plancherel measure. Similar to the EAdS case, in Appendix

D.5.2 we show that the (regularized) spherical functions of principal, complementary and

exceptional series representations provide a complete basis for the radial Laplacian (D.13),

including the continuous part {φ d
2
+is,ϵ : s > 0, ϵ = 0, 1} and the discrete part {φ∆,ϵ : (∆, ϵ) ∈

D−
dS}, where

D−
dS = {(∆ ∈ Z, ϵ) : ∆ <

d

2
and ϵ = 1 +∆ modZ2}. (D.42)

By the Sturm-Liouville theory, the nonvanishing orthogonality relations are

2πN c
dS(∆1, ϵ1)δ(s1 − s2)δϵ1,ϵ2 = (φ∆1,ϵ1 , φ∆2,ϵ2), (D.43)

2πNd
dS(∆1)δ∆1,∆2 = (φ∆1 , φ∆2), (D.44)

where the inner product in the right side is

(f, g) =

∫
R
dT |T 2 − 1|

d−1
2 f ∗(T )g(T ). (D.45)

And the completeness relation is

|T 2 − 1|
d−1
2 δ(T1 − T2)

=
1

2πi

∑
ϵ=0,1

∫
Γ

d∆

N c
dS(∆, ϵ)

φ∗
∆,ϵ(T1)φ∆,ϵ(T2) +

1

2π

∑
(∆,ϵ)∈D−

dS

1

Nd
dS(∆)

φ∗
∆(T1)φ∆(T2).

(D.46)

Similarly, the density N c
dS(∆, ϵ) is determined by the asymptotic behaviour of the spher-

ical functions

N c
dS(∆, ϵ) = 2c(∆, ϵ)c(∆̃, ϵ), (D.47)

where c(∆, ϵ) is the c-function of dS spacetime (D.72), and the factor 2 is due to the two

boundary T → ±∞. We find and check numerically that the density Nd
dS(∆) is related to

N c
dS(∆, ϵ) by

1

Nd
dS(∆)

= −αd Res∆∈D−
dS

1

N c
dS(∆, ϵ)

, (D.48)

where the constant αd = 1 for odd d and αd =
1
2
for even d.
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Fourier transform and inversion formula. For later convenience, we turn back to

the unregularized spherical functions φ∆,ϵ(T ) by recovering the regularization factor A(∆, ϵ).

The Poisson transform and the Fourier transform are

F †
∆,ϵ : f(P ) 7→

∫
LCd+1

d′P |X · P |−∆,ϵf(P ) ∈ L2(dSd+1), (D.49)

F∆,ϵ : f(X) 7→
∫
dSd+1

dX |X · P |−∆̃,ϵf(X) ∈ E∆, (D.50)

P∆,ϵ : f(X) 7→
∫
dSd+1

dX ′ ϕ∆,ϵ(X,X
′)f(X ′). (D.51)

Similar to the spherical functions, the Fourier transform of f(X) has poles at D−
dS, and

the residue is proportional to the Fourier transform with respect to φ∆,ϵ(X). The inversion

formula is

f(X) =
1

2πi

∑
ϵ=0,1

∫
Γ

d∆

2d+1µ(∆)
P∆,ϵ[f(X)]− αd

∑
Res

(∆,ϵ)∈D−
dS

1

2d+1µ(∆)
P∆,ϵ[f(X)], (D.52)

where we have rewritten the density Nd
dS(∆) by

µ(∆) = 2−dA−1(∆, ϵ)Nd
dS(∆) =

πdΓ(∆− d
2
)Γ(∆̃− d

2
)

Γ(∆)Γ(∆̃)
. (D.53)

For the Dirac delta distribution we have the split representation on the dS spacetime

δ(X,X ′) =
1

2πi

∑
ϵ=0,1

∫
Γ

d∆

2µ(∆)

∫
LCd+1

d′P |2X · P |−∆̃,ϵ|2X ′ · P |−∆,ϵ

− αd

∑
Res

(∆,ϵ)∈D−
dS

∫
LCd+1

d′P
1

2µ(∆)
|2X · P |−∆̃,ϵ|2X ′ · P |−∆,ϵ,

(D.54)

By the shadow symmetry of the spherical functions, the discrete part of (D.54) flips sign

and with D−
dS changing to DdS,

DdS = {(∆ ∈ Z, ϵ) : ∆ >
d

2
and ϵ = 1 + d+∆ modZ2}. (D.55)

D.5 Sturm-Liouville problem and boundary conditions

In this appendix we analyse the Sturm-Liouville equation (D.12) with different boundary

conditions, (
z2 − 1

)
f ′′(z) + (d+ 1)zf ′(z)−∆(∆− d)f(z) = 0. (D.56)

This is a singular15 Sturm-Liouville problem and can be solved by the following steps:
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• find all solutions and determine the inner product;

• choose suitable boundary conditions;

• select the complete basis from the solutions.

The allowed boundary conditions are usually not unique. They lead to different set of

complete basis and correspond to inequivalent self-adjoint extensions of the same differential

operator. This phenomenon has already occurred in the discussion of CFT inversion formulas

[43, 64–66].

The Sturm-Liouville standard form of (D.56) is

L[f ](x) = −|z2 − 1|
1−d
2
d

dz

[
sgn(z − 1)|z2 − 1|

1+d
2
d

dz
f(z)

]
= ∆(∆− d)f(x), (D.57)

where we keep the weight function w(z) = |z2 − 1| 1−d
2 positive and absorb the sign into

p(z) = sgn(z − 1)|z2 − 1| 1+d
2 . Then the Sturm-Liouville inner product agrees with that in

the global coordinates of Hd+1 and in the hyperbolic coordinates of dSd+1,

(f, g) =

∫
dz|z2 − 1|

d−1
2 f ∗(z)g(z), (D.58)

and the differential operator L is formally self-adjoint upto the boundary terms

(f,Lg)− (Lf, g) = sgn(z − 1)|z2 − 1|
1+d
2

[
d

dz
f(z)g∗(z)− f(z)

d

dz
g∗(z)

]z=∞

z=−∞
. (D.59)

The region z ∈ (−∞,−1) is related to z ∈ (1,∞) by z → −z. For z ∈ (1,∞) using the

substitution f(z) = (z2−1)
1−d
4 g(z), g(z) satisfies the standard Legendre equation, hence the

two independent solutions of (D.56) are

ϕ1(z) = a1
(
z2 − 1

) 1−d
4 P

d−1
2

1
2
(d−2∆−1)

(z), (D.60)

ϕ2(z) = a2
(
z2 − 1

) 1−d
4 Q

d−1
2

1
2
(d−2∆−1)

(z), (D.61)

where the Legendre functions P a
b (z), Q

a
b (z) have a branch cut along z ∈ (−∞, 1), and in

Mathematica they are LegendreP[b,a,3,z], LegendreQ[b,a,3,z] respectively. For exam-

ple, if choosing a2 = e−
1
2 iπ(d−1)

Γ(d−∆)
, then f2(z) is well-defined and real-valued for any d,∆ ∈ R

and z ∈ (1,∞).

