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Abstract

Whenever invertible generative networks are needed for LHC physics, normalizing flows
show excellent performance. A challenge is their scaling to high-dimensional phase
spaces. We investigate their performance for fast calorimeter shower simulations with
increasing phase space dimension. In addition to the standard architecture we also em-
ploy a VAE to compress the dimensionality. Our study provides benchmarks for invertible
networks applied to the CaloChallenge.
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1 Introduction

Simulations are a defining aspect of LHC physics, bridging experiment and fundamental theory
and allowing for a proper interpretation of LHC measurements [1, 2]. The simulation chain
starts from the hard interaction at the scattering vertex, and progresses through the radiation
of soft particles, the decay of heavy, unstable particles, hadronization of colored states, and
subsequent interaction of all particles in the event with the detector. In the development of
LHC as a precision-hadron collider, the last step has become a major bottleneck in speed and
precision, in particular the reproduction of the detailed interactions of incident and secondary
particles within the calorimeters. Generating these calorimeter showers with GEANT4 [3–5],
based on first principles, takes a substantial amount of the LHC computing budget. Without sig-
nificant progress, simulations will be the limiting factor for all analyses at the high-luminosity
upgrade of the LHC.

One development driving faster LHC simulations is the advent of deep generative networks.
Such networks have shown great promise for LHC physics in the past few years, providing fast
and accurate surrogates for simulations in high-dimensional phase spaces [6]. They learn the
underlying probability distribution of events or calorimeter showers from a reference dataset
and then generate new samples based on this learned distribution [7,8]. We have seen success-
ful applications to all steps in the simulation chain [2], phase space integration [9–19]; parton
showers [20–27]; hadronization [28–31]; detector simulations [32–61]; and end-to-end event
generation [62–68].

For LHC physics, it is crucial that these networks are not used as black boxes, but their
performance can be investigated, understood, and improved systematically [67,69–73]. This
is especially important when their conditional counterparts are used for inference [74–76],
probabilistic unfolding [77–86], or anomaly detection [87–92].

In this paper, we will focus on the problem of building fast and accurate surrogate models
for calorimeter shower simulation, using the technology of normalizing flows. We have seen
in a number of contexts that normalizing flows are a promising technique for fast calorimeter
simulation [41, 43, 49, 73], but there are also major challenges with scaling them up to more
granular (higher-dimensional) calorimeters [50, 51, 56, 61]. These challenges are especially
interesting because recently, continuous-time generative models (diffusion models and con-
tinuous normalizing flows trained with flow-matching) have entered LHC physics [25–27,47,
55,57,58,68,72,76,93–95] and show impressive performance which is not as limited by the
dimensionality of the data. However, their gain in expressivity comes at the expense of slower
generation, leading to an interesting trade-off between speed and quality of generated events
or showers.

Here, we will build on previous works [50, 51, 56, 61] attempting to scale up normaliz-
ing flows to higher-granularity calorimeters. Focusing on the datasets [96–99] of the Fast
Calorimeter Simulation Challenge [100], we will tackle this problem in two ways.
• First, we will show how impressive gains in both speed and accuracy can be achieved by

switching from the fully-autoregressive flows of [41,43,49,51,56] to flows based on cou-
pling layers [101–103] which are equally fast in the sampling and density estimation direc-
tions. Following the terminology of [104,105], we will refer to coupling-layer based flows
as invertible neural networks (INNs) throughout this work. Using the INN framework, we
are able to obtain state-of-the-art results on dataset 1 (pions and photons) and dataset 2 of
the CaloChallenge.

• Second, to reach the dimensionality of dataset 3, we will combine the INN framework with
a VAE. Similar to the approaches of [50] and [106], we will train the INN on the (much
lower-dimensional) latent space of a VAE fit to the showers of dataset 3. Then sampling
from the INN and passing this through the decoder of the VAE, we will obtain a surrogate
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model for dataset 3. We will see that the results here, while not state-of-the-art in terms of
quality, are very fast to generate, so could fill out another point in the Pareto frontier of fast
calorimeter shower simulation.
The paper starts by introducing the CaloChallenge datasets in Sec. 2. In Sec. 3 we intro-

duce our fast INN version [104,105] of a normalizing flow, as well as a VAE+INN combination.
In Sec. 4 we discuss their performance on the different dataset, with increasing phase space
dimensionality and including learned classifier weights. We conclude and provide timing infor-
mation in Sec. 5. In the Appendices we provide details on the different network architectures
and hyperparameters and compare the INN performance to CaloFlow.

