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Abstract

Recent work on percolation in d = 2 [J. Phys. A 55 204002] introduced an operator
that gives a weight k` to configurations with ` ‘nested paths’ (NP), i.e. disjoint cycles
surrounding the origin, if there exists a cluster that percolates to the boundary of a disc
of radius L, and weight zero otherwise. It was found that E(k`) ∼ L−XNP(k), and a formula
for XNP(k) was conjectured. Here we derive an exact result for XNP(k), valid for k ≥ −1,
replacing the previous conjecture. We find that the probability distribution P`(L) scales
as L−1/4(ln L)`[(1/`!)Λ`] when ` ≥ 0 and L� 1, with Λ = 1/

p
3π. Extensive simulations

for various critical percolation models confirm our theoretical predictions and support
the universality of the NP observables.
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1 Introduction31

After more than 60 years of intensive study since 1957, percolation [1–5] still remains a central32

and active research topic in statistical mechanics and probability theory [6–8]. It is a proto-33

typical and perhaps the simplest example of collective behavior. For bond percolation, each34

lattice edge or bond is independently occupied with probability p, or left vacant (empty). Two35

sites are said to be connected if there is a path of occupied bonds from one site to the other, in36

which each pair of subsequent bonds is adjacent to a common site. A cluster is a maximal set37

of sites connected to each other, and accordingly the set of all lattice sites can be decomposed38
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into clusters (including clusters of just one isolated site). For site percolation, each lattice site39

is independently occupied with probability p, or left vacant, and any pair of neighboring oc-40

cupied sites is said to be connected. A cluster is then a maximal set of mutually connected41

occupied sites, and the set of occupied sites is partitioned into clusters.42

Clusters are small for small p, but letting p tend to the percolation threshold pc > 0 from43

below, p ↑ pc, causes the emergence of a so-called giant cluster at p > pc, namely a cluster44

that occupies a finite fraction of the lattice sites, in the thermodynamic limit. The percolation45

transition is one of the simplest examples of a continuous phase transition [9,10] and provides46

a vivid illustration of many important concepts of critical phenomena [11]. In the sub-critical47

phase (p < pc) the correlation length ξ, a scale proportional to the diameter of the largest48

(finite) cluster, diverges as ξ∼ (pc−p)−ν when p ↑ pc, with ν the correlation-length exponent.49

In the super-critical phase (p > pc), the probability m that a randomly chosen site is in the50

giant cluster vanishes as m ∼ (p − pc)β when p ↓ pc. In many textbooks, it is claimed that51

ν and β are essentially the only two basic independent exponents, from which other critical52

exponents can be obtained via (hyper-)scaling relations.53

Exact calculations of ν and β are available for the Bethe lattice (or Cayley tree), and for the54

complete graph, both of which can be considered as the limit of infinite spatial dimension [2].55

Furthermore, these mean-field results, ν = 3/d and β = 1, are believed to hold already for56

any dimension d ≥ du above the upper critical dimension, du = 6 [12,13]. In two dimensions57

(2D), exact values, ν = 4/3 and β = 5/36, were predicted by the Coulomb-gas (CG) method58

[14], conformal field theory [15] and stochastic Loewner evolution (SLE) techniques [16],59

and crowned by a rigorous proof for triangular-lattice site percolation [17]. For 2 < d < du,60

estimates of ν and β are available from numerical simulations and perturbative methods.61

1.1 General considerations62

Fractal structures . At the percolation threshold pc, clusters are scale-invariant, with fractal63

dimension dF = d − β/ν. To further characterize geometric structures of critical percolation64

clusters, one considers also the fractal dimensions of geometrical objects other than the giant65

cluster itself, for instance the set of red (or pivotal) bonds, backbones, shortest paths, hulls and66

external perimeters [2,18]. The red-bond dimension is dR = 1/ν, whereas the other exponents67

are considered to be independent of ν and β , at odds with the over-simplified textbook scenario68

mentioned above. In 2D some exact results are known, including dF = 91/48 for clusters,69

dH = 7/4 for hulls and dE = 4/3 for external perimeters [2,20]. Very recently the value of dB70

for backbones was determined [21] using SLE and turns out to be transcendental. But despite71

many efforts, the exact value of dS for shortest paths is still unknown. For d ≥ 6, one has72

dF = 2d/3 and dB = dS = dR = d/3 [12, 13]. For 2 < d < 6, only numerical estimates are73

available.74

Correlation functions . It is also well known that, at pc, a variety of connectivity probabilities75

between two far-away regions decay algebraically with distance r as r−2X , where X is called76

the scaling dimension [2,18]. Alternatively, one can consider a domain with the topology of a77

disc. The corresponding one-point function, giving the probability that the chosen connectivity78

exists between the center of the disc and its boundary, then decays with the disc radius r as79

r−X . The property ‘connecting the center of a disc to its boundary’ we will henceforth indicate80

with the word radial. The typical example of such connectivity observables concerns the so-81

called magnetic operator, which gives the probability that the two different regions belong to82

the same cluster. The corresponding exponent is X = XF = d − dF determining the fractal83

dimension dF of the percolating cluster. In two dimensions XF = 5/48. In the following we84

discuss a number of generalizations of the magnetic operator, culminating with the nested-path85

operator which is the focus of this work.86
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Duality . In 2D, dual or empty clusters and paths can be related to the corresponding con-87

struction for empty elements by duality [20]. When the distinction between dual clusters and88

the original clusters needs to be emphasized, we shall call the original clusters ‘primal’. For89

bond percolation, clusters for empty elements consist of bonds on the dual lattice, where a90

dual bond is occupied iff the intersecting original bond is empty, and vice versa. For site per-91

colation, dual or ‘empty’ clusters consist of connected empty sites on the matching lattice. For92

the definition of dual and matching lattices, see Refs. [3,5]. In 2D at pc both direct clusters and93

dual clusters are fractal. For self-dual and self-matching lattices (for bond– and site percolation94

respectively), the clusters and dual clusters have the same properties, so that the boundaries95

between them are symmetric. It follows that pc = 1/2 for such lattices.96

1.2 Operators and exponents97

Monochromatic N -arm operator . A direct generalization of the magnetic operator is the98

family of monochromatic N -arm (MA) operators, defined for integer N ≥ 1. The two-point99

function of the MA operator is defined as the probability that two distant small regions are100

connected by at least N independent paths in the same cluster. Two paths are called inde-101

pendent if they do not share a common occupied bond (site) for bond (site) percolation, and102

do not cross [22, 23]. The one-point function of this observable is the probability that the103

cluster that contains the center of a disc with radius r contains N independent radial paths.104

The corresponding exponent is denoted as XMA(N), and, for N = 1, it reduces to the magnetic105

exponent. The N = 2 case is called the backbone exponent XMA(2) = d − dB, of which the106

exact value remained a challenge until very recently. Nolin et al. [21] successfully determined107

the value of XMA(2) as the root of a transcendental equation, with a value in good agreement108

with the best numerical estimates [19, 25]. This striking result provides an example that the109

2D critical exponents do not necessarily take fractional values. Exact values of XMA(N) are still110

unavailable for N ≥ 3.111

Polychromatic N -arm operator . Besides the monochromatic N -arm operator, also the poly-112

chromatic N -arm (PA) operator is an object of study. The corresponding exponent XPA(N) gov-113

erns the probability that two patches are connected by N paths of which some are on primal114

clusters, and others are on dual clusters. Remarkably, XPA(N) is equal to the ‘watermelon’ ex-115

ponent, XWM(N), to be introduced next. This equality was first argued succinctly in Ref. [20].116

Below, in Sec. 2.2, we present a more detailed version of the argument.117

Watermelon operator . The N -arm watermelon exponent [26, 27] governs the probability118

that two distant patches are connected by N cluster boundaries (the two-point function) or119

that there are N radial cluster boundaries (the one-point function). Its value is known to be120

XWM(N) =
N2

12
−

1
12

. (1)

For N = 2, the two-point function gives the probability that two points sit on the hull of the121

same cluster, so that XWM(2) = d−dH = 1/4. An observer passing around the insertion point of122

an N -arm watermelon operator once, crosses N cluster boudaries. Thus, for odd N the cluster123

he started in must have switched from empty to occupied or vice versa. Thus the operator124

requires anti-cyclic conditions (empty↔ occupied) under a full rotation around its insertion125

point. This is analoguous to the well-known disorder operator of the Ising model. A more126

detailed description will be given in Sec. 2.2.127

For even N , Eq. (1) governs the decay of the probability that two distant regions are con-128

nected by N/2 distinct clusters, in which each cluster corresponds to two boundaries. In other129
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words, the N -cluster correlation functions in 2D have the scaling dimension X = N2/3−1/12.130

Further, a refined family of N -cluster correlations can be constructed according to the require-131

ments of logarithmical conformal field theory and the relevant symmetric group, and such a132

construction is valid both in 2D and higher dimensions [24, 28–31]. In 2D, the exact values133

of these N -cluster exponents can be inferred from the branching rules of the symmetric group134

down to the cyclic group and from exact CFT results [24].135

Nested-loop operator . There exists another family of operators based on cluster bound-136

aries, called nested-loop (NL) operator [32,33]. To describe it we again consider the one-point137

function on a domain with the topology of a disc, of linear size (diameter) L. For each config-138

uration, let ` denote the number of cluster boundaries surrounding the center of the domain.139

The NL operator assigns a statistical weight, k ∈ R, to each of these boundaries. Then the140

one-point correlator, WNL(k) ≡ 〈k`〉, is parametrized by k. This correlator WNL(k) varies with141

L as L−XNL(k) at criticality. By CG and CFT methods, the exponent XNL is found to be142

XNL(k) =
3
4
φ2 −

1
12

, k = 2 cos(πφ)≥ −2 . (2)

For −2 ≤ k ≤ 2, φ is real, while for k > 2 it is purely imaginary. The name ‘nested loop’143

refers to the fact that the relevant cluster boundaries are closed and must be nested, as they144

do not cross each other. Some special cases are the following. For (k,φ) = (1, 1/3), the145

weights of the configurations are unaffected by the insertion of the NL operator, implying146

WNL(1) = 1, and XNL(1) = 0. For (k,φ) = (0, 1/2), WNL(k) corresponds to the probability that147

` = 0. When ` = 0 the cluster containing the center is connected to the boundary. Thus,148

XNL(0) = XF = 5/48, the magnetic scaling dimension.149

Nested-path operator . In a recent article [34], we introduced what we call the nested-path150

(NP) operator, whose definition draws on several of the developments outlined above. It is the151

main object of study also in this article. The watermelon (WM) operator and the nested-loop152

(NL) operator are both defined in terms of cluster boundaries, emanating from the insertion153

point or surrounding it, respectively. One can consider paths over clusters in the same two154

topologies. While the monochromatic N -arm operator (MA) measures the probability that N155

paths emanate from an insertion point, it is naturally complemented with an operator that156

weights the monochromatic closed paths nesting around the insertion point. Like the N -arm157

operator, we may distinguish two varieties: a monochromatic case where all paths are on the158

primal cluster, and a polychromatic one with some paths on primal and some on dual clusters.159

Where the distinction is important we will refer to the monochromatic nested-path (MNP)160

operator and the polychromatic nested-path (PNP) operator, while the label NP is used for161

both.162

We define the NP operators as follows. Let ` be the maximum number of independent163

nested closed paths surrounding the center that can be drawn on primal and dual clusters.164

