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We propose an interferometric method to probe pair correlations in a gas of spin-1/2 fermions. The method8

consists of a Ramsey sequence where both spin states of the Fermi gas are set in a superposition of a state at rest9

and a state with a large recoil velocity. The two-body density matrix is extracted via the fluctuations of the trans-10

ferred fraction to the recoiled state. In the pair-condensed phase, the off-diagonal long-range order is directly11

reflected in the asymptotic behavior of the interferometric signal for long interrogation times. The method also12

allows to probe the spatial structure of the condensed pairs: the interferometric signal is an oscillating function13

of the interrogation time in the Bardeen-Cooper-Schrieffer regime; it becomes an overdamped function in the14

molecular Bose-Einstein condensate regime.15

Introduction: At low temperatures, the behavior of quan-16

tum matter is often marked by the emergence of coherent or-17

dered phases displaying remarkable macroscopic properties.18

Such condensed phases appear in various contexts, such as19

solid-state physics [1], nuclear or neutron matter [2], and20

ultracold atomic gases [3, 4]. They are characterized by21

long-range coherence carried by a macroscopically occupied22

wavefunction. In the simple case of the weakly interacting23

Bose gas, this order shows up as off-diagonal long-range or-24

der (ODLRO) in the one-body density matrix ρ1(r, r
′) =25

⟨Ψ̂†(r)Ψ̂(r′)⟩ (where Ψ̂ is the Bose field operator), such26

that lim|r−r′|→∞ ρ1(r, r
′) = n0 is the density of the Bose-27

Einstein condensate (BEC). The ODLRO in a Bose gas has28

been measured for instance via the single-particle momentum29

distribution [5, 6], which for a translationally invariant system,30

is the Fourier transform of ρ1.31

In spin-1/2 Fermi systems, the one-body density matrix32

cannot exhibit ODLRO, owing to Pauli’s exclusion princi-33

ple, and the momentum distribution remains smooth across34

the phase transition [7]. Instead, a macroscopically occu-35

pied wavefunction characteristic of the pair condensate can36

only appear in the pair density matrix ρ2(r1, r2, r
′
1, r

′
2) =37 〈

Ψ̂†
↑(r1)Ψ̂

†
↓(r2)Ψ̂↓(r

′
2)Ψ̂↑(r

′
1)
〉

(where Ψ̂σ is the Fermi field38

operator for the fermion of spin σ) [3, 8]. Measurements39

of ODLRO are for this reason considerably more challeng-40

ing in Fermi systems. Rapid ramps of the magnetic field41

have been used to project the pair condensate onto a BEC42

of molecules [9–12]; however, the measured molecular frac-43

tion is notoriously difficult to interpret theoretically, ow-44

ing to the various two- and many-body time scales involved45

in the problem [13]. Measurement of pair correlations in46

time-of-flight images have been proposed as a way to ac-47

cess ODLRO [14, 15]; an analogous protocol has been im-48

plemented, albeit on a small Fermi system [16].49

Interferometric protocols offer an alternative route to mea-50

sure the coherence properties of quantum gases. Cold-atom51

experiments are particularly well-suited for matter-wave in-52

terferometry, thanks to the possibilities of creating a coherent53

copy of the gas by manipulating the internal or external state54

of the atoms [17]. In Bose gases, direct real-space measure-55

ments of ρ1(r, r
′) were performed using Ramsey protocols56

relying on interferometry of Bragg-diffracted gases [18–20]57

In Fermi gases, matter-wave interference between small atom58

numbers extracted by spatially-resolved Bragg pulses were59

proposed as a way to measure ρ2 [21].60

Inspired by such techniques, we propose a protocol to mea-61

sure ρ2 from the fluctuations of a Ramsey-Bragg interferom-62

eter. A copy of the spin-1/2 Fermi gas is created by imparting63

a large velocity to a fraction of the atoms. Interactions are64

turned off and the copy travels ballistically, thereby stretch-65

ing or translating the pairs of fermions by a distance propor-66

tional to the interrogation time. When the interferometric se-67

quence is closed by the second pulse, the stretched and trans-68

