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Probing pair correlations in Fermi gases with Ramsey-Bragg interferometry
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We propose an interferometric method to probe pair correlations in a gas of spin-1/2 fermions. The method
consists of a Ramsey sequence where both spin states of the Fermi gas are set in a superposition of a state at rest
and a state with a large recoil velocity. The two-body density matrix is extracted via the fluctuations of the trans-
ferred fraction to the recoiled state. In the pair-condensed phase, the off-diagonal long-range order is directly
reflected in the asymptotic behavior of the interferometric signal for long interrogation times. The method also
allows to probe the spatial structure of the condensed pairs: the interferometric signal is an oscillating function
of the interrogation time in the Bardeen-Cooper-Schrieffer regime; it becomes an overdamped function in the

molecular Bose-Einstein condensate regime.

Introduction: At low temperatures, the behavior of quan- ss
tum matter is often marked by the emergence of coherent or- s
dered phases displaying remarkable macroscopic properties. s7
Such condensed phases appear in various contexts, such as ss
solid-state physics [1], nuclear or neutron matter [2], and so
ultracold atomic gases [3, 4]. They are characterized by eo
long-range coherence carried by a macroscopically occupied
wavefunction. In the simple case of the weakly interacting
Bose gas, this order shows up as off-diagonal long-range or- ®
der (ODLRO) in the one-body density matrix p;(r,r’) =%
(Ut (r)¥(r')) (where ¥ is the Bose field operator), such ®
that lim|,_p/| o p1(r,1’) = ng is the density of the Bose- *°
Einstein condensate (BEC). The ODLRO in a Bose gas has %
been measured for instance via the single-particle momentum
distribution [5, 6], which for a translationally invariant system,
is the Fourier transform of p;. 69

In spin-1/2 Fermi systems, the one-body density matrix 0
cannot exhibit ODLRO, owing to Pauli’s exclusion princi- "'
ple, and the momentum distribution remains smooth across 72
the phase transition [7]. Instead, a macroscopically occu- "
pied wavefunction characteristic of the pair condensate can
only appear in the pair density matrix ps(ry,ra,r],rh) =
<\i/$(r1)@I(rg)\fg(rg)\i%(r’l» (where W, is the Fermi field
operator for the fermion of spin o) [3, 8]. Measurements ,,
of ODLRO are for this reason considerably more challeng- ;4
ing in Fermi systems. Rapid ramps of the magnetic field ,
have been used to project the pair condensate onto a BEC g,
of molecules [9—-12]; however, the measured molecular frac- g,
tion is notoriously difficult to interpret theoretically, ow- g,
ing to the various two- and many-body time scales involved g,
in the problem [13]. Measurement of pair correlations in g,
time-of-flight images have been proposed as a way to ac- g
cess ODLRO [14, 15]; an analogous protocol has been im- g
plemented, albeit on a small Fermi system [16]. &7

Interferometric protocols offer an alternative route to mea- ss
sure the coherence properties of quantum gases. Cold-atom ss
experiments are particularly well-suited for matter-wave in- s
terferometry, thanks to the possibilities of creating a coherent o
copy of the gas by manipulating the internal or external state o2

of the atoms [17]. In Bose gases, direct real-space measure-
ments of p;(r,r’) were performed using Ramsey protocols
relying on interferometry of Bragg-diffracted gases [18-20]
In Fermi gases, matter-wave interference between small atom
numbers extracted by spatially-resolved Bragg pulses were
proposed as a way to measure po [21].

Inspired by such techniques, we propose a protocol to mea-
sure po from the fluctuations of a Ramsey-Bragg interferom-
eter. A copy of the spin-1/2 Fermi gas is created by imparting
a large velocity to a fraction of the atoms. Interactions are
turned off and the copy travels ballistically, thereby stretch-
ing or translating the pairs of fermions by a distance propor-
tional to the interrogation time. When the interferometric se-
quence is closed by the second pulse, the stretched and trans-
lated pairs interfere with those at rest, and a measurement of
the correlation between the number of spin 1 and spin | re-
coiling atoms reveals the most important features of po. In the
pair-condensed phase, the interferometric signal carries infor-
mation on the magnitude of the fermionic condensate and on
the wavefunction of the fermionic pairs.

