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We present a set of generalized quantum loop models which provably exhibit topolog-
ically stable ergodicity breaking. These results hold for both periodic and open boundary
conditions, and derive from a one-form symmetry (notably not being restricted to sec-
tors of extremal one-form charge). We identify simple models in which this one-form
symmetry can be emergent, giving rise to the aforementioned ergodicity breaking as
an exponentially long-lived prethermal phenomenon. We unveil a web of dualities that
connects these models, in certain limits, to models that have previously been discussed
in the literature. We also identify nonlocal conserved quantities in such models that
correspond to a pattern of system-spanning domain walls, and which are robust to the
addition of arbitrary k-local perturbations.
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1 Introduction

When can many-body quantum systems fail to reach thermal equilibrium under their own
dynamics, and thereby exhibit long-time behavior that lies fundamentally beyond equi-
librium quantum statistical mechanics? The oldest answer to this question is “when they
are integrable” [1]—integrable systems have extensively many explicit conservation laws,
and do not thermalize to any conventional statistical mechanical ensemble. However, it
is unclear to what extent (if at all) integrability is robust to generic perturbations, in the
thermodynamic limit. A more recent answer is “when they are many-body localized” [2, 3].
Many-body localization by strong disorder involves extensively many emergent conservation
laws, and does exhibit robustness to spatially local perturbations, although the proof of
robustness is limited to one-dimensional spin chains [4], and moreover is subtle and has been
questioned [5]. Quantum many-body scars [6–9] provide yet another example, without any
conservation laws (but generically also without any notion of robustness). Still more recently,
it was realized that the interplay of finitely many ‘multipolar’ conservation laws could break
ergodicity [10], a result that was explained in terms of a shattering (aka fragmentation) of
Hilbert space [11–13], whereby the unitary time evolution matrix block diagonalizes (within
each symmetry sector) into exponentially many dynamically disconnected subsectors. This
phenomenon has a simple proof of robustness [11] to arbitrary symmetric perturbations
with strict spatial locality, and has stimulated a great deal of work into quantum dynamics
with multipolar symmetries [14–34].

Very recently, a new route to ergodicity breaking was identified [35] which exhibits
topological stability in two spatial dimensions. For the first time, the ergodicity breaking is
robust to spatially nonlocal perturbations, with the only requirement being that of k-locality,
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i.e., that the perturbation should act on no more than k degrees of freedom (with k/L→ 0 in
the thermodynamic limit, where L is linear system size). This argument relied on a one-form
symmetry, with the results being exact in the presence of arbitrary one-form-symmetric
k-local perturbations. It was also explained how the one-form symmetry could be ‘emergent’
in a simple model of spin-1/2 degrees of freedom, which we hereafter refer to as the CZp

model, in which case the ergodicity breaking became prethermal, and robust to arbitrary
k-local perturbations up to exponentially long timescales. However, the results of Ref. [35]
relied on a dense packing of system winding loops, such that the ergodicity breaking only
arose in sectors of extremal one-form symmetry charge, and was ‘all or nothing’ (i.e., either
the one-form symmetry sector was shattered into fully frozen one-dimensional subblocks
with no dynamics, or it was not fragmented at all). Moreover, the construction presented in
Ref. [35] was limited to systems with periodic boundary conditions.

In this work, we drastically extend the results of Ref. [35] to a much broader class of
quantum loop models, without the requirement of either dense packing or periodic boundary
conditions. We present a family of simple models with emergent one-form symmetry [36–40]
(up to an exponentially long prethermal timescale). This family of models includes, as its
simplest member, the CZp model of Ref. [35]. We show how this family of models generically
exhibits ergodicity breaking with topological stability, and how the results may be extended
to systems with open boundary conditions. Moreover, the broader family includes models
in which the ergodicity breaking occurs in all symmetry sectors, and is not ‘all or nothing’
(i.e., symmetry sectors can block diagonalize into subblocks that are not one-dimensional).
In this latter case, we identify certain nonlocal conserved quantities that robustly label the
emergent subblocks. We also unveil a web of dualities that connects our results (in various
limits) to higher-dimensional generalizations of several models previously considered in the
literature, including the pair-flip model [41, 42], and which also make a connection with
(quantum) square ice [43–45] and close-packed dimer models [46–53].

