
Two T -linear scattering-rate regimes in the triangular lattice Hubbard model
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(Dated: December 19, 2023)

In recent years, the T -linear scattering rate found at low temperatures, defining the strange metal
phase of cuprates, has been a subject of interest. Since a wide range of materials have a scattering
rate that obeys the equation ℏ/τ ≈ kBT , the idea of Planckian scattering rate has been proposed.
However, there is no consensus on proposed theories yet. In this work, we present our results for
the T -linear scattering rate in the triangular lattice Hubbard model obtained using the dynamical
cluster approximation. In the temperature-doping phase diagram, we find two regions of T -linear
scattering rate that are driven by different physics : one emerges at low doping from the pseudogap
to correlated Fermi liquid phase transition, whereas the other at larger doping is solely caused by
large interaction strength. We show that Planckian dissipation and ω/T scaling pertain to different
regimes, unlike what is seen in cuprates.

I. INTRODUCTION

At the lowest temperatures in any metal, when the
phonon contribution becomes negligible, one expects a
Fermi liquid with T 2 resitivity. Although it is indeed the
case in most materials, many do not abide by this rule,
having instead a linear in temperature scattering rate.
This is the case for a wide variety of materials, such as
twisted bilayer graphene 1–3, transition metal dichalco-
genides4, pnictides superconductors5, heavy fermions6–8,
organic superconductors5 and cuprates9–11. This kind of
behavior is even found theoretically in the square lat-
tice Hubbard model12 and in the Sachdev–Ye–Kitaev
model13.

T -linear scattering rate is often the result of electron-
phonon scattering. This is the case for example in copper
and twisted bilayer graphene14. However, at tempera-
tures lower than the Debye temperature, this mechanism
can no longer explain T -linear scattering. T -linear scat-
tering rate must then be caused by another type of in-
teraction. Metals that exhibit T -linear scattering rate
at high temperature, beyond the Mott-Ioffe-Regel limit
kF ℓ ∼ 1, are called bad metals15–17. When the linear
regime extends asymptotically close to T = 0, we refer to
strange metal behavior. Cuprates are a nice case study of
strange metals since their scattering rate has been thor-
oughly studied from the day of their discovery18,19. In
addition, their T -linear scattering rate spans a large por-
tion of the cuprate’s phase diagram, sometimes up to
high temperatures18,19.

The idea of a universal limit on scattering rate was
presented to explain the T -linear scattering rate20. Us-
ing Drude’s formula to find the relaxation time τ , it has
been observed that many strange metals obey the simple
equation ℏ

τ = αkBT , where α is between 0.7 and 1.121–23.
The idea that this universal law could also be applied to
very different materials with very similar value of α has
led some to believe that electrons are subject to a uni-
versal Planckian limit of α ∼ 110,24–29.

The close proximity of strange-metal behavior to
optimal doping in cuprates has led some to believe
that understanding it could be the key to uncovering
the mechanism behind superconductivity in hole-doped
cuprates30,31. The T -linear dependence of the scattering
rate in cuprates is still a subject of research32–35.

In this work, we present the phase diagram and the
temperature-dependent scattering rate on the hole-doped
triangular-lattice Hubbard model using the dynamical
cluster approximation (DCA)36 for the six-site cluster
shown on Fig. 1a). DCA is a cluster extension of
dynamical mean-field theory (DMFT) that is particu-
larly suited for doped Mott insulators in regimes where
long-wavelength particle-particle and particle-hole fluc-
tuations are negligible. The geometrical frustration in-
herent to the triangular lattice is particularly useful to
suppress the above-mentioned fluctuations, making the
thermodynamic limit reachable at finite temperature on
small lattices. Our three main results are as follows:

First, our most unexpected finding is the observation of
T -linear electron scattering in two distinct regions of the
phase diagram: one at low dopings and another at higher
dopings. We attribute the former to doped-Mott insula-
tor physics, showing that T -linear scattering at low dop-
ing is linked to the metal-to-pseudogap first-order transi-
tion known as the Sordi transition37–39. We refer to this
regime as the Mott-driven T -linear scattering rate. Con-
versely, at higher dopings, we propose that the T -linear
scattering is solely governed by strong interactions, oc-
curring very far from the Mott transition. We refer to this
region as the interaction-driven T -linear scattering rate.
It is noteworthy that in both cases, we noted in Tab. II C
which characteristics usually pertaining to strange met-
als they respect. In addition, it is important to point out
that we compute the electron scattering rate, not the
transport scattering rate that would necessitate vertex
corrections.

Second, the role of long-wavelength magnetic fluctu-
ations is not important in either regimes since, at the
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temperatures that we can reach, frustration on the tri-
angular lattice limits their effect. Indeed, for values of
U that we explore, close to the Mott transition, it has
been found that even at half-filling magnetic order is not
apparent40–46.

Third, we find that even on the triangular lattice, the
quasiparticle scattering rate of the interaction-driven T -
linear scattering rate is very near the Planckian result
(α ∼ 1). We do not claim that Planckian scattering is a
fundamental limit.

Although our work may be related to the fundamen-
tal physics that drives the strange metal in cuprates,
our model most likely represents what would be seen
in doped κ-ET structured doped organic superconduc-
tors47,48, field-effect doped organic superconductors49,
silicon triangular lattice simulators50 or cold atoms ex-
periments51–53. Nevertheless, we find it valuable to draw
comparisons with cuprates, given their extensive history
of exploration.