Interferometric protocol: In Fig. 1 we show a sketch of the
proposed measurement protocol. We consider a homogeneous
spin-1/2 Fermi gas in a cubic box of size L [22]. Att =0, a
first Bragg pulse is shined on the gas for a duration #,ys.. We
place ourselves in the regime of a short and intense pulse, de-
signed to be resonant with the whole gas and to create a mov-
ing copy of the cloud whose momentum distribution does not
overlap with the original one (see Fig. 1). Both spin states are
in a superposition of two components: a copy with no average
momentum, and a copy with a large average momentum g .
Assuming that the gas initially has zero mean velocity, the en-
ergy transferred by the pulse is adjusted to iw = €4, (Where
ex = h?k%/2m is the kinetic energy and m is the mass of
the fermion), in resonance with the atoms at rest. Since the
atoms travelling at a velocity hk/m # 0 experience a detun-
ing hw — €xtq, + €k = —h?q, - k/m, the duration of the
pulse t,use should be short enough so that this detuning re-
mains negligible over the typical range §% of the momentum
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h2q.6k
qitpulse < 1.

To evaluate this condition, let us consider the case of contact'®
interactions between 1 and | fermions, characterized by a s-'*
wave scattering length a. On the Bardeen-Cooper-Schrieffer'®
side (BCS, a < 0), one can estimate 6k ~ p'/3, where p'*
is the total density and on the molecular Bose-Einstein con-"
densate side (BEC, a > 0) 6k ~ 1/a. In this limit, the
broadening of the momentum distribution implies that fulfill-
ing both inequalities for ¢,y Will no longer be possible at
fixed g,. Note that the pulse duration should also be long
enough (A%q2/m)tpuse > 1 such that second-order transi-
tions to states of momenta k + 2q, or k — q, remain negligi-
ble.

In this intense-pulse regime, the gas can be approximated
by a two-level system undergoing Rabi oscillations between a
state at rest (violet distribution in the upper sketches of Fig. 1)
and a recoiling one (green distribution). The evolution during
the first Bragg pulse corresponds to a rotation of angle 8 =37
Qrtpuise (Where {1g is the Rabi frequency of the Bragg pulse)'®

on the Bloch sphere of this effective two-level system: 139
140

Ak .o ak’g 141
<&k+qr,a> (tpmse) B y(07 0) (dk+qr,o> (O) (2)142
143
Here ax , annihilates a fermion of wavevector k and spin o,
and the matrix .7 (60, ¢) =
cos(0/2) —isin(0/2)e'?
(—i sin(0/2)e”'*  cos(0/2)
angle 6 around the vector (cos ¢, — sin ¢, 0) of the equatorial146
plane of the Bloch sphere.

After this first pulse, the recoiling and non-recoiling com-147
ponents evolve ballistically during an interrogation time 7. Byi4s
contrast to the Ramsey-Bragg interferometry of weakly inter-1ss
acting gases [18, 19], it is crucial that interactions are turnediso
off in strongly interacting gases before the first Bragg pulse.is
This would mitigate both fast many-body evolution duringis:
the interrogation sequence, and the high collisional density1ss
that would prevent the diffracted component to fly freely [23].1s4

6

4

145

> describes a rotation of

. 9
sin“ 6
Uy (r2) W p(r1) = — 1

[y (e2) 4 (0) + 0 () (4

The four terms represent respectively a pair at rest, a pairise
where the 1 or the | fermion has been stretched by x,, andieo
a pair globally translated by x. 161

! Note that the dephasing Pk (2tpuise) accumulated during the two Bragg
pulses is negligible by virtue of Eq. (1).

This could be achieved either with a fast Feshbach field ramp
or with fast Raman pulses [16, 24]. The recoiling component
travels a distance x, = hrq,/m, at a velocity sufficiently
large to exit the trapping potential (in the direction of prop-
agation). This means that only a fraction (1 — x,/L) of the
cloud remains within the box volume after the interrogation
time (assuming q, is aligned with an axis of the cubic trap)
and gives an upper limit 7 < mL/hg to the interrogation
time.

After the interrogation time, the dephasing between the re-
coiling and non-recoiling components is ¢k (7) = ((éxtq, —
ex)/h — w)T relatively to the Bragg transition, and a second
Bragg pulse recombines the two components:

(A ak,o ) (T + 2tpulse) — 5”(9,0.)7) (A ak,o
ak+qr70'

ak+Qra0'

) (7— + tpulse)
€)]

= 760,00 #6.0) (.1 ) 0)

ak"!‘q:'

Eq. (3) thus describes a Ramsey sequence with a dephasing
¢k (7) that depends on the initial momentum of the atoms'.
This makes the interferometer sensitive to the spatial struc-
ture of the gas, where short interrogation times allow to probe
short-range correlations, and long times probing long-range
correlations.

