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Abstract

Building on the recent discovery of the first candidate black hole operator in the

N = 4 super-Yang-Mills, we explore the near-supersymmetric aspects of the theory

that capture lightly excited, highly stringy black holes. We extend the superspace

formalism describing the classically supersymmetric (1/16-BPS) sector of N = 4 super-

Yang-Mills and compute a large number of one-loop anomalous dimensions. Despite

being in the highly stringy regime, we find hints of a gap in the spectrum, similar to

that found by a gravitational path integral. We also determine the actual expression

of the first candidate black hole operator at weak gauge coupling, going beyond the

cohomological construction.
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1 Introduction and summary

Since the discovery of the emblematic holographic duality between type IIB string theory

and N = 4 super-Yang-Mills (SYM) twenty-five years ago, various remarkable connections

and matches have been established. Keys to bridging the two far-apart regimes of simplicity

include integrability in the planar limit [1], supersymmetry protection [2], conformal boot-

strap [3], and large charge universality [4] (see also the references contained in these reviews).

Although non-planar non-supersymmetric aspects of the theory are computable in each of

the dual descriptions, without an overlapping regime of validity, the statement of a duality

covering all corners of the theory becomes unverifiable.

The advent of the holographic duality opened a new chapter in the study of black holes

and surrounding puzzles. Black holes’ existence has long necessitated a deeper understanding

of the quantum nature of gravity, as the singularity signals a breakdown of general relativity,

and the No-Hair theorem prevents any classical explanation of the statistical entropy. In

the holographic setting, the gauge theory supplies a non-perturbative description of a bulk

black hole as an ensemble of microstates. Reproducing the salient features of black holes,

such as their entropy, within the gauge theory framework is widely regarded as a highly

significant test of the duality, as well as an affirmation of string theory as a consistent theory

of quantum gravity. Moreover, exact supersymmetric results coming from gauge-theoretic

computations have supplied key guidance in bettering our first-principle understanding of

the gravitational path integral.

Until lately, the main focus on the N = 4 SYM side has been the study of its index, with

a triumph being the successful match of the asymptotic growth of the (signed) degeneracies

with the black hole entropy [5–7]. However, the index counts all states equally, blending

gravitons, black holes, and whatnot, as well as all their bound states into a set of numbers.

One can embrace more refined studies of supersymmetric states, going beyond indiscrim-

inate counting. Pursuit in this direction was attempted by [8–13], and achieved a recent

breakthrough by [14] in constructing a first candidate black hole (non-graviton) microstate

(in the cohomological sense). Generalizations and further progress were made in [15–17].

Let us quickly review this line of development. By the standard argument in Hodge

theory, there is a one-to-one correspondence between the supersymmetric states and the

cohomology of the associated supercharge Q [11]. The cohomologies corresponding to gravi-

tons are fully recognized and can be completely separated from the rest [13]. It has been

conjectured [11] and perturbatively proven [14] that away from the free point gYM = 0,

the spectrum of supersymmetric states (captured by the dimensions of the Q-cohomologies)

does not depend on the gYM. In [14], an extensive enumeration of cohomology classes at

weak coupling, extending to high energies and charge ranges, unveiled the first non-graviton
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cohomology for gauge group SU(2).

A separate line of development in recent years is the study of “coarse-grained” holographic

dualities between simple gravitational theories and ensemble-averaged (quench-disordered)

non-gravitational systems and has achieved remarkable success. While the philosophical na-

ture of such dualities is a subject of intense debate, much less controversial is the embedding

of these coarse-grained dualities inside “fine-grained” dualities as effective descriptions. In a

series of papers [18–22], the dynamics near an extremal black hole’s horizon, which contains

an AdS2 factor, has been analyzed using an effective Jackiw-Teitelboim (JT) gravitational

path integral. For near-supersymmetric black holes, their main result is a quantitative pre-

diction of the near-BPS spectrum. These developments on the gravitational side pose some

natural questions to the gauge-theoretic framework. To name a few: Can the effective JT

supergravity description be deduced within the gauge-theoretic framework? Are there qual-

itative features shared between (or perhaps interpolating) the weak and strong coupling

regimes?

Summary of this work This paper develops tools for studying N = 4 SYM in the

non-planar near-supersymmetric regime.

• Expanding the superspace formalism of [13, 14], we drastically simplify the Hamilto-

nian encoding the spectrum of one-loop anomalous dimensions in a subsector of the

full theory comprising operators that are BPS in the free gYM → 0 limit. We also

clarify the relationship among operators at different couplings, and in what sense near-

supersymmetric black holes are captured by this subsector.

• We systematically construct and diagonalize the Hamiltonian across a large range of

charges. The resulting near-BPS spectrum at weak coupling shows features reminis-

cent of the spectrum at strong ’t Hooft coupling, which is captured by N = 2 JT

supergravity [20]; in particular, there are hints of a “gap” (a proper notion of which

requires large N).

• Diagonalizing the Hamiltonian in the charge sector of the first non-graviton cohomology

gives the precise weak-coupling form of the candidate black hole operator (a specific

representative of the cohomology), which was also computed in simultaneous work [23].

The remainder of this paper is organized as follows. Section 2 introduces the classically-

BPS sector of N = 4 SYM and discusses its Hilbert space and Hamiltonian. Section 2.3

discusses the near-horizon excitation of near-BPS black holes and argues a conjecture on

the relation between them and the classically-BPS sector. Section 3 develops the matrix

representations for the supercharge Q and the one-loop dilatation operator H. Section 4 give
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differential representations for Q and H. Section 5 presents our results and gives discusses

the implications and outlooks.

2 Classically-BPS sector and near-BPS black holes

This section characterizes the classically-BPS sector of N = 4 super-Yang-Mills (SYM),

describes its symmetry algebra, and explains how it captures near-BPS physics even in the

strong coupling regime.

2.1 Hilbert space and level repulsion

The N = 4 super-Yang-Mills is a supersymmetric gauge theory with two marginal param-

eters, a gauge coupling gYM and a topological angle θ. The fields and action are detailed

in Appendix D. To define the classically-BPS sector describing near-BPS excitations, let us

begin with the Hilbert space of local operators in N = 4 SYM. The psu(2, 2|4) superconfor-
mal algebra, which is reviewed in Appendix B, acts on the Hilbert space as linear maps. To

define BPS states, we pick a supercharge and its Hermitian conjugate (BPZ conjugate)

Q ≡ Q4
− , Q† = S−

4 , (2.1)

whose anti-commutator is

∆ ≡ 2{Q,Q†} = D − 2JL − q1 − q2 − q3 . (2.2)

Unitarity implies that all the states or operators must satisfy the BPS bound

∆ ≥ 0 . (2.3)

The states that saturate the BPS bound (2.3) are called BPS states.1

In perturbation theory, the dilation operator D admits an expansion

D = D(0) + g2YMD
(2) + g4YMD

(4) + · · · . (2.4)

The leading term D(0) is the classical (bare) dimension. The classically-BPS states are those

that satisfy the classical BPS condition

∆(0) ≡ D(0) − 2JL − q1 − q2 − q3 = 0 . (2.5)

1The states that do not saturate (2.3) but saturate the BPS bound of other supercharges would not be

referred to as BPS states in this paper.
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The classically-BPS sector is the space that contains all the classically-BPS states. It is a

closed sector because under operator-mixing the classically-BPS operators do not mix with

classically non-BPS operators. This fact can be argued in perturbation theory by noting

that the classical dimension commutes with all the higher loop dilatation operators [24],

i.e. [D(0), D(n)] = 0. Hence, operator-mixing only occurs among operators with the same

angular momenta, R-charges, and classical dimension. Even at finite Yang-Mills coupling

gYM, one still expects the classically-BPS sector to be well-defined. The classical dimension

of an operator can be defined adiabatically, by following its energy (conformal dimension)

along a path with no level crossing to weak coupling.

By the von Neumann-Wigner theorem (level repulsion), level crossing in the operator

spectrum only occurs at real codimension-two submanifolds of the conformal manifold. The

conformal manifold of N = 4 SYM is a complex one-dimensional space, parametrized by the

complexified gauge coupling

τ =
θ

2π
+

4πi

g2YM

. (2.6)

Hence, level crossings only happen at isolated points on the complex τ -plane, and we define

the classical dimension of an operator at generic coupling τ by following a path to τ = i∞
that avoids all these points.2

The anomalous dimensionD−D(0) in the classically-BPS sector can be naturally regarded

as the Hamiltonian of a supersymmetric quantum mechanics,

H ≡ D −D(0) = 2{Q,Q†} , (2.7)

The perturbative expansion of H starts at one-loop order. As argued in [14], with a suitable

regularization scheme, the supercharge Q receives no quantum corrections perturbatively.

Therefore, on the right-hand side of (2.7), the perturbative corrections must be encoded in

the Hermitian conjugation (BPZ conjugation) †. We will focus on the one-loop Hamiltonian,

where † is induced by the inner product in the free theory (gYM = 0).3 In the following, H

always refers to the one-loop Hamiltonian, and † to the free Hermitian conjugation.

2It is worth mentioning that level crossings are only expected to happen at the free points, i.e. the

PSL(2,Z) images of τ = i∞, and the level crossings in the planar limit at finite ’t Hooft coupling disappear

after including 1/N corrections [25].
3In our convention specified in Appendix D, gYM is an overall coupling constant of the action (D.9).

Hence, the two-point functions (inner products) of the fundamental fields in free theory are all proportional

to g2YM. Alternatively, one could rescale the fundamental fields to normalize their two-point functions. This

would make the supercharge Q of order gYM when acting on classically-BPS operators.
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2.2 Symmetry algebra and characters

The symmetry algebra of the classically-BPS sector is the centralizer of ∆ in psu(2, 2|4),
which can be written as a semi-direct product

C(∆) = u(1)⋉ [psu(1, 2|3)× su(1|1)] , (2.8)

and whose generators are detailed in Appendix C. Let us define the C(∆) primary operators

to be the operators annihilated by all the superconformal supercharges inside C(∆). The

superconformal supercharges outside C(∆) all have ∆ < 0 except S+
4 which has ∆ = 2. If

a C(∆) primary operator O is also annihilated by S+
4 , then it is also a psu(2, 2|4) super-

conformal primary, otherwise it is a descendent of the psu(2, 2|4) superconformal primary

S+
4 (O). If O is a BPS operator, it is a superconformal primary in a bx-type superconformal

multiplet when JL = 0, and it is a superconformal descendent in a cx-type superconformal

multiplet when JL > 0 [8]. If O is a non-BPS operator, by the decomposition rules (2.16)

in [8], O should fall into a cx-type superconformal multiplet in the free limit gYM → 0, and

hence should be a superconformal descendent.