2 Datasets

We use the public datasets [96–99] of the Fast Calorimeter Simulation Challenge [100]. They
consist of showers simulated with GEANT4 for different incident particles. The general ge-
ometry is the same across all datasets: the detector volume is segmented into layers in the
direction of the incoming particle. Each layer is segmented along polar coordinates in radial
(r) and angular (α) bins. A shower is given as the incident energy of the incoming particle
and the energy depositions in each voxel.

Dataset 1 (DS1) provides calorimeter showers for central photons and charged pions. They
have been used in ATLFAST3 [42]. The voxelizations of the 5 photon layers and 7 pion layers
in radial and angular bins (nr × nα) are

photons 8× 1, 16× 10, 19× 10, 5× 1, 5× 1

pions 8× 1, 10× 10, 10× 10, 5× 1, 15× 10, 16× 10, 10× 1 (1)

This gives 368 voxels for photons and 533 voxels for pions. The incoming particles are sim-
ulated for 15 different incident energies Einc = 256 MeV ... 4.2 TeV, increasing by factors of
two, with the sample sizes given in Tab. 1. The original ATLAS dataset does not require an
energy threshold. The effect of a threshold on the shower distributions at the detector cell
level requires further studies. We require Emin = 1 MeV to all generated voxels, motivated
by the readout threshold of the calorimeter cells and the fact that photon showers require a
minimum cell energy of 10 MeV to cluster and pion showers start clustering at 300 MeV [107].

Datasets 2 and 3 (DS2/3) are not modeled after existing detectors. They assume 45 lay-
ers of active silicon detector (thickness 0.3 mm), alternating with inactive tungsten absorber
layers (thickness 1.4 mm) at η= 0. Each dataset contains 100,000 GEANT4 positron showers
with log-uniform Einc = 1 ... 1000 GeV. The only difference between the two datasets is the
voxelization. In dataset 2, each layer is divided into 16×9 angular and radial voxels, defining
6480 voxels in total. Dataset 3 uses 50 × 18 voxels per layer or 40,500 voxels in total. The
minimal recorded energy per voxel for these two datasets is 15.15 keV.

Einc 256 MeV ... 131 GeV 256 GeV 0.512 GeV 1.04 TeV 2.1 TeV 4.2 TeV

photons 10000 per energy 10000 5000 3000 2000 1000
pions 10000 per energy 9800 5000 3000 2000 1000

Table 1: Sample sizes for different incident energies in dataset 1.
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3 CaloINN

We study two different network architectures. First, we benchmark a standard INN and demon-
strate its precision and generation speed especially for low-dimensional phase space. Second,
we embed this INN in a VAE, with the goal of describing datasets 2 and 3 with the same physics
content, but a much larger phase space dimensionality.

3.1 INN

Normalizing flows describe bijective mappings between a (Gaussian) latent space r and the
physical phase space x ,

platent(r)
Gθ (r)→
←−−−−−→
← Gθ (x)

pmodel(x)∼ pdata(x) . (2)

Gθ (x) denotes the inverse transformation to Gθ (r). The INN variant [104,105] of normalizing
flows is completely symmetric in the two directions. After training the network, pdata(x)∼ pmodel(x),
we use the INN to sample pmodel(x) from platent(r) [6].

The building block of our INN architecture is the coupling layer [101–103]. We replace
the standard affine layer by a more expressive spline transformation. We use different spline
transformations, depending on speed and expressivity. For datasets 1, we employ a rational
quadratic spline [108], while for dataset 2 we use a cubic spline [109]. All INN hyperparam-
eters are given in Tab 3.

The INN is implemented using the FREIA§ package [110], and is trained with a likelihood
loss,

LINN = −
¬

log pmodel(x)
¶

pdata
= −
�

log platent

�

Gθ (x)
�

+ log

�

�

�

�

∂ Gθ (x)
∂ x

�

�

�

�

�

pdata

. (3)

The first term ensures that the latent representation remains Gaussian, while the second term
constructs the correct transformation to the phase space distribution. Given the structure of
Gθ (x) and the latent distribution platent, both terms can be computed efficiently.