In the following sections, we discuss the model, then
uncover the phase diagrams that will drive our discussion
over the two possible T -linear scattering rate regimes.

II. METHODOLOGY

Here we present the model, then discuss the method
that we use, and finally, comment on observables of in-
terest.

A. Model.

We capture the complex interplay between kinetic en-
ergy and potential energy of electrons on a lattice with
the one-band Hubbard model 54–57. The Hamiltonian is
given by

H = −
∑
i,j,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ, (1)

where c†iσ and ciσ are respectively the creation and anni-
hilation operators on site i with spin σ, niσ is the number
operator, tij is the kinetic energy associated to a hopping
between sites i and j, U is the on-site Coulomb repulsion,
and µ is the chemical potential. We work in natural units,
thus interatomic distance a, Planck’s ℏ and Boltzmann’s
kB constants are unity, as is t the nearest-neighbor hop-
ping.

The lattice is shown on Fig. 1a). We take t = −t′ = 1
so that the lattice is triangular. The sign of t′ would
change electrons for holes. Here we focus mostly on
hole doping. Another hopping t′ crossing the one illus-
trated would transform this problem into the problem of
cuprates. We will later discuss implications of our results
for cuprates.

FIG. 1. a) Hopping terms on the triangular lattice b) Fermi
surface for U = 0 and n = 1 at T = 0.1 in the triangular
lattice. The different patches used in the Brillouin zone of
the triangular lattice and on the proxy square lattice made
of the reciprocal lattice-vectors are illustrated. The superlat-
tice vectors in red illustrate the periodic boundary conditions.
Although t′ = −t is satisfied in our work, this connectivity
corresponds to a bipartite lattice when t′ = 0. The illustrated
Fermi surface is a hole Fermi surface.

B. Solving the model.

References 58 and 59 have shown that in DCA, a six-
site cluster impurity in a bath 36,60–62 describes the same
complex physics as the larger 12-site cluster at tempera-
tures that are reachable near the Mott transitions. This
is discussed further in Appendix A. For this reason, we
use the same six-site cluster as in Ref. 58, defined by the
superlattice vectors Rx = (3, 1) and Ry = (2, 0) as shown
on Fig. 1a). Periodic boundary conditions in DCA im-
pose that the Brillouin zone be separated into patches,
one for every site on the impurity, their shape being just
another degree of freedom63,64. Fig. 1b) presents the lay-
out we use. To illustrate how the Fermi surface is dis-
tributed among the patches we chose, the non-interacting
Fermi surface is also displayed.

In DCA, one starts with a guess for the free Green’s
function

G0,σ(iωn,Ki) =
1

iωn − ϵ̄Ki + µ−∆σ(iωn,Ki)
, (2)

where we define ϵ̄Ki
=
∑

k̃ ϵKi+k̃, with
∑

k̃ the sum on

every k̃ in a patch, ϵKi+k̃ = ϵk the bare band disper-

sion, ωn the nth fermionic Matsubara frequency, defined

as ωn = (2n+1)π
β , with β the inverse of temperature. Fi-

nally, ∆σ(iωn,Ki) is the hybridization function, linking
the bath and the impurities.

To find the cluster Green’s function Gc,σ(iωn,Ki), one
sends the non-interacting Green’s function to an impurity
solver. Here we use the continuous-time auxiliary-field
(CT-AUX)61,65 quantum Monte-Carlo impurity solver
because it scales well with the cluster size. Using the
Dyson equation, one can extract the cluster self-energy

Σc,σ(iωn,Ki) = G−1
0,σ(iωn,Ki)− G−1

c,σ(iωn,Ki). (3)
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Projecting the lattice Green’s function on the patches

Gloc,σ(iωn,Ki) =
∑
k̃

1

iωn − ϵKi+k̃ + µ− Σc,σ(iωn,Ki)
,

(4)

leads to the self-consistency condition Gloc,σ(iωn,Ki) =
Gc,σ(iωn,Ki) from which the hybridization function nec-
essary for the next iteration can be obtained:

∆σ(iωn,Ki) = iωn + µ− G−1
loc,σ(iωn,Ki)− Σc,σ(iωn,Ki).

(5)

Substituting into the non-interacting Green’s function
Eq. 2, the next iteration of the DCA calculation begins.

Since the Green’s function is symmetric in spin, we
drop that index. We use the converged solution given
by the data compilation algorithm proposed in Ref. 58.
Since DCA is a coarse-grained method, the momentum
dependence of observables O are averaged over patches.
The Green’s function and the self-energy are constant
within each patch i. Dividing out the Brillouin zone into
six patches Ki, the symmetries of the triangular lattice
impose that O(K1) = O(K2) and O(K3) = O(K5). The
patches are identified on Fig. 1b).