15The term “singular” means the interval is infinite and the function
(
z2 − 1

)− 1+d
2 is singular at the

boundary z = ±1. In this case the spectrum may contain both continuous and discrete parts, see e.g. [67].
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For z ∈ (−1, 1) we choose the following solutions

ϕ1(z) = a′1
(
1− z2

) 1−d
4 P̃

d−1
2

1
2
(d−2∆−1)

(z), (D.62)

ϕ2(z) = a′2
(
1− z2

) 1−d
4 Q̃

d−1
2

1
2
(d−2∆−1)

(z), (D.63)

where P̃ , Q̃ have a branch cut along z ∈ (−∞,−1) ∪ (1,∞), and in Mathematica they are

LegendreP[b,a,2,z], LegendreQ[b,a,2,z] respectively.

D.5.1 EAdS case

The radial direction of the EAdS space corresponds to the region z ∈ (1,∞). For convenience

we work in the t-coordinate with z = cosh t, t > 0. The Sturm–Liouville equation is

sinh−d t
d

dt

[
sinhd t

df

dt

]
= ∆(∆− d)f. (D.64)

Then the inner product is

(f, g) =

∫ ∞

0

dt sinhd t f ∗(t)g(t), (D.65)

and the boundary terms are

sinhd t

[
d

dt
f1(t)f

∗
2 (t)− f1(t)

d

dt
f ∗
2 (t)

]t=∞

t=0

. (D.66)

The spherical function is a linear combination of Legendre functions,

ϕ∆(t) =
(2π)

d+1
2 Γ(1−∆)

Γ(d−∆)

(
ϕ1(cosh t) +

2

(tan πd
2
− i)π

ϕ2(cosh t)

)
, (D.67)

where we have set a1 = a2 = 1 in (D.60) and (D.61). By the theory of ODE, the other

solution of (D.64) besides ϕ∆(t) is singular at t = 0, since the index equation of (D.64) at

t = 0 is x(x− 1) + xd = 0 and the difference of roots x1 − x2 = d− 1 is an integer.

To establish the completeness of the spherical functions, we require that the bound-

ary conditions should eliminate the boundary terms (D.66) and exclude the non-spherical

singular solutions. The correct choice is

f(0) <∞, f ′(0) = 0 at t = 0, (D.68)

f(t) ∼ O(e−
d
2
t) as t→ ∞, (D.69)
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and this determines the Hilbert space HL of the Sturm-Liouville problem.

The reality condition of the eigenvalues ∆(∆ − d) implies: 1) ∆ = d
2
+ is, s ⩾ 0; 2)

∆ = d
2
+s, s < 0, where the redundancy from the shadow symmetry ϕ∆(t) = ϕ∆̃(t) has been

reduced. The asymptotic behaviour of ϕ∆(t) as t→ ∞ is

ϕ∆(t) ∼ e−∆̃tc(∆) + e−∆tc(∆̃), where c(∆) =
2dπ

d
2Γ(∆− d

2
)

Γ(∆)
. (D.70)

For the first case, ϕ∆(t) ∼ e−
d
2
t(eistc(∆) + e−istc(∆̃)) saturates the boundary condition and

oscillates like plane-wave, hence the spherical functions ϕ d
2
+is(t), s ⩾ 0 of unitary principal

series belong to the continuous spectrum of the Laplacian. For the second case, the term

ϕ∆(t) ∼ e−
d
2
te−stc(∆̃) dominates the growth and exceeds the boundary condition unless the

coefficient vanishes c(∆̃) = 0. The equation c(∆̃) = 0 does not have solutions for s < 0,

hence all the eigenfunctions ϕ d
2
+s(t), s < 0 are ruled out and there is no discrete spectrum.

Hence the spherical functions ϕ d
2
+is(t), s ⩾ 0 associated with the unitary principal series

representations provide a orthogonal complete basis of the radial Laplacian (D.64).

D.5.2 dS case

For the dS case, there are several differences from the EAdS case: 1) the region is z ∈ R and

the joint points z = ±1 are singular; 2) the well-defined eigenfunctions are the regularized

spherical functions φ∆,ϵ(z) and they exhaust all the solutions of the Sturm-Liouville equation.

Since the dS spherical functions are even/odd functions of z, we can restrict to z > 0 and

the boundary terms at z = 0 get canceled by the parity symmetry. As z → 1± the asymptotic

behaviours of φ∆,ϵ(z) take the same form, the boundary terms at z = 1 cancel with each

other due to the factor sgn(z − 1). Similar to the EAdS case, to cancel the boundary term

at z = ∞ we choose the following boundary condition

f(z) ∼ O(z−
d
2 ) as z → ∞, (D.71)

and this determines the Hilbert space HL.

The reality condition of eigenvalues is the same as before: 1) ∆ = d
2
+ is, s ⩾ 0; 2)

∆ = d
2
+ s, s < 0. The asymptotic behaviours of the spherical functions as z → ∞ are

φ∆,ϵ(z) ∼ z−∆̃c(∆, ϵ) + z−∆c(∆̃, ϵ), (D.72)

where the c-function is

c(∆, ϵ) =
2π

d−1
2 Γ(∆− d

2
) cos π

2
(d−∆+ ϵ)

Γ(∆−d+ϵ+1
2

)Γ(∆+ϵ
2
)

. (D.73)
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For the first case, all the spherical functions associated with the principal series saturate

the boundary condition, hence they are in the continuum spectrum of the Laplacian. For

the second case, the dominate term is z−∆c(∆̃, ϵ). But unlike the EAdS case, for s < 0 the

c-function c(∆̃, ϵ) ∼ cos π
2
(∆ + ϵ) = 0 has solutions at the set

D−
dS = {(∆ ∈ Z, ϵ) : ∆ <

d

2
and ϵ = 1 +∆ modZ2}. (D.74)

Namely, ∆ is an integer at the left of the principal series and the parity ϵ is determined by ∆.

For (∆, ϵ) ∈ D−
dS, the spherical functions φ∆,ϵ(z) are square integrable due to the estimate,∫ ∞

Λ

(z2 − 1)
d−1
2 dz |ϕ∆,ϵ(t)|2 ∼

∫ ∞

Λ

dz z2s−1 <∞, for s < 0. (D.75)

Hence the corresponding representations are in the discrete part of L2(dSd+1). By comparing

the Casimir eigenvalues, they are the exceptional series representations for ∆ > d and the

complementary series representations for d
2
< ∆ ⩽ d.

D.6 EAdS/dS spherical functions

In this section we derive the H-spherical functions on the EAdS and dS spacetimes. We

need the following conformal integrals: for timelike X, −X2 > 0,∫
LCd+1

d′P (−X · P )−d = vol Sd(−X2)−
d
2 , (D.76)

and for spacelike X, X2 > 0,∫
LCd+1

d′P |X · P |−d = 2π
d−1
2 Γ(

1− d

2
)(X2)−

d
2 =

1

cos d
2
π
vol Sd(X2)−

d
2 . (D.77)

They can be computed in the global coordinates, and the remaining integrals are

vol Sd−1

∫ π

0

dθ sind−1 θ = vol Sd, (D.78)

vol Sd−1

∫ π

0

dθ sind−1 θ| cos−d θ| = 2π
d−1
2 Γ(

1− d

2
). (D.79)

The prefactor Γ(1−d
2
) in (D.77) is exactly the regularization factor of the distribution |X ·P |−d.