As a noteworthy preprocessing we normalize each shower to the layer energy. The energy
information is encoded as

u0 =

∑

i Ei

Einc
and ui =

Ei
∑

j≥i E j
, (4)

in terms of the energy depositions per layer Ei . The ui are appended to the list of voxels for
each shower. We do not explore a separate training for the energy and the voxel dimensions
which would simplify the learning process of the energy dimensions. We train the INN on
the full data, conditioned on the logarithm of the incident energies. Unlike, for instance,
CaloFlow [43,49,56]we train a single network without any distillation. We provide the details
of the preprocessing in App. A.

3.2 VAE+INN

The problem with the INN is the scaling towards dataset 3 with its high-dimensional phase
space of 40k voxels. To solve this scaling problem we introduce an additional VAE to reduce
the dimensionality of the INN mapping. Differently from [50], we do not estimate the dimen-
sionality of the manifold but rather optimize the reconstruction of the VAE while keeping a

§We provide the code in a Github repository at https://github.com/heidelberg-hepml/CaloINN
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low-dimensional latent space. The VAE consists of a preprocessing block, an encoder-decoder
combination, and a postprocessing block. Both, the decoder and the encoder are conditioned
on the incident energies and additional energy variables. Therefore, we compress normal-
ized showers in the latent space and jointly learn the energy and the latent variables with the
INN. During generation, the INN samples into the latent space of the VAE, and the VAE de-
coder translates this information to the shower phase space. We set the latent space to 50 for
dataset 1 and dataset 2, and to 300 for dataset 3. Other specifics of the network are different
in the three datasets and are provided in App. A.

The goal of our standard βVAE is to learn to reconstruct the input data. We assume a
Gaussian distribution for the encoder network E(z|x). The VAE loss for the compression is

L= LBCE + βDKL[E(z|x), platent(z)] , (5)

with the usual binary cross entropy loss and the Gaussian prior. For a Gaussian encoder the
KL-divergence can be computed analytically, and the coupling strength is β = 10−9.

For the decoder we use a Bernoulli likelihood, because it outperforms for example its Gaus-
sian counterpart. The Gaussian decoder does not model the shower geometry well, and it
under-populates the low-energy regions. The continuous Bernoulli distribution [111] leads to
instabilities, as the average energy deposition in the normalized space is close to zero. We use
a Bernoulli decoder,

D(x |λ(z)) = λ(z)x(1−λ(z))1−x , (6)

defining the combined VAE loss

LVAE =

�

¬

x logλ+ (1− x) log (1−λ)
¶

z∼E(z|x)
+ β
�

1+ logσ2
E −µ

2
E −σ

2
E

�

�

x∼pdata

. (7)

Because the Bernoulli distribution gives a binary probability we use its continuous mean λ as
the prediction for the individual voxels.

The remaining differences between the unit-Gauss prior in the latent space and the encoder
are mapped by the INN. Applying a 2-step training we first train the VAE and then train the
INN given the learned latent space. This means we pass the encoder means and the standard
deviations, as well as the energy variables to the INN. The INN is trained as described above,
mapping the latent representation of the VAE to a standard Gaussian. As for the full INN, the
energy information is encoded following Eq (4) and learned by the latent flow. Both encoder
and decoder of the VAE are conditioned to these variables.

For the larger datasets 2 and 3, we employ a mixture of a convolutional and a fully con-
nected VAE. Our assumption is that the calorimeter layers do not require a full correlation, so
we can simplify the structure by compressing consecutive layers jointly in a first-step compres-
sion. We use an architecture with fully connected sub-blocks, resembling a kernel architecture
with a kernel size k (number of jointly encoded calorimeter layers) and a stride s (distance
between two neighboring kernel blocks). After this first compression we concatenate these
latent sub-spaces and compress them a second time into our final latent space. For the decod-
ing we reverse this two-step structure. The overlapping regions of the fully connected kernel
blocks are summed over.

4 Results

The main physics reason for specific shower features is the incident energy. Low-energy show-
ers will interact with only a few layers of the calorimeter and quickly widen, leading to a broad
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center-of-energy distribution in earlier calorimeter layers and a high sparsity in the given vox-
elization. High-energy showers penetrate the calorimeter more deeply. They will be collimated
in the initial layers and have low sparsity since each shower is likely to deposit energy in each
voxel.