The spectrum of the classically-BPS sector can be summarized by a partition function as

Z(β, ωi,Φi) = Tr∆(0)=0

(
e−β∆−J1ω1−J2ω2−q1Φ1−q2Φ2−q3Φ3

)
. (2.9)

The partition function can be organized by the centralizer C(∆) symmetry. We split the

partition function into a sum of the BPS and non-BPS partition functions as

Z(β, ωi,Φi) = ZBPS(β, ωi,Φi) + Znon-BPS(β, ωi,Φi) , (2.10)

where ZBPS contains the contributions from the BPS (∆ = 0) states, and Znon-BPS contains

the contributions from the non-BPS states in the classically-BPS states.

We will focus on the non-BPS partition function Znon-BPS(β, ωi,Φi). The non-BPS

states in the classically-BPS sector form long multiplets of the centralizer C(∆). Hence,

Znon-BPS(β, ωi,Φi) can be decomposed into characters χ∆,JL,JR,qi(β, ωi,Φi) of the long multi-

plets,

χ∆,JL,JR,qi(β, ωi,Φi) =
e−β∆−JL(ω1+ω2)− 1

3
(Φ1+Φ2+Φ3)(q1+q2+q3)χJR(e

−ω1+ω2)

(1− e−ω1)(1− e−ω2)

× χq1−q2,q2−q3(e
− 1

3
(2Φ1−Φ2−Φ3), e−

1
3
(Φ1+Φ2−2Φ3))

×
∏

ti,si=±1
t1+t2+s1+s2+s3=1

(1 + e−
1
2
(t1ω1+t2ω2+s1Φ1+s2Φ2+s3Φ3)) ,

(2.11)
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where χJR and χq1−q2,q2−q3 are the su(2) and su(3) characters, explicitly given by

χJR(e
−ω) =

2JR∑
n=0

e(n−JR)ω ,

χR1,R2(e
−Ω1 , e−Ω2) = e−(R1+2R2)Ω1

R1+R2∑
k=R2

R2∑
l=0

e
3(k+l)Ω1

2
sinh (k−l+1)(2Ω2−Ω1)

2

sinh 2Ω2−Ω1

2

.

(2.12)

where the su(3) characters are labeled by the Dynkin labels R1 = R1
1 − R2

2 = q1 − q2 and

R2 = R2
2 −R3

3 = q2 − q3.

2.3 Near-BPS black holes

Under the AdS/CFT correspondence, in the ’t Hooft large N limit, generic BPS states with

large angular momenta and R-charges of order

J1, J2, q1, q2, q3 ∼ N2 ≫ 1 (2.13)

are dual to the microstates of 1/16-BPS black holes in AdS5 × S5 [26–30]. Here J1, J2 are

rotation generators along the two-planes in R4, and are related to JL, JR by (B.9). For

a black hole to have a macroscopic event horizon, all five angular momenta and R-charges

(2.13) must be activated. Furthermore, standard BPS black hole solutions in AdS5 are

subject to a charge relation, see e.g. (2.85) in [6]. However, as discussed in [31], “revolving

black holes”—standard BPS black hole solutions boosted by momenta P—easily violate the

charge relation (in specific one direction). From a gauge-theoretic standpoint, the charge

relation does not seem natural: at finite N , the quantization of charges makes it impossible

to satisfy the relation exactly.

Excitations of black holes near the BPS bound have been studied in [20]. Let us recap

some key results. The near-horizon geometry of a BPS black hole has an AdS2 factor and

develops an emergent local su(1, 1|1) superconformal algebra. The finite-temperature quan-

tum corrections break this local symmetry to a global su(1, 1|1), which acts as the isometry

of the near-horizon region. The dimensional reduction of the ten-dimensional IIB supergrav-

ity down to AdS2 is expected to produce an N = 2 Jackiw-Teitelboim (JT) supergravity,

whose boundary N = 2 Schwarzian theory captures the Goldstone modes of the symmetry

breaking. A distinguishing feature of the N = 2 Schwarzian theory from its less supersym-

metric cousins is the presence of a gap in its spectrum above the ground states [32,33]. This

implies that the low-lying spectrum of BPS and near-BPS black holes consists of order eN
2

isolated BPS states and a continuum of near-BPS states with an order N−2 gap separating

them from the BPS states. More precisely, in a sector with large fixed angular momenta and
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R-charges (2.13), the near-BPS states in the continuum have dimensions above the bound

∆ > ∆BPS +∆gap , ∆gap =
∆̃

N2
, (2.14)

where ∆̃ is an explicit function of the angular momenta and R-charges, given in (3.91) of [20].

Let us argue that the gap, together with the lower end of the continuum in the spectrum,

is captured by the classically-BPS sector in the N = 4 SYM. In the weak coupling limit,

the classically non-BPS states have ∆ ≳ 1
2
because ∆(0) ≥ 1

2
. By the von Neumann-Wigner

theorem (level repulsion), when going from weak to strong coupling, the ∆’s of the classically

non-BPS states cannot become lower than those of the classically-BPS states. Hence, the

states at the lower end of the continuum must be classically-BPS.

In the next section, we develop a matrix representation for H and diagonalize it for small

ranks N = 2, 3, 4 up to relatively high angular momenta and R-charges. Our results lead

us to further conjecture that the gap ∆gap is a continuous function of the ’t Hooft coupling

λ = g2YMN , behaving as

∆gap =
∆̃ (λ)

N2
, ∆̃ = ∆̃(1)λ+O(λ2) (2.15)

in the weak coupling limit and charge regime (2.13). In other words, the spectrum of the

Hamiltonian H in (2.7) has a gap of order g2YM/N in the sector with large angular momenta

and R-charges (2.13).

3 Matrix representation

In this section, we review the superspace formalism of [13], introduce an explicit basis for the

classically-BPS Hilbert space of N = 4 super-Yang-Mills (SYM), derive a compact formula

for the inner product, and compute the matrix representations of the supercharge Q and the

one-loop Hamiltonian H.

3.1 Superspace formalism

In perturbation theory, the classically-BPS operators can be constructed by gauge-invariant

combinations of fundamental fields and covariant derivatives that classically saturate the

BPS bound (see Appendix D)

ϕi ≡ Φ4i , ψi ≡ −iΨ+i , λα̇ ≡ Ψ
4

α̇ , f = −iF++ ≡ i(σµν)++Fµν , Dα̇ ≡ D+α̇ , (3.1)
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for i = 1, 2, 3 and α̇ = +̇, −̇. They are referred to as BPS letters. The BPS letters can be

assembled nicely into a superfield Ψ(zα̇, θi) in the superspace C2|3 as [13]

Ψ(zα̇, θi) = −i
∞∑
n=0

1

n!
(zα̇Dα̇)

n

[
1

n+ 1
zβ̇λβ̇ + 2θiϕ

i + ϵijkθiθjψk + 4θ1θ2θ3f

]
, (3.2)

where zα̇ and θi are the bosonic and fermionic superspace coordinates. The supercharge Q

acts on the superfield Ψ as

{Q,Ψ} = Ψ2 , (3.3)

and obeys the Leibniz rule when acting on composites of Ψ’s. The BPS letters can be

recovered by taking superspace derivatives as

ΨA ≡ ∂a1
z+̇
∂a2
z−̇
∂a3θ1 ∂

a4
θ2
∂a5θ3Ψ(z, θ)

∣∣
z=0, θ=0

, (3.4)

where A = (a1, · · · , a5). Using the trace basis, the classically-BPS sector is spanned by the

multi-traces

tr (ΨA1 · · ·ΨAm)tr (ΨB1 · · ·ΨBn) · · · , (3.5)

which would be referred to as the BPS words. The multi-traces are subject to trace relations,

which can be eliminated by substituting explicit N ×N (traceless) matrices for ΨA.

3.2 Basis and inner product

Consider a subspace V of the classically-BPS sector spanned by the BPS words with a

fixed number (nz+̇ , nz−̇ , nθ1 , nθ2 , nθ3) of derivatives ∂z+̇ , ∂z−̇ , ∂θ1 , ∂θ2 , ∂θ3 . Such BPS words,

denoted by wi, can be assembled into a finite-dimensional row vector w⃗ = (w1, w2, · · · ). After
substituting explicit matrices, we can expand the BPS words wi in terms of the monomials

ti of the matrix components, whereas, for traceless matrices, we use the traceless condition

to substitute the (N,N)-component of the matrix. The expansion can be written explicitly

as

w⃗ = t⃗A′ , (3.6)

where t⃗ = (t1, t2, · · · ) is a row vector of monomials ti and A′ is the matrix of the coefficients

of the expansion. Now, we can eliminate the trace relations between wi by column reducing

the matrix A′. Let us denote the column reduced matrix by A. A complete basis of the

subspace V is given by the elements of the row vector O⃗ = (O1,O2, · · · ),

O⃗ = t⃗A . (3.7)

Let |Oi⟩ be the state corresponding to the operators Oi. We denote the inner product

matrix of the states |Oi⟩’s by M,

Mij ≡ ⟨Oi|Oj⟩ , M† = M . (3.8)
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M is related to the inner product matrix Tij = ⟨ti|tj⟩ of the monomials ti’s by

Mij = ⟨Oi|Oj⟩ =
∑
k,l

A∗
kiAlj⟨tk|tl⟩ = (A†TA)ij . (3.9)

As discussed in Section 2.1, since we focus on the one-loop Hamiltonian, we use the inner

product T in the free theory, which can be computed by the two-point functions,〈
ti(x)

†tj(0)
〉
=
⟨ti|tj⟩
|x|2∆0

, (3.10)

where ti and tj have the same classical dimension ∆0, otherwise the two-point function

vanishes.

In the free theory, the two-point function can be simply computed by Wick contractions.