By the relations (B.4), the conformal integral (D.77) is equivalent to∫
LCd+1

d′P (X · P ± iϵ)−d = e∓
d
2
πi vol Sd(X2)−

d
2 . (D.80)
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The Feynman-Schwinger parameterization is

n∏
i=1

A−ai
i =

Γ(d)∏n
i=1 Γ(ai)

∫ ∞

0

n∏
i=2

dsis
ai−1
i (A1 +

n∑
i=2

siAi)
−d (D.81)

=
Γ(d)∏n

i=1 Γ(ai)

∫ 1

0

n∏
i=1

duiu
ai−1
i δ(1−

n∑
i=1

ui)(
n∑

i=1

uiAi)
−d, (D.82)

where ℜ(ai) > 0 and d =
∑

i ai.

The Gegenbauer integral is related to the hypergeometric function by

IG(z) = C
d
2
−∆(z)

π

sinπz
=

∫ ∞

0

dss∆−1 (1 + s2 + 2sz)−
d
2 (D.83)

=
Γ(∆)Γ(d−∆)

Γ(d)
2F1(∆, d−∆,

d+ 1

2
,
1− z

2
). (D.84)

where C
d
2
−∆(z) is the Gegenbauer function, see section 3.15.2 of [68].

D.6.1 EAdS spherical functions

In the global coordinates X = (cosh t, X̂ sinh t), P = (1, P̂ ) and cos θ = X̂ · P̂ , the spherical

function (D.23) is

ϕ∆(t) =

∫
Sd
dP̂ (−X · P )−∆̃ (D.85)

= vol Sd−1

∫ π

0

dθ sind−1 θ(cosh t− sinh t cos θ)−∆̃ (D.86)

= vol Sd−12d−1e−∆t

∫ 1

0

dz z
d
2
−1(1− z)

d
2
−1(1− (1− e−2t)z)−∆̃ (D.87)

= vol Sd e−∆̃t
2F1(

d

2
, ∆̃, d, 1− e−2t), (D.88)

where in the third line the θ-integral is substituted by z = 1
2
(1 + cos θ). As a crosscheck, we

re-derive the spherical function (D.23) by the Feynman-Schwinger parameterization: with

T = −X1 ·X2 ⩾ 1 the two-point spherical function is

ϕ∆(X1, X2) =

∫
LCd+1

d′P (−X1 · P )−∆̃(−X2 · P )−∆ (D.89)

=
Γ(d)

Γ(∆)Γ(∆̃)

∫ ∞

0

dss∆−1

∫
LCd+1

d′P (−(X1 + sX2) · P )−d (D.90)

= vol Sd Γ(d)

Γ(∆)Γ(∆̃)

∫ ∞

0

dss∆−1 (1 + s2 + 2sT )−
d
2 (D.91)
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= vol Sd
2F1(∆, ∆̃,

d+ 1

2
,
1− T

2
), (D.92)

where in the third line, the P -integral is done by (D.76), and in the last line the s-integral

is done by (D.83). The two results (D.88) and (D.92) are related by the quadratic transfor-

mations of hypergeometric functions.

We show that the spherical functions of complementary series are analytic continuation

of ∆ from that of principal series, although they do not enter into the complete basis. In

this case ∆ is real and the inner product follows from (D.19). The spherical function is

ccp

∫
d′P1d

′P2 (−X1 · P1)
−∆(−P1 · P2)

−∆̃(−X2 · P2)
−∆ (D.93)

= ccp
Γ(d)

Γ(∆)Γ(∆̃)

∫
d′P1d

′P2

∫ ∞

0

dαα∆̃−1(−(X1 + αP2) · P1)
−d(−X2 · P2)

−∆ (D.94)

= ccp
vol SdΓ(d)

Γ(∆)Γ(∆̃)

∫
d′P2

∫ ∞

0

dαα∆̃−1(1− 2αX1 · P2)
− d

2 (−X2 · P2)
−∆ (D.95)

= ccp
2∆π

d
2Γ(∆− d

2
)

Γ(∆)

∫
LCd+1

d′P2 (−X1 · P2)
−∆̃(−X2 · P2)

−∆ (D.96)

∼ ϕ∆,principal(X1, X2). (D.97)

In the second line the Feynman-Schwinger parameterization is used to merge the factors,

and in the third line the integral over P1 is done by (D.76).

D.6.2 dS spherical functions

The dS two-point spherical funcions (D.37) take different forms in the three hyperbolic charts

T = X1 ·X2 ∈ (−∞,−1), (−1, 1) and (1,∞),

ϕ∆,ϵ(T ) =

∫
LCd+1

d′P |X1 · P |−∆̃,ϵ|X2 · P |−∆,ϵ, (D.98)

and the result of T ∈ (−∞,−1) is related to that of T ∈ (1,∞) by the parity symmetry

ϕ∆,ϵ(T ) = (−1)ϵϕ∆,ϵ(−T ). (D.99)

As a crosscheck, we also evaluate the spherical functions by two different methods.

First method. We fix X2 to the reference point X0 = (0, . . . , 1) and parametrize X1

and P by the hyperbolic coordinates (D.4),

ϕ∆,ϵ(T ) =

∫
LCd+1

d′P |X1 · P |−∆̃,ϵ|P d+1|−∆,ϵ (D.100)
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=

∫
Hd

d qP |X1 · ( qP , 1)|−∆̃,ϵ +

∫
Hd

d qP |X1 · ( qP ,−1)|−∆̃,ϵ(−1)ϵ. (D.101)

In the third chart of the hyperbolic coordinates, with X1 = ( qX sinh t, cosh t), T =

cosh t, t ⩾ 0, P = ( qP ,±1) and cosh s = − qX · qP , s ⩾ 0, we have

ϕ∆,ϵ(t) = ϕ+
∆,ϵ(t) + ϕ−

∆,ϵ(t), (D.102)

where ± labels the contributions from the two terms in (D.101). For the minus term, the

factor cosh t+ sinh t cosh s > 0 is positive, and

ϕ−
∆,ϵ(t) = vol Sd−1(−1)ϵ

∫ ∞

0

ds sinhd−1 s | − cosh t− sinh t cosh s|∆−d,ϵ (D.103)

= vol Sd−1

∫ ∞

0

ds sinhd−1 s (cosh t+ sinh t cosh s)∆−d (D.104)

= 2d−1e(d−∆)t

∫ 1

0

dz z
d
2
−1(1− z)−∆(e2t − z)∆−d (D.105)

=
2dπd/2Γ(1−∆)

Γ(d
2
−∆+ 1)

e(∆−d)t
2F1(

d

2
, d−∆,

d

2
−∆+ 1, e−2t), (D.106)

where in the third line s is substituted by z = tanh2 s
2
. The plus term can be separated into

two parts at cosh s = coth t according to the sign of X1 · P , denoted as Ip/n,

ϕ+
∆,ϵ(t) = vol Sd−1

∫ ∞

0

ds sinhd−1 s | cosh t− sinh t cosh s|∆−d,ϵ = Ip(t)+ (−1)ϵIn(t). (D.107)

For the positive part Ip(t) with cosh s ∈ (1, coth t), we use the substitution z = cosh s−1
coth t−1

,

Ip(t) = vol Sd−1e(d−∆)t(coth t− 1)d−1

∫ 1

0

dz (e2t + z − 1)
d−2
2 z

d−2
2 (1− z)∆−d (D.108)

=
2dπd/2Γ(−d+∆+ 1)

Γ(−d
2
+∆+ 1)

e(d−∆)t(e2t − 1)−d/2
2F1(1−

d

2
,
d

2
,−d

2
+ ∆+ 1,

1

1− e2t
).