At the end of the interferometric sequence, the recoiling
atoms are a superposition of atoms initially present in different
positions of the gas:

N .sinf /- N
U, o(r) = —i 5 (\Ilg(r) + U, (r— xT)) ) 4)
where \il(,(r) is the field operator at ¢ = 0 and \ilm, =

(1/VL3) Yy e ¥ay . (7) is the field operator of re-
coiling atoms at t = 7 (the free evolution during the interroga-
tion time is treated in the interaction representation); the sum-
mation over k includes here only the recoiling atoms (i.e. B is
a neighborhood around q, of typical size dk, small compared
to q,). For pairs of 1 and | atoms, this yields the superposition
depicted in Fig. 1:

After the Ramsey sequence is closed, the recoiling atoms
are spatially separated from the atoms at rest by a time of
flight ¢,s. An absorption image is then taken for each spin
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FIG. 1. (a) Sketch of the Ramsey-Bragg interferometer applied to a pair of fermions. The blue (resp. red) circles represent spin T (resp. J)
atoms. The Bragg pulses create superpositions of atoms at rest and moving with a recoil momentum ¢,. After the time of flight, the component
at rest and the recoiling one are separated by xo¢. For clarity, the finite pulse duration ¢,us is not shown.

to measure the number IV, ; of recoiling atoms of spin o

Nw = /\i/;g(r)\i/ryg(r)dr (6)
0
= bln2 [N + P U(XT)} (7N

Here NU is the total number of atoms of spin o, and
P1,0(%r) f \IIT (r — x;)dr is the one-body correla-
tion operator. We assumed that py , is parity symmetric, i.e.
pAl,o'(_X'r) = pAl,o(XT)-

Measuring long-range pair ordering: To measure po,
propose to record the correlations between the numbers of re-178
coiling atoms of spin 1 and | 179

176

wel77

180

<NI‘,T(XT)><NI‘,,L(XT)>‘ 181
(8)182

183

This interferometric signal is constructed by statistically aver-,,,

aging individual realizations of IV, ; and [V, . It contains the
following contractions of ps:

S(xr) = <Nr,T(XT)Nr,i(XT)> -

fie(%x7) :/ pa2(r1 — X;, T2 — X 71, T2)drydry (9)1:
(10)

187

(1)

fotrp(x7) =/ p2(ri — X,,ro;r1,r9)drdry

fStI‘,J,(XT) 2/ 02(1‘171‘2 — X7 rl,rz)drldrz

188

fStr,TJ,(XT) :/ pz(rl — X7, 2T,y — XT)drler' (12),6

190

These functions have a simple interpretation: f;, measures theior
overlap between the translated and the original pair of Eq. (5),192

fstr,o the overlap between the pair stretched by the spin o
fermion and the original one, and fi, 1, the overlap between
the two pairs stretched by the opposite spin fermion. Using
Eq. (7), we find:

sin 0

5= fsr) + for

2
—prap1y — Nypry — Nypral,

fitl,T + f%tr,¢ +

13)

where p1 o = (p1,0(x.)). The signal S is maximum for § =
7 /2; we set 6 to this value from now on. When the gas is in the
normal phase, all the functions f,, fi, and p; vanish at large
distances. On the contrary, when the gas is pair condensed,
the contribution of translated pairs f;; does not vanish when
x, — +oc. In this case, ps has a macroscopic eigenvalue Ny
associated to a wavefunction ¢ and behaves at large distances
(that is, when the pair center of mass R = |r; + ra|/2 and

R’ = |r] + r}|/2 are infinitely separated) as
|Rfl:1{i’r|ri>+oo p2(r1, T2, 17, 15) = No@g(r1, T2)do(r, 15),
(14)
This implies that linl fer (X7) = Np, such that
T, —+00
. N
Soo = lim S(x;) = =0 (15)

We have assumed here that possible fluctuations of the atom
numbers are uncorrelated ((N+N,) = N;yN,). Eq. (15) pro-
vides a direct measurement of the magnitude of the long-range
order Ny, a quantity that cannot be measured by the rapid-
ramp technique [9, 10]. Note that N, cannot be interpreted as