More explicitly, consider a typical monomial

(ΨA1)I1J1 · · · (Ψ
AY )IYJY , (3.11)

where the upper (or lower) I, J = 1, · · · , N indices are the SU(N) or U(N) fundamental (or

antifundamental) indices. The inner product of the monomial (3.11) with itself factorizes as〈
(ΨAn)InJn · · · (Ψ

A1)I1J1
∣∣(ΨA1)I1J1 · · · (Ψ

AY )IYJY
〉

=
∑
π∈SY

(−1)Nπ
〈
(ΨA1)I1J1

∣∣(ΨAπ(1))
Iπ(1)

Jπ(1)

〉
· · ·

〈
(ΨAn)InJn

∣∣(ΨAπ(Y ))
Iπ(Y )

Jπ(Y )

〉
, (3.12)

where the sum is over all the permutations π ∈ SY , and Nπ is the number of commutations

between fermionic letters.

In Appendix E, we explicitly compute the inner product matrix of single letters in the

superfield basis, and find a rather compact result〈
∂a1
z+̇
∂a2
z−̇
∂a3θ1 ∂

a4
θ2
∂a5θ3Ψ

J
I

∣∣∂a1
z+̇
∂a2
z−̇
∂a3θ1 ∂

a4
θ2
∂a5θ3Ψ

L
K

〉
=

g2YM

24+2a1+2a2π2
Γ(a1 + 1)Γ(a2 + 1)Γ(a1 + a2 + a3 + a4 + a5)

×

{
δJKδ

L
I for U(N) ,

δJKδ
L
I − 1

N
δJI δ

L
K for SU(N) .

(3.13)

3.3 Matrix representation for Q and H

The supercharge Q action (3.3) does not change the number of derivatives, and hence maps

the space V to itself. Let Y be the number of Ψ’s in a BPS word, and VY be the subspace

of V with a fixed Y . Q acts on V as a chain complex

· · · VY−1 VY VY+1 · · ·Q Q Q Q
(3.14)

10



We will write O⃗Y , t⃗Y andAY for those with a fixed number of Ψ’s. By acting the supercharge

on the vector t⃗Y and then re-expanding the result in terms of the elements in t⃗Y+1, we find

Q
(
t⃗Y
)
= t⃗Y+1qY , (3.15)

where q is a matrix of the expansion coefficients. Substituting it into (3.7), we find

Q
(
O⃗Y

)
= Q

(
t⃗Y
)
AY = t⃗Y+1qYAY . (3.16)

The dimension of the Q-cohomology is given by the rank of the matrices as

dim(VY )− dim(QVY )− dim(QVY−1)

= rank(AY )− rank(qYAY )− rank(qY−1AY−1) .
(3.17)

Consider a pair of bra and ket states, ⟨Oi| and |Oj⟩, with Y + 1 and Y numbers of Ψ’s,

respectively. Sandwiching the supercharge Q between them, we obtain a matrix QY as

(QY )ij ≡ ⟨Oi|Q|Oj⟩ =
∑
k,l

(AY+1)
∗
ki(qYAY )lj⟨tk|tl⟩ = (A†

Y+1TY+1qYAY )ij , (3.18)

where the states ⟨tk| and |tl⟩ each have Y + 1 number of Ψ’s.

Now, sandwiching the Hamiltonian H between a pair of bra and ket states, ⟨Oi| and
|Oj⟩, each having Y numbers of Ψ’s, we obtain a matrix HY as

(HY )ij ≡ ⟨Oi|H|Oj⟩ . (3.19)

Using the commutator (2.7), we find

(HY )ij = 2
(
⟨Oi|QQ†|Oj⟩+ ⟨Oi|Q†Q|Oj⟩

)
= 2

(
QY−1M

−1
Y−1Q

†
Y−1 +Q†

YM
−1
Y+1QY

)
ij
,

(3.20)

where the matrix MY is the inner product matrix in the subspace VY , given by restricting

the matrix (3.9) as

MY = A†
YTYAY . (3.21)

Because our basis |Oi⟩ is not orthonormal, the eigenvalues of the Hamiltonian are not

the eigenvalues of HY , but instead the eigenvalues of the matrix hY given by H acting on

the basis vector |Oi⟩ (with Y number of Ψ’s),

H|Oi⟩ ≡
∑
j

|Oj⟩(hY )ji . (3.22)
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The matrices hY and HY are related by

hY = M−1
Y HY . (3.23)

We have obtained all the ingredients for computing the hY . The inner product matrix

TY was computed in the previous subsection and Appendix E. The matrices AY and qY are

computed for small ranks N = 2, 3, 4 and a large class of different (nz+̇ , nz−̇ , nθ1 , nθ2 , nθ3)’s

and Y ’s in [14].

Finally, let us comment on the construction of the graviton cohomology, which is defined

as the cohomology represented by the operators in (5.1) in [13]. Let g⃗Y be a row vector of

these representatives in the trace form. Similar to what we did around (3.6), by substituting

the explicit matrices for each BPS letter and expanding the result, we get

g⃗Y = t⃗YB
′
Y , (3.24)

where B′
Y is the matrix of the coefficients of the expansion. Next, we column reduce the

matrixB′
Y getting a matrixBY . The independent representatives of the graviton cohomology

are contained in the row vector

G⃗Y = t⃗YBY . (3.25)

The dimension of the graviton cohomology can be computed by

rk(BY ,qY−1AY−1)− rk(qY−1AY−1) , (3.26)

where the matrix (BY ,qY−1AY−1) is given by concatenating the matricesBY and qY−1AY−1.

To know whether a given BPS operator O is a (multi-)graviton operator, we could check

that if O is in the same cohomology class as the operators in the row vector G⃗Y .

3.4 Large N limit

In the large N limit, standard ’t Hooft’s argument tells us that we can focus on the single-

trace operators. The anomalous dimensions of multi-trace operators are given by the sum

of those of the single-trace constituents. Let us see this explicitly in our formalism.

We start with the vector w⃗ of BPS words defined in Section 3.2, and further order the

entries of w⃗ according to the number of traces. Using the inner product of the BPS letter

(3.13), we compute the inner product matrix

Mij ≡ ⟨wi|wj⟩ , M† = M . (3.27)

At finite N , the matrixM is degenerate with the null space spanned by the trace relations. In

the large N limit, there is no trace relation, and the words with different numbers of traces

12



have inner products suppressed by N−1. Hence, at the leading order, the inner product

matrix M is nondegenerate and block diagonal. One can further argue that the block Mn

associated with the n-trace words is the n-th tensor power of the block associated with

single-trace words, i.e.
Mn = M1 ⊗ · · · ⊗M1︸ ︷︷ ︸

n

.
(3.28)

The action of the supercharge Q on the BPS words w⃗ gives a matrix Q as

Q(w⃗) = w⃗Q . (3.29)

As the Q-action does not change the number of traces, the matrix Q is also block diagonal.

Furthermore, by the Leibniz rule of the Q-action, the block Qn of the n-trace words should

take the form

Qn = Q1 ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
n−1

+I ⊗ Q1 ⊗ I ⊗ · · · ⊗ I + I ⊗ · · · ⊗ I ⊗ Q1 , (3.30)

where I is the identity matrix acting on the space of single-trace words. Using (3.27) and

(3.29), we find

⟨wi|Q|wj⟩ = (MQ)ij . (3.31)

Taking the Hermitian conjugate, we obtain

⟨wi|Q†|wj⟩ = (Q†M)ij . (3.32)

Combining the above two formulae, we find

⟨wi|H|wj⟩ = 2
(
⟨wi|QQ†|wj⟩+ ⟨wi|Q†Q|wj⟩

)
= 2(MQM−1Q†M+ Q†MQ)ij . (3.33)

Now, we consider the action of the Hamiltonian H on the BPS words w⃗,

Hw⃗ ≡ w⃗H , (3.34)

where the matrix H is given by

H = 2(QM−1Q†M+M−1Q†MQ) . (3.35)

In the large N limit, using (3.28) and (3.30), we find that the matrix H is also block

diagonal with the block Hn of the n-trace words given by the tensor product

Hn = H1 ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
n−1

+I ⊗H1 ⊗ I ⊗ · · · ⊗ I + I ⊗ · · · ⊗ I ⊗H1 . (3.36)

Hence, we can focus on the block H1, whose eigenvalues are the anomalous dimensions

of single-trace operators, and (3.36) proves the statements in the first paragraph of this

subsection.
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4 Q and H as differential operators

We can represent the supercharge Q and the one-loop Hamiltonian H as (functional) dif-

ferential operators in superfield space. Even though this is not the method used to obtain

the anomalous dimensions in Section 5, this representation serves as a convenient tool for

analytic computations.

From the action of supercharge Q on the superfield Ψ (3.3), we can represent Q as a

differential operator with respect to Ψ:

Q = Tr

(
Ψ2 δ

δΨ

) ∣∣∣
z=0, θ=0

, (4.1)

where
δ

δΨ
as an N × N matrix has components

(
δ

δΨ

)
IJ

=
δ

δΨJI

. More explicitly,
δ

δΨ
is

written in terms of the derivatives of the BPS letters as

δ

δΨ
≡ i

∞∑
n=0

←−
∂n

∂zα̇1 · · · ∂zα̇n

[
∂

∂(Dα̇1 · · ·Dα̇n−1λα̇n)
+

1

2

←−
∂

∂θi

∂

∂(Dα̇1 · · ·Dα̇nϕ
i)

− 1

4
ϵijk

←−
∂2

∂θi∂θj

∂

∂(Dα̇1 · · ·Dα̇nψk)
− 1

4

←−
∂3

∂θ1∂θ2∂θ3

∂

∂(Dα̇1 · · ·Dα̇nf)

]
.

(4.2)

Here, the rule for the derivative with a left arrow is, e.g.

Ψn

←−
∂3

∂θ1∂θ2∂θ3
Ψ =

[
∂3

∂θ1∂θ2∂θ3
(Ψn)

]
Ψ (4.3)

for any positive integer n. Similarly, Q† at one-loop order has the differential representation

Q† =
g2YM

16π2
Tr

(
Ψ
δ2

δΨ2

) ∣∣∣
z=0, θ=0

, (4.4)

where the normalization of Q† can be fixed by matching with the known one-loop anomalous

dimension of the Konishi operator, as will be done momentarily.4 Substituting the differential

representations (4.1) and (4.4) into (2.7) gives the representation of the Hamiltonian H.