C. Observables.

One of he important observables that we consider is
the local scattering rate Γ = 1/τ , where τ is the electron
lifetime. This quantity is extracted from the local self-
energy as

Γ = 1/τ = −Im

(
Nc∑
i

Σ(ω = 0,Ki)

)
. (6)

To obtain Σ(ω = 0,Ki), we perform the analytical con-
tinuation using a simple polynomial fit on the first three
Matsubara frequencies of ImΣ(iωn,Ki), and extrapolate
the polynomial to ω = 0. In Appendix B, we show how
the results are affected by the choice of polynomial or-
der. This kind of approximation does not give accurate
results at high temperatures, but it improves at low tem-
peratures where the Matsubara frequencies are closer.
For this reason, we limit ourselves to T lower than 0.2.
Also, due to the fermion sign problem and general low
acceptance rate at low temperature, it is practically im-
possible to reach T below 0.02. For a typical value of
hopping t in the cuprates of 0.3 eV, the range of tem-
perature achievable with DCA would then be approxi-
mately between 70K and 700K. In BEDT organics the
corresponding scales would be ten times smaller.

Here, we mostly focus on the electron scattering rate
given by Eq. 6 instead of the quasiparticle scattering rate
that would be obtained by multiplying Eq. 6 by the quasi-
particle renormalization factor Z. This is because, even if
the density of states presents a quasiparticle peak, some

suggest that the quasiparticle picture breaks down in the
strange metal66. We find that the exponent n for the
temperature dependence of the scattering rate does not
change significantly when comparing electron scattering
rate with quasiparticle scattering rate. There is however
a sizable change in the slope caused by Z.

III. RESULTS

We compute the scattering rate as a function of tem-
perature for various hole-dopings of the Mott insulator.
Doing this for many dopings, we build two temperature-
doping phase diagrams67 where we summarize the tem-
perature dependence of Γ = 1/τ by color-coding the
local exponent n obtained form a local fit of the form
1/τ = αTn + b on the data, as described in Appendix C.
We choose values of interaction U slightly higher the

critical value of U for the Mott transition at half-filling
(U ≈ 8.2 for T = 0.1558). The first diagram on Fig. 2a)
obtained at U = 8.4, focuses on the low doping behavior.
The second, presented on Fig. 2b) for U = 8.5, focuses on
high dopings. At low dopings, the value of U is chosen
slightly smaller because lowering U increases the aver-
age sign in the Monte-Carlo calculations and makes it
possible to converge in the pseudogap regime at slightly
lower temperatures. The scattering rates that we used to
draw these phase diagrams as a function of temperature
at U = 8.4 and U = 8.5 are displayed respectively on
Figs. 3 and 5.

The results between 10% and 15% hole doping in Fig.
2b) exhibit a T 1.5 dependence of the scattering rate, qual-
itatively different from that found in organics47,68 or in
cuprates9,10,22,24. Nevertheless, both doping regions il-
lustrated in Figs. 2a) and 2b) display T -linear scattering
rate for different ranges of temperature. Indeed, we find
1/τ ∼ T in Fig. 2a) for a wide range of temperature for
p near 0.06, while in Fig. 2b), we find T -linear scattering
for hole dopings between 0.2 and 0.3, from T ≈ 0.03 down
to the lowest temperature achievable. This leads us to
conclude that two different mechanisms are responsible
for the T -linear scattering rates.

In the following sections, we present the two differ-
ent regimes of T -linear scattering rate. In the first sec-
tion IIIA, we show that the low-doping T -linear scatter-
ing rate is deeply rooted in the existence of the Sordi
transition, the same pseudogap-metal first-order transi-
tion that is continuously connected to the Mott transition
as reported in Ref. 38. We thus use the name Mott-driven
T -linear scattering rate, even though superexchange also
plays a role in the Sordi transition, as can be argued from
the fact that single-site DMFT finds a direct insulator to
metal transition with doping69. Then, in section III B,
we show that interactions seem to be the sole driver of
the high doping T -linear scattering rate, thus the name
interaction-driven T -linear scattering rate.
Both regimes of T -linear scattering rate found in this

research share similarities with the strange metal phase



4

FIG. 2. a) Temperature-doping phase diagram of the local scattering rate, defined by Eq. (6), for U = 8.4. Color coding
represents the value of n obtained, as described in Appendix C, from a local fit of the form 1/τ = αTn+b of the scattering rate.
The dashed line between p = 0.04 and p = 0.06 represents the temperature where the scattering rate starts to fall rapidly with
temperature, whereas the one between p = 0.07 and p = 0.1 delimits the region where the scattering rate is proportional to
T 1.5. b) Corresponding data for U = 8.5 in the high-doping range. The dashed line between p = 0.15 and p = 0.18 represents
the temperature where we find a T 2 dependent scattering rate, whereas the one between p = 0.18 and p = 0.34 delimits the
region where we find T -linear scattering rate at high dopings. This region of linearity between p = 0.18 and p = 0.34 appears
very small on this figure because interpolation became difficult at lower temperature. Fig. 5 shows that the data extends to
T = 0.02 and continues to exhibit linearity. The temperature scale is fixed by taking t = 0.3eV, typical value for cuprates

1/τ ∼ T 1/τ ∼ T
as T → 0

1/τ ∼ T
as T → ∞

ω/T
scaling

Planckian
dissipation

Extended
range of
doping

Isotropic
scattering

rate

Mott-driven
(p ≈ 4% ∼ 6%) ✓ ✗ ✓ ✓ ✗ ✓ ✗

Interaction-
driven (p ≈
20% ∼ 30%) ✓ ✗ ✗ ✗ ✓ ✓ ✓

TABLE I. Table summarizing the similarities and differences between the usual strange metal, whose properties appear on the
top row, and the two T -linear scattering rate regimes in this paper, namely Mott-driven and interaction-driven.

found in cuprates. A list of these similarities can be found
in table II C. However, since both regimes have T -linear
scattering rates that extrapolate to negative values at
T = 0, we know that the T -linear scattering rate cannot
be sustained at T → 0. Because of this, we do not use the
term strange metal to describe our findings. We instead
use T -linear scattering rate.