lated pairs interfere with those at rest, and a measurement of69

the correlation between the number of spin ↑ and spin ↓ re-70

coiling atoms reveals the most important features of ρ2. In the71

pair-condensed phase, the interferometric signal carries infor-72

mation on the magnitude of the fermionic condensate and on73

the wavefunction of the fermionic pairs.74

Interferometric protocol: In Fig. 1 we show a sketch of the75

proposed measurement protocol. We consider a homogeneous76

spin-1/2 Fermi gas in a cubic box of size L [22]. At t = 0, a77

first Bragg pulse is shined on the gas for a duration tpulse. We78

place ourselves in the regime of a short and intense pulse, de-79

signed to be resonant with the whole gas and to create a mov-80

ing copy of the cloud whose momentum distribution does not81

overlap with the original one (see Fig. 1). Both spin states are82

in a superposition of two components: a copy with no average83

momentum, and a copy with a large average momentum qr.84

Assuming that the gas initially has zero mean velocity, the en-85

ergy transferred by the pulse is adjusted to ℏω = ϵqr
(where86

ϵk = ℏ2k2/2m is the kinetic energy and m is the mass of87

the fermion), in resonance with the atoms at rest. Since the88

atoms travelling at a velocity ℏk/m ̸= 0 experience a detun-89

ing ℏω − ϵk+qr + ϵk = −ℏ2qr · k/m, the duration of the90

pulse tpulse should be short enough so that this detuning re-91

mains negligible over the typical range δk of the momentum92



2

distribution of the gas:93

ℏ2qrδk
m

tpulse ≪ 1. (1)94

To evaluate this condition, let us consider the case of contact95

interactions between ↑ and ↓ fermions, characterized by a s-96

wave scattering length a. On the Bardeen-Cooper-Schrieffer97

side (BCS, a < 0), one can estimate δk ≈ ρ1/3, where ρ98

is the total density and on the molecular Bose-Einstein con-99

densate side (BEC, a > 0) δk ≈ 1/a. In this limit, the100

broadening of the momentum distribution implies that fulfill-101

ing both inequalities for tpulse will no longer be possible at102

fixed qr. Note that the pulse duration should also be long103

enough (ℏ2q2r /m)tpulse ≫ 1 such that second-order transi-104

tions to states of momenta k+ 2qr or k− qr remain negligi-105

ble.106

In this intense-pulse regime, the gas can be approximated107

by a two-level system undergoing Rabi oscillations between a108

state at rest (violet distribution in the upper sketches of Fig. 1)109

and a recoiling one (green distribution). The evolution during110

the first Bragg pulse corresponds to a rotation of angle θ =111

ΩRtpulse (where ΩR is the Rabi frequency of the Bragg pulse)112

on the Bloch sphere of this effective two-level system:113 (
âk,σ

âk+qr,σ

)
(tpulse) = S (θ, 0)

(
âk,σ

âk+qr,σ

)
(0). (2)114

Here âk,σ annihilates a fermion of wavevector k and spin σ115

and the matrix S (θ, ϕ) =116 (
cos(θ/2) −i sin(θ/2)eiϕ

−i sin(θ/2)e−iϕ cos(θ/2)

)
describes a rotation of117

angle θ around the vector (cosϕ, − sinϕ, 0) of the equatorial118

plane of the Bloch sphere.119

After this first pulse, the recoiling and non-recoiling com-120

ponents evolve ballistically during an interrogation time τ . By121

contrast to the Ramsey-Bragg interferometry of weakly inter-122

acting gases [18, 19], it is crucial that interactions are turned123

off in strongly interacting gases before the first Bragg pulse.124

This would mitigate both fast many-body evolution during125

the interrogation sequence, and the high collisional density126

that would prevent the diffracted component to fly freely [23].127

This could be achieved either with a fast Feshbach field ramp128

or with fast Raman pulses [16, 24]. The recoiling component129

travels a distance xτ ≡ ℏτqr/m, at a velocity sufficiently130

large to exit the trapping potential (in the direction of prop-131

agation). This means that only a fraction (1 − xτ/L) of the132

cloud remains within the box volume after the interrogation133

time (assuming qr is aligned with an axis of the cubic trap)134

and gives an upper limit τ < mL/ℏqr to the interrogation135

time.136

After the interrogation time, the dephasing between the re-
coiling and non-recoiling components is φk(τ) = ((ϵk+qr