Further, let R be the indicator function that there exists a radial cluster. We then define the165

continuous families of NP correlators as WMNP(k) ≡ 〈R · k`〉, and WPNP(k) ≡ 〈k`〉. This assigns166

in both cases a statistical weight k ∈ R to each independent closed path (analogously to the NL167

operator), while for the MNP operator only the configurations with R = 1 contribute. Notice168

that the factor R ensures that all the surrounding paths (if any) are contained in the same169

percolating cluster, and if ` > 0 the percolating cluster must be unique. This guarantees that170

the nested paths measured by WMNP(k) are monochromatic. The one-point functions WMNP(k)171

and WPNP(k) vary with domain diameter L as L−XMNP(k) and L−XPNP(k) respectively, thus defining172

the exponents XMNP and XPNP.173

For two special values of k, the NP correlators can be readily inferred. First, WMNP(1)174

reduces to the percolating probability 〈R〉, which is known to decay as L−XF . This implies175
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XMNP(1) = XF = 5/48. More trivially, WPNP(1) = 1 implies XPNP(1) = 0. Second, the con-176

figurations contributing to WMNP(0) have a primal radial path, because of the factor R, and177

since they have no primal path surrounding the center, they must also have a dual radial178

path. Likewise since the configurations contributing to WPNP(0) have neither a primal path179

nor a dual path surrounding the center, they must have both a dual and a primal radial180

path. This implies the existence of two radial cluster boundaries. The dominant contribu-181

tions to WPNP(0) and WMNP(0) are thus those of the N = 2 path watermelon operator, imply-182

ing XPNP(0) = XMNP(0) = XWM(2) = 1/4. Furthermore, in Ref. [34] we proved the identity183

WMNP(2) = 1 for site percolation on regular or irregular planar triangulation graphs of any size184

L, and for any shape and position of the center. By universality we infer XMNP(2) = 0 for site185

or bond percolation on any 2D lattice.186

In [34] we only considered the monochromatic nested paths, so the label NP in that pa-187

per corresponds to MNP here. There we conjectured an analytical formula for XMNP(k), as a188

function of k, on the basis of numerical results. Under the parametrization k = 2cos(πφ),189

this conjecture reads XMNP(k) = (3/4)φ2 − (5/48)φ2/(φ2 − 2/3). It reproduces the known190

exact results for k = 0, 1,2 and agrees very well with numerical estimates of XMNP(k) for other191

values of k. Unfortunately, this formula turns out to be incorrect. Below in Sec. 2.3, we shall192

provide a rigorous argument which relates the one-point functions WMNP(k) and WPNP(k) to193

the one-point NL function WNL(k′) where the weight of the loop k′ has a simple relation to the194

weight k of the nested paths. In view of Eq. (2) this leads to the explicit expression for the195

MNPs:196

XMNP(k) =
3
4
φ2 −

1
12

, k = 1+ 2cos(πφ) , (3)

For the polychromatic case the expression in terms of φ is the same, but its relation to the NP197

weight is different:198

XPNP(k) =
3
4
φ2 −

1
12

, k =
1
2
+ cos(πφ) , (4)

Obviously, these expressions reproduce the known exact results mentioned above.199

1.3 Outline and overview200

The main purpose of this work is two-fold: to derive theoretically the correct analytical for-201

mulae (3) and (4) for the NP exponents, and to examine their universality. To this end we202

perform extensive Monte Carlo (MC) simulations for a number of critical percolation models,203

including one bond- and five site-percolation systems, and study an extended set of quantities.204

The universality of the power-law scaling for the one-point MNP function is well demonstrated205

and the estimates of the MNP exponent agree well with the derived formulae.206

In addition, we study the probability distribution P`(L) that the cluster percolates from the207

center site to the boundary (R= 1) and supports ` nested paths. Since the analysis of P`(L) as208

well as the MC study concerns only the monochromatic nested paths, we omit in the relevant209

sections the corresponding label MNP, and replace WMNP(k) by Wk, or with explicit dependence210

on the system size, Wk(L). Likewise XMNP will be simply denoted by X . For `= 0, notice that,211

by definition, P0 ≡WMNP(0)∼ L−1/4. For each `≥ 1, on the basis of formula (3) we show that212

the leading scaling behavior of P`(L) is L−1/4(ln L)`[(1/`!)Λ`], with Λ = 1/
p

3π. We then213

consider the average number of nested paths conditioned by the existence of a percolating214

cluster, N ≡ 〈`·R〉/〈R〉. It is shown that, as L increases, this conditional path number diverges215

logarithmically as N ' κ ln L, with κ = 3/8π. The theoretical predictions for P` and N are216

well confirmed by our high-precision MC results.217

The remainder of this work is organized as follows. Section 2 demonstrates relations be-218

tween the polychromatic N -arm and the watermelon exponent and between the NP operator219

and the NL operator. Section 3 describes the models, the algorithm and the sampled quantities220
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(M1) (M2)

Sq6 Sq6 Sq Sq8

Figure 1: Two matching pairs constructed from the square lattice. For the left two
figures (M1), half of the elementary faces are chosen, and diagonals are added either
to faces in the chosen set (left) or to those in its complement (right). The generated
pair of matching lattices are isomorphic and are denoted Sq6. For the right two figures
(M2), none of the squared faces is chosen, and the matching pair corresponds to the
original square lattice (Sq) and a square lattice with both nearest- and next-nearest
neighboring interactions (Sq8).

from which we estimate the exponents. Section 4 presents the MC results for the one-point221

function of the NP operator, WMNP(k), and the determination of its exponent XMNP(k). Sec-222

tion 5 derives the universal scaling of the probability distribution of the MNP number, P`, on223

the basis of the scaling behavior of its generating function WMNP(k), and then presents the MC224

results confirming these predictions. A brief discussion of our results is given in Sec. 6.225

2 Exponent relations226

In this section we shall demonstrate that XPA(N) = XWM(N), the equality between the poly-227

chromatic N -arm exponent and the N -arm watermelon exponent. We will also relate the NP228

exponents to the NL exponents. Both arguments make use of a crucial property of site perco-229

lation on self-matching lattices: at the percolation threshold pc = 1/2, occupied and empty230

sites play symmetric roles, and the color-inversion operation (occupied↔ empty) changes a231

critical configuration into another critical one.232

2.1 Matching lattices233

The concept of matching lattices plays an important role in percolation theory [3,5]. It is also234

an essential ingredient in the study of the NP operators: in the calculation of their exponents,235

in the proof [34] of the identity WMNP(2) = 1 for planar triangulation graphs of any size and236

shape, and in the algorithm for evaluating the nested-path number `.237

We now briefly recall how to construct a pair of matching lattices. Given a planar graph238

L0, one selects an arbitrary set of elementary faces, and then generates a pair of graphs by239

adding any missing diagonal edges to each face in the chosen set (respectively to each face240

in the complementary set). In other (more graph theoretical) words, we replace each chosen241

face by the corresponding clique. The generated pair of graphs, denoted L and L∗, has the242

same vertex set as the original one L0, and are called a matching pair.243

It can be shown [5] that the site percolation thresholds for a matching pair of (regular and244

infinite) lattices satisfy pc+p∗c = 1. In particular, if the pair of matching graphs are isomorphic,245

L ∼= L∗ the site-percolation threshold is pc = 1/2. A lattice for which all faces are triangles246

already has all diagonals, so that L = L∗ for any choice of faces: such a lattice is called self-247

matching. Any planar triangulation graph, such as the triangular or the Union-Jack lattice, is248

self-matching and thus has pc = 1/2.249

Figure 1 shows two pairs of matching lattices constructed from the square lattice. In the250

7



SciPost Physics Submission

Figure 2: Illustration of the bond-to-site transformation. Each edge in the bond-
percolation problem is transformed into a vertex (blue dot) in the site-percolation
problem, and two sites are taken to be neighboring if the corresponding bonds are
adjacent. This example maps bond percolation on the self-dual lattice (BSq) onto
site percolation on the self-matching lattice (Sq6).

right two figures, none of the elementary faces is chosen, and the matching pair consists of the251

original square lattice (Sq) and the square lattice with additional next-nearest neighbor inter-252

actions (Sq8). Thus, the respective site-percolation thresholds satisfy pc(SSq) + pc(SSq8) = 1.253

In the left two figures, the chosen set contains half of the square faces (shown in pink) in254

a checkerboard fashion, and the generated matching pair of lattices both have coordination255

number z = 6 and are isomorphic (they differ only by a rotation); we denote them as Sq6.256

Moreover, by the bond-to-site transformation (defined in Fig. 2), it can be shown that site257

percolation SSq6 is equivalent to bond percolation on the square lattice (BSq).258

The construction of matching lattices for finite graphs is analogous to that for infinite259

graphs, except that special treatment is needed at boundaries. But the boundary effect is260

expected to play a vanishing role for percolation thresholds and bulk properties of systems.261

2.2 Polychromatic N -arm exponent262

Consider the configurations contributing to the one-point function of the polychromatic N -263

arm operator placed in the center of a domain. These configurations by definition support264

N radial paths. At least one of these paths is on a primal cluster, and at least one path is265

on a dual cluster. If the arms strictly alternate between primal and dual clusters, it is clear266

that each pair of adjacent arms is separated by a radial cluster boundary. In this case also N267

cluster boundaries connect the center to the rim. Conversely, the existence of N radial cluster268

boundaries implies the existence of (at least) N radial paths between them. When the disc269

is large enough, we may neglect the probability of having more than N paths, because the270

exponents XWM(N) form a strictly monotonic sequence (i.e., the probability of having more271

paths decays algebraically faster). As a consequence, for the case in which the polychromatic272

arms alternate in color, XPA(N) = XWM(N). Although it is conceivable, in principle, that the273

exponent XPA(N) depends on the precise (cyclic) sequence of primal and dual arms, we will274

argue below that the exponent XPA(N) = XWM(N) irrespective of this sequence, by elaborating275

on the ideas of [20].276

We start by introducing a construction to allow for the N -arm WM operator with odd N ,277

where primal and dual clusters exchange roles for an observer passing around the insertion278

point. Thus for the WM operator inserted in the center of a domain, we must include the279

possibility of anticyclic symmetry. We note that this is only possible in a self-matching lattice280

model. We allow anticyclic symmetry by introducing a radial chain of sites which from one281

side of the chain are seen as primal, and from the other as dual or vice versa. We call such282

chain an inversion chain. It is illustrated in Fig. 3b, where the three cluster boundaries are283

shown in bold white. An inversion chain can be moved around (while keeping its end points284

fixed) without affecting the position of the cluster boundaries. Therefore two radial inversion285
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a b c

Figure 3: Configurations contributing to the one-point function of the polychromatic
4-arm operator. A bijective transformation described in the text, a↔b and b↔c,
adds or removes a radial cluster boundary, here indicated in bold white.