A. Mott-Driven T -linear scattering rate

Fig. 2a) displays the first region where we find T -linear
scattering, what we call the Mott-driven T -linear scat-

tering rate. This region spans a large area of the phase
diagram, and goes down to the lowest temperatures near
p = 0.065. A clearer picture emerges from Fig. 3, where
we present the scattering rate as a function of tempera-
ture and doping for the first, second and third patches70.
At p = 0.06, we see in Fig. 2a) and Fig. 3 that T -linear
scattering rate ranges from the lowest achievable tem-
peratures to around T = 0.2. There is a slight deviation
from the T -linear regime seen in Fig. 2a) for T ≈ 0.08.
The raw data for the scattering rate at p = 0.06 in Fig. 3,
shows that this deviation from the T -linearity is barely
noticeable. A similar deviation from T -linear scattering
is also found in LSCO10. Moreover, the scattering rate in
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this T -linear scattering rate region is not isotropic. Since
our model does not include phonons, the T -linear scat-
tering found at high temperature near p = 0.06 is not a
result of electron-phonon scattering at T > TD.

From Fig. 2a) at U = 8.4 and from the scattering rates
on Fig. 3, one observes that the T -linear scattering rate
at low temperature is only present for dopings near p =
0.06. The deviation from linearity between T = 0.12 and
T = 0.18 is very small. Dopings lower than p = 0.04
are shown only in Fig. 3. There one finds an upturn in
the scattering rate. This upturn in characteristic of the
pseudogap phase. On the other hand, when p increases,
we find, at low-T , a T 1.5 scattering rate. Since the low-
doping T -linear scattering rate occurs at low temperature
only for a very specific doping, it is likely to arise from
a quantum-critical point. For U = 8.4, this quantum-
critical point would be located near p∗ = 0.06.

As stated earlier, ω/T scaling is usually associated with
quantum criticality, but here we do not find it at p∗ ∼
0.06. The procedure to check for ω/T is explained in
Appendix D. We find, ω/T scaling only at p = 0.04 for
U = 8.4, and at p = 0.05 for U = 8.5. For both values of
U , this scaling is found only for the first and third patches
in a regime where the scattering rate is not linear in T
at low temperature. From Figs. 3 and 5 one can verify
that the scattering rate at these two dopings are very
similar. Indeed, in both cases, there is a downturn of the
scattering rate around T = 0.05 for the first and third
patches.

To clarify the origin of the quantum critical point and
of ω/T scaling, consider in Fig. 4 how doping varies as a
function of chemical potential µ at U = 8.4 and T = 0.05.
There is a first-order transition with coexistence between
a pseudogap at p = 0.02 and a metal p = 0.04. This can
be verified from the density of states computed on both
sides of the phase transition with the maximum entropy
method, as illustrated on the bottom row of the figure.
The loss of spectral weight near the Fermi level is clear
on the left plot while the quasiparticle peak is clear on
the right plot58. There is also a first-order transition on
the electron-doped side around x = 0.02, as shown on
the top plot of Fig 4. The inset of that figure shows the
local scattering rate 1/τ(T ) at U = 8.4 for both x =
0.02 and p = 0.04. On the electron-doped side, just like
on the hole-doped side, there is a downturn in 1/τ near
T = 0.05. This suggests that this downturn in 1/τ(T ) is
intrinsic to the proximity of the first-order transition.

In the case of the square lattice37,38, the analog of
the first-order Sordi transition that we just discussed
is continuously connected to the Mott transition. The
first-order Sordi transition on the triangular lattice be-
haves similarly39. In particular, there should be a finite-
temperature critical point. In addition, the Mott transi-
tion has a quantum-critical point at the end of a coexis-
tence region15,71 leading us to suggest that the quantum
critical point that we see at p∗ = 0.06 on the triangular
lattice has a similar origin.

Back to ω/T scaling. For both p = 0.04 and x =

0.02, there is range of ω/T scaling of the self-energy
that breaks down at temperatures below T ∼ 0.05 for
p = 0.04, and below T ∼ 0.07 for x = 0.02. These are
the temperatures where the behaviour of the scattering
rate in Fig. 4 changes drastically. For the hole-doped
case, the critical point of the Sordi transition appears
to be near that T = 0.05 , while it seems to be at a
slightly higher temperature for the electron-doped case
72. Thus, the ω/T scaling appears to emerge from the
finite-temperature critical point of the Sordi transition.