Konishi multiplet Consider the charge sector (nz+̇ , nz−̇ , nθ1 , nθ2 , nθ3) = (0, 0, 1, 1, 1), with

the number of Ψ’s given by Y = 3. This Hilbert subspace is spanned by two operators,

Tr (∂θ1Ψ∂θ2Ψ∂θ3Ψ) ∼ Tr (ϕ1ϕ2ϕ3) ,

Tr (∂θ1Ψ∂θ3Ψ∂θ2Ψ) ∼ Tr (ϕ1ϕ3ϕ2) .
(4.5)

4Note that the method in Section 3 does not require extra information to determine the overall normal-

ization of Q†, H, and relatedly, the one-loop anomalous dimensions.
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From ∂
∂θi

Ψ2|z=0, θ=0 = 0, we immediately have

QTr (ϕ1ϕ2ϕ3) = QTr (ϕ1ϕ3ϕ2) = 0. (4.6)

We can also compute the Q† action by acting ∂
∂Ψ

one after another, giving

Q†Tr (ϕ1ϕ2ϕ3) = − g
2
YM

64π2

[
Tr (∂1∂2Ψ

∂

∂ϕ2

∂

∂ϕ1
)Tr (ϕ1ϕ2ϕ3)

+Tr (∂2∂3Ψ
∂

∂ϕ3

∂

∂ϕ2
)Tr (ϕ2ϕ3ϕ1) + Tr (∂3∂1Ψ

∂

∂ϕ1

∂

∂ϕ3
)Tr (ϕ3ϕ1ϕ2)

] ∣∣∣∣
z=0, θ=0

= −ig
2
YM

32π2
NTr (ψiϕ

i).

(4.7)

Similarly,

Q†Tr (ϕ1ϕ3ϕ2) =
ig2YM

32π2
NTr (ψiϕ

i) . (4.8)

Now we can compute H Tr (ϕ1ϕ2ϕ3) = 2QQ†Tr (ϕ1ϕ2ϕ3), where

QQ†Tr (ϕ1ϕ2ϕ3) = −ig
2
YM

32π2
NTr (Ψ2 ∂

∂Ψ
)Tr (ψiϕ

i)
∣∣∣
z=0, θ=0

= −ig
2
YM

32π2
N

[
− i
2
Tr (∂2∂3Ψ

2 ∂

∂ψ1

)Tr (ψiϕ
i)

] ∣∣∣∣
z=0, θ=0

+ cyclic

=
3g2YMN

16π2
[Tr (ϕ1ϕ2ϕ3)− Tr (ϕ1ϕ3ϕ2)] ,

(4.9)

and

QQ†Tr (ϕ1ϕ3ϕ2) = −3g2YMN

16π2
[Tr (ϕ1ϕ2ϕ3)− Tr (ϕ1ϕ3ϕ2)] . (4.10)

The matrix representation of H in this charge sector can be immediately read off to be

H =
3g2YMN

8π2

(
1 −1
−1 1

)
. (4.11)

The eigenvalues are

0 ,
3g2YMN

4π2
. (4.12)

In fact, the eigenvector with a non-zero eigenvalue is proportional to Tr (ϕ1[ϕ2, ϕ3]), which

is a descendant of the Konishi operator Tr (ΦmnΦmn) [34], since

Q4
−Q

4
+Tr (Φ

mnΦmn) = 4iQ4
−Tr (ϕ

iψi) = 24Tr (ϕ1[ϕ2, ϕ3]) . (4.13)

One can easily compare (4.12) with the known one-loop anomalous dimension of the Konishi

operator, e.g. in [35], to verify that the normalization of Q† in (4.4) is correct.
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5 Results and discussions

Using the machinery developed in Section 3, we systematically constructed and diagonalized

the one-loop Hamiltonian in the classically-BPS sector, in increasing

n ≡ 2(3JL + q1 + q2 + q3) (5.1)

for all charges up to the nmax indicated in Table 1. Also specified are the number of C(∆)

long multiplets and the number of distinct nonzero values of one-loop anomalous dimensions.

The data can be publicly accessed on https://github.com/yinhslin/bps-counting.

N nmax # BPS # non-BPS # C(∆) long # distinct

operators operators multiplets nonzero values

2 24 17990 2202266 934 776

3 17 3808 185939 311 232

4 15 2051 56353 144 101

∞ST 22 1917 7359925 9264 4286

∞MT 22 1086343 20501627 27617 4385

Table 1: The maximal n of our computation, the number of operators, the number of C(∆)

multiplets, and the number of distinct values of one-loop anomalous dimensions, for each N .

The subscripts ST and MT stand for single- and multi-trace, respectively.

When analyzing the data, we can consider the spectrum of all operators, of C(∆) pri-

maries, or of C(∆) multiplets.5 To study the statistics of anomalous dimensions, it is natural

to consider the spectrum of primaries or multiplets to avoid large degeneracies. We choose

to consider the spectrum of primaries, since each primary has well-defined angular momenta

and R-charges, whereas a multiplet contains many different charges. Holographically, C(∆)

acts as boosts (and fermionic generalizations) on objects in the bulk (see e.g. [31] for a dis-

cussion), hence if we are interested in analyzing the “core” properties of objects (such as the

near-horizon excitations of black holes), and not their motion in the ambient AdS, then it is

certainly more natural to consider the spectrum of primaries.

5Recall that C(∆) primaries are defined as operators annihilated by all the superconformal supercharges

S in C(∆), so a single multiplet can contain multiple primaries.
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5.1 Statistics of anomalous dimensions and hints of a gap

The results of the one-loop anomalous dimensions are presented as the smooth histograms

defined by the density

ρ(δ) ≡ 1

|I|
∑
δi∈I

1√
2πσ

exp

[
−(δi − δ)2

2σ2

]
, (5.2)

where δ is the normalized one-loop anomalous dimension

δ ≡ π2E

g2YMN
, E : eigenvalue of H = g2YMD

(2) , (5.3)

and I is the set of C(∆) long multiplets or the set of non-BPS C(∆) primary operators.

Figure 1 and 2 present smooth histograms of C(∆) long multiplets and non-BPS C(∆)

primaries, for all charge sectors up to the maximal n indicated in Table 1 for various gauge

groups. To avoid interference among different charge sectors, Figure 3 presents smooth

histograms of superconformal primary operators in select charge sectors. The spectrum of a

fixed-charge sector does not depend on nmax, but that without fixing charges does.

The spectrum of one-loop anomalous dimensions supports our conjecture (2.15). The

smooth histograms for the SU(∞)MT spectrum exhibit no visible “gap” (see Section 2.3

for proper notion) above δ = 0 consistent with (2.15) where the gap becomes zero when

N →∞.6 On the other hand, the smooth histograms for SU(2), SU(3), SU(4) exhibit clear

“gaps” above δ = 0. However, our current data is not enough to fit the value of ∆̃(1) in

(2.15).

It is tempting to think that our conjectural existence of a gap is the highly stringy version

of the gap in the spectrum of near-extremal black holes established in [20] by a gravitational

path integral computation. In the non-BPS case, there is no known method to distinguish

multi-gravitons from potential black holes, thus putting an asterisk on how much our data

reflects stringy black hole physics.7 This issue is often ignored because in the charge regime

(2.13), black holes dominate the statistical ensemble anyway.

Finally, note that even though the energy E and nmax of our data set are quite large

compared to N2, as seen in Table 1, the individual angular momenta and R-charges are still

smaller than N2 once we distribute n over the five charges (J1, J2, q1, q2, q3), as seen in e.g.

Figure 3.

6We do not have a clean mathematical definition of “gap” for finite N and charges, so the word is used

in a qualitative sense in which visually the smooth histogram appears to exhibit a gap.
7However, see Appendix F of [17] for a proposed criterion, and some evidence that all classically-BPS

non-BPS states in the same charge sector as a BPS black hole are black-hole-like.
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Figure 1: Smooth histograms (with σ = 0.05) of nonzero one-loop anomalous dimensions δ

of C(∆) long multiplets, up to the maximal n indicated in Table 1 for planar and N = 2, 3, 4.
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Figure 2: Smooth histograms (with σ = 0.05) of nonzero one-loop anomalous dimensions

δ of non-BPS C(∆) primaries, up to the maximal n indicated in Table 1 for planar and

N = 2, 3, 4.
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Figure 3: Smooth histograms (with σ = 0.2) of nonzero one-loop anomalous dimensions δ

of the C(∆) primary operators with select charges labeled as (JL, JR, q1, q2, q3). The charge

sectors on the left column (SU(∞)MT cases) are at n = 22, and on the right column (SU(2)

cases) are at n = 24. The values of δgap displayed on top of the plots are the actual smallest

values of δ.
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5.2 Smallest BPS black hole operator at weak coupling

In [9–11, 13–16], BPS operators were analyzed and constructed at the level of cohomology.

The non-renormalization theorem of [14] dictates that exactly-BPS representatives of the

cohomologies exist to all orders in perturbation theory. In this work, we computed the

actual BPS operators at weak coupling by diagonalizing the Hamiltonian.

The most interesting cohomology found in [14] was for the smallest BPS black hole (non-

multi-graviton) operator Obh with gauge group SU(2). It has charge (nz+̇ , nz−̇ , nθ1 , nθ2 , nθ3) =

(0, 0, 4, 4, 4) and is septic in the fundamental fields. Let us present its actual weak coupling

expression—not merely at the level of cohomology but as a concrete operator (which was

also computed in simultaneous work [23]).