chains can be moved to coincide, thus annihilating each other. Moreover we do not consider286

the locus of the inversion chain as being defined by the configuration.287

Let us now consider a configuration contributing to the polychromatic N -arm one-point288

function in a self-matching lattice model for site percolation, with the operator inserted in the289

center of a domain with the topology of a disc. There must be at least one radial cluster bound-290

ary separating a primal path and a dual path. An example is shown in Fig. 3a, contributing to291

the one-point function of the polychromatic (N=4)-arm operator, as it has four radial paths292

from the center to the rim, three red (primal) and one green (dual), and two radial cluster293

boundaries. We choose a radial cluster boundary, in the example, the one ending on the right-294

most side of the hexagonal domain. From this cluster boundary in the positive (anti-clockwise)295

direction, we consider the adjacent path, primal or dual. Unlike a cluster boundary, a path is296

not uniquely defined by the configuration. We choose the closest path, i.e. the path as close as297

possible to the cluster boundary: all its elements touch the cluster boundary. Then, we switch,298

from occupied to unoccupied or vice versa, all the elements that lie in the positive direction299

from this path (not including the path itself) until an inversion chain that is either created or300

annihilated in this flipping operation. In the transformation shown in Fig. 3 a→b, an inversion301

chain is created running straight from the center to the lower-left corner of the domain. It is302

immaterial where the inversion chain is positioned. In the case that an inversion chain already303

exists and intersects the closest path, it may first be moved to a position without such overlap304

to avoid ambiguity.305

If the second path in the positive direction from the chosen domain wall has the same color306

as the first path, a new radial domain wall is created by this flipping operation. If they are307

different, a domain wall disappears between the two paths. Examples of these two cases are308

the transformations in Fig. 3 from a to b and from b to c respectively. Note that the flipping op-309

eration by its definition is bijective, since the defining objects: a given radial cluster boundary,310

and its closest radial path in the positive direction remain unchanged in the operation.311

By this flipping operation, any configuration contributing to the one-point function of the312

N -arm PA operator with the coloring of the arms in some arbitrary order, can be turned bijec-313

tively into a configuration of the corresponding one-point function with primal and dual arms314

strictly alternating. As a consequence XPA(N) = XWM(N) irrespective of the order in which the315

primal and dual paths follow each other around the PA operator, provided there is at least one316

radial cluster boundary. We note that this argument was presumably implicit in Ref. [20], but317

the details were only sketched very briefly there.318
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Figure 4: Examples of a set of site configurations on the triangular lattice with `= 2
nested closed paths. The central site is neutral (white), the occupied (empty) sites
are represented as red (green) sites, and the sites on the fixed boundary are marked
gray. The map P1, associated with the first NP, leads to (a) ↔ (b) and (c) ↔ (d),
while P2 leads to (a) ↔ (c) and (b) ↔ (d). For a given statistical weight k, all
the four configurations contribute to the one-point NL function WNL(k), with a total
amount 1+k+k+k2 = (k+1)2. By comparison, only (a) contributes to the one-point
NP function WNP(k) with an amount k2.

2.3 Nested-path exponent319

We next show how to calculate the NP exponents by rigorousy relating the one-point func-320

tions of the NP operators to the one-point function of the NL operator. A so-called color-321

inverting technique, similar to the one used above in the argument for establishing the identity322

XPA(N) = XWM(N), is applied to site percolation on a self-matching lattice. By universality we323

assume the result to be true also for bond percolation, and for other regular 2D lattices.324

We take a domain with a fixed boundary condition, i.e. the sites on the boundary of the325

domain are all occupied (or all unoccupied). We note however, that the boundary condition326

only affects WNL, not the WNP themselves. The fixed boundary condition ensures that all cluster327

boundaries are closed loops.328

All percolation configurations contribute to WNL(k), with a weight k for each nested loop.329

We first focus on the complete set of nested paths, not necessarily all of the same color. We330

make the NPs unique by choosing each one closest to the interior NP, starting with the inner-331

most NP closest to the center; the exact algorithm for doing so is provided in Ref. [34] and332

discussed further in Sec. 3. We introduce the transformations Pj , that flip all the sites of the333

j-th path (counted from the center) and all the sites interior to it. Thus a configuration with334

` polychromatic NPs, is a member of a set of 2` configurations, generated by (all subsets of)335

the Pj acting on it. An example is given in Fig. 4, where there is a total number of 2` = 4336

configurations (` = 2). The ensemble of all configurations is the disjoint union of these sets.337

Whenever two consecutive NPs or the outermost NP and the boundary are colored differently338

they are separated by an NL. This mechanism accounts for all possible NLs. The total contri-339

bution of the set of configurations to WNL(k) is (k + 1)` as each Pj increases or decreases the340

number of NLs by one. Of the set of configurations only one contributes to WMNP(k), namely341

the one in which each of the nested paths is occupied. By setting the weight of the MNPs to342

(k+ 1), the two one-point operators are equal, WMNP(k+ 1) =WNL(k), or for the exponents343

XMNP(k) = XNL(k− 1) (5)

To the one-point function of the PNP operator, WPNP, all 2` configurations contribute equally,344

as they are all equiprobable and have ` PNPs. The total contribution thus agrees with that of345

WNL if the PNPs have weight (k+ 1)/2, leading to the exponent relation346

XPNP(k) = XNL(2k− 1) (6)

In view of the expression for XNL (2), this leads to the expressions (3) and (4) respectively.347
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Figure 5: Union Jack lattice with the center site (denoted by the red star) on different
sublattices (UJ4 and UJ8). The coordination number of the center site is 4 for the left
and 8 for the right.

This simple relation is also valid for a domain with a free boundary condition, with a center348

which itself is occupied. In this case the same argument holds, with an alternative definition349

of the Pj: flipping the j-th NP and all the sites exterior of it.350

3 Model, algorithm and sampled quantities351

Apart from bond percolation on the square lattice (BSq), we also consider site percolation on352

the triangular lattice (STr), and on four other lattices, which are the Union-Jack (UJ) lattice353

with the center site respectively on each of the two sublattices (SUJ4 and SUJ8), and the square354

lattice with only nearest- (SSq) and with both nearest- and next-nearest neighbor interactions355

(SSq8), respectively. The subscript of SUJ specifies the coordination number z for the sublattice356

with the center site, as illustrated in Fig. 5. In the thermodynamic limit (L →∞), SSq and357

SSq8 are matching to each other, and all the others are self-matching (see Sec. 2.1).358

Since only the MNP operator will be considered from now on, we avoid heavy notation359

using the symbols Wk or Wk(L) for the MNP correlator and X for the MNP exponent, instead360

of WMNP(k) and XMNP. Also the label NP will typically refer to monochromatic nested paths,361

unless explicitly specified otherwise.362

3.1 Algorithm363

In this work, percolation is studied on a domain with the topology of a disc, with free boundary364

conditions. The domain shape is chosen to be hexagonal for the triangular lattice and square365

for the others. The scale L is the length of the corner-to-corner diagonal for the former, and the366

side length for the latter. Figure 4(a) shows an example configuration for STr with L = 9. The367

central site is neutral and the other sites are occupied with the critical probability pc = 1/2.368

Meanwhile, we consider only the central cluster that contains the central site or bond, and369

use R = 1 to specify the percolating event that the central cluster reaches the boundary, and370

otherwise we set R = 0. For the R = 1 case, we calculate the maximum number ` of inde-371

pendent closed paths in the central cluster that surrounds the center. We stress that, while the372

number ` of nested paths is well defined, their locations might not be unique. Thus, the method373

used to evaluate ` need not specify the location of the paths uniquely, but it must guarantee374

that it is not possible to find a larger number of nested paths in the given configuration.375

By carefully examining Fig. 4(a) for the triangular-lattice site percolation, we observe that376

a unique innermost nested path can be identified. By growing the matching cluster of empty377

sites starting from the center and terminating when the cluster cannot be grown any further,378

one obtains the first nested path as the outer boundary of the matching cluster. Similarly, the379
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Figure 6: Log-log plot of one-point MNP correlator Wk versus linear size L, for (a)
STr, (b) SUJ4, (c) SUJ8, (d) SSq, (e) SSq8 and (f) BSq. The lines represent fits to
Eq. (7) and strongly indicate the algebraic dependence of Wk on L. Moreover, the
striking similarity exhibited by the six models clearly supports the universality of Wk.

second nested path can be regarded as the outer boundary of the matching clusters which are380

linked together by the first nested path. In other words, by growing the matching clusters from381

the first closed path, one can locate the second nested path as the chain of occupied sites that382

stops the matching-cluster growth. The procedure is repeated until the growth of matching383

clusters reaches the open boundary of the domain. By this method, we obtain a specific and384

complete set of independent nested paths, and in particular the number ` of nested paths.385

The procedure works for site percolation on any self-matching lattice L = L∗. For a non-386

self-matching lattice L, the matching clusters of empty sites must be defined on the corre-387

sponding matching lattice L∗. For instance, to evaluate ` for SSq, matching clusters are grown388

on SSq8, and vice versa. The procedure is similar for bond percolation, where the nested path389

is now defined as the chain of occupied bonds that stops the growth of dual clusters that live390

on the dual lattice.391

3.2 Sampled quantities392

For each configuration at criticality, we record the percolation indicator R and, if R = 1,393

evaluate the MNP number `. On this basis, we calculate and study:394

1. The probability distribution P`(L) of having ` closed, monochromatic nested paths in the395

percolating cluster (R= 1), each surrounding the center. By definition,
∑

`≥0 P` = 〈R〉.396

2. The one-point MNP correlator Wk ≡ 〈R · k`〉 ≡
∑

`=0 k` P`, where the NP fugacity k ∈ R397

(by convention, 00 = 1 for k = 0). Notice that, once the P` have been computed in the398

simulations, the Wk for any k can be readily calculated afterwards. At criticality, it has399

been observed for STr and BSq [34] that Wk depends on L as L−XMNP .400

3. The conditional NP number N ≡ 〈R · `〉/〈R〉. This is the average number of independent401

nested paths conditioned by the existence of a percolating cluster.402

4. The probability ratio Γ` = (`!P`/P0)1/` for `≥ 1.403
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Figure 7: Log-log plot of W0 (top) and W1 (bottom) versus rescaled size L∗ = aL,
where a is a model-dependent constant (we fix a = 1 for STr). By fine-tuning the
value of a, the MC data for all the six models collapse onto an asymptotically straight
line, with slope −1/4 for W0 and −5/48 for W1. This strongly supports the univer-
sality of Wk, at least for k = 0 and 1.