−
ϵk)/ℏ − ω)τ relatively to the Bragg transition, and a second
Bragg pulse recombines the two components:(

âk,σ
âk+qr,σ

)
(τ + 2tpulse) = S (θ, ωτ)

(
âk,σ

âk+qr,σ

)
(τ + tpulse)

(3)

= S (θ, φk(τ))S (θ, 0)

(
âk

âk+qr

)
(0).

Eq. (3) thus describes a Ramsey sequence with a dephasing137

φk(τ) that depends on the initial momentum of the atoms1.138

This makes the interferometer sensitive to the spatial struc-139

ture of the gas, where short interrogation times allow to probe140

short-range correlations, and long times probing long-range141

correlations.142

At the end of the interferometric sequence, the recoiling143

atoms are a superposition of atoms initially present in different144

positions of the gas:145

Ψ̂r,σ(r) = −i
sin θ

2

(
Ψ̂σ(r) + Ψ̂σ(r− xτ )

)
, (4)146

where Ψ̂σ(r) is the field operator at t = 0 and Ψ̂r,σ =147

(1/
√
L3)

∑
k∈B ei(ϵkτ−k·r)âk,σ(τ) is the field operator of re-148

coiling atoms at t = τ (the free evolution during the interroga-149

tion time is treated in the interaction representation); the sum-150

mation over k includes here only the recoiling atoms (i.e. B is151

a neighborhood around qr of typical size δk, small compared152

to qr). For pairs of ↑ and ↓ atoms, this yields the superposition153

depicted in Fig. 1:154

Ψ̂r,↓(r2)Ψ̂r,↑(r1) = − sin2 θ

4

[
Ψ̂↓(r2)Ψ̂↑(r1) + Ψ̂↓(r2)Ψ̂↑(r1 − xτ ) + Ψ̂↓(r2 − xτ )Ψ̂↑(r1) + Ψ̂↓(r2 − xτ )Ψ̂↑(r1 − xτ )

]
.

(5)155

The four terms represent respectively a pair at rest, a pair156

where the ↑ or the ↓ fermion has been stretched by xτ , and157

a pair globally translated by xτ .158

1 Note that the dephasing φk(2tpulse) accumulated during the two Bragg
pulses is negligible by virtue of Eq. (1).

After the Ramsey sequence is closed, the recoiling atoms159

are spatially separated from the atoms at rest by a time of160

flight ttof. An absorption image is then taken for each spin161
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FIG. 1. (a) Sketch of the Ramsey-Bragg interferometer applied to a pair of fermions. The blue (resp. red) circles represent spin ↑ (resp. ↓)
atoms. The Bragg pulses create superpositions of atoms at rest and moving with a recoil momentum qr. After the time of flight, the component
at rest and the recoiling one are separated by xtof . For clarity, the finite pulse duration tpulse is not shown.

to measure the number N̂r,σ of recoiling atoms of spin σ:162

N̂r,σ ≡
∫

Ψ̂†
r,σ(r)Ψ̂r,σ(r)dr (6)163

=
sin2 θ

2

[
N̂σ + ρ̂1,σ(xτ )

]
. (7)164

Here, N̂σ is the total number of atoms of spin σ, and165

ρ̂1,σ(xτ ) =
∫
Ψ̂†

σ(r)Ψ̂σ(r − xτ )dr is the one-body correla-166

tion operator. We assumed that ρ̂1,σ is parity symmetric, i.e.167

ρ̂1,σ(−xτ ) = ρ̂1,σ(xτ ).168

Measuring long-range pair ordering: To measure ρ2, we
propose to record the correlations between the numbers of re-
coiling atoms of spin ↑ and ↓:

S(xτ ) =
〈
N̂r,↑(xτ )N̂r,↓(xτ )

〉
−
〈
N̂r,↑(xτ )

〉〈
N̂r,↓(xτ )

〉
.