To all orders in perturbation theory, Obh takes the form

Obh = O +QO′ (5.4)

where O is a representative of the 1-dimensional Q-cohomology (i.e. it is Q-closed but not

Q-exact), and O′ has charge (0, 0, 4, 4, 4) and is sextic in the fundamental fields. The space of

(gauge-invariant) operators in the classically-BPS sector with charge (0, 0, 4, 4, 4) and sextic

in the fundamental fields is 53-dimensional, of which a 17-dimensional subspace is invariant

under the cyclic symmetry permuting θi. In [15], a basis for this 17-dimensional subspace
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was chosen to be 8

O′
1 = Tr (∂θ1∂θ2∂θ3Ψ∂θ1∂θ2∂θ3Ψ)Tr (∂θ1∂θ2∂θ3Ψ∂θ1Ψ)Tr (∂θ2Ψ∂θ2Ψ) + cyclic ,

O′
2 = Tr (∂θ1∂θ2∂θ3Ψ∂θ1∂θ2∂θ3Ψ)Tr (∂θ1Ψ∂θ2Ψ)Tr (∂θ2∂θ3Ψ∂θ1∂θ3Ψ) + cyclic ,

O′
3 = Tr (∂θ1∂θ2∂θ3Ψ∂θ1∂θ2∂θ3Ψ)Tr (∂θ1Ψ∂θ2∂θ3Ψ)Tr (∂θ2Ψ∂θ1∂θ3Ψ) + cyclic ,

O′
4 = Tr (∂θ1∂θ2∂θ3Ψ∂θ1Ψ)Tr (∂θ1∂θ2∂θ3Ψ∂θ2Ψ)Tr (∂θ2∂θ3Ψ∂θ1∂θ3Ψ) + cyclic ,

O′
5 = Tr (∂θ1∂θ2∂θ3Ψ∂θ2∂θ3Ψ)Tr (∂θ1∂θ2∂θ3Ψ∂θ1∂θ3Ψ)Tr (∂θ1Ψ∂θ2Ψ) + cyclic ,

O′
6 = Tr (∂θ1∂θ2∂θ3Ψ∂θ1Ψ)Tr (∂θ1∂θ2∂θ3Ψ∂θ2∂θ3Ψ)Tr (∂θ2Ψ∂θ1∂θ3Ψ) + cyclic ,

O′
7 = Tr (∂θ1∂θ2∂θ3Ψ∂θ2Ψ)Tr (∂θ1∂θ2∂θ3Ψ∂θ2∂θ3Ψ)Tr (∂θ1Ψ∂θ1∂θ3Ψ) + cyclic ,

O′
8 = Tr (∂θ1∂θ2∂θ3Ψ∂θ1Ψ)Tr (∂θ1∂θ2∂θ3Ψ∂θ1∂θ3Ψ)Tr (∂θ2Ψ∂θ2∂θ3Ψ) + cyclic ,

O′
9 = Tr (∂θ1∂θ2∂θ3Ψ∂θ2Ψ)Tr (∂θ1∂θ2∂θ3Ψ∂θ1∂θ3Ψ)Tr (∂θ1Ψ∂θ2∂θ3Ψ) + cyclic ,

O′
10 = Tr (∂θ1∂θ2∂θ3Ψ∂θ1∂θ2∂θ3Ψ)Tr (∂θ1Ψ∂θ1∂θ3Ψ)Tr (∂θ2Ψ∂θ2∂θ3Ψ) + cyclic ,

O′
11 = Tr (∂θ1∂θ2∂θ3Ψ∂θ1Ψ)Tr (∂θ2∂θ3Ψ∂θ1∂θ3Ψ)Tr (∂θ2∂θ3Ψ∂θ1∂θ2Ψ) + cyclic ,

O′
12 = Tr (∂θ1∂θ2∂θ3Ψ∂θ1∂θ3Ψ)Tr (∂θ2∂θ3Ψ∂θ1Ψ)Tr (∂θ2∂θ3Ψ∂θ1∂θ2Ψ) + cyclic ,

O′
13 = Tr (∂θ1∂θ2∂θ3Ψ∂θ1∂θ2Ψ)Tr (∂θ2∂θ3Ψ∂θ1∂θ3Ψ)Tr (∂θ2∂θ3Ψ∂θ1Ψ) + cyclic ,

O′
14 = Tr (∂θ1∂θ2∂θ3Ψ∂θ2∂θ3Ψ)Tr (∂θ1Ψ∂θ1∂θ3Ψ)Tr (∂θ2∂θ3Ψ∂θ1∂θ2Ψ) + cyclic ,

O′
15 = Tr (∂θ1∂θ2∂θ3Ψ∂θ1Ψ)Tr (∂θ1∂θ2∂θ3Ψ∂θ2∂θ3Ψ)Tr (∂θ1Ψ∂θ2∂θ3Ψ) + cyclic ,

O′
16 = Tr (∂θ1∂θ2∂θ3Ψ∂θ2∂θ3Ψ)Tr (∂θ1∂θ3Ψ∂θ1∂θ2Ψ)Tr (∂θ1Ψ∂θ2∂θ3Ψ) + cyclic ,

O′
17 = Tr (∂θ2∂θ3Ψ∂θ1∂θ3Ψ)Tr (∂θ1∂θ3Ψ∂θ1∂θ2Ψ)Tr (∂θ1∂θ2Ψ∂θ2∂θ3Ψ) ,

(5.6)

and O was chosen to be

O = Tr (∂θ2∂θ3Ψ∂θ1Ψ+ ∂θ1∂θ3Ψ∂θ2Ψ)Tr (∂θ1∂θ2Ψ∂θ1Ψ)Tr (∂θ1∂θ3Ψ∂θ2∂θ3Ψ∂θ2∂θ3Ψ)

+ cyclic .
(5.7)

By direct computation, we find that the actual BPS black hole operator at one-loop order

has the expression

Obh =O +
3O3

40
+
O6

180
− O7

20
− O8

20
+
O9

180
+

3O10

40

+
O12

9
+

17O13

90
+

3O14

10
+

2O15

45
− O16

9
+
O17

2
,

(5.8)

where Oi ≡ QO′
i for i = 1, . . . , 17.

8In the early versions of [15], O′
15 was written as (up to normalization)

Tr (∂θ1∂θ2∂θ3Ψ∂θ2∂θ3Ψ)Tr (∂θ1Ψ∂θ1∂θ2Ψ)Tr (∂θ2∂θ3Ψ∂θ1∂θ3Ψ) + cyclic , (5.5)

which equals − 1
2O

′
3 − 1

2O
′
10 −O′

12 −O′
13 −O′

14. To fix this, we replaced (5.5) with the expression in (5.6).
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Let us write the BPS black hole operator Obh in a manifestly SU(3) invariant form. Let

us consider the SU(3) invariant representative in [16],

Õ = ϵi1i2i3ϵj1j2j3ϵk1k2k3ϵl1l2l3ϵm1m2m3ϵ
k1l1m1

× Tr (∂i1Ψ∂k2k3Ψ)Tr (∂j1Ψ∂l2l3Ψ)Tr (∂i2i3Ψ∂j2j3Ψ∂m2m3Ψ) ,
(5.9)

where we used the abbreviation ∂i1···in ≡ ∂θi1 · · · ∂θin . The SU(3) invariant subspace is four-

dimensional and we choose the basis to be

Õ′
1 = ϵijkϵlmnTr (∂

123Ψ∂iΨ)Tr (∂123Ψ∂jkΨ)Tr (∂lΨ∂mnΨ) ,

Õ′
2 = ϵimnϵjklTr (∂

123Ψ∂iΨ)Tr (∂123Ψ∂jkΨ)Tr (∂lΨ∂mnΨ) ,

Õ′
3 = ϵi1i2i3ϵ

j1k1l1ϵj1j2j3ϵk1k2k3ϵl1l2l3Tr (∂
123Ψ∂i1i2Ψ)Tr (∂i3Ψ∂j2j3Ψ)Tr (∂k2k3Ψ∂l2l3Ψ) ,

Õ′
4 = ϵi1i2i3ϵ

j1k1l1ϵj1j2j3ϵk1k2k3ϵl1l2l3Tr (∂
123Ψ∂j2j3Ψ)Tr (∂i1Ψ∂k2k3Ψ)Tr (∂i2i3Ψ∂l2l3Ψ) .

(5.10)

The BPS black hole operator Obh can be written as

Obh = Õ − 4Õ1

9
+ 4Õ2 −

7Õ3

9
+

10Õ4

9
, (5.11)

where Õi ≡ QÕ′
i for i = 1, · · · , 4.

6 Outlook

In this work, the superspace formulation of [13,14] describing the classically-supersymmetric

sector of N = 4 super-Yang-Mills has been extended to capture non-supersymmetric aspects

of the theory. The formalism’s striking simplicity promises new progress in the old pertur-

bative approach to interactions. Concretely, we used the formalism to amass a large data

set of one-loop anomalous dimensions capturing near-supersymmetric black holes in a highly

stringy regime.

It would be highly desirable if the full symmetry algebra C(∆) could be manifest in

the Hamiltonian. Our current approach requires first constructing and diagonalizing the

Hamiltonian involving all operators, and then a posteriori organizing the results into C(∆)

multiplets. As is clear from Table 1, the actual number of multiplets or primaries is much

smaller than that of all operators, so there appears to be a large amount of redundant effort.

Eliminating this redundancy could be key in pushing the effectiveness of the superspace

formalism.9

9First constructing all operators and then selecting primaries by imposing the S = 0 conditions is not

too helpful, as the first step would impose a computational bottleneck.
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The one-loop Hamiltonian can also be viewed as a non-relativistic reduction of N = 4

super-Yang-Mills. Treating this Hamiltonian as a quantum mechanical theory in its own

right is a subject dubbed Spin-Matrix theory [36]. The superspace formalism may provide a

useful restructuring of the quantum mechanics.

Another natural question to ask is whether the superspace formalism applies to higher

loops. The requirement that the superconformal supercharges S and special conformal gen-

erators K should admit series expansions in gYM compatible with the C(∆) superconformal

algebra and the non-renormalization of the supercharges Q and momenta P might be enough

to “bootstrap” gYM corrections to the differential representation of Q† at higher loops. In

smaller subsectors, compatibility with the psu(2, 2|4) superconformal algebra has been used

to determine the gYM expansion of the dilatation operator D to two and three-loop or-

ders [37, 24,38,39].10

Jackiw-Teitelboim (JT) gravity is holographically dual to a random matrix theory with

Gaussian unitary ensemble (GUE) [40]. This duality is further generalized to N = 1 and

N = 2 JT supergravities [41,42]. Can the random matrix dual of N = 2 JT supergravity be

embedded in N = 4 SYM? At large N , consider a finite range of charge sectors with large

angular momenta and R-charges

J1, J2, q1, q2, q3 ∼ N2 , ∆J1, ∆J2, ∆q1, ∆q2, ∆q3 ∼ 1 . (6.1)

Perhaps the Hamiltonians over these charge sectors can be regarded as random matrices

with varying dimensionality. Can this offer a connection to the random matrix dual of JT?