B. Interaction Driven T -Linear Scattering Rate

Before we discuss T-linear scattering, we point out
that there is an unusual region in the high doping phase
diagram Fig. 2b located between 0.15 and 0.2 doping.
Indeed, there we find a T 2 dependence of the scattering
rate, a result usually associated to a Fermi liquid. How-
ever, because Fermi liquids are usually found at higher
dopings and at lower temperature, we suggest that this
T 2 dependence is only an artifact of the cluster that
we use. Indeed, in a six-site cluster, an occupation of
n = 5/6 (p = 0.17) means an odd number of electrons
in the cluster. An odd number of electrons increases the
entropy, as seen in Ref. (73), which may be the reason
why the Mott transition is pushed to higher U , as seen
in Refs. (73) and (58). Imagine then a situation at some
fixed U . An odd number of electrons would make inter-
actions less effective because the Mott transition would
occur at larger U and because one of the electrons could
not form a singlet. This would favour phases such as
Fermi liquids instead of other highly correlated phases.
Let us move to T -linear scattering at large doping. It

is seen in Fig. 2b) below T ∼ 0.03, for p between 0.18
and 0.34. For higher temperatures, the exponent n in-
creases. It is remarkable that the slope of the T -linear
scattering has been found experimentally10 to satisfy the
relation ℏ/τ = αkBT with α ∼ 1. Setting aside the
difference between transport scattering time and single-
particle scattering time, we note that the value of α is
often found experimentally using the Drude formula.

τquasi =
m∗

ne2ρ
(7)

with m∗ instead of m. In that case the resulting scatter-
ing time is the quasiparticle scattering time74. In order
to compare with our results then, the electron scatter-
ing rate −ImΣ(ω = 0) must be multiplied by the quasi-
particle weight Z, which is obtained from the following
relation75

Z =

(
1− ∂Σ′(ω)

∂ω

∣∣∣∣
ω→0

)−1

(8)

≈

(
1− ImΣ(ωn)

ωn

∣∣∣∣
ωn=0

)−1

. (9)
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FIG. 3. Scattering rate as a function of temperature for hole dopings between p = 0.023 and p = 0.08 at U = 8.4 for the zeroth,
first and third patches of the triangular lattice in Fig. 1b). The temperature scale is fixed by taking t = 0.3eV, typical of the
numbers for cuprates.

FIG. 4. On top, electron doping x and hole doping p as a func-
tion of the chemical potential µ at T = 1/20 and U = 8.4.
The inset presents the local scattering rate as a function of
temperature for p = 0.04 (red star) and x = 0.02 (blue star).
The scattering rate at p = 0.04 is larger than at x = 0.02.
Above the position of the star, the temperature dependencies
are similar. To illustrate the first-order transition, the bot-
tom row of the plot shows the density of states for the same
chemical potential and two coexisting dopings, p = 0.025 and
p = 0.04, showing a pseudogap in the first case and a quasi-
particle peak in the second case.

The local quasiparticle scattering rate at U = 8.5 as a
function of temperature is displayed in Fig. 6. The in-
set shows a clear linear temperature dependence at low
temperature with α = 0.98 ± 0.03, very close to unity,
similarly to the square lattice12. Thus, the interaction-
driven T -linear scattering rate found in the triangular
lattice also displays Planckian dissipation. Geometrical
frustration then, does not seem to affect the value of α
at high doping. Note that the value of Z is about equal
to 1/3 for the data in the inset of Fig. 6. The unrenor-
malized data is in Fig. 5.
Another characteristic of strange metals is that their

self-energy scales with ω/T 12,66. This type of scaling is
often related to quantum criticality. Here, we do not find
ω/T scaling. This further asserts the idea that quantum
criticality is not responsible for the Planckian dissipation
that we see in the high-doping range. We further com-
ment on scaling in Appendix D.
In order to find the origin of Planckian dissipation, the

value of U was lowered to see if it would survive. The
scattering rates as a function of temperature at p = 0.25
for both U = 6 and U = 8.5 are presented on Fig. 6. We
see that at lower U , the T -linear scattering rate is re-
placed by a T 2 scattering rate76. This could be expected
from an increase in the coherence temperature when U
is decreased.

IV. DISCUSSION

Research on the triangular Hubbard model allows to
discriminate the effect of long- vs short-range AFM fluc-
tuations. Finding T -linear scattering rate in this model
shows that only short-range fluctuations are important,
particularly since many studies do not find magnetic or-
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FIG. 5. Scattering rate as a function of temperature for a large range of dopings at U = 8.5 for the zeroth, first and third
patches of the triangular lattice in Fig. 1b). A linear fit on the scattering rate as a function of temperature is presented for
hole doping between p = 0.05 and p = 0.45. For p = 0.5, the linear fit is done for T > 0.2. The temperature scale is fixed by
taking t = 0.3eV, typical of the numbers for cuprates.

FIG. 6. Local quasiparticle scattering rate as a function of
temperature at p = 25% and U = 8.5. A linear fit is per-
formed for temperature between T = 0.02 and T = 0.03 in
the inset. The value of α obtained with this fit is presented in
the inset. For T > 1/15, the slope α increases to 1.89± 0.01.
On the other hand, the electron scattering rate 1/τ has a
slope α = 3.48± 10 for T < 0.3.

dering at half filling in the range of interaction strength
we studied40–46.

Strange metallicity is defined by T -linear scattering
rate for T → 0. It is usually associated to a quantum
critical point at p∗66,77. Fig. 5 shows that linear fits of
the scattering rate as a function of temperature extrap-
olate to negative values of 1/τ at T = 0 for all dopings.
Thus, T -linear scattering rate has to disappear at T > 0.
The sign problem prevents us to go to low enough tem-
perature to observe that.