(8)

This interferometric signal is constructed by statistically aver-169

aging individual realizations of Nr,↑ and Nr,↓. It contains the170

following contractions of ρ2:171

ftr(xτ ) =

∫
ρ2(r1 − xτ , r2 − xτ ; r1, r2)dr1dr2 (9)172

fstr,↑(xτ ) =

∫
ρ2(r1 − xτ , r2; r1, r2)dr1dr2 (10)173

fstr,↓(xτ ) =

∫
ρ2(r1, r2 − xτ ; r1, r2)dr1dr2 (11)174

fstr,↑↓(xτ ) =

∫
ρ2(r1 − xτ , r2; r1, r2 − xτ )dr1dr2. (12)175

These functions have a simple interpretation: ftr measures the
overlap between the translated and the original pair of Eq. (5),

fstr,σ the overlap between the pair stretched by the spin σ
fermion and the original one, and fstr,↑↓ the overlap between
the two pairs stretched by the opposite spin fermion. Using
Eq. (7), we find:

S =
sin4 θ

4

[
fstr,↑ + fstr,↓ +

fstr,↑↓ + ftr
2

−ρ1,↑ρ1,↓ −N↑ρ1,↓ −N↓ρ1,↑] , (13)

where ρ1,σ ≡ ⟨ρ̂1,σ(xτ )⟩. The signal S is maximum for θ =176

π/2; we set θ to this value from now on. When the gas is in the177

normal phase, all the functions fstr, ftr and ρ1 vanish at large178

distances. On the contrary, when the gas is pair condensed,179

the contribution of translated pairs ftr does not vanish when180

xτ → +∞. In this case, ρ2 has a macroscopic eigenvalue N0181

associated to a wavefunction ϕ0 and behaves at large distances182

(that is, when the pair center of mass R = |r1 + r2|/2 and183

R′ = |r′1 + r′2|/2 are infinitely separated) as184

lim
|R−R′|→+∞

ρ2(r1, r2, r
′
1, r

′
2) = N0ϕ

∗
0(r1, r2)ϕ0(r

′
1, r

′
2),

(14)185

This implies that lim
xτ→+∞

ftr(xτ ) = N0, such that186

S∞ ≡ lim
xτ→+∞

S(xτ ) =
N0

8
. (15)187

We have assumed here that possible fluctuations of the atom188

numbers are uncorrelated (⟨N̂↑N̂↓⟩ = N↑N↓). Eq. (15) pro-189

vides a direct measurement of the magnitude of the long-range190

order N0, a quantity that cannot be measured by the rapid-191

ramp technique [9, 10]. Note that N0 cannot be interpreted as192
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FIG. 2. The interferometric signal S(x) as a function of the distance
x = xτ,↑ = xτ,↓ for different values of the interaction strength,
calculated using the mean-field BCS theory (solid curves). On the
BCS side, where S oscillates, the envelope is (x0/πx) exp(−x/ξx)
(dashed lines). (a)-(c) Sketches of the interference patterns for S
originating from the condensate wavefunction ϕ0. The copy at
rest is shown in blue (|ϕ0(r1, r2)|2) and the translated one in red
(|ϕ0(r1, r2 + xτ )|2), where x = |xτ |; (a) in the BEC regime, (b) in
the BCS regime, where the displacement x corresponds to the first
cancellation of S (see main panel), and (c) in the BCS regime, where
the displacement corresponds to the first minimum of S.

the number of condensed pairs away from the BEC limit2.193

The contribution of the stretched pairs to S through fstr,σ194

and fstr,↑↓, although negligible at distances larger than the195

pair size ξpair, carries essential information on the condensate196

wavefunction ϕ0. It is possible to isolate the contribution of197

fstr,σ using a spin-dependent Bragg pulse, such that the dis-198

placements xτ,↑ and xτ,↓ of the two spins no longer coincide.199

For xτ,↓ = 0 and xτ,↑ ̸= 0, Eq. (13) becomes200

S(xτ ↑) =
fstr,↑(xτ ↑)−N↓ρ1,↑(xτ ↑)