To see if the ML-learned showers reflect these physics properties, we look at physics-
motivated and high-level features. Given a shower with energy depositions I, we look at
the center of energy and its width for each layer,

〈ζ〉=
ζ · I
∑

i Ii
and σ〈ζ〉 =

√

√

√
ζ2 · I
∑

i Ii
− 〈ζ〉2 for ζ= η,φ ; (8)

where
∑

i runs over the voxels in one layer. We also look at the energy deposition in each
layer; the layer sparsity; and for dataset 1, the ratio Etot/Einc for each discrete incident energy.

To analyze the quality of our generative networks in more detail and to identify failure
modes, we train a classifier D(x) on the voxels, to distinguish GEANT4 showers from generated
showers [41, 43, 73]. By the Neyman-Pearson lemma the trained classifier approximates the
likelihood-ratio. This means we can compute the correction weight [73] and use the weight
distributions as an evaluation metric

w(x) =
D(x)

1− D(x)
≈

pdata

pmodel
(x) . (9)

For these weights it is crucial that we evaluate them on the training and on the generated
datasets combined, because typical failure modes correspond to tails for one of the two datasets
[73]. In addition, we always check if showers with especially small or large weights cluster in
phase space, allowing us to identify failure modes of the respective generative network.

4.1 Dataset 1 photons

We start with the photons in dataset 1, the simplest case in terms of dimensionality and of
complexity, since photons only undergo a handful interactions in the calorimeter. In this es-
tablished benchmark normalizing flows are known to excel. We summarize the most inter-
esting high-level features for the GEANT4 training data, the INN generator, and the VAE+INN
generator in Fig. 1.

For instance for the calorimeter layer 2, we first look at the shower shape in rapidity.
Dataset 1 is not a symmetric in η and φ, because the shower were not generated around
η = φ = 0. All showers have the same mean width, regardless of the incident energy. This is
captured by both networks at the level of 5% to 20%. A failure mode of the INN is the region
σ〈η〉 < 20 mm. where the network undershoots the training data by up to 30%. A peculiar
feature of these distributions is a small peak at zero, which occurs when at most one voxel per
layer receives a hit. These cases are better reproduced by the VAE, whereas the INN tends to
produce slightly more collimated showers.

The sparsity λ2 in the same layer is determined by the energy threshold of 1 MeV. The INN
matches the truth over the entire λ-range to 10%, while the VAE struggles. In particular, its
showers have too many active voxels, leading to the mis-modeled peak close to zero.

Next, we show the energy depositions in layers 0 and 2. Both networks show comparable
performance over the entire energy range and are challenged by the sharp increase in en-
ergy around 100 MeV. The energy in layer-2 highlights the effect of discrete incident energies.
High-energy showers at fixed energy deposit a similar amount of energy creating steps in the
histogram.

Finally, the ratio Etot/Einc exhibits a small bias in the energy generation for the VAE+INN
towards low energies, artifact of the final threshold in the architecture. For smaller incident
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energies, more voxels are zero [51], which causes a problem for the VAE+INN because we
already know that the sparsity is its weakness.

To illustrate the discrete structure of the incident energies in dataset 1, we collect Etot/Einc
for each incident energy in Fig. 2. The incident energy, provided during training and gen-
eration, carries energy-dependent information about the shower. For instance, low-energy
showers have a much broader energy ratio distribution, in contrast to high-energy showers.
Both generative networks learn the conditional distribution on Einc with deviations up to 30%
in the tails.

4.2 Dataset 1 pions

The physics of hadronic showers is significantly more complex than photon showers, so it is
interesting to see how our INNs perform for a low-dimensional calorimeter simulation of pions.
As before, we show shower shapes, sparsity, energy depositions, and the fraction of deposited
energy in Fig. 3.

For the shower shapes, both networks show small, percent-level deviations in the bulk of
the distributions. In addition, the VAE+INN is smearing out secondary peaks of the distribu-
tions. Both networks generate slightly too wide showers, predominantly where the energy
deposition ends up in a narrow band of the calorimeter.

The slightly reduced quality of the generated pion showers can also be seen in the sparsity,
especially for the VAE+INN. The energy depositions indicate similar failure modes. The sharp
cut at low energy is smeared to a different extent by the networks, and a second deviation
appears in the low-density region before the sharp cut. From the ratio Etot/Einc we see that
at all energies the fraction of deposited energy can be very different from shower to shower,
leading to the wide energy distribution far from one.
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Figure 1: Set of high-level features for γ showers in dataset 1, compared between
GEANT4, INN, and VAE+INN.