As U increases, the finite-temperature critical point of
the Sordi transition moves to lower temperature38. It
may eventually reach zero temperature, in which case it
would turn into a quantum critical point and there would
be no downturn of the scattering rate. The scattering
rate 1/τ would likely extend all the way to T → 0. An
analogous quantum-critical point is found at T = 0 in
the two orbital Hubbard model with Hund coupling78.
That the interaction-driven T -linear scattering rate is

found for a wide range of dopings, 0.18 < p < 0.34, sug-
gests that it does not emerge from a quantum-critical
point. This is supported by the lack of ω/T scaling. The
extrapolation of the linear behavior to negative temper-
atures at T = 0 suggests instead a crossover from linear
to Fermi liquid T 2 at a temperature lower than what is
computationally achievable with DCA. Such a crossover
is visible at U = 6 in Fig. 6. The crossover temperature
decreases as U increases.
Note that the interaction-driven T -linear scattering

rate that we find here is similar to what is found on the
8-site square lattice with DCA where, however, ω/T scal-
ing was found at one doping and connected to the effect
of spin fluctuations12.
Since ω/T scaling is not found in the interaction-

driven T -linear scattering rate, we look for other
possible scalings. We find in Appendix D that
Im (Σ(iωn),K3) / (ImΣ(iωn = 0,K3)) scales like ω/T z,
where z varies between 2 and 2.3 depending on the dop-
ing and the patch. This type of scaling of the self-energy
is different to what is expected from both Fermi liquid
theory, where −ImΣ ∼ ω2 + T 2, and quantum-critical
strange metals. The scaling encountered in this T -linear
scattering rate region is also dimensionful, which means
that it is non-universal. We do not have any explanation
for this type of scaling.
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A brief comparison with cuprates: We saw that the
interaction-driven T -linear scattering rate is lost at tem-
peratures higher than T ∼ 0.03 where the exponent of
the T dependence increases. This kind of deviation from
T -linear scattering rate is commonly found in LCCO,
PCCO, Nd-LSCO and Bi221222,79. Even though a direct
comparison with cuprates is not warranted, we mention
that the temperature at which the T -linear scattering
rate is lost on the triangular lattice (T ∼ 150K) is similar
to what is found in Nd-LSCO and Bi2212 (T ∼ 120K)22.
Also, as in cuprates, the scattering rate in the interaction-
driven T -linear scattering rate region is near isotropic
. Note that the cuprate measurements, however, were
done close to a van Hove singularity23. Another similar-
ity between the strange metal found in cuprates and the
interaction-driven T -linear scattering rate is that both
display Planckian dissipation. This means that geomet-
rical frustration does not change the slope. Moreover,
Fig. 6 shows that T -linear scattering rate disappears at
low U . Thus, Planckian dissipation occurs when interac-
tions are sufficiently strong, with no obvious other expla-
nations.

There are important differences between what is found
here on the triangular lattice and what is found in
cuprates like LSCO. Cuprates have a T -linear scatter-
ing rate on a wide range of dopings like we find, but
linearity extends down to T → 0 on the entire range of
dopings10. Moreover, they exhibit ω/T scaling for dop-
ings away from p∗80.
In real materials like cuprates, the effect of disor-

der may be important for observing linear in T scatter-
ing rate, as emphasized in quantum-critical models81,82,
in SYK models83 or much earlier in Boltzmann trans-
port84,85. In the latter case, Rosch84 pointed out that dis-
order may invalidate the Hlubina-Rice argument85 that
Fermi-liquid like regions of the Fermi surface with T 2

scattering rate would short-circuit hot-spots with T scat-
tering rate. With disorder, the Hlubina-Rice argument
can indeed be invalid. Using a caricature to account for
an elastic scattering rate Γ0 with Mathiessen’s rule, one
finds that as T approaches zero, Γ0 becomes larger than
T 2 faster than it becomes larger than T . The effect of
disorder on scattering rate remains to be studied with
DCA.

V. CONCLUSION

We used DCA with the CT-AUX impurity solver
to study T -linear scattering rate in the hole-doped
triangular-lattice Hubbard model. We find that the
phase diagram displays two metallic regions with linear
in T scattering rates. The first one, that we call Mott-
driven, is found for low dopings near the Sordi transition.
This T -linear scattering rate has ω/T scaling and emerges
from a single doping p∗ ∼ 0.06. The second T -linear
scattering rate region, that we call interaction-driven T -
linear scattering rate, has no ω/T scaling and is found

for a wide range of dopings. It does not emerge from a
quantum-critical point. The linear fits of the scattering
rate as a function of temperature extrapolate to negative
value of 1/τ at T = 0, which suggests a crossover to a
Fermi liquid regime at a temperature lower than what is
actually possible to achieve because of the sign problem.
Although it does not have a quantum critical point, we
found Planckian dissipation in this regime of interaction-
driven T -linear scattering rate at p = 0.25.

This study is the first to report that there might be
two different regimes for T -linear scattering in strongly
correlated materials. Although we never claimed that
we found a strange metal, oddly enough if one com-
bines all characteristics of both regimes, almost every
property pertaining to the strange metallic phase is re-
trieved. If what we have found is indeed related to the
strange metal, it could mean that the usually observed
strange metal is driven by two different mechanisms. Fu-
ture studies should verify how the two T -linear scatter-
ing rates are displaced on the doping axis in the case
of the anisotropic triangular lattice and whether the two
regimes combine to give a strange metal.