We leave the reader with a few more open questions. Is there a gauge-theoretic way to

distinguish graviton operators from black holes in the near-BPS sector? Can the weak gauge

coupling regime be accessed by first-principle gravitational techniques? For instance, does

the proposed dual of free Yang-Mills theory in [43] have modifications/deformations that

could activate gYM?
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A Spinor convention

We define

σ0 =

(
1 0

0 1

)
, σ1 = i

(
0 1

1 0

)
, σ2 = i

(
0 −i
i 0

)
, σ3 = i

(
1 0

0 −1

)
. (A.1)

The components satisfy

(σµ)∗αα̇ = ϵαβϵα̇β̇(σµ)ββ̇ . (A.2)

We have the identities

(σµ)αα̇(σµ)ββ̇ = 2ϵαβϵα̇β̇ , (σµ)αα̇(σµ)
ββ̇ = 2δβαδ

β̇
α̇ , (σµ)αα̇(σν)αα̇ = 2δµν . (A.3)

We use the convention ϵ+− = 1 = ϵ+−, and

vα = ϵαβvβ , vα = vβϵβα , vα̇ = ϵα̇β̇vβ̇ , vα̇ = vβ̇ϵβ̇α̇ . (A.4)

Let us define

(σµν)
α
β =

1

2
(σ[µ)

αγ̇(σν])βγ̇ , (σµν)
α̇
β̇
=

1

2
(σ[µ)

γα̇(σν])γβ̇ , (A.5)

which satisfies the SO(4) Lie algebra.

B Superconformal algebra

The psu(2, 2|4) superconformal algebra has a bosonic subalgebra is su(2, 2) × su(4). The

conformal algebra su(2, 2) is generated by the

Pαβ̇ , Kαβ̇ , D , (JL)
α
β , (JR)

α̇
β̇
, (B.1)
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where α, β = +, − and α̇, β̇ = +̇, −̇ are the spinor indices of su(2)L and su(2)R. The su(4)

R-symmetry is generated by

Rm
n . (B.2)

with the traceless condition

R1
1 +R2

2 +R3
3 +R4

4 = 0 . (B.3)

The upper (lower) m, n = 1, · · · , 4 are the (anti-)fundamental indices of su(4). The

fermionic generators of psu(2, 2|4) are

Qn
α , Sα

n , Qα̇n , S
α̇n
. (B.4)

The nonzero commutators of the psu(2, 2|4) superconformal algebra are

[(JL)
α
β , (JL)

γ
δ ] = δγβ(JL)

α
δ − δαδ (JL)

γ
β , [(JR)

α̇
β̇
, (JR)

γ̇

δ̇
] = δγ̇

β̇
(JR)

α̇
δ̇
− δα̇

δ̇
(JR)

γ̇

β̇
,

[(JL)
α
β , Pγδ̇] = −δ

α
γPβδ̇ +

1

2
δαβPγδ̇ , [(JL)

α
β , K

γδ̇] = δγβK
αδ̇ − 1

2
δαβK

γδ̇ ,

[(JR)
α̇
β̇
, Pγδ̇] = −δ

α̇
δ̇
Pγβ̇ +

1

2
δα̇
β̇
Pγδ̇ , [(JR)

α̇
β̇
, Kγδ̇] = δδ̇

β̇
Kγα̇ − 1

2
δα̇
β̇
Kγδ̇ ,

[D,Pαβ̇] = Pαβ̇ , [D,Kαβ̇] = −Kαβ̇ ,

[Kαβ̇, Pγδ̇] = δγαδ
β̇

δ̇
D − δβ̇

δ̇
(JL)

α
γ − δγα(JR)

β̇

δ̇
,

[Kαβ̇, Qn
γ ] = δαγS

β̇n
, [Kαβ̇, Qγ̇n] = δβ̇γ̇S

α
n ,

[Pαβ̇, S
γ
n] = −δγαQβ̇n , [Pαβ̇, S

γ̇n
] = −δγ̇

β̇
Qn

α ,

[(JL)
α
β , Q

n
γ ] = −δαγQn

β +
1

2
δαβQ

n
γ , [(JL)

α
β , S

γ
n] = δγβS

α
n −

1

2
δαβS

γ
n ,

[(JR)
α̇
β̇
, Qγ̇n] = −δα̇γ̇Qβ̇n +

1

2
δα̇
β̇
Qγ̇n , [(JR)

α̇
β̇
, S

γ̇n
] = δγ̇

β̇
S
α̇n − 1

2
δα̇
β̇
S
γ̇n
,

{Sα
m, Q

n
β} =

1

2
δnmδ

α
βD − δnm(JL)αβ − δαβRn

m ,

{Sα̇m
, Qβ̇n} =

1

2
δmn δ

α̇
β̇
D − δmn (JR)α̇β̇ + δα̇

β̇
Rm

n ,

{Qm
α , Qβ̇n} = δmn Pαβ̇ , {Sα

m, S
β̇n} = δnmK

αβ̇ ,

[Rm
n , R

p
q ] = δpnR

m
q − δmq Rp

n ,

[Rm
n , Q

p
γ] = δpnQ

m
γ −

1

4
δmn Q

p
γ , [Rm

n , Qγp] = −δmp Qγn +
1

4
δmn Qγp ,

[Rm
n , S

γ
p ] = −δmp Sγ

n +
1

4
δmn S

γ
p , [Rm

n , S
γp
] = δpnS

γm − 1

4
δmn S

γp
,

[D,Qm
α ] =

1

2
Qm

α , [D,Qα̇m] =
1

2
Qα̇m ,

[D,Sα
m] = −

1

2
Sα
m , [D,S

α̇m
] = −1

2
S
α̇m

.

(B.5)
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Let us denote the Hermitian conjugate in the radial quantization (BPZ conjugate) by †,
and the Hermitian conjugate in the usual quantization (with the time translation generated

by P0) by ∗. We have

P †
αβ̇

= Kαβ̇ , (Qm
α )

† = Sα
m (Qα̇m)

† = S
α̇m

, (B.6)

and the other generators are †-conjugated to themselves. We also have

(Qm
α )

∗ = Qα̇m (Sα
m)

∗ = S
α̇m

, P ∗
αβ̇

= Pβα̇ , (Kαβ̇)∗ = Kβα̇ , ((JL)
α
β)

∗ = ((JR)
α̇
β̇
)∗ .

(B.7)

and the other generators are ∗-conjugated to themselves.

It is sometimes convenient to use a different parametrization of the Cartan generators as

q1 = −R2
2 −R3

3 , q2 = −R1
1 −R3

3 , q3 = −R1
1 −R2

2 , (B.8)

and

(JL)
−
− ≡ JL ≡

J1 + J2
2

, (JR)
−̇
−̇ ≡ JR ≡

J1 − J2
2

. (B.9)

qi and Ji generate rotations along the five orthogonal two-planes inside R10 where the so(6)×
so(4) ∼= su(4)× su(2)L × su(2)R act. The supercharges Qm

α and Qα̇m can be relabeled using

the eigenvalues of qi and Ji as Q
q1,q2,q3
J1,J2

,

Q1
± = Q+,−,−

±,± , Q2
± = Q−,+,−

±,± , Q3
± = Q−,−,+

±,± , Q4
± = Q+,+,+

±,± ,

Q±̇1 = Q−,+,+
±,∓ , Q±̇2 = Q+,−,+

±,∓ , Q±̇3 = Q+,+,−
±,∓ , Q±̇4 = Q−,−,−

±,∓ .
(B.10)

Another commonly used parametrization of the Cartan generators of su(4) is the Dynkin

labels R1, R2, and R3. They are related to qi and R
m
m by

R1 = R1
1 −R2

2 = q1 − q2 , R2 = R2
2 −R3

3 = q2 − q3 , R3 = R3
3 −R4

4 = −q1 − q2 . (B.11)

Finally, the momentum, special conformal, and Lorentz generators with the vector indices

(Pµ, Kµ, and Mµν) are given by

Pαβ̇ =
1

2
(σµ)αβ̇Pµ , Kαβ̇ =

1

2
(σµ)αβ̇Kµ ,

(JL)
α
β =

1

2
(σµν)αβMµν , (JR)

α̇
β̇
=

1

2
(σµν)

α̇
β̇
Mµν .

(B.12)

They satisfy the standard commutation relations

[Mµν ,Mρσ] = δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν ,

[Mµν , Pρ] = δνρPµ − δµρPν , [Mµν , Kρ] = δνρKµ − δµρKν ,

[Kµ, Pν ] = 2δµνD − 2Mµν .

(B.13)
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C Centralizer subalgebra C(∆)

We list the generators of the centralizer C(∆) = u(1) ⋉ [psu(1, 2|3)× su(1|1)]. The u(1) is

generated by

(JL)
−
− (C.1)

The su(1|1) is generated by

Q4
− , S−

4 , 2{Q4
−, S

−
4 } = D − 2(JL)

−
− − 2R4

4 . (C.2)

The psu(1, 2|3) has bosonic subalgebra su(1, 2)× su(3). The su(3) is generated by

Ri
j ≡ Ri

j −
1

3
δij(R

1
1 +R2

2 +R3
3) . (C.3)

The su(1, 2) is generated by

(JR)
α̇
β̇
, Pα̇ ≡ P+α̇ , K α̇ ≡ K+α̇ , D + (JL)

−
− . (C.4)

The fermionic generators of psu(1, 2|3) are

Qi
+ , Qα̇i , S+

i , S
α̇i
. (C.5)

The centralizer C(∆) has a u(1, 2) subalgebra, whose commutators are

M α̇
β̇ ≡

1

2
(σµ)+α̇(σν)+β̇Mµν = (JR)

α̇
β̇
− (JL)

−
−δ

α̇
β̇
, (C.6)

where Mµν is the generators of the conformal algebra so(2, 4). We have the commutators

[K α̇, Pβ̇] = δα̇
β̇
D −M α̇

β̇ , [M α̇
β̇,M

γ̇
δ̇] = δγ̇

β̇
M α̇

δ̇ − δ
α̇
δ̇
M γ̇

β̇ ,

[M α̇
β̇, Pγ̇] = −δα̇γ̇Pβ̇ , [M α̇

β̇, K
γ̇] = δγ̇

β̇
K α̇ .