2
. (16)201

This result can be used to reveal the momentum structure of202

ϕ0. If the system is isotropic and translationally invariant,203

and the pairs are tightly bound (as in the BEC limit), then204

ϕ0(r1, r2) decreases rapidly and almost monotonically with205

x = |r1 − r2|, and so does fstr,σ; the corresponding behav-206

ior for S is schematically depicted in Fig. 2(a). Conversely, if207

pairing occurs at a nonzero wavenumber, as in the BCS limit,208

ϕ0 oscillate with |r1 − r2| at the corresponding wavelength209

and so does fstr,σ (see Figs. 2(b)-(c)).210

2 The condensate annihilation operator b̂0 =∫
ϕ∗
0(r1, r2)Ψ̂↓(r1)Ψ̂↑(r2)dr1dr2 is not bosonic, as

〈[
b̂0, b̂

†
0

]〉
≤ 1

(the inequality is saturated only in the BEC limit). Therefore,
N0 =

〈
b̂†0b̂0

〉
is not the number of atoms in the condensate in the

general case.

BCS mean-field approximation: To obtain a more explicit
expression for S, and illustrate its behavior when xτ ≈ ξpair,
we now use the BCS approximation and assume that the gas is
balanced, such that N↑ = N↓, fstr,↑ = fstr,↓ and ρ1,↑ = ρ1,↓.
The total density ρ = ρ↑ + ρ↓ defines the Fermi wavenumber
kF = (3π2ρ)1/3, and in the BCS state ρ2 factorizes into

ρ2(r1, r2, r
′
1, r

′
2) = N0ϕ

∗
0(r1, r2)ϕ0(r

′
1, r

′
2)

+ ρ1(r1, r
′
1)ρ1(r2, r

′
2). (17)

Assuming that the gas is translationally invariant and
isotropic, the functions previously defined in Eqs. (9)–(12) de-
pend only on xτ = |xτ |. Taking into account that the number
is not fixed in the BCS state, ⟨N̂↑N̂↓⟩ ≠ N↑N↓,

S(xτ ) =
1

8

{
2
(
⟨N̂↑N̂↓⟩ −N↑N↓

)
+N0

[
1 + 4f(xτ ) + f(2xτ )

]}
. (18)