193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

| @

1/kpa =3
—1/kpa=1
—1/kpa = —1|;
_ 1/kpa = -3
Z
> 4
=
0
15 20

FIG. 2. The interferometric signal S(x) as a function of the distance

T = xr4 = x,, for different values of the interaction strength,
calculated using the mean-field BCS theory (solid curves). On the
BCS side, where S oscillates, the envelope is (zo/7mx) exp(—z/&z )21
(dashed lines). (a)-(c) Sketches of the interference patterns for S
originating from the condensate wavefunction ¢o. The copy atzr2
rest is shown in blue (|¢o(r1,r2)|?) and the translated one in red
(|po(r1,r2 + xT)|2), where = |x.|; (a) in the BEC regime, (b) in21
the BCS regime, where the displacement x corresponds to the first
cancellation of S (see main panel), and (c) in the BCS regime, where®'
the displacement corresponds to the first minimum of S. 215

3

4

216
217
the number of condensed pairs away from the BEC limit?.

The contribution of the stretched pairs to .S through fstr oy
and fs 1), although negligible at distances larger than the
pair size Epair, carries essential information on the condensate
wavefunction ¢q. It is possible to isolate the contribution of*'
fstr,o using a spin-dependent Bragg pulse, such that the dis-**
placements x, 1+ and x, | of the two spins no longer coincide.?*'
For x, | = 0 and x, ; # 0, Eq. (13) becomes 222

223

o fstr,T(XTT> - Nipl,T(XTT) (16)224
225

S (XTT) = B .
This result can be used to reveal the momentum structure of**®
¢o. If the system is isotropic and translationally invariant,
and the pairs are tightly bound (as in the BEC limit), then
¢o(r1,r2) decreases rapidly and almost monotonically withzes
x = |r1 — rol, and so does [y o; the corresponding behav-
ior for S is schematically depicted in Fig. 2(a). Conversely, if,,,
pairing occurs at a nonzero wavenumber, as in the BCS limit,
¢o oscillate with |r; — ry| at the corresponding wavelength

and so does fs; - (see Figs. 2(b)-(c)). 230

. 231

2 The condensate annihilation operator bo =
f¢8 (r1, rg)\il\t(rl)\ilf(rg)drldrg is not bosonic, as <[BO, l;g]> <1

(the inequality is saturated only in the BEC limit).  Therefore,
No = <b$bo> is not the number of atoms in the condensate in the

general case.

BCS mean-field approximation: To obtain a more explicit
expression for .S, and illustrate its behavior when =, ~ &pair,
we now use the BCS approximation and assume that the gas is
balanced, such that Ny = N, fstrr = fotr,) and p1,p = p1,y.
The total density p = py + p; defines the Fermi wavenumber
krp = (372p)'/3, and in the BCS state p, factorizes into

p?(rla ro, r/17rl2) = N0¢é(r17 I'2)¢0(I‘/1,I‘,2>

+ p1(ry,ry)pr(ra,rh).  (17)

Assuming that the gas is translationally invariant and
isotropic, the functions previously defined in Egs. (9)—(12) de-
pend only on x, = |x,|. Taking into account that the number
is not fixed in the BCS state, (NyN|) # Ny N|,

S(xr) = ;{2(<NTN¢> - NTN¢>
+ Ny [1 FAf(z,) + f(2z7)} } (18)

Here the function

f() :/¢3(r1 —X,T2)¢o(r1, ro)dridry (19)
is the overlap between a stretch and an original pair of the
condensate; it is related to the functions introduced before by
fstr,a = NOf + NUpl and fstr,T‘L(x) = NOf(Zx) + p%(.’lﬁ)
The condensate wavefunction in Fourier space ¢y, defined as
do(r1,ra) = 3, pre K (r1—r2) /13 takes the form

A

 2E)/NBCS’
where A is the gap, Ex = /(ex — p)? + A2 is the BCS dis-

persion relation, and y is the chemical potential. The associ-
ated macroscopic eigenvalue is NP5 = 3", A%/(4E2). The
maximum of |¢| is reached at the minimum of the BCS dis-
persion relation, that is, at kyi, = /2mpu/h on the BCS side
(u > 0) and £k = 0 on the BEC side (u < 0). Using the
BCS condensate wavefunction Eq. (20), we can perform the
integral over k analytically in Eq. (19), which yields