The manuscript is structured as follows: We start with a review of the one-dimensional
pair-flip model in Sec. 2. This discussion serves as a warm-up and emphasizes the aspects
of the model that will be most useful in our two-dimensional generalization. Readers
familiar with the physics of the one-dimensional pair-flip model can therefore skip to Sec. 3,
where we introduce a two-dimensional model that displays the aforementioned topological
fragmentation. Sec. 3.1 contains a summary of the two-dimensional model that is meant to
be entirely self-contained, so that readers may understand all the physics of the topological
fragmentation. The rest of that section is devoted to details of the model, including its
boundaries, symmetries, robustness, and fragmentation. In Sec. 4 we provide connections to
square ice, the CZp model [35] (via a Kramers-Wannier-like duality), and a three-dimensional
generalization. Finally, we discuss some open questions in Sec. 5.

2 Warm-up: One-dimensional pair-flip dynamics

We start with a brief review of the dynamics of the one-dimensional (1D) pair-flip (PF)
model [41, 42], which exhibits some properties that will be useful for understanding our
generalized quantum loop models. Readers familiar with the pair-flip model may safely skip
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this section and begin reading Sec. 3.
Consider a lattice composed of L spin-S degrees of freedom on the edges of a one-

dimensional lattice. It will be convenient to work with the variable m = 2S + 1 in place of S;
each degree of freedom is then associated to an m-dimensional local Hilbert space. Let us
introduce the following graphical representation of states,

|0〉 ≡ | 〉 , |1〉 ≡ | 〉 , |2〉 ≡ | 〉 , (1)

where we have set m= 3 for convenience of illustrations.
Given projectors P̂αe = |α〉〈α|e that project the spin at edge e onto state α, we may define

the symmetry charges

N̂α =
∑

e

(−1)eP̂αe , α= 0, . . . , m− 1 , (2)

where (−1)e = 1 if e is in the even sublattice and (−1)e = −1 if e is in the odd sublattice. While
it may appear that there are m different generators in (2), only m−1 of them are independent
since the projectors obey

∑m−1
α=0 P̂

α
e = 1 on every edge. The U(1)m−1 symmetry (2) breaks the

mL-dimensional Hilbert space into O(Lm−1) symmetry sectors. However, as we will show,
following the discussion in Ref. [42], nearest-neighbor, symmetry-respecting dynamics is not
fully ergodic within these sectors.

The most generic nearest-neighbor dynamics consistent with (2) is as follows: If the spins
on edges e and e+ 1 are both in state α, flip them both to state β , with 0 ≤ α,β ≤ m− 1.
These “active” pairs can be represented by pairing up the legs emanating from spins into
“dimers.” For example, �� �→ | 〉 , (3)

and with analogous notation for neighboring pairs of green and blue sites. Consider the
following configurations:

| 〉 ,
�� � . (4)

The configuration on the left is evidently fully active. The configuration on the right is also
fully active since the central active red pair can be permuted to green, allowing the green edge
spins to become active. In this way, the two configurations are actually connected via local
pair-flip moves. Indeed, since any contiguous region of 2n spins paired into n noncrossing
dimers can be connected via local moves to the all red state (say), any configuration of n
noncrossing dimers can be generated via pair-flip moves.

Suppose that the following procedure is performed: First, all neighboring pairs are
grouped1 according to Eq. (3). Next, all paired spins are removed from the string, and
the pairing procedure is applied again to the remaining spins. This procedure is repeated
until the there remains a configuration of unpaired spins that cannot be paired up without
introducing crossings between dimers.

1While this grouping is not unique, the nonuniqueness does not affect the label that the procedure produces.
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Having completed this procedure, observe that unpaired spins are able to move past
paired spin configurations.2 The simplest example of this being

�� �↔
�� �↔
�� �↔
�� � . (5)

However, since the color of the unpaired spin remains fixed, the ternary string corresponding
to the unpaired dots (i.e., having removed all intervening paired spins) is conserved. As an
explicit example, under the procedure just described,

�� � 7→ | 〉 . (6)

The reduced pattern shown on the right-hand side is conserved under pair-flip dynamics.
Note that we are assuming open boundaries for the purposes of this discussion.