And for the negative part In(t) with cosh s ∈ (coth t,∞), we use the substitution z = coth t−1
cosh s−1

,

In(t) = vol Sd−1e(d−∆)t(coth t− 1)d−1

∫ 1

0

dz
(
(e2t − 1)z + 1

) d−2
2 z−∆(z − 1)∆−d (D.109)

=
2dπd/2Γ(1−∆)Γ(−d+∆+ 1)

Γ(d
2
)Γ(2− d)

e(d−∆)t(e2t − 1)1−d
2F1(1−

d

2
, 1−∆, 2− d, 1− e2t).

Then the total contributions to the spherical functions are

ϕ∆,ϵ(T ) = 2
d+1
2 π

d−1
2 Γ(1−∆)

[
Γ(−d+ 1 +∆)

(
(−1)ϵ sin

dπ

2
+ sin

(d− 2∆)π

2

)
ϕ1(T ) + 2ϕ2(T )

]
,

(D.110)

56



where we have set a1 = 1, a2 =
e−

1
2 iπ(d−1)

Γ(d−∆)
in (D.60) and (D.61).

For the second chart T ∈ (−1, 1), with X1 = (X̃ sin θ, cos θ), P = ( qP ,±1) and T = cos θ,

the integral also contains two terms from (D.101),

ϕ∆,ϵ(θ) = ϕ+
∆,ϵ(θ) + ϕ−

∆,ϵ(θ), (D.111)

and each term is of the form ϕ±
∆,ϵ(θ) =

∫
Hd
d qP f±(X̃ · qP , θ). For the plus term ϕ+

∆,ϵ(θ), using

the symmetry SO(d, 1) of Hd and dSd, we can fix X̃ = (0, . . . , 1) and parametrize qP as
qP = (cosh s, . . . , sinh s cosφ), then

ϕ+
∆,ϵ(θ) = vol Sd−2

∫ π

0

dφ

∫ ∞

0

ds sind−2 φ sinhd−1 s| cos θ + sin θ sinh s cosφ|∆−d,ϵ (D.112)

= vol Sd−2

∫ ∞

0

dy

∫
R
dx

yd−2√
1 + x2 + y2

| cos θ + x sin θ|∆−d,ϵ (D.113)

= π
d
2
−1Γ(1− d

2
)

∫
R
dx (1 + x2)

d
2
−1| cos θ + x sin θ|∆−d,ϵ (D.114)

= Jp(θ) + (−1)ϵJn(θ), (D.115)

where we have substituted x = sinh s cosφ, y = sinh s sinφ and separated the integral into

two parts according to the sign of cos θ+x sin θ. The minus term ϕ−
∆,ϵ(θ) is equal to the plus

term by

ϕ−
∆,ϵ(θ) = (−1)ϵ (Jp(π − θ) + (−1)ϵJn(π − θ)) = (−1)ϵ (Jn(θ) + (−1)ϵJp(θ)) = ϕ+

∆,ϵ(θ).

(D.116)

For the postive part Jp(θ) with x ∈ (− cot θ,∞), by the substitution z = cos θ + x sin θ ∈
(0,∞), we have

Jp(θ) = π
d
2
−1Γ(1− d

2
) sin1−d θ

∫ ∞

0

dz z∆−d(1 + z2 − 2z cos θ)
d
2
−1 (D.117)

=
2d−1π

d−1
2 Γ(1−∆)Γ(−d+∆+ 1)

Γ(3
2
− d

2
)

sin1−d θ2F1(1−∆, 1− d+∆,
3− d

2
,
1 + cos θ

2
),

(D.118)

and for the minus part Jn(θ) with x ∈ (−∞,− cot θ), by the substitution z = − cos θ −
x sin θ ∈ (0,∞), we have

Jn(θ) = π
d
2
−1Γ(1− d

2
) sin1−d θ

∫ ∞

0

dz z∆−d(1 + z2 + 2z cos θ)
d
2
−1 (D.119)

=
2d−1π

d−1
2 Γ(1−∆)Γ(−d+∆+ 1)

Γ(3
2
− d

2
)

sin1−d θ2F1(1−∆, 1− d+∆,
3− d

2
,
1− cos θ

2
).

(D.120)
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Then the spherical functions are

ϕ∆,ϵ(T ) = 2
d+1
2 π

d−1
2 Γ(1−∆)Γ(−d+∆+1)

[
ϕ1(T ) ((−1)ϵ − cos π(d−∆)) + ϕ2(T )

2 sinπ(d−∆)

π

]
,

(D.121)

where we have set a′1 = 1, a′2 = 1 in (D.62) and (D.63).

Second method. We evaluate the two-point spherical functions by the Feynman-

Schwinger parameterization. By the relations (B.6), the integrand |X1 · P |−∆̃,ϵ|X2 · P |−∆,ϵ

can be rewritten as linear combinations of

h±,± = (X1 · P ± iϵ)−∆̃(X2 · P ± iϵ)−∆. (D.122)

Explicitly, they are

ϕ∆,0(T ) ∋
e2iπ∆h−,+

(1 + eiπ∆) (eiπd + eiπ∆)
+

h+,−

(1 + eiπ∆) (1 + eiπ(∆−d))
(D.123)

+
eiπ∆h−,−

(1 + eiπ∆) (eiπd + eiπ∆)
+

h+,+

(1 + e−iπ∆) (1 + eiπ(∆−d))
, (D.124)

ϕ∆,1(T ) ∋
e2iπ∆h−,+

(−1 + eiπ∆) (eiπ∆ − eiπd)
+

h+,−

(−1 + eiπ∆) (−1 + eiπ(∆−d))
(D.125)

+
eiπ∆h−,−

(−1 + eiπ∆) (eiπd − eiπ∆)
+

h+,+

(−1 + e−iπ∆) (−1 + eiπ(∆−d))
. (D.126)

Then similar to (D.92) we combine the two factor (X1 · P ± iϵ)−∆̃ and (X2 · P ± iϵ)−∆ by

the Feynman-Schwinger parameterization and do the P -integral by the conformal integral

(D.80).

For T ∈ (−1, 1), s ⩾ 0, the factor 1 + s2 ± 2sT > 0 is positive, and the s-integrand can

be done by (D.83). The four terms contribute to

h+,+ → e−
d
2
πi vol SdIG,0(T ), (D.127)

h−,− → edπie−
d
2
πi vol SdIG,0(T ), (D.128)

h+,− → e∆πie−
d
2
πi vol SdIG,0(−T ), (D.129)

h−,+ → e(d−∆)πie−
d
2
πi vol SdIG,0(−T ), (D.130)

where we have relabeled IG to IG,0,

IG,0(T ) =
Γ(∆)Γ(∆̃)

Γ(d)
2F1(∆, d−∆,

d+ 1

2
,
1− T

2
). (D.131)

Then the spherical functions are

ϕ∆,0(T ) = 2π
d
2
−1Γ(

1

2
− ∆

2
)Γ(

−d+∆+ 1

2
)2F1(

d−∆

2
,
∆

2
,
1

2
, T 2), (D.132)
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ϕ∆,1(T ) = 4π
d
2
−1TΓ(1− ∆

2
)Γ(

−d+∆+ 2

2
)2F1(

d−∆+ 1

2
,
∆+ 1

2
,
3

2
, T 2), (D.133)

and they match with (D.121).