Px (20)

f(z) = e /S sinc(ma /xg), 1)
where
o i
2 _ = L
gz_mA<A+ 1+A2> (22)
2 2
w _ P (23)

2 mA 2
E4+\/1+ 5

Whether or not oscillations are visible before S reaches its
asymptotic value® depends on the ratio x¢/&,. In the BCS

3 As seen in Fig. 2, BCS theory predicts that lim, 00 S = SBCS =
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FIG. 3. (Top panel) The interferometric signal S(z) — Sec nor-2%®

malized to Ny as a function of z/&pair and 1/kra within the mean-269
field BCS approximation. The boundary between the BEC and BCSz7o
regime (u = 0 at 1 /kra ~ 0.54) is marked by the black dashed line.»7
On the BCS side, we compare the local minima of the oscillatory sig-,,,
nal to x, = (n+1/2)7/kmin (White dashed curves). (Bottom pamel)273
The wavenumber 7/xo (normalized to kr) and the exponential at-

tenuation length &, (normalized to the Cooper pair size £pair) Of the’
overlap function f in the BEC-BCS crossover. The dashed red curve”
shows the location of the dispersion minimum kmin = +/2mu/h on27
the BCS side (i > 0). 277
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5

279

limit (u/A — +oo or kpa — 07), the oscillation length,,,

xo ~ m/kp is much shorter than the exponential-decay length,,,
& ~ h%kp/mA which diverges as O(&pair)- Thus, in the

3Np/8. This disagreement with Eq. (15) is due to artifacts in the calcu-
lation of fluctuations within BCS theory, where total particle numbers are
not conserved, <N¢N 1) — N4+Ny = No # 0 [25]. However, we expect
the qualitative behavior of S(z) shown in Fig. 2 to be correct as long as pa
is dominated by the contribution of the condensate wavefunction ¢g.

BCS regime, S exhibits oscillations (the dark and light red
curves in Fig. 2 correspond to 1/kpa = —1 and —3); the
oscillations decay as a cardinal sine, on a typical length scale
1/kp.

Conversely, in the BEC limit (/A — —oo or kpa — oh),
& ~ a tends to zero like the size of the bosonic dimers. At
the same time, the oscillation frequency diverges as xg ~
\/3n/4kra (7 /kr), such that no oscillations are visible in
this regime (the dark and light blue curves on Fig. 2 corre-
spond to 1/kpa = 1 and 3). A transition between the two
regimes (illustrated on the top panel of Fig. 3) occurs around
the point where £, = x(/, that is 4 = 0, which remarkably
coincides with the point where the minimum k,,;,, of the BCS
dispersion relation reaches 0. We note that a measurement of
the BCS gap is also accessible through the relation

Eacl'o 12
- 2
T mA 24)
In Fig. 3, we compare ¢, to the pair size
defined as  &pur = ([ pa(ry,r2,r1,12)|r1  —
ro|?dridra/ [ po(ri,r2,r1,12)dridry)t/2 [26] (see the

blue line), showing that the two quantities remain comparable
throughout the BEC-BCS crossover*. We also compare the
wavenumber 7 /x¢ of the overlap function f to the location of
the dispersion minimum ki, = \/2mu/h: they coincide in
the BCS limit but differ outside, in particular because 7/x¢
does not vanish (red solid curve on Fig. 3), unlike ki, (red
dashed line).

In summary, we have proposed an interferometric protocol
to probe the condensate wavefunction of a superfluid Fermi
gas. By measuring the 1-| correlations of recoiling atoms af-
ter a Ramsey-Bragg sequence, one records as a function of
the interrogation time a damped oscillatory signal whose at-
tenuation time, frequency, and asymptotic limit give access
all at once to the size of the Cooper pairs, to their relative
wave number, and to the macroscopic eigenvalue of the two-
body density matrix. Those prominent features of fermionic
condensates are difficult to access experimentally [27]. Fur-
thermore, this method has the advantage that fine spatial res-
olution on ps is obtained through temporal resolution, which
is rather easy to achieve. The correlation signal recorded at
the end of the sequence also involves a macroscopic fraction
of the atoms initially present in the trap, which makes it more
robust to experimental noise. In the future, it would be inter-
esting to extend this calculation to the case of fermions with
three internal states [28].
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where o = p/A andrq = V1 + o2