We call such a pattern of unpaired dots a label; spin configurations associated to different
labels cannot be connected via pair-flip dynamics and therefore belong to dynamically
disconnected sectors known as Krylov sectors [13]. If our system has an even (odd) number
of spins then the label must have an even (odd) length, but can otherwise be any length
between 0 and L. For open boundary conditions, the first color in the label is arbitrary and
no color may match its neighbor, so there are m(m− 1) j−1 labels of length j, except for the
trivial label ( j = 0) of which there is only one (and only exists if L is even). In all, this allows
for

⌈L/2⌉−1∑
n=0

m(m− 1)L−2n−1 + (1 if L is even) =O[(m− 1)L] (7)

Krylov sectors. See Appendix B for the sizes of the Krylov sectors, and for the slightly
different counting of sectors in the presence of periodic boundaries. The exponential scaling
of the number of Krylov sectors together with the polynomial scaling of the number of
symmetry sectors means that the PF model must exhibit fragmentation [42]. In particular,
Krylov sectors with labels of length L each consist of one fully frozen state with no allowed
dynamics.

Furthermore, fragmentation exists in generic symmetry sectors. Any symmetry sector has
a minimal length Lmin on which it exists. Take a representative spin pattern from that sector
and an uncharged motif such as

�� �
. There are six motifs of size six (and no

smaller motifs, as shown in Appendix B) but only four have a first spin that does not match
the last spin of our chosen pattern. Then for systems of size Lmin + 6n, we have n slots into
which we can independently place four compatible patterns, which gives a lower bound of
4(L−Lmin)/6 different Krylov sectors within any fixed symmetry sector. A more detailed count
of the number of Krylov sectors belonging to each symmetry sector is given in Appendix B,
but the argument here is enough to show that fragmentation is present in generic symmetry
sectors.

In the pair-flip model, and in most models in the literature, fragmentation depends
strongly on strict locality. In our example, we can see this to be true by including next-
nearest-neighbor dynamics. Any move that swaps the states of the spins on edges e− 1 and

2The hopping process however preserves the sublattice of the unpaired spin. This leads to additional
conservation laws for periodic boundaries and even L, described in Appendix B.
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e+ 1 is allowed by the symmetry (2). Under this dynamics, any two states within the same
symmetry sector may be transformed into each other, regardless of their label as previously
defined, completely melting the fragmentation. In the next section we will introduce a
two-dimensional (2D) model with similar fragmentation properties, but where arbitrary
k-local terms (k < 2L) may be introduced while preserving the fragmentation—the extra
dimension (and attendant one-form symmetry) endows the fragmentation with topological
stability.

3 The quad-flip model

We now define the quad-flip model, a generalization of the PF model to 2D. Reference [42]
shows that the simplest generalization of PF dynamics to 2D, using a 0-form symmetry, results
in fragmentation that is not robust to generic local perturbations. Reference [35] shows that
1-form symmetries can lead to robust fragmentation. This motivates our generalization of
the PF model to 2D using a 1-form symmetry.

3.1 Summary

We will first present a general overview of how generalized 2D loop models can exhibit robust
Hilbert space fragmentation without reference to any particular Hamiltonian realization.
Explicit local Hamiltonians that give rise to the desired loop models prethermally, and a more
technical discussion of their conventional symmetries and nonlocal conserved quantities, are
presented from Sec. 3.3 onwards.

Consider an L× L square lattice in two spatial dimensions with spin-S degrees of freedom
on the edges of the lattice. As in Sec. 2, we introduce the variable m = 2S+1 to parameterize
the size of the local Hilbert space on each edge. The states on each edge are given the
following graphical representation

|0〉 ≡ | 〉 , |1〉 ≡ | 〉 , |2〉 ≡ | 〉 , . . . (1)

where we have set m= 3 for convenience of illustrations.
We can define a 1-form symmetry in 2D analogous to the symmetry from Sec. 2. In general,

n-form symmetries consist of operators defined on (d − n)-dimensional manifolds [36–40].
For any path C on the lattice (with a definite starting edge), define the one-form symmetry
charges