(C.7)

D Fundamental fields in N = 4 SYM

The fundamental fields in N = 4 SYM are

Φmn , Ψαm , Ψ
m

α̇ , Aαβ̇ ≡
1

4
(σµ)αβ̇Aµ . (D.1)

The scalars Φmn satisfy the reality condition Φ∗
mn = 1

2
ϵmnpqΦpq ≡ Φmn, and the fermions

Ψαm and Ψ
m

α̇ are ∗-conjugates of each other, i.e. Ψ∗
αm = Ψ

m

α̇ .
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The supercharges Qm
α and Qα̇m act on the fundamental fields as [24,44,11]11

[Qm
α ,Φnp] = 2δm[nΨp]α , {Qm

α ,Ψ
n

β̇} = 2iDαβ̇Φ
mn ,

{Qm
α ,Ψβn} = −2iδmn Fαβ + ϵαβ[Φ

mp,Φnp] , [Qm
α , Aβγ̇] = −ϵαβΨ

m

γ̇ ,

[Qmα̇,Φ
np] = −2δ[nmΨ

p]

α̇ , {Qα̇m,Ψβn} = 2iDβα̇Φmn ,

{Qα̇m,Ψ
n

β̇} = −2iδnmFα̇β̇ − ϵα̇β̇[Φ
np,Φmp] , [Qα̇m, Aβγ̇] = −ϵα̇γ̇Ψβm ,

(D.3)

where

Fαβ ≡ −
1

16
(σµν)αβFµν , Fα̇β̇ ≡ −

1

16
(σµν)α̇β̇Fµν ,

∂αβ̇ =
1

4
(σµ)αβ̇∂µ , Dαβ̇ =

1

4
(σµ)αβ̇Dµ , Dµ = ∂µ − iAµ .

(D.4)

The supercharges act on the field strength as

[Qm
α , Fβγ] = ϵα(βDγ)

δ̇Ψ
m

δ̇ , [Qm
α , Fβ̇γ̇] = −Dα(β̇Ψ

m

γ̇) .

[Qα̇m, Fβ̇γ̇] = ϵα̇(β̇D
δ
γ̇)Ψδm , [Qα̇m, Fβγ] = −Dα̇(βΨγ)m .

(D.5)

The equations of motion for the fermions are

Dβα̇Ψ
β
a = i[Φab,Ψ

b

α̇] , Dαβ̇Ψ
aβ̇

= i[Φab,Ψαb] . (D.6)

For our purpose, we have only used the above commutators in the free theory, where we

can ignore the commutator [Φmp,Φnp], and replace the covariant derivatives with the partial

derivatives. It is easy to check that they are compatible with the superconformal algebra,

i.e.
[Qm

α , {Qβ̇n, X}] + [Qβ̇n, {Q
m
α , X}] = 2iδmn ∂αβ̇X ,

[Qm
α , {Qn

β, X}] + [Qn
β, {Qm

α , X}] = 0 ,
(D.7)

up to the equations of motion, and with the identification of the momentum Pαβ̇ and the

derivative ∂αβ̇ as

Pαβ̇ = 2i∂αβ̇ =
1

2
i(σµ)αβ̇∂µ . (D.8)

11Our convention is related to the convention in [24] by

Ψ
them,m

α̇ =
i

2g
Ψ

us,m

α̇ , Ψthem
αm =

i

2g
Ψus

αm , Φthem
m σm

ab =
1

ig
Φus

ab , Φthem
m σm,ab =

1

ig
Φus,ab ,

Dthem
µ σµ

αβ̇
= iDus

αβ̇
, Athem

µ σµ

αβ̇
=

i

g
Aus

αβ̇
, xthem

µ = −4ixus
µ ,

(D.2)

where our coordinate convention is chosen such that the momentum generator Pµ satisfy the standard

conformal algebra (B.13).
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In our convention, the super-Yang-Mills action is

S =
2

g2YM

∫
d4xTr

[
1

4
FµνF

µν − 2DµΦmnDµΦmn − 4[Φmn,Φpq][Φmn,Φpq]

− 64iΨ
m

α̇D
βα̇Ψmβ + 32Ψα

m[Φ
mn,Ψαn] + 32Ψ

mα̇
[Φmn,Ψ

n

α̇]

]
+

θ

16π2

∫
d4x ϵµνρσFµνFρσ .

(D.9)

It is the same as the (1.5), (1.14) in [24] by the map between the conventions given in

Footnote 11.

E Inner product of single BPS letters

E.1 Inner product of matrix fields

Consider a scalar field X valued in the adjoint representation of U(N). The inner product

between the matrix components of X is diagonal

⟨XI
J |XL

K⟩ = δJKδ
L
I . (E.1)

When the scalar field X is in the adjoint representation of SU(N), the inner product is

⟨XI
J |XL

K⟩ = δJKδ
L
I −

1

N
δJI δ

L
K . (E.2)

The inner product between the off-diagonal matrix elements of X is diagonal, but between

the diagonal matrix elements of X is non-diagonal. We could consider linear combinations

of the diagonal matrix elements of X such that the inner product between them is diagonal.

For example, for N = 2, we have
X1

1 = X1 ,

X2
2 = −X1 .

(E.3)

For N = 3, we have
X1

1 = −X1 + X2 ,

X2
2 = X1 + X2 ,

X3
3 = −2X2 .

(E.4)

For N = 4, we have
X1

1 = −X1 −X2 + X3 ,

X2
2 = 2X2 + X3 ,

X3
3 = X1 −X2 + X3 ,

X4
4 = −3X3 .

(E.5)

The inner product matrices of Xi are diagonal matrices with the diagonal components

⟨X1|X1⟩ = 1
2
, ⟨X2|X2⟩ = 1

6
, ⟨X3|X3⟩ = 1

12
.
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E.2 Inner products of BPS letters without derivatives

Let us consider BPS letters (3.1) without covariant derivatives, which corresponds to the

conformal primary states ∣∣ϕi
〉
, |ψi⟩ , |λα̇⟩ , |f⟩ . (E.6)

We presently compute the inner products of the fundamental fields (D.1) in the free theory.

Using the action (D.9), we compute the two-point function of the scalar Φmn,

⟨Φmn(x)Φpq(0)⟩ =
g2YM

32π2

δm[p δ
n
q]

|x|2
. (E.7)

The inner product of |Φmn⟩ is given by the limit

⟨Φmn|Φpq⟩ = lim
x→∞
|x|2⟨Φmn(x)Φpq(0)⟩ =

g2YM

32π2
δm[p δ

n
q] . (E.8)

The fermions Ψαm, Ψ
m

α̇ and the field strength Fαβ are related to the scalar by

|Ψαm⟩ =
1

3
Qn

α|Φnm⟩ , |Ψm

α̇ ⟩ = −
1

3
Qβ̇n|Φ

nm⟩ ,

|Fαβ⟩ =
i

8
Qm

(α|Ψβ)m⟩ = −
i

24
Qm

αQ
n
β|Φmn⟩ .

(E.9)

Their inner product can be computed by using the superconformal algebra given in Ap-

pendix B, and the fact that the scalars Φmn’s are superconformal primaries, i.e.

Sα
m|Φnq⟩ = 0 = S

m

α̇ |Φnq⟩ . (E.10)

We compute the inner product of the fermions and field strength,12

⟨Ψαp|Ψβq⟩ =
1

9
⟨Φmp|{Sα

m, Q
n
β}|Φnq⟩ =

g2YM

64π2
δαβ δ

p
q ,

⟨Ψα̇

p |Ψ
q

β̇⟩ =
1

9
⟨Φmp|{S

α̇m
, Qβ̇n}|Φ

nq⟩ = g2YM

64π2
δα̇
β̇
δqp ,

⟨Fαβ|Fγδ⟩ = ⟨Ψβp|Sα
pQ

m
γ |Ψδm⟩

=
1

64
⟨Ψβp|{Sα

p , Q
m
γ }|Ψδm⟩ −

1

64
⟨Ψβp|Qm

γ S
α
p |Ψδm⟩

=
g2YM

32π2

(
1

8
δαγ δ

β
δ +

1

32
δαδ δ

β
γ

)
− 1

64
⟨Ψβp|Qm

γ S
α
p |Ψδm⟩

=
g2YM

256π2
δα(γδ

β
δ) .

(E.12)

12The inner products can also be obtained from the two-point functions

⟨Ψαm|Ψβn⟩ = lim
x→∞

|x|2xµ(σ
µ)αγ̇⟨Ψm

γ̇ (x)Ψβn(0)⟩ , ⟨Ψα̇

m|Ψ
n

β̇⟩ = lim
x→∞

|x|2xµ(σ
µ)γα̇⟨Ψγm(x)Ψ

n

β̇(0)⟩ ,

⟨Fαβ |Fγδ⟩ = lim
x→∞

|x|2xµ(σ
µ)αα̇xν(σ

ν)ββ̇⟨Fα̇β̇(x)Fγδ(0)⟩ .
(E.11)
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Specializing the above results to the BPS letters, we find

⟨ϕi|ϕj⟩ = g2YM

64π2
δji , ⟨ψi|ψj⟩ =

g2YM

64π2
δij , ⟨λα̇|λβ̇⟩ =

g2YM

64π2
δα̇
β̇
, ⟨f |f⟩ = g2YM

256π2
. (E.13)

E.3 Inner products of BPS letters with derivatives

Let us consider BPS letters with covariant derivatives. In free theory, the covariant deriva-

tives become partial derivatives and are related to the momentum generator Pαβ̇ as

Dαβ̇ = ∂αβ̇ =
1

2i
Pαβ̇ . (E.14)

Hence, these BPS letters are descendent of the conformal primary letters (E.6), and take the

form as

Pα̇1 · · ·Pα̇n|X⟩ , (E.15)

for |X⟩ = |ϕi⟩, |ψi⟩, |λα̇⟩, or |f⟩. Their inner products are

⟨X|K α̇n · · ·K α̇1Pβ̇1
· · ·Pβ̇n

|X⟩ , (E.16)

which are reduced to the inner product ⟨X|X⟩ by the commutators in the su(1, 2) subalgebra

given in Appendix C. In particular, the commutators (C.7) imply

K−̇P n
−̇P

m
+̇ = n(D +m+ n− 1)P n−1

−̇ Pm
+̇ − nP

n−1
−̇ Pm

+̇ M
−̇
−̇

−mP n
−̇P

m−1
+̇

M −̇
+̇ + P n

−̇P
m
+̇ K

−̇ ,

K+̇P n
−̇P

m
+̇ = m(D +m+ n− 1)P n

−̇P
m−1
+̇
−mP n

−̇P
m−1
+̇

M +̇
+̇

− nP n−1
−̇ Pm

+̇ M
+̇
−̇ + P n

−̇P
m
+̇ K

+̇ .