282

283

284

285

286

287

288

289
290
291
292

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
3

3
314

Nos. PHY-1945324 and PHY-2110303), DARPA (Grant No.sis
HR00112320038), AFOSR (Grant No. FA9550-23-1-0605),3t6
the EUR grant NanoX n° ANR-17-EURE-0009 in the frame-*""
work of the “Programme des Investissements d’ Avenir”. H.K.*"®
thanks Yale University for its hospitality. N.N. acknowledges;z
support from the David and Lucile Packard Foundation, and,,,
the Alfred P. Sloan Foundation. 322

323
324

325
326

[1] A. L. Fetter and J. D. Walecka, Quantum theory of many-327

particle systems (McGraw-Hill, San Francisco, 1971). 328
[2] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems329
(MIT Press, Cambridge, Massachusetts, 1985). 330
[3] A.J. Leggett, Quantum Liquids (Oxford University Press, Ox-331
ford, 2006). 332
[4] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation ands3
Superfluidity (Oxford University, 2016). 334

[5] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E.33
Wieman, and E. A. Cornell, Science 269, 198 (1995),336
http://www.sciencemag.org/content/269/5221/198 full.pdf. 337

[6] M. Greiner, C. A. Regal, and D. S. Jin, Nature 426, 537 (2003).338

[7] M. Houbiers, R. Ferwerda, H. T. C. Stoof, W. I. McAlexander,339
C. A. Sackett, and R. G. Hulet, Phys. Rev. A 56, 4864 (1997). 340

[8] W. Zwerger, ed., The BCS-BEC Crossover and the Unitaryss

Fermi Gas (Springer, Berlin, 2012). 342
[9] R. G. Scott, F. Dalfovo, L. P. Pitaevskii, and S. Stringari, Phys.ss3
Rev. A 86, 053604 (2012). 344

[10] A. Behrle, T. Harrison, J. Kombe, K. Gao, M. Link, J. S.ss
Bernier, C. Kollath, and M. Kohl, Nature Physics (2018),346
10.1038/s41567-018-0128-6. 347

[11] T. Paintner, D. K. Hoffmann, M. Jiager, W. Limmer, W. Schoch,s4s
B. Deissler, M. Pini, P. Pieri, G. Calvanese Strinati, C. Chin,s4s
and J. Hecker Denschlag, Phys. Rev. A 99, 053617 (2019).  ss0

[12] P. Dyke, A. Hogan, 1. Herrera, C. C. N. Kuhn, S. Hoinka, and
C. J. Vale, Phys. Rev. Lett. 127, 100405 (2021).

[13] W. Ketterle and M. W. Zwierlein, Riv. Nuovo Cim. 31, 247
(2008).

[14] E. Altman, E. Demler, and M. D. Lukin, Phys. Rev. A 70,
013603 (2004).

[15] A. Polkovnikov, E. Altman, and E. Demler, Proc. Natl. Acad.
Sci. U.S.A. 103, 6125 (2006).

[16] M. Holten, L. Bayha, K. Subramanian, S. Brandstetter,
C. Heintze, P. Lunt, P. M. Preiss, and S. Jochim, Nature 606,
287 (2022).

[17] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Dur-
fee, D. M. Kurn, and W. Ketterle, Science 275, 637 (1997),
https://www.science.org/doi/abs/10.1126/science.275.5300.637.

[18] E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B.
Band, M. Edwards, M. Doery, P. S. Julienne, K. Helmerson,
S. L. Rolston, and W. D. Phillips, Phys. Rev. Lett. 83, 3112
(1999).

[19] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, Science
347, 167 (2015).

[20] J. Beugnon and N. Navon, Journal of Physics B: Atomic,
Molecular and Optical Physics 50, 022002 (2017).

[21] I. Carusotto and Y. Castin, Phys. Rev. Lett. 94, 223202 (2005).

[22] N. Navon, R. P. Smith, and Z. Hadzibabic, Nature Physics 17,
1334 (2021).

[23] G. Veeravalli, E. Kuhnle, P. Dyke, and C. J. Vale, Phys. Rev.
Lett. 101, 250403 (2008).

[24] P. Wang, Z. Fu, L. Huang, and J. Zhang, Phys. Rev. A 85,
053626 (2012).

[25] H. Kurkjian, Y. Castin, and A. Sinatra, Phys. Rev. A 88, 063623
(2013).