Here the function211

f(x) =

∫
ϕ∗
0(r1 − x, r2)ϕ0(r1, r2)dr1dr2 (19)212

is the overlap between a stretch and an original pair of the213

condensate; it is related to the functions introduced before by214

fstr,σ = N0f + Nσρ1 and fstr,↑↓(x) = N0f(2x) + ρ21(x).215

The condensate wavefunction in Fourier space ϕk, defined as216

ϕ0(r1, r2) =
∑

k ϕke−ik·(r1−r2)/L3, takes the form217

ϕk =
∆

2Ek

√
NBCS

0

, (20)218

where ∆ is the gap, Ek =
√
(ϵk − µ)2 +∆2 is the BCS dis-219

persion relation, and µ is the chemical potential. The associ-220

ated macroscopic eigenvalue is NBCS
0 =

∑
k ∆

2/(4E2
k). The221

maximum of |ϕk| is reached at the minimum of the BCS dis-222

persion relation, that is, at kmin =
√
2mµ/ℏ on the BCS side223

(µ > 0) and k = 0 on the BEC side (µ < 0). Using the224

BCS condensate wavefunction Eq. (20), we can perform the225

integral over k analytically in Eq. (19), which yields226

f(x) = e−x/ξxsinc(πx/x0), (21)227

where228

ξ2x =
ℏ2

m∆

(
µ

∆
+

√
1 +

µ2

∆2

)
(22)229

x2
0

π2
=

ℏ2

m∆

1

µ
∆ +

√
1 + µ2

∆2

. (23)230

Whether or not oscillations are visible before S reaches its231

asymptotic value3 depends on the ratio x0/ξx. In the BCS232

3 As seen in Fig. 2, BCS theory predicts that limxτ→∞ S = SBCS
∞ =
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FIG. 3. (Top panel) The interferometric signal S(x) − S∞ nor-
malized to N0 as a function of x/ξpair and 1/kFa within the mean-
field BCS approximation. The boundary between the BEC and BCS
regime (µ = 0 at 1/kFa ≃ 0.54) is marked by the black dashed line.
On the BCS side, we compare the local minima of the oscillatory sig-
nal to xn = (n+1/2)π/kmin (white dashed curves). (Bottom panel)
The wavenumber π/x0 (normalized to kF) and the exponential at-
tenuation length ξx (normalized to the Cooper pair size ξpair) of the
overlap function f in the BEC-BCS crossover. The dashed red curve
shows the location of the dispersion minimum kmin =

√
2mµ/ℏ on

the BCS side (µ > 0).

limit (µ/∆ → +∞ or kFa → 0−), the oscillation length233

x0 ∼ π/kF is much shorter than the exponential-decay length234

ξx ∼ ℏ2kF/m∆ which diverges as O(ξpair). Thus, in the235

3N0/8. This disagreement with Eq. (15) is due to artifacts in the calcu-
lation of fluctuations within BCS theory, where total particle numbers are
not conserved, ⟨N̂↑N̂↓⟩ − N↑N↓ = N0 ̸= 0 [25]. However, we expect
the qualitative behavior of S(x) shown in Fig. 2 to be correct as long as ρ2
is dominated by the contribution of the condensate wavefunction ϕ0.

BCS regime, S exhibits oscillations (the dark and light red236

curves in Fig. 2 correspond to 1/kFa = −1 and −3); the237

oscillations decay as a cardinal sine, on a typical length scale238

1/kF.239

Conversely, in the BEC limit (µ/∆ → −∞ or kFa → 0+),240

ξx ∼ a tends to zero like the size of the bosonic dimers. At241

the same time, the oscillation frequency diverges as x0 ∼242 √
3π/4kFa (π/kF), such that no oscillations are visible in243

this regime (the dark and light blue curves on Fig. 2 corre-244

spond to 1/kFa = 1 and 3). A transition between the two245

regimes (illustrated on the top panel of Fig. 3) occurs around246

the point where ξx = x0/π, that is µ = 0, which remarkably247

coincides with the point where the minimum kmin of the BCS248

dispersion relation reaches 0. We note that a measurement of249

the BCS gap is also accessible through the relation250

ξxx0

π
=

ℏ2

m∆
. (24)251

In Fig. 3, we compare ξx to the pair size252

defined as ξpair = (
∫
ρ2(r1, r2, r1, r2)|r1 −253

r2|2dr1dr2/
∫
ρ2(r1, r2, r1, r2)dr1dr2)1/2 [26] (see the254

blue line), showing that the two quantities remain comparable255

throughout the BEC-BCS crossover4. We also compare the256

wavenumber π/x0 of the overlap function f to the location of257

the dispersion minimum kmin =
√
2mµ/ℏ: they coincide in258

the BCS limit but differ outside, in particular because π/x0259

does not vanish (red solid curve on Fig. 3), unlike kmin (red260

dashed line).261

In summary, we have proposed an interferometric protocol262

to probe the condensate wavefunction of a superfluid Fermi263

gas. By measuring the ↑-↓ correlations of recoiling atoms af-264

ter a Ramsey-Bragg sequence, one records as a function of265

the interrogation time a damped oscillatory signal whose at-266

tenuation time, frequency, and asymptotic limit give access267

all at once to the size of the Cooper pairs, to their relative268

wave number, and to the macroscopic eigenvalue of the two-269

body density matrix. Those prominent features of fermionic270

condensates are difficult to access experimentally [27]. Fur-271

thermore, this method has the advantage that fine spatial res-272

olution on ρ2 is obtained through temporal resolution, which273

is rather easy to achieve. The correlation signal recorded at274

the end of the sequence also involves a macroscopic fraction275

of the atoms initially present in the trap, which makes it more276

robust to experimental noise. In the future, it would be inter-277

esting to extend this calculation to the case of fermions with278

three internal states [28].279
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