4 Numerical results for the one-point function404

Simulations were carried out at the percolation threshold, which is pc = 1/2 for BSq, STr, SUJ4405

and SUJ8. For SSq, albeit the exact value of pc is still unknown, it has been determined with a406

high precision as pc = 0.592746 050792 10(2) [35–37]; for SSq8, the self-matching argument407

gives pc(SSq8) = 1− pc(SSq). The linear system size L was taken in the range 3 ≤ L ≤ 8189.408

For each system, and for each L, the number of samples is at least 5×109 for L ≤ 100, 2×108
409

for 100< L ≤ 1000, 2× 107 for 100< L ≤ 4000, and 5× 106 for L > 4000.410

4.1 Scaling and universality of Wk411

For the one-point NP correlation functions Wk(L), Fig. 6 displays the MC data versus the linear412

size L for all the six percolation models considered in this work. For k < 0, the contributions413

to Wk from even and odd values of ` partly compensate, and thus the relative error margin414

becomes larger as k decreases. As a consequence, for large negative k it is difficult to obtain415

meaningful data (with small relative error bars for Wk). Further, finite-size corrections for416

small L become more pronounced as k decreases.417

As will be shown in Sec. 5, it is observed that, for any given size L, the probability distri-418

bution P` would vanish super-exponentially fast as the NP number ` increases. This means419

that, given any finite k and L, the series k`P` is always convergent and thus the NP correlator420

Wk ≡
∑

k`P` is always well defined. Nevertheless, as k increases, the contribution from large421

` becomes more important. In practice, the MC method is not well suited for sampling a large422

number with a small probability and can in principle introduce bias in the estimate of error423

bars if the number of samples is not sufficiently big. Therefore, with our current simulations,424

we cannot calculate Wk for very large k, and thus restrain to values k < 60.425

The approximate linearity of the log-log plot in Fig. 6 demonstrates the expected power-law426
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Lm χ2/DF X c0 c1 c2

STr 29 0.98 0.1043(2) 1.206(1) -0.22(4) -1.3(6)
61 1.22 0.1043(4) 1.205(3) -0.2(2) -2(6)

SUJ4 29 0.48 0.1043(1) 1.120(1) -0.17(3) -0.3(4)
61 0.58 0.1043(3) 1.120(2) -0.2(1) -1(4)

SUJ8 29 1.28 0.1042(2) 1.227(1) -0.24(4) -2.1(6)
W1 61 0.59 0.1040(3) 1.225(2) -0.1(1) -6(5)

SSq 29 1.00 0.1042(2) 1.168(1) -0.14(4) -1.3(6)
61 1.10 0.1043(4) 1.169(3) -0.2(2) 1(5)

SSq8 29 0.94 0.1042(2) 1.207(1) -0.24(4) -1.6(6)
61 1.15 0.1042(3) 1.207(3) -0.3(2) -1(5)

BSq 29 0.97 0.1042(2) 1.186(1) -0.12(4) -1.2(6)
61 0.90 0.1044(3) 1.188(3) -0.2(1) 2(5)

STr 29 0.78 0.2500(3) 1.658(3) -1.64(8) 1(1)
61 0.96 0.2500(4) 1.658(7) -1.6(4) 0(8)

SUJ4 29 0.49 0.2503(2) 1.379(2) -0.76(6) 0.1(8)
61 0.37 0.2500(4) 1.377(4) -0.6(2) -5(6)

SUJ8 29 0.92 0.2500(3) 1.731(3) -2.03(8) 2(1)
W0 61 0.26 0.2495(3) 1.726(3) -1.7(2) -9(6)

SSq 29 0.31 0.2501(2) 1.604(2) -1.51(5) 1.4(8)
61 0.28 0.2503(3) 1.606(3) -1.6(2) 6(6)

SSq8 29 1.15 0.2499(3) 1.602(3) -1.48(9) 1(1)
61 1.10 0.2502(6) 1.606(6) -1.7(4) 8(8)

BSq 29 1.08 0.2500(3) 1.600(3) -1.2(1) 1(1)
61 0.91 0.2503(6) 1.604(6) -1.5(4) 9(8)

Table 1: Fitting results for W1 and W0 by Eq. (7) with correction exponent
ω = 1. The exponents X (1) and X (0) are well consistent with the exact value 5/48
≈ 0.10417 · · · and 1/4.

scaling Wk(L) ∼ L−X for a broad range of k ≥ −1. Moreover, the striking similarity exhibited427

by the different percolation models clearly indicates that the scaling of the NP correlations428

does not depend on microscopic details, and is thus universal.429

4.2 The k = 0, 1 cases430

As discussed earlier, W1 reduces to the percolating probability 〈R〉, which is known to decay431

as W1 ∼ L−XF = L−5/48, and W0 corresponds to the polychromatic two-arm correlation, with432

exponent X (2) = XWM(2) = 1/4. The universality of W1 and W0 is further illustrated in Fig. 7.433

With a rescaled linear size L∗ = aL where a is a model-dependent constant of order unity, the434

MC data of W1 for different systems collapse nicely onto an asymptotically straight line, upon435

fine-tuning a. The same holds true for W0.436

We fit the Wk data, according to the least-squares criterion, to the form437

Wk = L−X (c0 + c1 L−ω + c2 L−2ω) , (7)

where the terms with c1 and c2 account for finite-size corrections. We impose a lower cutoff438

L ≥ Lm on the data points admitted in the fits, and systematically study the effect on the439

residual χ2-value upon increasing Lm. For percolation systems with free boundary conditions,440

one generally expects the correction exponent ω = 1. With ω = 1, the fitting results are441

shown in Table 1 for W1 and W0. The estimates of X (1) and X (0) agree excellently with the442

exact values, which are 5/48 and 1/4 respectively. The fits withω being a free parameter give443

consistent results and ω≈ 1.444
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Figure 8: Plot of W2 versus the linear size L for STr, SUJ4 and SUJ8 (top) and for
BSq, SSq and SSq8 (bottom). Also shown are the averaged data for SSq and SSq8,
denoted by “ASq”. For triangulation lattices (top), the value of W2(L) is exactly 1
for any L, while for other lattices, W2(L→∞) converges to some constant slightly
away from 1. The curves, obtained from the least-squares fits, are guides to the eye.

Lm χ2/DF c0 c1 c2

SSq 29 0.73 0.9712(1) 0.063(8) 0.1(2)
61 0.50 0.9713(2) 0.04(2) 1(2)

SSq8 29 0.14 1.03165(6) -0.110(4) 0.22(8)
61 0.13 1.0317(1) -0.12(2) 0.7(8)

BSq 29 0.99 0.9948(1) 0.12(1) -1.1(2)
61 1.24 0.9949(2) 0.11(5) -1(2)

Table 2: Fitting results of W2 for SSq, SSq8 and BSq, by Eq. (7) with X (2) = 0. The
asymptotic values c0 ≡W2(L→∞) and the averaged value 1.0015(2) for SSq and
SSq8 are slightly but clearly different from 1.

4.3 The k = 2 case445

By definition, Wk is an increasing function of k. It is thus expected that a special value ks446

exists such that, as L increases, Wk(L) decays for k < ks, diverges for k > ks, and converges to447

some constant for k = ks. From Ref. [34], it is known that ks = 2, and this is well confirmed448

by Fig. 6.449

The MC data of W2(L), plotted in Fig. 8, give further strong evidence for ks = 2. For450

the three site-percolation systems on the triangulation lattices (STr, SUJ4 and SUJ8), the MC451

data, with a precision of the order O(10−6) for some sizes, suggest that W2(L) = 1 for any L.452

This observation is further supported by the exact enumeration results, which are obtained for453

L = 3,5, 7 for STr and L = 3, 5 for SUJ4 and SUJ8. For the three other percolation models (BSq,454

SSq and SSq8), the W2(L) value also converges to some constant, which is slightly but clearly455

different from 1. We fit the W2(L) data to Eq. (7), according to the least-squares criterion, by456

fixing X = 0, and the results are given in Table 2.457

Motivated by the observation that W2(L), as obtained from either MC simulations or exact458

enumerations, is consistent with 1 for STr for any L, the authors of Ref. [34] proved that459

15



SciPost Physics Submission

-0.5

0

0.5

1.0

1.5

−1.5 -1.0 −0.5 0 0.5 1.0

XNP(φ
2) = 3

4φ
2 − 1

12

analytical formula
−
X

N
P

φ2

STr
SUJ4
SUJ8
SSq
SSq8
BSq

−X
X =

3
4
φ2 −

1
12

Figure 9: The MNP exponent −X ≡ −XMNP versus parameter φ2. Estimates of X for
all the six percolation systems agree very well with Eq. (3) for a broad range of k.
The analytical formula is represented by the brown line.

k 23.18 15.26 5.02 -0.48 -0.69 -1
BSq -0.810(2) -0.617(1) -0.215(2) 0.355(1) 0.416(2) 0.551(6)
STr -0.813(3) -0.619(1) -0.2163(6) 0.354(1) 0.414(2) 0.544(6)
SUJ4 -0.813(4) -0.619(2) -0.2167(2) 0.356(1) 0.419(2) 0.564(9)
SUJ8 -0.812(3) -0.618(1) -0.2165(2) 0.355(2) 0.416(3) 0.543(5)
SSq -0.808(6) -0.607(8) -0.215(1) 0.355(1) 0.416(1) 0.549(6)
SSq8 -0.812(3) -0.61(1) -0.216(2) 0.354(1) 0.415(2) 0.548(7)
Theory -0.8123 -0.6180 -0.2163 0.3558 0.4215 0.6667

Table 3: Some results for the fit of the NP exponent X (k). The last row contains
the theoretical prediction of Eq. (3). The fitting results X (−1) = 0.548(7) is smaller
than the predicted value 2/3 by about fifteen error bars. This indicates that the fitting
formula (7) is not sufficient to describe the W−1(L) data.

indeed W2(L) = 1 for site percolation on regular or irregular planar triangulation graphs, of460

any shape and position of the centering site. This proof eventually led to the more general461

proof given in Sec. 2.3.462

A natural question arises for bond percolation on the self-dual square lattice (BSq), which463

also has pc = 1/2. Further, as illustrated in Fig. 2, it can be regarded as site percolation on the464

lattice Sq6, a lattice isomorphic to its matching lattice. With the same squared shape as in [34],465

it is found from Fig. 8 and Table 2 that W2(L) depends non-trivially on L, and the asymptotic466

value W2(L → ∞) is different from 1. We have studied BSq with other domain shapes,467

arriving at the same observations. Further, for different domain shapes, the asymptotic values468

of W2(L → ∞) are different. The appendix in Ref. [34] provides some further analytical469

discussions on W2(L) for BSq.470

Figure 8 shows that W2(L) < 1 for SSq and W2(L) > 1 for SSq8. Since these lattices471

are mutually matching in the L →∞ limit, we calculate the average values of their W2(L),472

denoted as “ASq” in Fig. 8. This value is very close to, but still different from 1.473

In short, despite the fact that W2(L) = 1 for self-matching triangulation graphs, the asymp-474

totic value W2(L → ∞) is in general non-universal and depends on lattice types, domain475

shapes, and the location of the center.476
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4.4 Nested-path exponent477

In Sec. 2.3, we have derived the analytical formula (3) for the NP exponent X (k), where k478

is parameterized as k = 1 + 2cos(πφ). For −1 ≤ k ≤ 3, φ has a real solution in the range479

0≤ φ ≤ 1, and the known exact values are X (0) = 1/4, X (1) = 5/48 and X (2) = 0. For k > 3,480

φ becomes purely imaginary, and, letting φ = iα yields k = 1 + 2 cosh(πα). For k < −1,481

φ2 is not real, and, mostly probably, one has no longer the power-law scaling behavior as482

Wk(L)∼ L−X .483

Figure 6 shows the numerical results of Wk versus L, for a broad range of k. The ex-484

pected power-law scaling is clearly observed, though strong finite-size corrections exist for485

k ∈ [−1,−0.5). Furthermore, the Wk(L) data are well described by Eq. (7) for most k with486

correction exponent ω = 1 for reasonable values of Lm. The details of the fits are described487

in the appendix, and the results of X (k), from the six percolation models, are plotted versus488

φ2 in Fig. 9. For convenience of comparison, the results for some values of k are also listed in489