[26] M. Marini, F. Pistolesi, and G. C. Strinati, Eur. Phys. J. B 1,
151 (1998).

[27] C. H. Schunck, Y.-i. Shin, A. Schirotzek, and W. Ketterle, Na-
ture 454, 739 (2008).

[28] G. L. Schumacher, J. T. Mikinen, Y. Ji, G. G. T. Assumpgao,
J. Chen, S. Huang, F. J. Vivanco, and N. Navon, arXiv (2023),
10.48550/arXiv.2301.02237, 2301.02237.


https://doi.org/10.1093/acprof:oso/9780198758884.001.0001
https://doi.org/10.1093/acprof:oso/9780198758884.001.0001
https://doi.org/10.1093/acprof:oso/9780198758884.001.0001
https://doi.org/10.1126/science.269.5221.198
http://arxiv.org/abs/http://www.sciencemag.org/content/269/5221/198.full.pdf
http://dx.doi.org/10.1038/nature02199
https://link.aps.org/doi/10.1103/PhysRevA.56.4864
https://doi.org/10.1103/PhysRevA.86.053604
https://doi.org/10.1103/PhysRevA.86.053604
https://doi.org/10.1103/PhysRevA.86.053604
https://doi.org/10.1038/s41567-018-0128-6
https://doi.org/10.1038/s41567-018-0128-6
https://doi.org/10.1038/s41567-018-0128-6
https://link.aps.org/doi/10.1103/PhysRevA.99.053617
https://link.aps.org/doi/10.1103/PhysRevLett.127.100405
https://doi.org/10.1393/ncr/i2008-10033-1
https://doi.org/10.1393/ncr/i2008-10033-1
https://doi.org/10.1393/ncr/i2008-10033-1
https://doi.org/10.1103/PhysRevA.70.013603
https://doi.org/10.1103/PhysRevA.70.013603
https://doi.org/10.1103/PhysRevA.70.013603
https://doi.org/10.1073/pnas.0510276103
https://doi.org/10.1073/pnas.0510276103
https://doi.org/10.1073/pnas.0510276103
https://doi.org/10.1038/s41586-022-04678-1
https://doi.org/10.1038/s41586-022-04678-1
https://doi.org/10.1038/s41586-022-04678-1
https://doi.org/10.1126/science.275.5300.637
http://arxiv.org/abs/https://www.science.org/doi/abs/10.1126/science.275.5300.637
https://doi.org/10.1103/PhysRevLett.83.3112
https://doi.org/10.1103/PhysRevLett.83.3112
https://doi.org/10.1103/PhysRevLett.83.3112
https://doi.org/10.1126/science.1258676
https://doi.org/10.1126/science.1258676
https://doi.org/10.1126/science.1258676
https://doi.org/10.1088/1361-6455/50/2/022002
https://doi.org/10.1088/1361-6455/50/2/022002
https://doi.org/10.1088/1361-6455/50/2/022002
https://doi.org/10.1103/PhysRevLett.94.223202
https://doi.org/10.1038/s41567-021-01403-z
https://doi.org/10.1038/s41567-021-01403-z
https://doi.org/10.1038/s41567-021-01403-z
https://link.aps.org/doi/10.1103/PhysRevLett.101.250403
https://link.aps.org/doi/10.1103/PhysRevLett.101.250403
https://link.aps.org/doi/10.1103/PhysRevLett.101.250403
https://link.aps.org/doi/10.1103/PhysRevA.85.053626
https://link.aps.org/doi/10.1103/PhysRevA.85.053626
https://link.aps.org/doi/10.1103/PhysRevA.85.053626
https://doi.org/10.1103/PhysRevA.88.063623
https://doi.org/10.1103/PhysRevA.88.063623
https://doi.org/10.1103/PhysRevA.88.063623
https://doi.org/10.1007/s100510050165
https://doi.org/10.1007/s100510050165
https://doi.org/10.1007/s100510050165
https://doi.org/10.1038/nature07176
https://doi.org/10.1038/nature07176
https://doi.org/10.1038/nature07176
https://doi.org/10.48550/arXiv.2301.02237
https://doi.org/10.48550/arXiv.2301.02237
https://doi.org/10.48550/arXiv.2301.02237
http://arxiv.org/abs/2301.02237

	Probing pair correlations in Fermi gases with Ramsey-Bragg interferometry
	Abstract
	Acknowledgments
	References