7



SciPost Physics Submission

a.
u

.
E = 256 MeV E = 512 MeV E = 1024 MeV E = 2.0 GeV E = 4.1 GeV

0.5 1.0

0.7

1.3

M
o
d

el
G

E
A

N
T

0.5 1.0 0.8 1.0 0.8 1.0 0.8 1.0

a.
u

.

E = 8.2 GeV E = 16.4 GeV E = 32.8 GeV E = 65.5 GeV E = 131.1 GeV

0.9 1.0

0.7

1.3

M
o
d

el
G

E
A

N
T

0.9 1.0 0.950 0.975 1.000 0.950 0.975 1.000 0.950 0.975 1.000

a.
u

.

E = 262.1 GeV E = 524.3 GeV E = 1.0 TeV E = 2.1 TeV E = 4.2 TeV

0.950 0.975
Etot/Einc

0.7

1.3

M
o
d

el
G

E
A

N
T

0.950 0.975
Etot/Einc

0.950 0.975
Etot/Einc

0.950 0.975
Etot/Einc

0.950 0.975
Etot/Einc

INN VAE+INN GEANT

Figure 2: Energy ratio Etot/Einc for each discrete incident energy, compared between
GEANT4, INN, and VAE+INN for γ showers.

Low-level classifier

To evaluate the performance of our generative networks on dataset 1 systematically, we train a
network to learn the classifier weights defined in Eq.(9) over the voxel space. In the left panel
of Fig. 4 we show the weights for the γ-shower. We clearly see that the INN outperforms the
VAE+INN. Its weight distribution peaks much closer to 1 and the corresponding AUC of 0.601
is substantially better than the corresponding AUC=0.936 of the VAE+INN.

More importantly, the INN does not show significant tails at large or small weights, which
would indicate distinct failure modes. The peak of the VAE+INN, on the other hand, has
moved away from 1. The tail at small weights indicates regions that are overpopulated by the
network. We already know that this is the case for the sparsity. Large weights appear in phase
space regions which the VAE+INN fails to populate, for instance the widths of the centers of
energy.

In the right panel of Fig. 4 we see that the two generators perform more similar for π-
showers. Both networks now show tails at small and large weights, two orders of magnitude
away from one. This means there are regions that are over- and underpopulated by the gen-
erative networks. The fact that small weights appear for generated showers and large weights
appear for the training data is generally expected. The AUCs for the INN and the VAE+INN are
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0.805 and 0.864, respectively. The INN weight distribution is sharper around one, resulting in
the smaller AUC compared to the combined VAE+INN approach. Altogether, we find that for
dataset 1 with its limited dimensionality of 368 voxels for photons and 533 voxels for pions
the INN works well, and that adding a VAE to compress the information does not help with
the network performance.

4.3 Dataset 2 positrons

Dataset 2 is given in terms of 6480 voxels, the kind of dimensionality which will probe the
limitations of the regular INN. The number of parameters for this network approaches 200M.
The question will be, if the VAE+INN condensation helps the performance of the network.
As before, we show a representative set of high-level features in Fig. 5. We choose layer 20,
approximately in the middle of the calorimeter. It combines features from low-energy showers,
which are absorbed in this region, and high-energy showers, which continue until the end of
the calorimeter.

From the shower shapes we see that the INN-based architectures generate realistic show-
ers at all energies. The training is stable and consistent across different runs of the same
architecture. We only see sizeable deviations in the center of energy distributions in the first
and last layers of the calorimeter, where there are less energy depositions. The agreement in
phase space density between GEANT4 and the INN ranges from a few percent in the bulk of the
distributions to 50% in the tails. Similar numbers apply to the width of the center of energy.
The failure mode of the INN, regardless of the dataset, is an under-sampling of showers with
width between the peak at zero and the secondary peak, for which the location depends on
the layer but not on the incident energy. The VAE+INN generates showers of slightly worse
quality. This is true for the shower shapes, for instance the peak position in σ〈η〉, but most
obvious for the poorly reproduced sparsity.