Table 3. It is shown that the estimated values of X for different percolation systems are con-490

sistent with each other within the error bars. This demonstrates the universality of the critical491

behavior associated with nested paths. Moreover, except the last three data points that are for492

k ' −0.69,−0.88 and k = −1, the estimates of X (k) are in good agreement with the prediction493

by Eq. (3). Also for k ' −0.69, the agreement between the numerical and theoretical results494

is acceptable, to within twice the quoted error bars.495

It is interesting to note that, if our numerical estimates of X (k) were compared to the496

previously conjectured formula in [34], the agreement would also look good, even for small497

values k ∈ [−1, 0.5). For instance, for the k = −1 case, the fit by Eq. (7) yields X (−1)≈ 0.544,498

which nicely agrees with the conjectured value 13/24 ≈ 0.542. Further, as shown in Fig. 10,499

theW−1 data versus a rescaled size L∗ = aL in the log-log scale, collapse onto an asymptotically500

straight line for all the six percolation systems. Actually, for k slightly smaller than −1, one501

can still obtain reasonably good fits by Eq. (7). This interesting fact is a warning that, without502

theoretical guidance, the fitting of ill-behaved numerical data may produce misleading results.503
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4.5 The k=−1 case504

We reexamine the finite-size scaling analysis for the W−1(L) data by noticing the following505

general picture. As the statistical weight k decreases, the one-point NP correlation function506

exhibits algebraic scaling behavior for k > kc = −1, and then enter into a ‘disordered’ phase507

in which Wk(L) vanishes exponentially as L increases. This behavior is reminiscent of that508

observed for a phase transition between a quasi-long-range ordered phase and a disordered509

phase, occuring in particular in the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. In510

this analogy, the special value kc = −1 acts as the BKT transition point. There is another511

interesting fact exhibited by the NP exponent as a function of k: from Eq. (3), one observes512

that the derivative of X (k) with respect to k diverges at kc = −1. At the critical point kc ,513

one might expect that the power-law scaling behavior of the one-point correlation Wk(L) is514

modified by additive and multiplicative logarithmic corrections.515

Since the numerical estimate XNP(−1) ≈ 0.544 is significantly smaller than the theo-516

retical value 2/3, we simply assume that a multiplicative logarithmic correction arises as517

W−1(L)∼ L−2/3(ln L). Fig. 11 shows a plot of the W−1 L2/3 data versus a ln L, with a a model-518

dependent rescaling constant. It can be seen that the data for all the six percolation systems519

collapse resonably well onto an approximately straight line.520

Furthermore, by assuming some analogy with the BKT phase transition and borrowing in-521

sights from the latter, we can try to make a finite-size scaling analysis for the Wk(L) data522

for some range k < kc . According to the BKT theory, as the BKT transition point is ap-523

proached from the disordered phase, the correlation length ξ would diverge exponentially524

as ξ ∼ exp(c/
p

t), where t represents the distance to the criticality and c is a non-universal525

constant. For any physical observable Q, the finite-size scaling near criticality would behave as526

Q(t, L)∼ LY Q̃(t ln2 L), where Y is the corresponding exponent. Accordingly, in Fig. 12 we plot527

Wk L2/3/ ln(L/L1) versus (k−kc) ln
2(L/L0), where L0 and L1 are model-dependent constants.528

Indeed, the numerical data for different system sizes more or less collapse onto each other.529

Despite of its incomplete theoretical foundations, this analysis indicates that kc = −1 seems to530

behave like a BKT transition point, and we conclude that logarithmic corrections are likely to531

exist at kc .532
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Figure 12: Wk L2/3/ ln(L/L1) versus (k− kc) ln
2(L/L0) for STr, where L0 and L1 are

non-universal constants. The more-or-less collapse of numerical data for different
sizes indicates that kc = −1 seems to behave like a BKT transition point.

5 Probability distribution533

We now consider the probability distribution P` that the center cluster is percolating (R= 1)534

and has ` independent closed nested paths (NPs) surrounding the center. The MC results for535

the six percolation systems are given in the appendix, and, as an example, the results for STr536

are shown in Fig. 13. It indicates that P` vanishes super-exponentially fast as a function of `.537

Actually, the number of NPs detected in our current simulations is limited to ` ≤ 5, even for538

L = 8189. For ` = 0, the algebraic decay, P0 ∼ L−1/4, is consistent with the approximately539

linear decrease on the logarithmic scale used in Fig. 13. For ` = 1, Table 6 in the appendix540

tells that P1(L) first increases with L but then starts decreasing; actually, this can be seen541

by zooming in on Fig. 13 since the error bars are much smaller than the symbol size for the542

` = 1 data points. For ` ≥ 2, P`(L) increases as a function of L within the current range543

253 ≤ L ≤ 8189 of simulations, but the increasing speed seems to slow down. This makes us544

suspect that: (i) there are two or more competing L-dependent behaviors in P`(L) for ` ≥ 1,545

and (ii) for sufficiently large L, P`(L) would become a decreasing function of L.546

5.1 Universal scaling form547

We shall show that the leading L-dependent behavior of P`(L) for any fixed `≥ 1 is described548

asymptotically by a universal scaling function that includes a logarithmic factor. First recall549

the definition of Wk(L) as the generating function of P`(L), and its asymptotic L-dependent550

scaling form:551

Wk(L) =
∑

`≥0

k` P`(L) , (8)

Wk(L) ' ak L−X (k) , (9)

where both the NP exponent X (k) and the non-universal constant ak are smooth functions of k552

for k > −1. Let us also recall the scaling of P0 as obtained by setting k = 0 in Eqs. (8) and (9).553

Only the leading term, with ` = 0, survives on the right-hand side (r.h.s.) of Eq. (8), and one554

has P0 =W0 ∼ a0 L−1/4.555
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Figure 13: Probability distribution P` versus the nested-path number ` for a series of
sizes L for STr at criticality.

Let us now derive the scaling of P1 by calculating the partial derivative of Wk, with respec-556

tive to k, and then setting k = 0. From Eqs. (8) and (9), we have557

∂Wk

∂ k
=

∑

`≥1

`k`−1P` , (10)

∂Wk

∂ k
' (−X ′k ln L)ak L−Xk + a′k L−Xk

= (−X ′k ln L)Wk [1+O(1/ ln L)] , (11)

where the derivative of L−Xk , with respect to k, gives a multiplicative logarithmic factor ln L558

and a universal amplitude −X ′k. The second term in the first line of Eq. (11) acts as a logarith-559

mic subleading correction.560

Similarly, by setting k = 0, only the term with ` = 1, which is P1(L), survives on the r.h.s.561

of Eq. (10), giving W ′
0 = P1. From Eq. (11), we have562

P1(L)' a0 L−1/4(Λ ln L) [1+O(1/ ln L)] , (12)

where P0 ' a0 L−1/4 is used and the universal constant Λ = −X ′0 = 1/
p

3π can be calculated563

from Eq. (3).564

The asymptotic scaling of P` for ` > 1 can be derived in an analogous way by taking the565

`-th derivative of Wk and setting k = 0. From Eqs. (8) and (9), we have566

∂ `Wk

∂ k`
=

∑

`′≥`

(`′)!
(`′ − `)!

k`
′−` P`′ (13)

∂ `Wk

∂ k`
' (−X ′k ln L)`Wk

�

1+
∑̀

`′=1

b`′
(ln L)`′

�

, (14)

where a series of logarithmic subleading corrections arise. Setting k = 0 and combining these567

two equations give568

P` ' a0 L−1/4
�

1
`!
(Λ ln L)`

�

�

1+
∑̀

`′=1

b`′
(ln L)`′

�

. (15)

Notice that, as ` increases, the scaling behaviors of P` would involve a longer series of loga-569

rithmic corrections, which vanish extremely slowly.570

20



SciPost Physics Submission

0

0.4

0.8

1.2

slope: 23
40π

0

0.4

0.8

1.2

slope: 23
40π

0

0.4

0.8

1.2

8 32 128 512 2048 8192

slope: 23
40π

Γ
1

STr
SUJ4
SUJ8
SSq
SSq8
BSq

Γ
2

Γ
3

L∗

Figure 14: Semi-log plot of the ratios Γ1, Γ2 and Γ3 versus re-scaled size L∗ = aL,
where a is a model-dependent constant (a = 1 for STr). The asymptotic slope agrees
well with the theoretical value Λ= 1/

p
3π≈ 0.183 776.

Lm χ2/DF Λ b1 c1 c2

STr 29 0.17 0.1840(2) -0.465(1) 0.483(9) 0.9(1)
61 0.19 0.1838(5) -0.464(3) 0.47(3) 1.2(9)

SUJ4 29 0.32 0.1845(4) -0.319(2) 0.24(2) 0.9(2)
61 0.29 0.1840(7) -0.316(5) 0.21(5) 2(1)

SUJ8 29 1.11 0.1840(6) -0.497(4) 0.56(3) 0.8(3)
61 1.15 0.184(1) -0.494(9) 0.52(9) 2(2)

SSq 29 0.33 0.1844(3) -0.463(2) 0.48(1) 0.9(2)
61 0.41 0.1845(8) -0.463(6) 0.49(6) 1(2)

SSq8 29 0.91 0.1840(6) -0.423(4) 0.45(2) 0.6(3)
61 1.10 0.184(1) -0.425(9) 0.5(1) 0(2)

BSq 29 0.22 0.1840(3) -0.435(2) 0.38(1) 1.1(1)
61 0.24 0.1842(6) -0.437(4) 0.40(5) 1(1)

Table 4: Fitting results of Γ1 by Eq. (16). For all the six percolation systems, the esti-
mates for Λ agree well with the predicted value 1/

p
3π≈ 0.183776. The amplitude

b1 of the logarithmic correction is also well determined.

5.2 Numerical verification571

In order to numerically verify the asymptotic universal scaling form (15), we consider the572

ratio Γ` ≡ (`!P`/P0)1/` which, for any ` ≥ 1, should diverge as Γ`(L) ' Λ ln L for L →∞. As573

mentioned above, finite-size corrections will become more severe as ` increases, which would574

obscure the numerical observation of the asymptotic logarithmic behavior, and therefore we575

do not consider Γ` with ` ≥ 4. The Γ` data with ` = 1,2, 3 are shown in Fig. 14, where the576

logarithmic divergence ln L and the universal amplitude Λ = 1/
p

3π ≈ 0.184 are illustrated,577

and, indeed, the corrections for small L are more pronounced for higher `.578
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Figure 15: Semi-log plot of conditional nested-path number N versus re-scaled sys-
tem size L∗ = aL, where a is a model-dependent constant (a = 1 is for STr). The
asymptotic slope agrees well with the theoretical value κ= 3/8π≈ 0.119 366.

Lm χ2/DF κ b1 c1 c2

STr 29 0.55 0.1197(3) -0.232(2) 0.071(1) 1.2(1)
61 0.40 0.1194(4) -0.230(3) 0.04(3) 1.9(9)

SUJ4 29 0.35 0.1197(2) -0.145(2) 0.05(1) 0.6(1)
61 0.22 0.1193(4) -0.142(3) 0.02(3) 1.4(8)

SUJ8 29 1.04 0.1198(3) -0.254(2) 0.09(1) 1.3(2)
61 0.18 0.1193(3) -0.250(2) 0.04(2) 2.6(6)

SSq 29 0.53 0.1198(3) -0.231(2) 0.08(1) 1.1(1)
61 0.44 0.1195(5) -0.229(3) 0.05(4) 1.8(9)

SSq8 29 0.31 0.1196(2) -0.200(1) 0.050(9) 1.0(1)
61 0.38 0.1196(4) -0.199(3) 0.05(3) 1.1(9)

BSq 29 0.16 0.1196(2) -0.218(1) 0.068(7) 0.80(8)
61 0.14 0.1194(3) -0.217(2) 0.05(2) 1.2(5)

Table 5: Fits of the conditional NP number N by Eq. (17). The estimate of κ is well
consistent with the theoretical value κ= 3/8π≈ 0.119366.