N̂αC =
∑
e j∈C
(−1) jP̂αe j

, α= 0, . . . , m− 1, (8)

where the edges {e0, e1, . . . } in C are ordered so that e j+1 follows e j when following the path.
Changing the numbering on the edges may send N̂αC to −N̂αC , but will otherwise leave the
operator unchanged. For any C consisting of |C| edges, the operators are not all independent,
obeying
∑m−1
α=0 N̂αC = 0 for |C| even or 1 for |C| odd. Any contractible path on the square

lattice has |C| even.
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Let us restrict to states that are source free3 so that N̂α
∂R = 0 for any region R of the

lattice. In particular, the region may be chosen to be a single face, which only permits
configurations of the form ���

¶
,
���
¶
,
���
¶
, (9)

along with configurations related to these by interchanging colors. The graphical representa-
tion we have utilized makes it clear that spins of a given color must therefore form unbroken
loops, and that loops of differing colors cannot intersect with one another. The allowed
Hilbert space does not have a tensor-product structure, but is still exponential in system
volume L2. Consequently, there is room for a properly extensive entropy, and it makes sense
to talk about thermalization or lack thereof. In Sec. 3.3 we show the constrained Hilbert
space dimension grows as ∼W L2

m , with Wm ≳max[(2m−1)/m,
p

m], in contrast to the m2L2

growth of the unconstrained Hilbert space.
The nontrivial operators are those defined on noncontractible paths. These operators

measure the symmetry charges. We will explore the compatibility constraints between the
charges, and therefore the number of symmetry sectors, in Sec. 3.4. For now it is enough to
say that this symmetry breaks the constrained Hilbert space into O(Lm−1) symmetry sectors,
as in the pair-flip model. However, as in the pair-flip model, dynamics within the constrained
Hilbert space is not fully ergodic within these sectors, and this time the ergodicity breaking
is topologically robust.

We now examine generic k-local dynamics compatible with the local constraint (9). On a
given face of the lattice, a minimum of two spins must be flipped to preserve the constraint.
These two spins must have the same color, otherwise the constraint will be violated via the
introduction of a forbidden loop crossing:

���
¶

✓−→
���
¶

,
���
¶

✗−→
���
¶

. (10)

Applying the left-hand transition in (10) to the four faces around a vertex gives rise to the
minimal update (i.e., acting on the fewest possible spins) to the system compatible with the
constraint: the four spins on the edges surrounding a vertex can simultaneously be flipped
only if their colors match: ����

�
✓−→
����
�

, (11)

This update thereby modifies the color of the smallest closed loop configurations in the
system, which are “active" in the same sense as the active pairs in 1D. This minimal update
is a natural two-dimensional extension of the pair-flip dynamics discussed in Sec. 2. Hence,
we refer to such updates as quad-flip (QF) dynamics.

QF dynamics can also change the color of any contractible loop. In fact, any two source-
free states that differ from each other inside a contractible loop of a single color can be

3Violations of this constraint are sources in a U(1) lattice gauge theory interpretation of this model for
m= 2. We continue to use this language analogously for m> 2. Within the source-free subspace the 1-form
symmetry is topological [54] (a.k.a. relativistic [55]).
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depth

Figure 1: Left: Bethe lattice that can be used to define a height profile for the m = 3 loop model.
Right: mapping of a one-dimensional cut of the square lattice to a colored Dyck path, where the height
is determined by the depth of the corresponding position on the Bethe lattice. The corresponding
edges have been highlighted on the Bethe lattice.

connected via a sequence of quad flips (11). To justify this statement, we map a given loop
configuration to a height profile via the following mapping. We begin on a reference vertex
of the square lattice, which corresponds to the root node of a Bethe lattice with coordination
number m (see Fig. 1 for an illustration). Then consider moving along an (arbitrary) real
space path. Moving to a neighboring vertex on the square lattice implies traversing an edge
of a particular color; on the Bethe lattice, this corresponds to hopping along an edge of
the same color. Any sequence of colors encountered as we move along the real space path
thus maps onto a particular sequence of moves on the Bethe lattice (e.g., if we encounter
two red edges in succession in real space, then we hop along the red bond on the Bethe
lattice and then back along that same red bond). Moreover, the local constraint (9) implies
that the position on the Bethe lattice is independent of local deformations of the real space
path.4 A height profile can then be obtained using the (Hamming) distance to the root note
on the Bethe lattice. This process is illustrated along a one-dimensional cut in Fig. 1. At
a local maximum of the height field (depth d > 1), the height field must, by definition,
decrease across all edges. Hence, at each such point, there exists a closed loop of a single
color surrounding the local maximum. This loop can be flipped to be the same color as the
loop at depth d − 1. This process can be repeated to connect any closed, noncrossing loop
configuration contained within a contractible contour to a region of uniform color, so that
the entire region becomes active. This also tells us that any local dynamics compatible with
the 1-form symmetries can be reproduced by QF dynamics.