For T ∈ (1,∞), s ⩾ 0, the factor 1 + s2 ± 2sT is not definite and the integrals should be

divided into three parts according to the signs. The four terms contribute to

h+,+ → e−
d
2
πi vol SdIG,0(T ), (D.134)

h−,− → edπie−
d
2
πi vol SdIG,0(T ), (D.135)

h+,− → e∆πi vol Sd
(
e−

d
2
πiIG,1(T ) + e−

d
2
πiIG,3(T ) + IG,2(T )

)
, (D.136)

h−,+ → e(d−∆)πi vol Sd
(
e−

d
2
πiIG,1(T ) + e−

d
2
πiIG,3(T ) + IG,2(T )

)
, (D.137)

where T = cosh t and

IG,1(T ) =
Γ(1− d

2
)Γ(∆)

Γ(−d
2
+∆+ 1)

e−∆t
2F1(

d

2
,∆,−d

2
+ ∆+ 1, e−2t), (D.138)

IG,2(T ) =
Γ(1− d

2
)2

Γ(2− d)
(e2t − 1)1−dedt−∆t

2F1(1−
d

2
, 1−∆, 2− d, 1− e2t), (D.139)

IG,3(T ) =
Γ(1− d

2
)Γ(d−∆)

Γ(d−2∆+2
2

)
et(d−∆)

2F1(
d

2
, d−∆,

d− 2∆ + 2

2
, e2t). (D.140)

Then by the relations between hypergeometric functions and Legendre functions, the spher-

ical functions match with (D.110).

E Massless scalar-massless scalar-tachyonic scalar

In this appendix, we compute the three-point celestial amplitude A∆i

100→200+30iM,ϵ
which involves

one incoming massless scalar, one outgoing massless scalar and one outgoing tachyonic scalar

with imaginary mass iM . In terms of the conformal primary basis, A∆i

100→200+30iM,ϵ
takes the

form as

A∆i

100→200+30iM,ϵ
=

∫ ∞

0

dω1dω2ω
∆1−1
1 ω∆2−1

2

∫
dd+1k̂

|k̂+|
1

|q̂3 · k̂|∆3

sgnϵ(q̂3 · k̂)δ(d+2)(q1 − q2 − k) ,

(E.1)

where k2 =M2. The region with k2 =M2 can be divided into two regions corresponding to

expanding and contracting patches of the dS hypersurfaces

D+ : k2 =M2 , k̂+ ≡ k̂0 + k̂d+1 > 0 ,

D− : k2 =M2 , k̂+ ≡ k̂0 + k̂d+1 < 0 ,
(E.2)
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respectively. We can thus define the celestial coordinates in D+ as

k =Mk̂ =
M

2y
(1− y2 + |w⃗|2, 2w⃗, 1 + y2 − |w⃗|2) , (E.3)

and the celestial coordinates in D− as

k =Mk̂ = −M
2y

(1− y2 + |w⃗|2, 2w⃗, 1 + y2 − |w⃗|2) , (E.4)

with y ∈ [0,∞) in both regions. As a result, A∆i

100→200+30iM,ϵ
can be written as

A∆i

100→200+30iM,ϵ
= A+,∆i

100→200+30iM,ϵ
+A−,∆i

100→200+30iM,ϵ
, (E.5)

where A±,∆i

100→200+30iM,ϵ
are obtained by integral k̂ over region D±. We first focus on A+,∆i

100→200+30iM,ϵ
.

Using the fact that∫
D+

dd+1k̂

|k+|
1

|q̂3 · k̂|∆3

=

∫ ∞

0

dy

yd+1

∫
ddw⃗

∣∣∣∣ y

|x3 − w|2 − y2

∣∣∣∣∆3

, (E.6)

we find that

A+,∆i

100→200+30iM,ϵ
=

∫ ∞

0

dω1dω2ω
∆1−1
1 ω∆2−1

2

∫ ∞

0

dy

yd+1

∫
ddw⃗

∣∣∣∣ y

|x3 − w|2 − y2

∣∣∣∣∆3

δ(d+2)(q1 − q2 − k) .

(E.7)

The support of the momentum-conserving delta-function is

ω2 =
M2

4|x12|2ω1

, y =
2M |x12|2ω1

4|x12|2ω2
1 −M2

, w⃗ =
M2x⃗2 − 4x⃗1|x12|2ω2

1

M2 − 4|x12|2ω2
1

(E.8)

with the Jacobian

|J | =
∣∣∣∣Md+1(y2 − |x2 − w|2)

yd+2

∣∣∣∣ . (E.9)

We note that ω1 ⩾M/(2|x12|) since y ⩾ 0. The integrand in (E.7) then becomes

ω∆1−1
1 ω∆2−1

2

yd+1

∣∣∣∣ y

|x3 − w|2 − y2

∣∣∣∣∆3

δ(d+2)(q1 − q2 − k)

=
21−2∆2+∆3M2∆2+∆3−d−2ω∆1−∆2+∆3−1

1

|x12|2∆2−2∆3

∣∣∣∣ 1

−M2|x23|2 + 4|x12|2|x13|2ω2
1

∣∣∣∣∆3

× δ

(
y − 2M |x12|2ω1

4|x12|2ω2
1 −M2

)
δ

(
ω2 −

M2

4|x12|2ω1

)
δ(d)
(
w⃗ − M2x⃗2 − 4x⃗1|x12|2ω2

1

M2 − 4|x12|2ω2
1

)
.

(E.10)

60



Performing the integral over y, ω2, and w⃗ leads to

A+,∆i

100→200+30iM,ϵ
=
21−2∆2+∆3M2∆2+∆3−d−2

|x12|2∆2−2∆3

∫ ∞

M
2|x12|

dω1
ω∆1−∆2+∆3−1
1 sgnϵ(−M2|x23|2 + 4|x12|2|x13)∣∣−M2|x23|2 + 4|x12|2|x13|2ω2

1

∣∣∆3
.

(E.11)

Now, we turn to the computation of A−,∆i

100→200+30iM,ϵ
. In the region D−, we have

∫
D−

dd+1k̂

|k+|
1

|q̂3 · k̂|∆3

=

∫ ∞

0

dy

yd+1

∫
ddw⃗

∣∣∣∣ −y
|x3 − w|2 − y2

∣∣∣∣∆3

, (E.12)

leading to

A−,∆i

100→200+30iM,ϵ
=

∫ ∞

0

dω1dω2ω
∆1−1
1 ω∆2−1

2

∫ ∞

0

dy

yd+1

∫
ddw⃗

∣∣∣∣ −y
|x3 − w|2 − y2

∣∣∣∣∆3

δ(d)(q1 − q2 − k) .

(E.13)

The support of the momentum-conserving delta-function is

ω2 =
M2

4|x12|2ω1

, y =
2M |x12|2ω1

M2 − 4|x12|2ω2
1

, w⃗ =
M2x⃗2 − 4x⃗1|x12|2ω2

1

M2 − 4|x12|2ω2
1

(E.14)

with the Jacobian

|J | =
∣∣∣∣Md+1(y2 − |x2 − w|2)

yd+2

∣∣∣∣ . (E.15)

We note that in the region D−, y ⩾ 0 demands that 0 ⩽ ω1 ⩽M/(2|x12|). The integrand in

(E.13) then becomes

ω∆1−1
1 ω∆2−1

2

yd+1

∣∣∣∣ −y
|x3 − w|2 − y2

∣∣∣∣∆3

δ(d+2)(q1 − q2 − k)

=
21−2∆2+∆3M2∆2+∆3−d−2ω∆1−∆2+∆3−1

1

|x12|2∆2−2∆3

∣∣∣∣ 1

−M2|x23|2 + 4|x12|2|x13|2ω2
1

∣∣∣∣∆3

× δ

(
y − 2M |x12|2ω1

M2 − 4|x12|2ω2
1

)
δ

(
ω2 −

M2

4|x12|2ω1

)
δ(d)
(
w⃗ − M2x⃗2 − 4x⃗1|x12|2ω2

1

M2 − 4|x12|2ω2
1

)
.