VI. ACKNOWLEDGEMENTS

Useful discussions with P.A. Graham, L. Taillefer and
G. Grissonnanche are acknowledged. This work has been
supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) under grant RGPIN-
2019-05312 and by the Canada First Research Excellence
Fund. The calculation resources were provided by Calcul-
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Appendix A: 12 sites DCA

To verify the accuracy of our results, the scattering
rate as a function of temperature with a 12 site bipartite
cluster was computed with DCA for the two values U =
8.4 and U = 8.5. The results obtained for U = 8.5 are
presented at Fig. 7. The 12-site bipartite-cluster results
are very similar to those of the 6-site cluster for high
dopings. At lower dopings, it is not the case anymore.

One can understand why by looking at Fig. 8. Results
for the Widom line indicate that the Mott transition is at
larger U in the 12-site cluster. With the Mott transition
for the 12-site cluster at much larger U , effects from the
Sordi transition on the scattering rate do not appear at
low doping. Hence, we should not expect results at low
dopings to be the same for both of those clusters. Fur-
thermore,because of the sign problem, it is impossible to
get accurate results below β = 11 on the 12-site cluster,
which means that it is not possible to verify our results
at the lowest temperatures.
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FIG. 7. Local scattering rate as a function of temperature for
U = 8.5 and three dopings, p = 0.05, p = 0.1 and p = 0.25,
for the six-site bipartite cluster in blue and the twelve-site
bipartite cluster in red.

Appendix B: Polynomial fit on first Matsubara
frequencies

Much of the literature uses a polynomial fit on the first
Matsubara frequencies to find the approximate value of
a given observable at ω = 0. This is usually a good
approximation12. Testing and comparing low frequency
results from such techniques, we conclude that the best
polynomial fit is of order three.

We also compared with maximum-entropy analytic
continuation87 and with a second degree least-square re-
gression on the first six Matsubara frequencies. The re-
sults for the second degree least-square regression are in
concordance with the second degree polynomial fit. Al-
though the results at order 4 better fit the maximum-
entropy technique, as seen on Fig. 9, it is prone to small
errors in the input observables. Since the shape of the
final fit does not change much, this indicates that the
results given in the article are valid.

1. Planckian dissipation

The slope of the scattering rate as a function of tem-
perature decreases when the order of the polynomial fit
increases. To verify if the quasiparticle scattering rate is
still Planckian with higher-order polynomial fits of the

FIG. 8. Mott transition and Widom line for six-site and
twelve-site clusters of the triangular lattice. The dotted line
corresponds to the Widom line86, a crossover. The solid lines
correspond to Uc1 and Uc2 for the Mott transitions, and the
dashed line corresponds to Uc3.

FIG. 9. Local scattering rate (-ImΣ(ω = 0)) as a function
of temperature T for p = 0.25 and U = 8.5 obtained from
the Matsubara self-energy using polynomial fits of different
orders. Also shown is a second order least-square regression
on the first six Matsubara frequencies and ImΣ(ω = 0) ob-
tained with the MaxEnt method OmegaMaxEnt87. The inset
displays the imaginary part of the self-energy as a function of
the Matsubara frequencies for T = 0.02, p = 0.25 and U = 8.5

self-energy, the slope of the quasiparticle scattering rate
as a function of temperature was computed for polyno-
mial fits of higher order. We find slopes α = 0.87± 0.04
and α = 0.78 ± 0.02 with polynomial fits of order four
and five respectively. These values of α are still within
the slope found experimentally in materials displaying
Planckian behaviour22. Thus, even if the slope of the
quasiparticle scattering rate depends on the order of the
polynomial fit on the Matsubara frequencies, we find that
the α obtained remains close to the Planckian rate α = 1
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FIG. 10. Raw data for the temperature-doping phase diagram
Fig. 2a) of the local scattering rate for U = 8.4. The value
of n obtained from a fit of the form 1/τ = αTn + b of the
local scattering rate is color coded and interpolated to obtain
Fig. 2a).

in the interaction-driven T -linear scattering rate.
One should note that the results at ω = 0 from the

maximum entropy analytic continuation are not very sta-
ble in temperature, so we did not push our analysis fur-
ther for this.

Appendix C: Phase Diagram

To obtain the phase diagrams in Fig. 2, the scattering
rate as a function of temperature for the different dop-
ings were fitted using Legendre polynomials of degree 7.
Then, a fit of the form aTn + b was performed on each
group of 10 points of the Legendre fit to obtain the lo-
cal value of n as a function of temperature and doping.
The values of n were then interpolated on a meshgrid
to obtain Fig. 2. The non-interpolated values of n are
presented on Fig. 10. At low dopings and low tempera-
ture, the scattering rate could not be fitted with the form
aTn + b, hence the absence of points. Different orders of
the Legendre polynomial and number of points for the fits
were tested to make sure that the values of n color coded
on the figure were independent of these parameters.