Once an active region wraps the system, it is surrounded by two noncontractible loops.
There is no requirement that they are of the same color. See Fig. 2 for examples. If their colors
differ, the colors of these winding loops cannot be modified via the previously described
procedure. Instead, it may be necessary to simultaneously flip at least 2L spins to change
the color of a noncontractible loop while remaining in the constrained subspace. Any

4This statement is only true in general for paths that differ by a closed, contractible path. If the height
field is not single-valued upon winding around the system, this indicates the presence of nonlocal conserved
quantities, as we will discuss.
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“ “

Figure 2: Schematic illustration of a valid configuration of noncrossing, contractible loops, and
system-spanning loops (thick lines). Observe that a noncrossing dimer configuration is automatically
created on the one-dimensional slice (black line) for contractible loops. Two adjacent noncontractible
loops of the same color can be made contractible since loops of the same color are not forbidden from
intersecting. In all configurations, only the red noncontractible loop contributes to the irreducible
label.

noncontractible loop can still be deformed through the active regions arbitrarily, subject to
the constraint (9).

Thus, QF dynamics naturally decomposes a 2D state into a collection of fluctuating closed
loops that do not intersect, both contractible and noncontractible. The contractible loops
can change color while the noncontractible loops cannot change color but can fluctuate
past the contractible loops. Recall that in 1D the active pairs can change color while the
unpaired spins cannot change color but can hop past the active pairs. This motivates a
labeling procedure for QF dynamics similar to the procedure in 1D. First, choose a path
that wraps the system once in the horizontal direction. Treat the pattern of spins along
this path as a 1D system and use the procedure described in Sec. 2 to extract a label. This
is the horizontal label, and there are O[(m− 1)L] such labels, as in 1D. Fig. 2 illustrates
this procedure (with the lattice not drawn). Furthermore, deforming the path only inserts
or removes matching pairs into the spin pattern, which are removed when the pattern is
converted into a label. This means that topologically equivalent paths will result in the same
label. Now, choose a path that wraps the system once in the vertical direction and extract a
vertical label. The vertical and horizontal labels must satisfy some compatibility, discussed in
Sec. 3.4, but the fact that the number of Krylov sectors grows exponentially in L diagnoses
fragmentation in the QF model.5

Finally, we can see that this fragmentation is topologically robust. The (exponentially
numerous) irreducible labels for the Krylov sectors depend only on the sequence of noncon-
tractible loops (of nonrepeating color), and noncontractible loops can neither change color
nor fluctuate past noncontractible loops of a different color, unless we act on O(L) degrees
of freedom. Thus, any k-local dynamics, with k/L → 0, cannot change the Krylov sector
label.

5Reference [42] defines fragmentation in 2D as the existence of exp(L2) Krylov sectors and classifies exp(L)
Krylov sectors as a subsystem symmetry. The QF model does not posses a subsystem symmetry but still has
exp(L) Krylov sectors in each symmetry sector. The presence of nonlocal conserved quantities in the QF model
justifies our use of the term fragmentation.
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3.2 Boundary conditions

Our discussion here will focus on open boundary conditions; discussion of periodic boundaries
is relegated to Appendix B. It will be helpful to have two types of open boundaries: one
type on which the symmetry operators may end and one on which they may not, similar in
spirit to surface codes [56]. In addition to being more physically realizable, this will allow us
to avoid the constraints between horizontal and vertical labels, so that the labeling system
is more like the 1D version. The first boundary is the “smooth” boundary, with no edges
sticking out. On this boundary we continue to define the symmetry to act on closed paths on
the lattice that do not end. A source-free configuration of such a boundary may look like:

, (12)

where all boundary faces are source free. Observe that loops are allowed to end on this
boundary.