The two networks learn the energy depositions in the layers in two very different spaces.
The INN extracts them with a large number of voxels, while the VAE+INN compresses them
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Figure 3: Set of high-level features for pion showers in dataset 1, compared between
GEANT4, INN, and VAE+INN.
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Figure 4: Classifier weight distributions in dataset 1. Classifier trained on γ showers
(left) and π showers (right).

into a reduced space of around 50 additional features. This different expressivity is reflected
in all energy distributions in Fig. 5. While in poorly populated tails the INN does better, for
instance at low energies, the VAE+INN performs better for the main features in the central and
high-energy regime. This is true for the layer-wise energies, but also for the ratio Etot/Einc.

Low-level classifier

Again, we show a systematic comparison for dataset 2 in terms of the classifier weights in the
left panel Fig. 6. Compared to dataset 1, there is a clear deterioration of the INN performance
for the higher-dimensional phase space. At small weights, the tail remains narrow, indicating
that there are still no phase space regions where the network over-samples the true phase space
distribution. For large weights the weight tail now extends to values larger than w∼ 103. This
tail can be related to a recurrent under-sampling of showers with a small width of the center
of energy in each layer, as seen in Fig. 5.

The classifier evaluating the VAE+INN generator highlights a few important structures
as well. First, we have a clear over-sampled region in phase space with weights w ∼ 10−2,
which we can relate to the center of energy distribution as well. As mentioned before, the
VAE+INN over-samples showers with width close to the mean shower width. The classifier
confirms this major failure mode. For the large-weight tail we checked that the under-sampled
showers do not cluster in the same way, but are distributed over phase space, including tails
of distributions.

The AUC values of the classifiers for dataset 2, 0.703 for the INN and 0.916 for the VAE+INN,
confirm the challenge of the INN, especially relative to the well-modelled γ-showers in dataset 1.
However, adding a VAE does not significantly improve the situation as long as it is technically
possible to train an INN.

4.4 Dataset 3 positrons

Finally, we tackle dataset 3, which includes the same physics as dataset 2, but over a much
higher-dimensional and extremely sparsely populated phase space. For this dataset we cannot
train an INN without dimensionality reduction, so we only show VAE+INN results in Fig. 7.
As expected, the performance is worse than for dataset 2, but the training is stable across
different training runs. One problem is a worsening reconstructions of the centroids and widths
for the later layers, which is likely related to the small average energy deposition per voxel.
The maximum in the width distributions is overpopulated by the VAE+INN. For the energy
distributions the VAE+INN is doing reasonably well, with serious deviations only in the low-
energy tails.
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Figure 5: Set of high-level features for positron showers in dataset 2, compared be-
tween GEANT4, INN, and VAE+INN.

The classifier weights for the VAE+INN generating dataset 3 are shown in the right panel of
Fig. 6. Even though the generative task is considerably harder, the learned weight distribution
broadens centrally, but shows smaller tails than for dataset 2. The reason is that not only the
generative network, but also our simple classifier are reaching their limits. However, the bulk

Batch size
INN

1-photon 1-pion 2-positron 3-positron

GPU
1 24.79± 0.49 24.76± 0.35 50.90± 0.37
100 0.385± 0.002 0.406± 0.003 1.900± 0.026
10000 0.162± 0.002 0.191± 0.006 exceeding memory

CPU
1 17.48± 0.09 18.88± 0.33 117.5± 1.8
100 0.827± 0.028 1.004± 0.047 14.26± 0.18
10000 0.510± 0.008 0.719± 0.016 15.24± 1.36

Batch size
VAE+INN

1-photon 1-pion 2 3

GPU
1 33.64± 0.32 33.54± 0.23 40.55± 0.40 43.13± 1.4∗

100 0.507± 0.005 0.544± 0.007 1.05± 0.02 3.44± 0.04
10000 0.180± 0.002 0.228± 0.003 0.748± 0.018 —

CPU
1 20.83± 0.72 20.05± 0.13 28.11± 0.15 39.46± 1.1∗

100 0.582± 0.005 0.886± 0.015 1.94± 0.01 4.91± 0.01
10000 0.328± 0.004 0.426± 0.014 1.25± 0.01 4.97± 0.08

Table 2: Per-shower generation times in ms. We show mean and standard deviation
of 10 independent runs. The star indicates that only 10k samples were generated.
The CPU timings were done with an Intel(R) Core(TM) i9-7900X at 3.30 GHz, the
GPU timings with an NVIDIA TITAN V with 12GB RAM.
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Figure 6: Classifier weight distributions. Classifier trained on e+ showers on dataset
2 (left) and dataset 3 (right). The tails of dataset 3 should be taken with a grain of
salt, giving the limitations of the simple classifier architecture.

of the classifier weight distribution clearly indicates that for dataset 3 the phase space density is
mis-modelled by factors as large as 100 or 0.01 over large phase space regions. While the INN
description of these position showers fails altogether, the VAE+INN results do not guarantee
the level of precision we would expect for generative networks at the LHC.