(E.16)

Performing the integral over y, ω2, and w⃗ leads to

A−,∆i

100→200+30iM,ϵ
=
21−2∆2+∆3M2∆2+∆3−d−2

|x12|2∆2−2∆3

∫ M
2|x12|

0

dω1
ω∆1−∆2+∆3−1
1 sgnϵ(−M2|x23|2 + 4|x12|2|x13|2)∣∣−M2|x23|2 + 4|x12|2|x13|2ω2

1

∣∣∆3
.

(E.17)

61



Thus we have

A∆i

100→200+30iM,ϵ
=
21−2∆2+∆3M2∆2+∆3−d−2

|x12|2∆2−2∆3

∫ ∞

0

dω1
ω∆1−∆2+∆3−1
1 sgnϵ(−M2|x23|2 + 4|x12|2|x13)∣∣−M2|x23|2 + 4|x12|2|x13|2ω2

1

∣∣∆3

=
21−2∆2+∆3M2∆2+∆3−d−2

|x12|2∆2−2∆3

(∫ M|x23|
2|x12||x13|

0

dω1
ω∆1−∆2+∆3−1
1 (−1)ϵ

(M2|x23|2 − 4|x12|2|x13|2ω2
1)

∆3

+

∫ ∞

M|x23|
2|x12||x13|

dω1
ω∆1−∆2+∆3−1
1

(−M2|x23|2 + 4|x12|2|x13|2ω2
1)

∆3

)

=
C∆i

100→200+30iM,ϵ

|x12|∆1+∆2−∆3|x13|∆1−∆2+∆3 |x23|∆2+∆3−∆1
,

(E.18)

where C∆i

100→200+30iM,ϵ
is given by

C∆i

100→200+30iM,ϵ
=
M∆1+∆2−d−2Γ[1−∆3]

2∆1+∆2

(
Γ[∆3−∆1+∆2

2
]

Γ[2−∆1+∆2−∆3

2
]
+ (−1)ϵ

Γ[∆3+∆1−∆2

2
]

Γ[2+∆1−∆2−∆3

2
]

)
. (E.19)

Using the identity

Γ[x]Γ[1− x] =
π

sin[πx]
, (E.20)

we get

C∆i

100→200+30iM,ϵ
=
M∆1+∆2−d−2Γ[1−∆3]Γ[

∆3−∆1+∆2

2
]Γ[∆3+∆1−∆2

2
]

2∆1+∆2

×
(
2 cos[

∆3

2
π] sin[

(∆1 −∆2)

2
π]

)ϵ(
2 sin[

∆3

2
π] cos[

(∆1 −∆2)

2
π]

)1−ϵ

.

(E.21)

Moreover, using the symmetric property δ(4)(x) = δ(4)(−x), we find that A∆i

200+30iM,ϵ→100
=

A∆i

100→200+30iM,ϵ
.

F t-channel conformal block expansion from alpha space

approach

In this section we derive the t-channel conformal block expansion of the 1d four-point massless

scalar t-channel celestial amplitudes by the alpha space approach. The four-point massless

scalar t-channel celestial amplitudes in one dimensional CCFT is

tA∆i

100+200→300+400
=
πmβ−1

2β+4
sec[

πβ

2
]I13−24f(χ) , (F.1)
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where f(χ) = χ(1 − χ)
1
2
(−1+∆13−∆24). In the following, we will first consider the conformal

block expansion of G(χ) = χa(1 − χ)b and then take the special value a = 1, b = 1
2
(−1 +

∆13 −∆24).

Due to the different boundary condition of the conformal Casimir equation, in the alpha

space approach the integral region is x ∈ (0, 1) and there are no contributions from the

discrete series representations, in contrast to the Euclidean inversion formula [64, 65], see

also the application in celestial CFT [7].

In the alpha space approach, the stripped conformal blocks and partial waves are

G∆13,∆24

∆ (χ) = χ∆
2F1(∆−∆13,∆+∆24, 2∆, χ), (F.2)

ψ∆(χ) =
1

2
(Q(∆)G∆13,∆24

∆ (χ) +Q(1−∆)G∆13,∆24

1−∆ (χ)) (F.3)

= χ∆13
2F1(∆−∆13, 1−∆−∆13, 1−∆13 +∆24, 1−

1

χ
), (F.4)

with the boundary condition ψ∆(1) = 1. The inversion function and formula are

I(∆) =

∫ 1

0

dχχ−2(1− χ)−∆13+∆24G(χ)ψ∗
∆(χ), (F.5)

G(χ) = 1

2πi

∫
Γ

d∆

N(∆)
I(∆)ψ∆(χ), (F.6)

where Γ is the principal series, and

Q(∆) =
2Γ(1− 2∆)Γ(1−∆13 +∆24)

Γ(1−∆−∆13)Γ(1−∆+∆24)
, and N(∆) =

1

2
Q(∆)Q(1−∆). (F.7)

For the four-point function G(χ) = χa(1 − χ)b using the Mellin-Barnes integral and

changing the order of integration, we have

I(∆) =

∫ 1

0

dχχa−2(1− χ)b−∆13+∆24ψ∆(χ) (F.8)

=

∫ +i∞

−i∞

ds

2πi

(∆−∆13)s(1−∆−∆13)s
(1−∆13 +∆24)s

Γ(−s) ·
∫ 1

0

dx xa+∆13−s−2(1− x)b+s−∆13+∆24

=

∫ +i∞

−i∞

ds

2πi

(∆−∆13)s(1−∆−∆13)s
(1−∆13 +∆24)s

Γ(b+ s−∆13 +∆24 + 1)

Γ(a+ b+∆24)
Γ(−s)Γ(a+∆13 − s− 1).

There are two series of poles in the right half-plane, s = n and s = a+∆13+n−1 for n ∈ N,
and their contributions are

I(∆) = −a1 3F2

(
−∆−∆13 + 1,∆−∆13, b−∆13 +∆24 + 1

2− a−∆13,−∆13 +∆24 + 1
; 1

)
(F.9)
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− a2 3F2

(
a−∆, a+∆− 1, a+ b+∆24

a+∆13, a+∆24

; 1

)
(F.10)

where the minus sign is due to the orientation of contour, and the coefficients are

a1 =
Γ (a+∆13 − 1) Γ (b−∆13 +∆24 + 1)

Γ (a+ b+∆24)
, (F.11)

a2 =
Γ (−∆13 +∆24 + 1)Γ(a−∆)Γ(a+∆− 1)Γ (−a−∆13 + 1)

Γ (−∆−∆13 + 1)Γ (∆−∆13) Γ (a+∆24)
. (F.12)

As a first check, for four identical external operators ∆13 = ∆24 = 0, this result matches

with (2.58) in [64] with the conventions (∆, a, b) = (1
2
+ α, p,−q).