To obtain a system with nontrivial 1-form symmetry charges, we must find a boundary
on which the symmetry operators can terminate. Ordinarily, this type of boundary, the
“rough" boundary, has boundary edges sticking out of it. We find it more natural to define the
rough boundary in the QF model to have every other boundary edge sticking out, so that all
symmetry operators act on an even number of legs. Then, we define symmetry operators on
paths C that terminate on the boundary edges. Source-free configurations, with N̂αC = 0, are

, , , (13)

and configurations related to these by interchanging colors, as in (9). This preserves the
graphical constraint that loops of different colors may not intersect. For example,

(14)

Note that loops cannot terminate on the rough boundary. Just as in the bulk, two symmetry
operators that differ across a source-free region agree, so that the endpoints of a symmetry
operator may be moved without changing its value:

≡ ,

where closed and open circles distinguish between the two sublattices. If, however, we tried
to define symmetry operators that end on the smooth boundary there is no reason they
should give the same symmetry charges, so symmetry operators that stretch from the left to
the right boundary are noncontractible.
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Having defined the operators that measure the symmetry charge in (8), we should also
define the operators charged under the symmetry. These are operators that locally commute
with the constraint but may fail to commute with the nontrivial symmetry operators. To
write such operators we must first choose a closed path C′ on the dual lattice formed by
placing vertices on the plaquette centers of the primary lattice. This path is required to turn
at every vertex of the dual lattice. Then, the charged operators are

ÔαβC′ =
∏
i∈C′
|α〉〈β |i , α,β = 0, . . . , m− 1, α ̸= β , (15)

which simultaneously projects onto dual paths where all edges are in the state |β〉 and then
flips them all to |α〉. These operators always commute with the constraint but act trivially if
the edges in the chosen dual path are not all in the initial state |β〉. If C′ wraps the system in
the vertical (horizontal) direction, it may change the value of N̂αC if C wraps the system in
the horizontal (vertical) direction.

In the bulk, the smallest possible charged operators correspond precisely to the quad
flip (11). As discussed in Sec. 3.1, any contractible charged operator can be decomposed into
a series of quad flips. The charged operators are allowed to end on the smooth boundary, in
the sense that this can be consistent with the symmetry. In particular, a charged operator
that acts on the three edges around a vertex may flip those three edges if they match. For
example, the three blue edges in (12) may be flipped to either green or red.

Near the rough boundary, vertices have either three or four edges sticking out from them.
The four-edge vertices behave like bulk vertices and support QF moves. The three-vertex
edges behave like those on the smooth boundary and support triple flips. For example, the
three red edges in (14) may be flipped to either green or blue. Both of these scenarios
correspond to closed loops that do not end on this boundary. In fact, no charged operators
may end on the rough boundary.

A system with smooth boundaries on the top and bottom and rough boundaries on the left
and right will have a nontrivial 1-form symmetry evaluated on horizontal system-spanning
paths. The symmetry counts the number of nontrivial vertical system-spanning loops, whose
endpoints can be shifted along the smooth top and bottom boundaries by the three-site
flips at the smooth boundaries. Remember that loops cannot end on the rough (left and
right) boundaries. Thus, our symmetry sectors for an L × L system are precisely those of
the PF model on a length-L system, but with a 2D 1-form symmetry instead of a 1D 0-form
symmetry.

3.3 Quad-flip model and robustness

We are now ready to write down a family of Hamiltonians that realize QF dynamics in a
full tensor-product Hilbert space, where the hard constraint is made soft, i.e., it is enforced
energetically. To this end, we introduce a natural “parent” Hamiltonian,

Ĥ = J
∑

f

m−1∑
α=0

�
N̂α
∂ f

�2 − g
∑

e

m−1∑
α=0

m−1∑
β=0

ξαβe |α〉〈β |e , (16)
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where J > 0, N̂α
∂ f is defined in Eq. (8), the first sum is over the elementary faces f of the

square lattice, and the second sum runs over all edges e. The dimensionless coefficients ξαβe
are of order one and serve to break all discrete symmetries. We will proceed by treating the
second term perturbatively within the groundspace of the first.