4.5 Timing comparison

Finally, we time our networks using the CaloChallenge procedure. The INN architecture with
modern coupling layers is ideally suited for fast and precise generation. We create a singularity
container [112] of the software environment and take the time it takes to load the container,
load the network, move it on the GPU, generate the samples, and save them to disk. In Tab. 2
we show the averaged results from ten runs. We observe a speed–up for increased batch size
and when running on the GPU. The INN has a small advantage for dataset 1, but is unable
to generate dataset 2 with the highest batch size and dataset 3 altogether. The VAE shows
generation times at or below the millisecond mark.

5 Conclusions

Simulations are at the heart of the LHC program. Modern generative networks are showing
great promise to improve their quality and speed, allowing them to meet the requirements of
the high-luminosity LHC. In this paper, we have studied fast and precise normalizing flows,
specifically an INN and a VAE+INN combination to generate calorimeter showers in high-
dimensional phase spaces. As reference datasets we use the CaloChallenge datasets 1 to 3,
with an increasing number of 368, 533, 6480, and 40,500 voxels.

For the simplest case, the dataset 1 photons, we have found that the INN generated high-
fidelity showers and learns the phase space density of high-level features at the 10% level,
except for failure modes which we can identify using high-level features and classifier weights
over the low-level phase space. For this dataset, the VAE+INN shows no advantage, but less
expressivity for example affecting the sparsity. For the pions in dataset 1 the INN faces more
serious challenges, including mis-modeled features, and a wider range of learned classifier
weights. The performance of the INN and the VAE+INN becomes much more similar.

For the positron showers in dataset 2 we have observed distinct advantages of the two
networks, indicating that the compression by the VAE+INN helps learning the main features,
but causes problems with low-energy depositions and the sparsity. Finally, the positrons in
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Figure 7: Set of high-level features for positron showers in dataset 3, compared be-
tween GEANT4, INN, and VAE+INN.

dataset 3 exceed the power of the plain INN, leaving us with the VAE+INN as the remaining
option. The problem is that for this kind of phase space dimensionality the notion of precision-
density estimation over phase space might not hold anymore for our network architectures.
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A Network details

In this appendix we give some details on the network architectures and the preprocessing. The
INN and the VAE+INN take layers normalized by the layer energy as input. The extra energy
dimensions, calculated as in Eq. 4, are appended to the feature vector.

In the INN, we apply uniform noise and and a regularized logarithmic transformation with
strength α. The transformation applied to the features is a rational quadratic spline [108] for
dataset 1 and a cubic spline [109] for dataset 2. The prediction of the spline parameters is ob-
tained with an MLP sub-network with 256 nodes for each hidden layer. To equally learn each
dimension, we permute the order of the features after a transformation and normalize the out-
put to mean zero and unit standard deviation with an ActNorm [103] layer. In the large-scale
architecture, we stack twelve blocks to construct the INN with the additional preprocessing
block.

The VAE preprocessing has a similar structure. After normalization, we apply anα-regularized
logit transformation and a normalization to zero mean and unit standard deviation to each fea-
ture. We do not add noise during training and we set the latent dimension to 50 for dataset 1
and 2, and to 300 for dataset 3. We provide the full list of parameters in Tabs. 3 and 4.

Parameter INN DS1/DS2 INN (with VAE)

coupling blocks RQS / Cubic RQS
# layers 4 / 3 3
hidden dimension 256 32
# of bins 10 10
# of blocks 12/14 18
# of epochs 450 / 200 200
batch size 512 / 256 256
lr scheduler one cycle one cycle
max. lr 1 · 10−4 1 · 10−4

β1,2 (ADAM) (0.9,0.999) (0.9, 0.999)
b 5 · 10−6 /
α 1 · 10−8 1 · 10−6

Table 3: Network and training parameters for the pure INN.