We then fit the Γ` data to579

Γ`(L) = ln L
�

Λ+
b1

ln L
+

c1

L
+

c2

L2

�

, (16)

which includes only the leading logarithmic correction term for simplicity, but includes con-580

ventional correction terms, 1/L and 1/L2. The results for Γ1 are given in Table 4. For all the581

six percolation systems, the estimates of Λ are in good agreement with the theoretical value582

Λ= 1/
p

3π.583

The correction term b1/ ln L is also well determined in Table 4, where the amplitude b1 is584

negative for all the systems and has similar magnitude. As seen from the first line in Eq. (11),585

this logarithmic correction comes from the sub-leading term a′k L−Xk at k = 0. Since Λ = −X ′0586

and a0 are both positive, the sign of b1 must stem from the sign of a′0. In other words, the587

fitting results in Table 4 suggest that, near k = 0, the amplitude ak in the scaling Wk ' ak L−Xk588

is a decreasing function of k. Actually, for the whole range k > −1, ak is a monotonically de-589

creasing function of k, as shown in Tables 9, 10 and 11 in the appendix where ak corresponds590

to parameter c0.591
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5.3 Discussion of logarithmic subleading corrections592

In probability theory, if the probability distribution of some random variable {Y} is known, it593

is usually straightforward to derive the behavior of quantities that are defined in terms of {Y}.594

However, for the current case for nested paths, this procedure does not work since the scaling595

of the probability distribution P` is itself obtained from the scaling of the correlator Wk(L)596

near k = 0. As a consequence, the L-dependent scaling behavior of Wk(L) for k 6= 0 cannot597

be calculated from the asymptotic leading behavior of P`(L) in Eq. (15). Take the percolating598

probability as an example, which, by definition, is 〈R〉 =W1 ≡
∑

`≥0 P`(L). Notice that, for599

any ` ≥ 1, P` involves the summation of `+ 1 terms as P` ' L−1/4
∑`
`′≥0 b`′(ln L)`

′
. It seems600

impossible to obtain the pure power-law scaling W1 ' L−5/48 from Eq. (15), unless all the601

logarithmic corrections are taken into account in a smart way.602

In other words, we appear to be in a situation of non-commuting limits. Indeed, in the603

correlator Wk with a given L, the contributions from all possible ` are summed up, whereas604

Eq. (15) describes, for a fixed and finite `, the L-dependent scaling of P`(L).605

5.4 Conditional nested-path number606

We now consider Wk and its derivative at k = 1. First of all, setting k = 1 in Eqs. (8) and (9)607

gives 〈R〉=W1 ∼ L−X1 with X1 = 5/48. Then, for the first derivative, setting k = 1 in Eq. (10)608

leads to
∑

`≥0 `P` ≡ 〈R · `〉, where the percolating indicator R ensures no contribution from609

non-percolating configurations. Further, from Eq. (11), we obtain 〈R·`〉 ' (κ ln L)W1[1+O(1/ ln L)],610

with κ= −X ′1 = 3/8π.611

In Monte Carlo simulations, it is convenient to define and sample N ≡ 〈R · `〉/〈R〉. Phys-612

ically, N represents the number of independent nested paths averaged in the ensemble of613

percolating configurations, and we shall call N the conditional NP number. From the discus-614

sion above, N is known to diverge logarithmically as N ' κ ln L[1+O(1/ ln L)]. The data for615

N in the six percolation models are shown in Fig. 15. Since the logarithmic scaling behavior616

is manifest, we fit the data to the form617

N = ln L
�

κ+
b1

ln L
+

c1

L
+

c2

L2

�

, (17)

and the results are given in Table 5. The estimate of κ agrees well with the theoretical value618

3/8π≈ 0.119 366.619

The scaling behavior of the conditional NP number implies that, given any critical percola-620

tion cluster with gyration radius r, the mean number of nested paths diverges logarithmically621

as κ ln r.622

Similar calculations, involving higher-order derivatives of Wk at k = 1, imply that the623

number N of nested paths is asymptotically normal, with average κ ln L (as stated above), and624

variance κ′ ln L, where κ′ = 3(π− 1)/(8π2).625

The probability distribution of PNPs and NLs can be obtained readily from the probability626

distribution P` for MNPs. First recall the identities between the one point functions (3, 4):627

WPNP(k) = WMNP(2k) and WNL(k) = WMNP(k + 1). Expressing the one-point functions in the628

corresponding probability distributions, immediately leads to the following equations for the629

probability distributions of nested paths and loops, the type being indicated with a superscript:630

PPNP
`
= 2` PMNP

`
and PNL

`
=
∑

`′≥`

�

`′

`

�

PMNP
`′

.631
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6 Discussion632

Following the initial work [34]we have further studied the nested-path (NP) operator for two-633

dimensional critical percolation. We have complemented the original monochromatic version634

with a polychromatic variety. And we have derived analytical formulae (3)–(4) for the corre-635

sponding power-law exponents XMNP(k) and XPNP(k). By simulating six different percolation636

models, we have provided explicit and strong evidence for the universality of the power-law637

scaling, with respect to the linear size L, of the NP correlation function Wk(L). The fitting638

results of exponent XMNP(k) are in excellent agreement with the formula (3) for a broad range639

of k. For the marginal case k = −1 with XMNP(−1) = 2/3, we have conjectured that the power-640

law scaling is modified by a multiplicative logarithmic correction as W−1 ∼ L−2/3(ln L), which641

is also supported by our high-precision data.642

For the k = 2 case, the exact identityW2(L) = 1 for site percolation on self-matching planar643

triangulation lattices has been well demonstrated for triangular and Union-Jack lattices with644

different center locations and domain shapes. However, for bond percolation on the square645

lattice, the identity W2(L) = 1 fails, and the asymptotic value of W2(L→∞) depends on the646

domain shape and on the location of the center. Similarly, for SSq and SSq8, an asymptotically647

matching pair of site percolation, neither the W2(L →∞) values nor their average is equal648

to 1.649

For the probability distributions P`(L), we have derived the asymptotic L-dependent scal-650

ing (15), for any fixed and finite `, with the universal constant Λ = 1/
p

3π. In addition, we651

have shown that the conditional NP number N diverges logarithmically as N ' κ ln L, with652

κ = 3/8π. Excellent agreement between the numerical and theoretical results was observed,653

both for the probability ratios Γ` and the conditional NP number N .654

Future work will consider the nested-path and nested-loop operators for other statistical-655

mechanical models in two dimensions, particularly the Q-state Potts model in the Fortuin-656

Kasteleyn cluster representation that includes bond percolation as a special case for Q→ 1.657
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A Data for nested-path probability distribution P`(L)754

Tables 6, 7 and 8 give the Monte Carlo data for the probability distribution P`, for the event755

that the center cluster is percolating (R= 1) and has ` independent closed nested paths (NPs)756

surrounding the center, for all the six critical percolation models discussed in the main text.757

Let us recall our abbreviations for their names: bond percolation on the square lattice (BSq),758

and site percolation on the triangular (STr), Union-Jack (SUJ4 and SUJ8) and square lattice759

without/with next-nearest-neighbouring interactions (SSq and SSq8). Also included are the760

data for the probability that the center cluster is not percolating (R = 0). As the system size761

L increases, the probability for R = 0 grows and saturates to 1 as 1−R = 1− aL−5/48, with762

a a non-universal constant.763

For the ` = 0 case, the probability P0 monotonically vanishes as L−1/4. However, the764

probability P0 keeps growing until L = 509, and then starts to decrease. This is due to the765

competing terms ln L and L−1/4 in the scaling P1(L)∝ (ln L)L−1/4. For higher ` > 1, since766

P`(L)∝(ln L)`L−1/4, the probability P`(L) would keep increasing till even larger system size767

before it starts to drop.768

B Fitting results of nested-path correlation function Wk(L)769

The results of fitting the nested-path (NP) correlation function Wk(L) by Eq. (7) are given770

in Tables 9, 10 and 11, where Lm represents the cut-off linear size such that only the data771

for L ≥ Lm are admitted in the fits. As k becomes negative and approaches −1, finite-size772

corrections become more and more severe, and the reliability of the fitting results decreases.773

Actually, for k = −1, we conjecture that Eq. (7) is modified by a multiplicative logarithmic774

correction. The estimated values of XNP are consistent with each other for the six percolation775

models, and this strongly supports the universality of the nested-path operator.776
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L R= 0 `= 0 1 2 3 4 5
3 0.015625(2) 0.968748(2) 0.015627(2)
5 0.034370(2) 0.931273(4) 0.034353(3) 3.79(2)E-6
7 0.052561(2) 0.894969(3) 0.052425(3) 4.54(1)E-5
9 0.068618(3) 0.863076(6) 0.068153(4) 1.527(2)E-4 1.6(4)E-9
13 0.094857(3) 0.811400(4) 0.093187(4) 5.556(4)E-4 8.1(4)E-8
29 0.157898(4) 0.690883(7) 0.147895(5) 0.0033168(9) 7.10(4)E-6 1.6(4)E-9
61 0.217367(5) 0.583879(6) 0.189584(4) 0.009099(1) 7.060(9)E-5 8.4(3)E-8

STr 125 0.27252(2) 0.49205(2) 0.21752(2) 0.01760(1) 3.05(1)E-4 1.14(7)E-6 4(4)E-9
253 0.32354(3) 0.41418(3) 0.23340(2) 0.02801(1) 8.67(2)E-4 7.1(2)E-6 8(5)E-9
509 0.37089(3) 0.34844(3) 0.23953(2) 0.039222(9) 0.001889(2) 2.83(4)E-5 1.5(2)E-7
1021 0.4147(1) 0.2932(1) 0.2382(1) 0.05032(5) 0.00344(1) 9.0(2)E-5 6(2)E-7
2045 0.4557(1) 0.2464(1) 0.23142(8) 0.06071(5) 0.00561(2) 1.91(3)E-4 2.9(4)E-6
4093 0.4943(7) 0.2073(7) 0.2201(6) 0.0695(4) 0.0084(1) 3.7(3)E-4 8(4)E-6
8189 0.5278(7) 0.1749(4) 0.2086(5) 0.0769(3) 0.0111(2) 6.1(3)E-4 2.2(7)E-5

3 0.015624(2) 0.968750(3) 0.015626(2)
5 0.037387(2) 0.925263(3) 0.037349(2) 9.3(1)E-7
7 0.057693(3) 0.884854(4) 0.057429(4) 2.412(6)E-5
9 0.075222(4) 0.850168(6) 0.074508(5) 1.027(1)E-4
13 0.103291(3) 0.795233(5) 0.101025(4) 4.514(3)E-4 2.1(2)E-8
29 0.168562(8) 0.671663(8) 0.156571(5) 0.0032001(8) 4.37(4)E-6