Now we can derive the conformal block expansion by deforming the ∆-contour to the

right infinity. The first term is analytic in ∆, and the second term contains simple poles

∆n = a + n, n ∈ N at the right side of principal series. Hence the four-point function can

be expanded as

G(χ) = χa(1− χ)b =
∑
n

C∆i
1+nG

∆13,∆24

1+n (χ) = −2
∑
n

Res∆=∆n I(∆)

Q(1−∆n)
G∆13,∆24

1+n (χ), (F.13)

where the orientation of contour contributes to factor −1, and the shadow term contributes

to factor 2. The block coefficients are

C∆i
1+n =

(a+∆13)n (a+∆24)n
n!(2a+ n− 1)n

3F2

(
−n, 2a+ n− 1, a+ b+∆24

a+∆13, a+∆24

; 1

)
(F.14)

and we can match the block expansion with the four-point function order by order.

Back to the original four-point function (F.1), taking a = 1, b = 1
2
(−1 + ∆13 −∆24) we

have

C∆i
1+n =

πmβ−1

2β+4
sec[

πβ

2
]

(−1)n22nΓ
(
n−∆13+1

2

)
Γ
(
n+∆24+1

2

)
Γ(2n+ 1)Γ

(−n−∆13+1
2

)
Γ
(−n+∆24+1

2

) , (F.15)

which agrees with (5.38) computed by using the split representation.

G Expansion of conformal block around its poles

In this appendix, we will derive the expansion of 1D and 2D conformal block around its

poles. We start with the 1D conformal block G∆13,∆24

∆ which takes the following form

G∆13,∆24

∆ (χ) =χ∆

∞∑
k=0

(∆−∆13)k(∆ +∆24)k
Γ[k + 1](2∆)k

χk = Γ[2∆]H∆13,∆24

∆ (χ) , (G.1)
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where we defined H∆13,∆24

∆ as

H∆13,∆24

∆ (χ) =χ∆

∞∑
k=0

(∆−∆13)k(∆ +∆24)k
Γ[k + 1]Γ[2∆ + k]

χk . (G.2)

We note that G∆13,∆24

∆ has simple poles at 2∆ = −n with n = 0, 1, 2, · · · . This admits the

following expansion of tF
∆i
∆ around 2∆ = −n

G∆13,∆24

∆ (χ) =
a∆i,n
−1 (χ)

2∆ + n
+ a∆i,n

0 (χ) +O1(2∆ + n) . (G.3)

The coefficient a∆i,n
−1 (χ) can be computed from

a∆i,n
−1 (χ) =

(
(2∆ + n)G∆13,∆24

∆ (χ)

)∣∣∣∣
∆=−n

2

=
(−1)n

n!
G∆13,∆24

−n
2

(χ) . (G.4)

Using the definition (G.2) of H∆13,∆24

∆ (χ), we find that

H∆13,∆24

−n
2

(χ) =
∞∑
k=0

χ−n
2
(−n

2
−∆13)k(−n

2
+∆24)k

Γ[k + 1]Γ[k − n]
χk . (G.5)

Shifting k by k → k + n+ 1 leads to

H∆13,∆24

−n
2

(χ) =
∞∑
k=0

χ
n+2
2
(−n

2
−∆13)k+n+1(−n

2
+∆24)k+n+1

Γ[k + n+ 2]Γ[k + 1]
χk

=(−n
2
−∆13)n+1(−

n

2
+ ∆24)n+1H

∆13,∆24
n+2
2

(χ) .

(G.6)

This leads to

a∆i,n
−1 (χ) =

(−1)n(−n
2
−∆13)n+1(−n

2
+∆24)n+1

Γ[n+ 1]Γ[n+ 2]
G∆13,∆24

n+2
2

(χ) . (G.7)

The coefficient a∆i,n
0 (χ) can be computed from

a∆i,n
0 (χ) =

1

2

∂

∂∆

(
(2∆ + n)G∆13,∆24

∆ (χ)

)∣∣∣∣
∆=−n

2

=
(−1)n

n!
ψ(n+ 1)H∆13,∆24

−n
2

(χ) +
(−1)n

2n!

∂H∆13,∆24

∆ (χ)

∂∆

∣∣∣∣
∆=−n

2

=
(−1)n(−n

2
−∆13)n+1(−n

2
+∆24)n+1

Γ[n+ 1]Γ[n+ 2]
ψ(n+ 1)G∆13,∆24

n+2
2

+
(−1)n

2n!

∂H∆13,∆24

∆

∂∆

∣∣∣∣
∆=−n

2

,

(G.8)
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where we used (G.6). To compute 1
2

∂H
∆13,∆24
∆ (χ)

∂∆

∣∣∣∣
∆=−n

2

, we note that

1

2

∂H∆13,∆24

∆ (χ)

∂∆

∣∣∣∣
∆=−n

2

= 1S
∆i,−n

2
13−24 (χ) + 2S

∆i,−n
2

13−24 (χ) + 3S
∆i,−n

2
13−24 (χ) + 4S

∆i,−n
2

13−24 (χ) , (G.9)

where iS
∆i,−n

2
13−24 (z) are defined as

1S
∆i,−n

2
13−24 (χ) ≡

1

2

∂χ∆

∂∆

∣∣∣∣
∆=−n

2

χ
n
2H∆13,∆24

−n
2

(χ) , (G.10)

and

2S
∆i,−n

2
13−24 (χ) ≡

1

2

∞∑
k=0

χ
−n
2

(−n
2
+∆24)k

Γ[k + 1]Γ[k − n]

∂(∆−∆13)k
∂∆

∣∣∣∣
∆=−n

2

χk

=
∞∑
k=0

χ
−n
2
(−n

2
−∆13)k(−n

2
+∆24)k

Γ[k + 1]Γ[k − n]

ψ(−n
2
−∆13 + k)− ψ(−n

2
−∆13)

2
χk ,

(G.11)

and

3S
∆i,−n

2
13−24 (χ) ≡

1

2

∞∑
k=0

χ
−n
2

(−n
2
−∆13)k

Γ[k + 1]Γ[k − n]

∂(∆ +∆24)k
∂∆

∣∣∣∣
∆=−n

2

χk

=
∞∑
k=0

χ
−n
2
(−n

2
−∆13)k(−n

2
+∆24)k

Γ[k + 1]Γ[k − n]

ψ(−n
2
+∆24 + k)− ψ(−n

2
+∆24)

2
χk ,

(G.12)

and

4S
∆i,−n

2
13−24 (χ) ≡

1

2

∞∑
k=0

χ
−n
2
(−n

2
−∆13)k(−n

2
+∆24)k

Γ[k + 1]

(
∂

∂∆

1

Γ[k + 2∆]

)∣∣∣∣
∆=−n

2

χk

=−
∞∑
k=0

χ
−n
2
−(n

2
−∆13)k(−n

2
+∆24)k

Γ[k + 1]Γ[k − n]
ψ(k − n)χk .

(G.13)

Using (G.6), we can re-write 1S
∆i,−n

2
13−24 (χ) as

1S
∆i,−n

2
13−24 (χ) =

1

2
log(χ) tH

∆i

−n
2
(χ)

=
1

2
log(χ)(−n

2
−∆13)n+1(−

n

2
+ ∆24)n+1H

∆13,∆24
n+2
2

(χ)

=(−n
2
−∆13)n+1(−

n

2
+ ∆24)n+1 1S

∆i,
n+2
2

13−24 (χ) .