Parameter VAE

lr scheduler Constant LR






















































Inner VAE

lr 1 · 10−4

hidden dimension 5000, 1000, 500 (Set 1)
1500, 1000, 500 (Set 2)
2000, 1000, 500 (Set 3)

latent dimension 50 (Set 1,2) / 300 (Set 3)
# of epochs 1000
batch size 256
β 1 · 10−9

threshold t [keV] 2 (Set 1) / 15.15 (Set 2,3)

hidden dimension 1500, 800, 300






Kernelkernel size 7
kernel stride 3 (Set 2), 5 (Set 3)

Table 4: Network and training parameters for the VAE-INN.

The classifiers trained for the evaluation of the generative networks are simple MLP net-
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works with leaky ReLU. We use three layers with 512 nodes each and a batch size of 1000.
The network is trained for 200 epochs with a learning rate of 2 ·10−4 and the Adam optimizer
with standard parameters. To prevent overfitting, especially for the larger datasets, we apply
30% dropout to each layer, and we reduce the learning rate on plateau with a decay factor
of 0.1 and decay patience of 10. The splitting between training, validation, and testing is
60/20/20%. The selection of the best network is based on the best validation loss.

B CaloGAN dataset

In this section we discuss the INN performance on the even simpler CaloGAN dataset [32,34].
The INN architecture is described in Sec. 3. To extract uncertainties from the generative net-
work, we promote the deterministic INN to its Bayesian counterpart [67,113]. The implemen-
tation follows the variational approximation substituting the linear layer with a mixture of
uncorrelated Gaussians with learnable means and a diagonal covariance matrix. In practice,
we only upgrade the last layer of each sub-network to a Bayesian layer [114].

Figure 8 showcases two high–level features as examples of the performance of the CaloINN
as compared to the training data distribution generated by GEANT4. We show the brightest
voxel distribution in layer 0, the average φ location of the showers in layer 2, and the width
of the shower depth width defined as the standard deviation of sd [41], with

sd =

∑2
k=0 kEk
∑2

k=0 Ek

. (10)

The error bars in the GEANT4 distribution are the statistical errors while for the INN we estimate
the uncertainties by sampling N = 50 times from the network and resampling the network
parameters each time.

To evaluate our model on low-level observables, we resort again to classifier-based metrics.
As already studied in a previous work [73], the INN samples are indistinguishable from the
GEANT4 counterpart besides a few specific phase-space regions. We train a classifier on the
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Figure 8: Comparison between CaloINN and GEANT4 on three high level features.
Brightest voxel distribution in layer-0 (left), φ coordinate of the center of the shower
in layer-2 (right), and width of the shower depth (bottom). Error bars on the INN
are calculated after sampling from the Bayesian network N = 50 times.
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Figure 9: (left) Weight distribution of CaloFlow and CaloINN for e+ showers. (right)
u2 distribution with different noise injections.

CaloFlow samples and find a large tail towards small weights. From clustering of the tail, we
observe a clear dependence on the energy deposition total energy deposition. We link this
effect to the learned energy variable u2 = E1/(E1 + E2) and the noise injection procedure.
If the noise is added at voxel-level, before calculating the additional energy variables, the
flow learns distorted energy ratio distributions. Especially in the last layer, where the average
energy deposition is smaller, this effect is larger. We summarize this effect in Fig. 9. We also
provide the AUCs and the generation timings in Tab. 5.

AUC CaloFlow [41] CaloINN

e+
unnorm. 0.859(10) 0.525(2)
norm. 0.870(2) 0.598(3)
hlf 0.795(1) 0.656(2)

γ

unnorm. 0.756(50) 0.530(2)
norm. 0.796(2) 0.584(2)
hlf 0.727(2) 0.671(2)

π+
unnorm. 0.649(3) 0.662(2)
norm. 0.755(3) 0.735(4)
hlf 0.888(1) 0.786(4)

Batch size CaloFlow [43] CaloINN

GPU
1 55.12± 0.19∗ 23.79± 0.10∗

100 0.744± 0.04 0.425± 0.005
10000 0.249± 0.003 0.211± 0.003

CPU
1 119.9± 0.9∗ 46.39± 3.18∗

100 3.13± 0.11 1.14± 0.03
10000 1.681± 0.004 0.72± 0.01

Table 5: (left) AUC of the two classifiers trained on the CaloFlow teacher and CaloINN
samples. (right) Per shower generation timings in ms. We show mean and standard
deviation of 10 independent runs of generating 100k showers. The star indicates
that only 10k samples were generated in total.
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