BSq 61 0.228468(6) 0.565362(7) 0.196889(5) 0.009223(1) 5.757(9)E-5 3.8(3)E-8
125 0.28335(3) 0.47551(3) 0.22277(3) 0.018093(8) 2.80(1)E-4 7.7(6)E-7
253 0.33376(3) 0.39994(4) 0.23660(3) 0.02885(1) 8.45(2)E-4 6.0(2)E-6 4(4)E-9
509 0.38050(4) 0.33631(4) 0.24095(3) 0.040331(9) 0.001887(3) 2.54(3)E-5 1.0(2)E-7
1021 0.4237(1) 0.28289(8) 0.2383(1) 0.05150(5) 0.00352(1) 7.7(2)E-5 5(1)E-7
2045 0.4641(1) 0.23773(9) 0.23045(9) 0.06187(5) 0.00568(2) 1.94(4)E-4 2.2(4)E-6
4093 0.5008(7) 0.2004(6) 0.2192(5) 0.0709(4) 0.0083(1) 3.9(3)E-4 2(2)E-6
8189 0.5365(8) 0.1673(5) 0.2059(7) 0.0783(4) 0.0113(2) 7.0(3)E-4 2.0(5)E-5

Table 6: Monte Carlo data for nested-path probability distribution P`(L) for STr and
BSq. The column with R= 0 represents the probability that the center cluster is not
percolating. The maximum number of nested paths is `max = (L − 1)/2 (L is odd),
which is 1, 2,3 respectively for L = 3, 5,7. However, due to the super-exponentially
fast decaying of P`(L) as ` increases, the probability P2(L = 5) is already very small,
which is O(10−6) for BSq and similar for the others.
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L R= 0 `= 0 1 2 3 4 5
3 0.027508(2) 0.957254(2) 0.015239(2)
5 0.052157(3) 0.912493(4) 0.035346(2) 3.57(3)E-6
7 0.073218(4) 0.873314(5) 0.053427(3) 4.07(1)E-5
9 0.090746(4) 0.840281(5) 0.068834(4) 1.396(2)E-4 1.0(4)E-9

13 0.118292(4) 0.788115(6) 0.093074(4) 5.188(3)E-4 5.4(3)E-8
29 0.181852(5) 0.669222(6) 0.145745(4) 0.0031753(9) 6.04(3)E-6 2(2)E-10

SSq 61 0.240394(6) 0.564957(8) 0.185786(5) 0.008799(1) 6.383(9)E-5 6.5(3)E-8
125 0.29424(2) 0.47585(3) 0.21251(2) 0.017111(9) 2.88(1)E-4 8.8(5)E-7
253 0.34382(2) 0.40048(3) 0.22761(3) 0.02725(1) 8.27(2)E-4 6.4(1)E-6 1.6(7)E-8
509 0.38978(3) 0.33685(3) 0.23328(3) 0.03825(1) 0.001816(2) 2.61(3)E-5 1.1(2)E-7

1021 0.43235(9) 0.28328(8) 0.23187(7) 0.04910(5) 0.00331(1) 8.0(2)E-5 3(1)E-7
2045 0.4720(1) 0.23826(8) 0.2251(1) 0.05902(5) 0.00543(1) 1.86(4)E-4 2.0(3)E-6
4093 0.5075(6) 0.2000(4) 0.2156(6) 0.0683(3) 0.0082(1) 3.5(3)E-4 1.8(5)E-5
8189 0.5431(8) 0.1685(5) 0.2022(6) 0.0745(4) 0.0109(1) 7.0(5)E-4 2.0(4)E-5

3 0.015240(2) 0.957247(2) 0.027513(2)
5 0.035373(3) 0.912497(4) 0.052081(3) 4.94(1)E-5
7 0.053661(3) 0.873305(4) 0.072780(3) 2.541(3)E-4 6(1)E-9
9 0.069497(4) 0.840293(5) 0.089621(3) 5.890(3)E-4 1.00(5)E-7

13 0.095236(3) 0.788110(5) 0.115157(4) 0.0014962(6) 1.19(2)E-6
29 0.157254(4) 0.669231(5) 0.167651(6) 0.0058350(8) 2.926(7)E-5 1.6(1)E-8

SSq8 61 0.216242(8) 0.564967(7) 0.205464(6) 0.013154(2) 1.729(2)E-4 4.40(9)E-7 6(3)E-10
125 0.27126(3) 0.47585(3) 0.22949(2) 0.022821(9) 5.74(2)E-4 3.52(9)E-6 4(4)E-9
253 0.32222(3) 0.40050(3) 0.24204(3) 0.03386(1) 0.001370(3) 1.70(3)E-5 5(1)E-8
509 0.36961(3) 0.33690(3) 0.24543(3) 0.04533(2) 0.002685(3) 5.35(4)E-5 3.8(4)E-7

1021 0.4135(1) 0.2835(1) 0.2419(1) 0.05635(3) 0.00457(2) 1.40(2)E-4 1.6(3)E-6
2045 0.45438(9) 0.23822(9) 0.2338(1) 0.06637(6) 0.00695(3) 2.94(4)E-4 4.8(5)E-6
4093 0.4916(8) 0.1999(6) 0.2228(6) 0.0753(4) 0.0098(1) 5.8(3)E-4 1.4(6)E-5
8189 0.5285(9) 0.1686(6) 0.2077(6) 0.0811(4) 0.0131(2) 8.9(5)E-4 2.7(8)E-5

Table 7: Monte Carlo data for nested-path probability distribution P`(L) for SSq and
SSq8.
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L R= 0 `= 0 1 2 3 4 5
3 0.062497(3) 0.875000(5) 0.062503(3)
5 0.083185(4) 0.833667(6) 0.083133(4) 1.520(4)E-5
7 0.107972(3) 0.784486(5) 0.107327(4) 2.157(1)E-4
9 0.126083(6) 0.749038(8) 0.124273(4) 6.061(4)E-4 8(1)E-9

13 0.153895(7) 0.695711(9) 0.148642(6) 0.0017513(6) 3.64(9)E-7
29 0.215997(6) 0.582639(7) 0.194085(5) 0.007255(1) 2.375(6)E-5 3.1(7)E-9

SUJ4 61 0.272319(6) 0.488592(8) 0.222841(3) 0.016065(2) 1.821(1)E-4 2.85(7)E-7
125 0.32387(2) 0.41022(3) 0.23827(2) 0.02699(1) 6.54(2)E-4 3.2(1)E-6 4(4)E-9
253 0.37145(3) 0.34460(3) 0.24355(2) 0.03878(1) 0.001604(3) 1.70(3)E-5 4(1)E-8
509 0.41543(3) 0.28961(3) 0.24136(2) 0.05039(1) 0.003150(2) 5.99(4)E-5 3.4(5)E-7

1021 0.4562(1) 0.24350(9) 0.2337(1) 0.06109(5) 0.00527(2) 1.58(4)E-4 1.3(2)E-6
2045 0.4943(1) 0.20465(7) 0.22264(9) 0.07015(5) 0.00794(2) 3.40(4)E-4 6.5(6)E-6
4093 0.5298(7) 0.1721(4) 0.2089(5) 0.0774(3) 0.0111(1) 6.2(4)E-4 1.6(7)E-5
8189 0.5631(8) 0.1452(6) 0.1936(9) 0.0826(3) 0.0143(3) 0.00109(5) 4(1)E-5

3 0.0039074(7) 0.992185(1) 0.0039076(8)
5 0.024692(2) 0.950617(2) 0.024691(2) 5.9(2)E-8
7 0.041136(3) 0.917751(4) 0.041104(2) 8.98(4)E-6
9 0.056485(4) 0.887134(6) 0.056327(3) 5.39(1)E-5

13 0.081778(4) 0.837026(4) 0.080906(3) 2.906(3)E-4 1.1(2)E-8
29 0.143930(5) 0.716968(8) 0.136699(6) 0.0024002(7) 3.11(2)E-6 2(2)E-10

SUJ8 61 0.203653(6) 0.607812(9) 0.181063(6) 0.007429(1) 4.358(9)E-5 2.8(3)E-8
125 0.25950(3) 0.51304(4) 0.21193(3) 0.015308(4) 2.221(8)E-4 5.2(4)E-7
253 0.31139(3) 0.43210(2) 0.23052(3) 0.025306(9) 6.85(1)E-4 4.6(1)E-6 2(1)E-8
509 0.35950(3) 0.36370(3) 0.23876(3) 0.03644(1) 0.001579(2) 2.03(2)E-5 6(2)E-8

1021 0.4040(1) 0.3059(1) 0.23928(8) 0.04769(3) 0.00300(1) 6.3(2)E-5 4(1)E-7
2045 0.4457(1) 0.25741(9) 0.23356(9) 0.05819(5) 0.00499(1) 1.62(3)E-4 2.1(4)E-6
4093 0.4845(8) 0.2166(6) 0.2234(4) 0.0676(3) 0.0076(1) 3.4(3)E-4 6(3)E-6
8189 0.5190(8) 0.1821(7) 0.2128(4) 0.0750(4) 0.0105(1) 6.3(4)E-4 2.9(8)E-5

Table 8: Monte Carlo data for nested-path probability distribution P`(L) for SUJ4 and
SUJ8.
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k Lm -XNP c0 c1 k Lm -XNP c0 c1

57.75 29 1.31(1) 0.25(2) 0.3(1) 5.02 29 0.2163(6) 0.726(3) 0.18(8)
52.12 29 1.25(1) 0.26(2) 0.3(1) 3.88 29 0.1461(4) 0.799(2) 0.13(6)
46.90 29 1.19(1) 0.27(1) 0.3(1) 2.88 29 0.0742(3) 0.889(2) 0.07(5)
42.09 29 1.130(9) 0.28(1) 0.4(1) 2.00 29 0.0000(2) 1.000(1) 0.00(4)
37.65 29 1.068(7) 0.30(1) 0.36(8) 1.60 29 -0.0383(2) 1.068(1) -0.05(3)
33.56 29 1.005(6) 0.315(9) 0.37(7) 1.23 29 -0.0775(1) 1.146(1) -0.14(3)
29.80 29 0.941(5) 0.333(8) 0.38(6) 1.00 29 -0.1043(1) 1.206(1) -0.22(3)
26.35 29 0.877(4) 0.353(6) 0.38(5) 0.89 29 -0.1179(1) 1.238(1) -0.27(3)

STr 23.18 29 0.813(3) 0.375(5) 0.38(4) 0.57 29 -0.1599(2) 1.349(2) -0.50(4)
20.29 29 0.749(2) 0.398(4) 0.38(4) 0.27 29 -0.2037(2) 1.485(2) -0.91(6)
17.66 29 0.684(2) 0.425(3) 0.37(3) -0.00 29 -0.2500(3) 1.659(3) -1.64(8)
15.26 29 0.619(1) 0.454(3) 0.36(2) -0.25 29 -0.2994(4) 1.885(4) -3.0(1)
13.08 29 0.5532(9) 0.486(2) 0.35(2) -0.48 61 -0.354(1) 2.21(2) -6.5(9)
11.11 29 0.4872(7) 0.522(2) 0.33(2) -0.69 61 -0.414(2) 2.68(3) -13(1)
9.33 29 0.4206(5) 0.563(1) 0.30(1) -0.88 61 -0.483(2) 3.42(5) -28(3)
7.73 29 0.353(1) 0.610(5) 0.3(1) -1.00 125 -0.544(6) 4.5(2) -78(17)
6.30 29 0.2853(9) 0.663(4) 0.2(1)