(E.17)

The M α̇
β̇ action on the conformal primary states as,

M α̇
β̇

∣∣ϕi
〉
= 0 , M α̇

β̇|ψi⟩ = −
1

2
δα̇
β̇
|ψi⟩ ,

M α̇
β̇|λγ̇⟩ = −δ

α̇
γ̇ |λβ̇⟩+

1

2
δα̇
β̇
|λγ̇⟩ , M α̇

β̇|f⟩ = −δ
α̇
β̇
|f⟩ .

(E.18)

Now, let us define

FX(m,n) ≡ ⟨X|(K+̇)m(K−̇)nP n
−̇P

m
+̇ |X⟩ , (E.19)

for X = ϕi, ψi, f , and

F+,+(m,n) ≡ ⟨λ+̇|(K+̇)m(K−̇)nP n
−̇P

m
+̇ |λ+̇⟩ ,

F−,−(m,n) ≡ ⟨λ−̇|(K+̇)m(K−̇)nP n
−̇P

m
+̇ |λ−̇⟩ ,

F+,−(m,n) ≡ ⟨λ+̇|(K+̇)m−1(K−̇)nP n−1
−̇ Pm

+̇ |λ−̇⟩ ,

F−,+(m,n) ≡ ⟨λ−̇|(K+̇)m(K−̇)n−1P n
−̇P

m−1
+̇
|λ+̇⟩ .

(E.20)
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From (E.17), we find

FX(m,n) = n(∆X +m+ n− 1 + JL)FX(m,n− 1) ,

FX(m,n) = m(∆X +m+ n− 1 + JL)FX(m− 1, n) .
(E.21)

where ∆X and JX are the eigenvalues of D and (JL)
−
−. We also find

F+,+(m,n) = n(m+ n)F+,+(m,n− 1) ,

F+,+(m,n) = m(m+ n+ 1)F+,+(m− 1, n) + nF+,−(m,n) ,

F−,−(m,n) = n(m+ n+ 1)F−,−(m,n− 1) +mF−,+(m,n) ,

F−,−(m,n) = m(m+ n)F−,−(m− 1, n) ,

(E.22)

where we have used (E.18). We also have

F+,−(m,n) = (n− 1)(m+ n)F+,−(m,n− 1) +mF+,+(m− 1, n− 1)

F+,−(m,n) = m(m+ n)F+,−(m− 1, n) ,

F−,+(m,n) = n(m+ n− 1)F−,+(m,n− 1) ,

F−,+(m,n) = (m− 1)(m+ n)F−,+(m− 1, n) + nF−,−(m− 1, n− 1) .

(E.23)

We solve these recurrence relations. The solutions are

FX(m,n) =
Γ(m+ 1)Γ(n+ 1)Γ(∆X + JL,X +m+ n)

Γ(∆X + JL,X)
⟨X̄|X⟩ , (E.24)

and
F+,+(m,n) = Γ(m+ 2)Γ(n+ 1)Γ(m+ n+ 1)⟨λ̄+̇|λ+̇⟩ ,
F−,−(m,n) = Γ(m+ 1)Γ(n+ 2)Γ(m+ n+ 1)⟨λ̄−̇|λ−̇⟩ ,
F+,−(m,n) = Γ(m+ 1)Γ(n+ 1)Γ(m+ n)⟨λ̄+̇|λ+̇⟩ ,
F−,+(m,n) = Γ(m+ 1)Γ(n+ 1)Γ(m+ n)⟨λ̄−̇|λ−̇⟩ .

(E.25)

Let us summarize these inner products by using the BPS superfield.

ϕi =
i

2
∂θiΨ , ψi = −

i

4
ϵijk∂θj∂θkΨ , λα̇ = i∂zα̇Ψ , f = − i

4
∂θ1∂θ2∂θ3Ψ , (E.26)

First, using the relation

∂m
z+̇
∂n
z−̇
Ψ(Z)

∣∣
Z=0

= −i
m( 1

2i
P+̇)

m−1( 1
2i
P−̇)

nλ+̇ + n( 1
2i
P+̇)

m( 1
2i
P n−1
−̇ )λ−̇

m+ n
, (E.27)

we find 〈 (
∂m
z+̇
∂n
z−̇
Ψ
)† ∣∣∂m

z+̇
∂n
z−̇
Ψ
〉

=
41−m−n

(m+ n)2

[
m2Fλ̄+̇,λ+̇

(m− 1, n) + n2Fλ̄−̇,λ−̇
(m,n− 1)

+mnFλ̄+̇,λ−̇
(m,n) +mnFλ̄−̇,λ+̇

(m,n)
]

= 41−m−nΓ(m+ 1)Γ(n+ 1)Γ(m+ n)⟨λ̄+̇|λ+̇⟩ .

(E.28)
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It is straightforward to find the following formulae〈 (
∂m
z+̇
∂n
z−̇
∂θ1Ψ

)† ∣∣∂m
z+̇
∂n
z−̇
∂θ1Ψ

〉
= 41−m−nΓ(m+ 1)Γ(n+ 1)Γ(m+ n+ 1)⟨ϕ̄1|ϕ1⟩ ,〈 (

∂m
z+̇
∂n
z−̇
∂θ1∂θ2Ψ

)† ∣∣∂m
z+̇
∂n
z−̇
∂θ1∂θ2Ψ

〉
= 41−m−nΓ(m+ 1)Γ(n+ 1)Γ(m+ n+ 2)⟨ψ̄3|ψ3⟩ ,〈 (

∂m
z+̇
∂n
z−̇
∂θ1∂θ2∂θ3Ψ

)† ∣∣∂m
z+̇
∂n
z−̇
∂θ1∂θ2∂θ3Ψ

〉
=

1

2
42−m−nΓ(m+ 1)Γ(n+ 1)Γ(m+ n+ 3)⟨f̄ |f⟩ ,

(E.29)

and similar results by permuting the θ1, θ2, θ3. With the inner products of the primary

states (E.13), we find〈
∂a1
z+̇
∂a2
z−̇
∂a3θ1 ∂

a4
θ2
∂a5θ3Ψ

∣∣∂a1
z+̇
∂a2
z−̇
∂a3θ1 ∂

a4
θ2
∂a5θ3Ψ

〉
=

g2YM

24+2a1+2a2π2
Γ(a1 + 1)Γ(a2 + 1)Γ(a1 + a2 + a3 + a4 + a5) .

(E.30)

F Alternative expression for the smallest black hole

operator

In [15], an expression for the smallest black hole operator of [14] was presented on paper.

This appendix translates the superfield notation of Section 5.2 to the notation of [15] up to

normalization. Writing σ⃗ as a vector of Pauli matrices,13 we define ϕ⃗i, ψ⃗i and f⃗ through

ϕ⃗i · σ⃗ =
i

2
∂θiΨ , ψ⃗i · σ⃗ = − i

4
ϵijk∂θj∂θkΨ , f⃗ · σ⃗ = − i

4
∂θ1∂θ2∂θ3Ψ . (F.1)

13Note that in terms of the σ-matrices defined in (A.1), we have σ⃗ = (−iσ1,−iσ2,−iσ3).
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Then
O′

1 = 4096(f⃗ · f⃗)(f⃗ · ϕ⃗1)(ϕ⃗2 · ϕ⃗3) + cyclic ,

O′
2 = 2048(f⃗ · f⃗)(ϕ⃗1 · ϕ⃗2)(ψ⃗1 · ψ⃗2) + cyclic ,

O′
3 = 2048(f⃗ · f⃗)(ϕ⃗1 · ψ⃗1)(ϕ⃗

2 · ψ⃗2) + cyclic ,

O′
4 = 2048(f⃗ · ϕ⃗1)(f⃗ · ϕ⃗2)(ψ⃗1 · ψ⃗2) + cyclic ,

O′
5 = 2048(f⃗ · ψ⃗1)(f⃗ · ψ⃗2)(ϕ⃗

1 · ϕ⃗2) + cyclic ,

O′
6 = 2048(f⃗ · ϕ⃗1)(f⃗ · ψ⃗1)(ϕ⃗

2 · ψ⃗2) + cyclic ,

O′
7 = 2048(f⃗ · ϕ⃗2)(f⃗ · ψ⃗1)(ϕ⃗

1 · ψ⃗2) + cyclic ,

O′
8 = 2048(f⃗ · ϕ⃗1)(f⃗ · ψ⃗2)(ϕ⃗

2 · ψ⃗1) + cyclic ,

O′
9 = 2048(f⃗ · ϕ⃗2)(f⃗ · ψ⃗2)(ϕ⃗

1 · ψ⃗1) + cyclic ,

O′
10 = 2048(f⃗ · f⃗)(ϕ⃗1 · ψ⃗2)(ϕ⃗

2 · ψ⃗1) + cyclic ,

O′
11 = −1024(f⃗ · ϕ⃗1)(ψ⃗1 · ψ⃗2)(ψ⃗1 · ψ⃗3) + cyclic ,

O′
12 = −1024(f⃗ · ψ⃗2)(ψ⃗1 · ϕ⃗1)(ψ⃗1 · ψ⃗3) + cyclic ,

O′
13 = −1024(f⃗ · ψ⃗3)(ψ⃗1 · ψ⃗2)(ψ⃗1 · ϕ⃗1) + cyclic ,

O′
14 = −1024(f⃗ · ψ⃗1)(ϕ⃗

1 · ψ⃗2)(ψ⃗1 · ψ⃗3) + cyclic ,

O′
15 = −2048(f⃗ · ϕ⃗1)(f⃗ · ψ⃗1)(ϕ⃗

1 · ψ⃗1) + cyclic ,

O′
16 = −1024(f⃗ · ψ⃗1)(ψ⃗2 · ψ⃗3)(ϕ⃗

1 · ψ⃗1) + cyclic ,

O′
17 = −512(ψ⃗1 · ψ⃗2)(ψ⃗2 · ψ⃗3)(ψ⃗3 · ψ⃗1) ,

(F.2)

and

O = −1024(ψ⃗1 · ϕ⃗1 − ψ⃗2 · ϕ⃗2)(ψ⃗3 · ϕ⃗1)ψ⃗2 · (ψ⃗1 × ψ⃗1) + cyclic . (F.3)
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