Appendix D: ω/T scaling

Most strange metals have an optical conductivity that
scales like ω/T so in our case we expect a self-energy
that has the form −ImΣ(iωn, T ) = λT νΦ( iωn

T ), where λ

is some constant and Φ is a function of iωn/T
35,66. The

ω/T scaling is then obtained from analytic continuation
iωn → ω+ iη. This type of scaling is normally associated
with quantum-critical points.
We can verify whether our data follows iωn/T scaling

by computing ImΣ(iωn, T )/ImΣ(iωn = 0, T ) that should

FIG. 11. Im (Σ(iωn),K1) / (ImΣ(iωn = 0),K1) as a function
of ωn/T for temperatures where a T-linear scattering rate
is found at p = 0.25. Only the small values of ωn/T are
displayed in order to verify the ω/T scaling.

then scale as Φ( iωn

T )/Φ(0). There are two regimes of
doping with linear in T scattering. Let us begin with
the large doping regime. There is T-linear scattering
rate for p = 0.25 and T < 1

33 . The above ratio as a
function of iωn/T is presented on Fig. 11 for the first
patch. We find that the self-energy for all patches in this
interaction-driven T -linear scattering rate does not dis-
play ω/T scaling. The absence of ω/T scaling, along with
the existence of Planckian dissipation for a large range
of dopings, leads us to conclude that T -linear scattering
here does not emerge from quantum criticality.
There is however a finite temperature critical point

at p = 0.04 for U = 8.4. Σ(iωn, T )/Σ(iωn = 0, T )
as a function of iωn/T for this doping is presented at
Fig. 12. We see that, for temperatures higher than the
finite-temperature of the critical point, the Mott-driven
T -linear scattering rate displays ω/T scaling.
To find out whether there is a different scaling of the

self-energy in the interaction-driven T -linear scattering
we computed Σ(iωn, T )/Σ(iωn = 0, T ) as a function of
ω/T z. The value of z was varied until each temperature
has the same scaling of Σ(iωn, T )/Σ(iωn = 0, T ) at low
Matsubara frequency. We find ω/T 2.3 scaling, as shown
in Fig. 13.
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FIG. 12. Im (Σ(iωn,K1))/ (ImΣ(iωn = 0,K1)) as a function
of ωn/T for temperatures where a T-linear scattering rate is
found at p = 0.04 and U = 8.4. Only the small values of
ωn/T are displayed in order to verify the ω/T scaling.

FIG. 13. Im (Σ(iωn),K3) / (ImΣ(iωn = 0,K3)) as a function
of ωn/T

2.3 for different temperatures for doping p = 0.25.
The insert shows the low-temperature scaling.
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M. Lizaire, B. Vignolle, D. Vignolles, H. Raffy, Z. Z. Li,
P. Auban-Senzier, N. Doiron-Leyraud, P. Fournier, D. Col-
son, L. Taillefer, and C. Proust, “Universal T-linear resis-
tivity and Planckian dissipation in overdoped cuprates,”
Nature Physics 15, 142–147 (2019).
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Berović, Adriano Amaricci, Massimo Capone, Lorenzo
De Leo, Giorgio Sangiovanni, and Luca de’ Medici, “Mott
quantum critical points at finite doping,” Phys. Rev. Lett.
130, 066401 (2023).

79 Tarapada Sarkar, P. R. Mandal, J. S. Higgins, Yi Zhao, He-
shan Yu, Kui Jin, and Richard L. Greene, “Fermi surface
reconstruction and anomalous low-temperature resistivity
in electron-doped L a 2−x C ex Cu O 4,” Physical Review
B 96, 155449 (2017).

80 Bastien Michon, Christophe Berthod, Carl Willem
Rischau, Amirreza Ataei, Lu Chen, Seiki Komiya, Shimpei
Ono, Louis Taillefer, Dirk Van Der Marel, and Antoine
Georges, “Reconciling scaling of the optical conductivity
of cuprate superconductors with Planckian resistivity and
specific heat,” Nature Communications 14, 3033 (2023).

81 Aavishkar A. Patel, Haoyu Guo, Ilya Esterlis, and Subir
Sachdev, “Universal theory of strange metals from spa-
tially random interactions,” Science 381, 790–793 (2023).

82 Aavishkar A. Patel, Peter Lunts, and Subir Sachdev,
“Strong disorder and transport in strange metals,” (2023),

arXiv:2312.06751 [cond-mat].
83 Subir Sachdev, “Quantum statistical mechanics of the

sachdev-ye-kitaev model and strange metals,” (2023),
arXiv:2305.01001 [cond-mat.str-el].

84 A. Rosch, “Interplay of Disorder and Spin Fluctuations in
the Resistivity near a Quantum Critical Point,” Physical
Review Letters 82, 4280–4283 (1999).

85 R. Hlubina and T. M. Rice, “Resistivity as a function of
temperature for models with hot spots on the Fermi sur-
face,” Physical Review B 51, 9253–9260 (1995).

86 G Sordi, P Sémon, Kristjan Haule, and A-MS Tremblay,
“Pseudogap temperature as a widom line in doped mott
insulators,” Scientific reports 2, 547 (2012).

87 Dominic Bergeron and A.-M. S. Tremblay, “Algorithms for
optimized maximum entropy and diagnostic tools for ana-
lytic continuation,” Physical Review E 94, 023303 (2016).

88 Pierre-Olivier Downey, “L’effet Des Fluctuations à Courte
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