(G.14)
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Moreover, after shifting the dummy index k by k → k + n + 1, we can re-write 2S
∆i,−n

2
13−24 (z)

ast

2S
∆i,−n

2
13−24 =

∞∑
k=0

χ
n+2
2
(−n

2
−∆13)k+n+1(−n

2
+∆24)k+n+1

Γ[k + n+ 2]Γ[k + 1]

ψ(n+2
2

−∆13 + k)− ψ(−n
2
−∆13)

2
χk

=(−n
2
−∆13)n+1(−

n

2
+ ∆24)n+1

[
2S

∆i,
n+2
2

13−24 +
ψ(2+n

2
−∆13)− ψ(−n

2
−∆13)

2Γ[n+ 2]
G∆13,∆24

n+2
2

]
.

(G.15)

Similarly, we get

3S
∆i,−n

2
13,24 =(−n

2
−∆13)n+1(−

n

2
+ ∆24)n+1

[
3S

∆i,
n+2
2

13,24 +
ψ(2+n

2
+∆24)− ψ(−n

2
+∆24)

2Γ[n+ 2]
G∆13,∆24

n+2
2

]
.

(G.16)

To compute 4S
∆i,−n

2
13−24 , we split the sum over k ⩾ 0 into two sums, i.e.,

4S
∆i,−n

2
13−24 =−

( n∑
k=0

+
∞∑

k=n+1

)
χ

−n
2
(−n

2
−∆13)k(−n

2
+∆24)k

Γ[k + 1]Γ[k − n]
ψ(k − n)χk . (G.17)

The sum with k ⩾ n+ 1 can be computed by shifting k to k + n+ 1, giving

−
∞∑
k=0

χ
n+2
2
(−n

2
−∆13)k+n+1(−n

2
+∆24)k+n+1

Γ[k + n+ 2]Γ[k + 1]
ψ(k + 1)χk . (G.18)

Armed with the identity

ψ(k + n+ 2) = ψ(k + 1) +
n∑

s=0

1

k + 1 + s
, (G.19)

It can be written as

−
∞∑
k=0

χ
n+2
2
(−n

2
−∆13)k+n+1(−n

2
+∆24)k+n+1

Γ[k + n+ 2]Γ[k + 1]
ψ(k + 1)χk

= (−n
2
−∆13)n+1(−

n

2
+ ∆24)n+1 4S

∆i,
n+2
2

13−24 +
n∑

s=0

∞∑
k=0

χ
n+2
2
(−n

2
−∆13)k+n+1(−n

2
+∆24)k+n+1

Γ[k + n+ 2]Γ[k + 1](k + 1 + s)
χk .

(G.20)

Using the fact that ψ(−n)/Γ[−n] = (−1)n+1n!, we find that

−
n∑

k=0

(−n
2
−∆13)k(−n

2
+∆24)kψ(k − n)

Γ[k + 1]Γ[k − n]
χk−n

2 +
n∑

s=0

∞∑
k=0

(−n
2
−∆13)k+n+1(−n

2
+∆24)k+n+1

Γ[k + n+ 2]Γ[k + 1](k + 1 + s)
χk+n+2

2

(G.21)
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is equal to (−1)nn!G∆13,∆24

sta,−n
2
(χ) where G∆13,∆24

sta,−n
2
(χ) is the conformal block associated with the

staggered module (A.3). Thus we find that

4S
∆i,−n

2
13−24 =(−n

2
−∆13)n+1(−

n

2
+ ∆24)n+1 4S

∆i,
n+2
2

13−24 + (−1)nn!G∆13,∆24

sta,−n
2
. (G.22)

Combining (G.14), (G.15), (G.16), and (G.22), we get

1

2

∂H∆13,∆24

∆ (χ)

∂∆

∣∣∣∣
∆=−n

2

=
(−n

2
−∆13)n+1(−n

2
+∆24)n+1

2Γ[n+ 2]

(
b∆i
n G∆13,∆24

n+2
2

+
∂G∆13,∆24

∆

∂∆

∣∣∣∣
∆=n+2

2

)
+ (−1)nn!G

∆13,∆24

sta,−n
2
,

(G.23)

where we defined b∆i
n as

b∆i
n ≡ψ(2 + n

2
−∆13)− ψ(

−n
2

−∆13) + ψ(
2 + n

2
+ ∆24)− ψ(

−n
2

+ ∆24)− 2ψ(n+ 2) .

(G.24)

We conclude that

G∆13,∆24

∆ (χ) =
a∆i,n
−1 (χ)

2∆ + n
+ a∆i,n

0 (χ) +O1(2∆ + n) , (G.25)

where a∆i,n
−1 (χ) is given by

a∆i,n
−1 (χ) =

(−1)n(−n
2
−∆13)n+1(−n

2
+∆24)n+1

Γ[n+ 1]Γ[n+ 2]
tF

∆i
n+2
2

(χ) , (G.26)

and a∆i,n
0 (χ) is given by

a∆i,n
0 =

(−1)n(−n
2
−∆13)n+1(−n

2
+∆24)n+1

2Γ[n+ 1]Γ[n+ 2]

(
B∆i

n tF
∆i
n+2
2

+
∂tF

∆i
∆

∂∆

∣∣∣∣
∆=n+2

2

)
+ (−1)nn!tF

∆i

sta,−n
2

(G.27)

with

B∆i
n ≡ψ(2 + n

2
−∆13)− ψ(

−n
2

−∆13) + ψ(
2 + n

2
+ ∆24)− ψ(

−n
2

+ ∆24)−
2

n+ 1
.

(G.28)

Since the two dimensional global conformal block is a product of two one-dimensional

conformal blocks, i.e.,

Gh13,h24;h13,h24

h,h
(χ, χ) = Gh13,h24

h (χ)Gh13,h24

h,h
(χ) , (G.29)
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we find that Gh13,h24;h13,h24

h,h
(χ, χ) admits the following expansion around the pole 2h = −n

and 2h = −n or ∆ = (−n− n)/2 and ℓ = (−n+ n)/2

Gh13,h24;h13,h24

h,h
(χ, χ) =

ahi,n
−1 (χ)ahi,n

−1 (χ)

(2h+ n)(2h+ n)
+
ahi,n
−1 (χ)ahi,n

0 (χ)

2h+ n
+
ahi,n
0 (χ)ahi,n

−1 (χ)

2h+ n
+ · · · . (G.30)

Especially, when hi = hi = ∆i/2 and h = h = ∆/2, we have

G∆13,∆24

h,h
(χ, χ)

=
ahi,n
−1 (χ)ahi,n

−1 (χ)

(2h+ n)2
+
ahi,n
−1 (χ)ahi,n

0 (χ) + ahi,n
0 (χ)ahi,n

−1 (χ)

2h+ n
+ · · ·

=

[
(−n

2
− h13)n+1(−n

2
+ h24)n+1

Γ[n+ 1]Γ[n+ 2]

]2[G∆13,∆24
n+2
2

,n+2
2

(∆ + n)2
+

1

∆+ n

(
Bhi

n G
∆13,∆24
n+2
2

,n+2
2

+
∂G∆13,∆24

h,h

∂∆

∣∣∣∣
∆=n+2

)]
+

(−n
2
− h13)n+1(−n

2
+ h24)n+1

Γ[n+ 2](∆ + n)

(
G∆13,∆24

sta,−n
2
,n
2
+1 +G∆13,∆24

sta,n
2
+1,−n

2

)
+ · · · ,

(G.31)

where G∆13,∆24

sta,−n
2
,n
2
+1 and G∆13,∆24

sta,n
2
+1,−n

2
are conformal blocks associated with chiral staggered

module given in (A.6).
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