57.75 29 1.31(1) 0.24(1) 0.5(1) 5.02 61 0.215(2) 0.738(9) 0.0(4)
52.12 29 1.25(1) 0.25(1) 0.5(1) 3.88 61 0.145(1) 0.808(7) 0.0(3)
46.90 29 1.188(9) 0.27(1) 0.54(9) 2.88 61 0.0736(8) 0.893(5) 0.0(3)
42.09 29 1.126(7) 0.28(1) 0.55(8) 2.00 61 -0.0004(5) 0.997(4) 0.0(2)
37.65 29 1.064(6) 0.297(9) 0.56(7) 1.60 61 -0.0385(4) 1.061(3) -0.1(2)
33.56 29 1.001(5) 0.314(7) 0.56(6) 1.23 61 -0.0777(4) 1.133(3) -0.2(2)
29.80 29 0.938(4) 0.334(6) 0.56(5) 1.00 61 -0.1044(4) 1.188(3) -0.2(2)
26.35 29 0.874(3) 0.355(5) 0.56(4) 0.89 61 -0.1180(4) 1.218(3) -0.3(2)

BSq 23.18 29 0.810(2) 0.378(4) 0.56(4) 0.57 61 -0.1600(4) 1.320(4) -0.5(2)
20.29 29 0.746(2) 0.403(4) 0.55(3) 0.27 61 -0.2038(5) 1.445(5) -0.8(3)
17.66 29 0.682(1) 0.430(3) 0.55(2) -0.00 61 -0.2503(6) 1.603(7) -1.5(4)
15.26 29 0.617(1) 0.461(3) 0.53(2) -0.25 61 -0.3002(8) 1.81(1) -2.8(6)
13.08 29 0.5514(9) 0.494(2) 0.51(2) -0.48 61 -0.355(1) 2.11(2) -5.5(9)
11.11 29 0.4856(7) 0.531(2) 0.49(1) -0.69 61 -0.416(2) 2.54(3) -11(2)
9.33 29 0.4192(5) 0.573(1) 0.45(1) -0.88 125 -0.493(5) 3.4(1) -38(12)
7.73 29 0.3522(4) 0.620(1) 0.41(1) -1.00 125 -0.551(6) 4.3(2) -73(20)
6.30 61 0.283(2) 0.68(1) 0.0(5)

Table 9: Fitting results of the nested-path correlation function Wk(L) for STr and BSq
by Eq. (7). When k is large, the fit is already good without the correction term with
c2 being taken into account, and for simplicity the amplitude c2 is not presented.
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k Lm -XNP c0 c1 k Lm -XNP c0 c1

57.75 61 1.29(3) 0.27(4) 0.0(8) 5.02 61 0.215(1) 0.712(7) 0.0(4)
52.12 61 1.23(2) 0.27(4) 0.1(7) 3.88 61 0.145(1) 0.781(6) 0.0(3)
46.90 61 1.18(2) 0.28(3) 0.1(6) 2.88 61 0.0738(7) 0.866(4) 0.0(2)
42.09 61 1.12(2) 0.29(3) 0.2(5) 2.00 61 -0.0002(5) 0.972(3) 0.0(2)
37.65 61 1.06(1) 0.30(2) 0.2(5) 1.60 61 -0.0383(4) 1.037(3) -0.1(2)
33.56 61 1.00(1) 0.32(2) 0.3(4) 1.23 61 -0.0775(3) 1.112(3) -0.1(1)
29.80 61 0.934(9) 0.33(2) 0.3(4) 1.00 61 -0.1043(3) 1.169(3) -0.2(1)
26.35 61 0.871(8) 0.35(2) 0.3(3) 0.89 61 -0.1179(3) 1.201(3) -0.3(1)

SSq 23.18 61 0.808(6) 0.37(1) 0.3(3) 0.57 61 -0.1598(4) 1.307(3) -0.5(2)
20.29 61 0.744(5) 0.39(1) 0.3(2) 0.27 61 -0.2037(4) 1.438(4) -0.8(2)
17.66 61 0.67(1) 0.46(3) -2(2) -0.00 61 -0.2502(5) 1.605(6) -1.6(3)
15.26 61 0.607(8) 0.48(3) -1(1) -0.25 61 -0.3002(7) 1.829(9) -3.2(5)
13.08 61 0.544(6) 0.50(2) -1(1) -0.48 61 -0.355(1) 2.14(2) -6.6(8)
11.11 61 0.480(5) 0.53(2) -0.6(9) -0.69 61 -0.416(1) 2.61(3) -14(1)
9.33 61 0.416(3) 0.56(1) -0.4(7) -0.88 125 -0.486(2) 3.34(5) -29(3)
7.73 61 0.350(3) 0.61(1) -0.3(6) -1.00 125 -0.549(6) 4.5(2) -85(19)
6.30 61 0.283(2) 0.654(9) -0.1(5)

57.75 29 1.30(2) 0.45(4) -0.2(4) 5.02 61 0.216(2) 0.802(9) 0.0(4)
52.12 29 1.25(1) 0.45(3) -0.1(3) 3.88 61 0.146(1) 0.862(6) 0.0(3)
46.90 29 1.19(1) 0.45(3) -0.1(3) 2.88 61 0.0742(7) 0.937(4) -0.1(2)
42.09 29 1.12(1) 0.46(2) 0.0(2) 2.00 61 0.0000(4) 1.032(3) -0.1(2)
37.65 29 1.063(8) 0.47(2) 0.0(2) 1.60 61 -0.0382(3) 1.089(3) -0.1(1)
33.56 29 1.001(7) 0.48(2) 0.1(1) 1.23 61 -0.0774(3) 1.156(2) -0.2(1)
29.80 29 0.938(5) 0.49(1) 0.1(1) 1.00 61 -0.1042(3) 1.207(2) -0.3(1)
26.35 29 0.875(4) 0.50(1) 0.10(9) 0.89 61 -0.1178(3) 1.235(3) -0.3(1)

SSq8 23.18 29 0.812(3) 0.520(8) 0.11(7) 0.57 61 -0.1598(3) 1.332(3) -0.5(2)
20.29 29 0.748(2) 0.538(6) 0.12(6) 0.27 61 -0.2038(4) 1.452(4) -0.9(2)
17.66 61 0.68(2) 0.58(8) -1(4) -0.00 61 -0.2503(6) 1.606(6) -1.7(3)
15.26 61 0.61(1) 0.60(6) -1(3) -0.25 61 -0.3001(8) 1.81(1) -3.2(5)
13.08 61 0.55(1) 0.62(5) 0(2) -0.48 61 -0.354(1) 2.10(2) -6.2(9)
11.11 61 0.485(7) 0.64(3) 0(2) -0.69 61 -0.415(2) 2.52(3) -12(2)
9.33 61 0.419(5) 0.68(2) 0(1) -0.88 61 -0.484(2) 3.18(5) -25(3)
7.73 61 0.352(3) 0.71(2) -0.1(8) -1.00 125 -0.548(7) 4.2(2) -79(22)
6.30 61 0.285(2) 0.75(1) 0.0(6)

Table 10: Fitting results of the nested-path correlation function Wk(L) for SSq and
SSq8 by Eq. (7).
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k Lm -XNP c0 c1 k Lm -XNP c0 c1

57.75 29 1.31(2) 0.47(4) 0.6(3) 5.02 29 0.2167(2) 0.8304(8) 0.278(8)
52.12 29 1.25(2) 0.48(4) 0.7(3) 3.88 29 0.1463(1) 0.8772(6) 0.199(6)
46.90 29 1.19(1) 0.49(3) 0.7(2) 2.88 29 0.0743(1) 0.9325(4) 0.108(5)
42.09 29 1.13(1) 0.50(3) 0.7(2) 2.00 29 0.0000(3) 1.000(2) 0.00(5)
37.65 29 1.067(9) 0.51(2) 0.7(2) 1.60 29 -0.0383(2) 1.040(2) -0.06(5)
33.56 29 1.004(7) 0.53(2) 0.7(1) 1.23 29 -0.0775(2) 1.086(1) -0.12(4)
29.80 29 0.940(6) 0.54(2) 0.7(1) 1.00 29 -0.1043(2) 1.120(1) -0.18(4)
26.35 29 0.877(5) 0.56(1) 0.7(1) 0.89 29 -0.1179(2) 1.139(1) -0.20(4)

SUJ4 23.18 29 0.813(4) 0.58(1) 0.66(8) 0.57 29 -0.1599(2) 1.203(2) -0.31(4)
20.29 29 0.748(3) 0.599(8) 0.63(7) 0.27 29 -0.2038(2) 1.281(2) -0.48(6)
17.66 29 0.684(2) 0.620(6) 0.60(5) -0.00 29 -0.2503(3) 1.380(3) -0.78(8)
15.26 29 0.619(2) 0.643(5) 0.57(4) -0.25 29 -0.3004(4) 1.512(4) -1.3(1)
13.08 29 0.553(1) 0.667(4) 0.54(3) -0.48 61 -0.356(1) 1.70(2) -2.7(8)
11.11 29 0.4873(8) 0.693(3) 0.50(2) -0.69 61 -0.419(2) 1.99(3) -6(1)
9.33 29 0.4208(6) 0.722(2) 0.46(2) -0.88 125 -0.499(6) 2.6(1) -24(10)
7.73 29 0.3537(4) 0.754(2) 0.41(1) -1.00 125 -0.564(9) 3.3(2) -50(19)
6.30 29 0.2857(3) 0.790(1) 0.35(1)

57.75 29 1.31(2) 0.20(1) 0.3(1) 5.02 29 0.2165(2) 0.6980(7) 0.236(7)
52.12 29 1.25(1) 0.21(1) 0.3(1) 3.88 29 0.1463(1) 0.7782(5) 0.189(5)
46.90 29 1.19(1) 0.22(1) 0.3(1) 2.88 29 0.0743(1) 0.8762(4) 0.120(4)
42.09 29 1.127(9) 0.24(1) 0.32(8) 2.00 29 0.0000(1) 1.0002(3) -0.002(3)
37.65 29 1.064(8) 0.250(9) 0.33(7) 1.60 61 -0.0381(4) 1.073(3) 0.0(2)
33.56 29 1.002(6) 0.267(8) 0.34(6) 1.23 61 -0.0772(3) 1.159(3) -0.1(1)
29.80 29 0.939(5) 0.285(7) 0.35(5) 1.00 61 -0.1040(3) 1.225(3) -0.1(2)
26.35 29 0.876(4) 0.304(6) 0.36(5) 0.89 61 -0.1176(3) 1.261(3) -0.2(2)

SUJ8 23.18 29 0.812(3) 0.326(5) 0.37(4) 0.57 61 -0.1595(4) 1.383(3) -0.4(2)
20.29 29 0.748(2) 0.351(4) 0.37(3) 0.27 61 -0.2032(4) 1.533(4) -0.8(2)
17.66 29 0.683(2) 0.378(3) 0.37(3) -0.00 61 -0.2495(5) 1.725(6) -1.7(4)
15.26 29 0.618(1) 0.408(2) 0.37(2) -0.25 61 -0.2990(7) 1.98(1) -3.5(5)
13.08 29 0.5528(9) 0.442(2) 0.36(2) -0.48 125 -0.355(2) 2.36(3) -10(3)
11.11 29 0.4869(7) 0.480(2) 0.35(1) -0.69 125 -0.416(3) 2.93(6) -23(5)
9.33 29 0.4204(5) 0.524(1) 0.33(1) -0.88 125 -0.488(4) 3.9(1) -53(10)
7.73 29 0.3533(4) 0.573(1) 0.30(1) -1.00 125 -0.543(5) 4.9(2) -97(17)
6.30 29 0.2854(3) 0.6308(8) 0.273(8)

Table 11: Fitting results of the nested-path correlation function Wk(L) for SUJ4 and
SUJ8 by Eq. (7).
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