The first term is positive semidefinite and is minimized by spin configurations satisfying
Nα
∂ f = 0 on all faces f (source-free configurations). As previously discussed, the source-free

space has a U(1)m−1 one form symmetry and grows as W L2

m . A Pauling estimate for Wm may
be obtained as follows. The total Hilbert space has size m2L2

, since spins live on edges of a
square lattice. If we pick a reference plaquette and go around clockwise, we have m choices
for the value of the first spin. The second spin can either match (one choice) in which case we
have m choices for the remaining two spins (m2 total), or it can be different (m− 1 choices),
in which case the remaining two spins are fixed [so m(m− 1) choices total]. Altogether this
gives 2m2−m satisfying assignments out of m4, so a fraction (2m− 1)/m3 of each plaquette
Hilbert space satisfies the constraint. There are L2 plaquettes in all, so (treating plaquettes
as independent) a fraction [(2m−1)/m3]L

2
of the total Hilbert space satisfies the constraints,

yielding a constrained Hilbert space of size [(2m− 1)/m3]L
2 ×m2L2 ∼ [(2m− 1)/m]L

2
. This

yields an estimate Wm ≈ 2m−1
m . For m = 2, this estimate is within 3% of the exact value of

W2 = (4/3)3/2 ≃ 1.54, derived in Sec 4.1 from a mapping to square ice. On the other hand,
for large m, this estimate undercounts the number of source-free states. Placing elementary
length-four loops around every other vertex gives Wm =

p
m in the large-m limit.6 The

important point is that the subspace is exponential in system volume so there is room for a
nonzero entropy density, and it makes sense to talk about thermalization or lack thereof.

The second term is the most general single-site Hamiltonian, and will generate generic
longer-range terms within perturbation theory.7 Hermiticity requires that the matrix elements
satisfy ξαβe = ξ̄

βα
e . We can view the matrix elements as creation and annihilation operators

for sources/sinks, breaking the 1-form symmetry and leading to nontrivial mixing of the
classical ground states in the eigenstates of Eq. (16). However, we will now show that, even
in the presence of the off-diagonal matrix elements, QF dynamics are preserved up to order
system size in perturbation theory.

Let us consider the lowest-order dynamics produced by the off-diagonal matrix elements
within the constrained space. This is given by the term

ĤQF = −
g4

J3

∑
v

∑
α̸=β

m−1∑
β=0

ξαβv Âαβv , ξαβv =
5

16

∏
e∈v

ξαβe (17)

where Âαβv =
∏

e∈v |α〉〈β |e flips the four spins around vertex v to state |α〉 if they are all
initially in state |β〉. We have omitted diagonal transitions, which lead to a trivial energy
shift. Thus we recover QF dynamics, so we call (17) the QF Hamiltonian. The 5/16 prefactor
comes from summing all 4! ways of flipping the spins around a vertex at fourth order in
perturbation theory.

6We thank Ethan Lake for this observation.
7Since the basic structure of our dynamics follows purely from 1-form symmetries (which are emergent

within the groundspace of the first term), it follows that the basic results will be robust to inclusion of arbitrary
k-body perturbations, without requirement of spatial locality, as long as k/L→ 0 in the thermodynamic limit.
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For vertices v0 on the smooth boundary, the lowest-order terms come at third order in
perturbation theory. They have the form

ĤQF = −
g3

J2

∑
v0

∑
α̸=β

m−1∑
β=0

ξαβv0
Âαβv0

, ξαβv0
=
∏
e∈v0

ξαβe (18)

and Âαβv0
now acts on only three spins. On the rough boundary, perturbation theory generates

Âαβv terms on three-edge vertices at third order and on four-edge vertices at fourth order.
We should recognize the bulk and boundary terms as the minimal charged operators

around every vertex. Thus, we have entirely recovered the dynamics we considered in
Sec. 3.1. If we consider higher orders in perturbation theory, we will generate new terms,
but they will be decomposable into series of quad flips, as shown in Sec. 3.1. The result is
that the fragmentation remains exact at any order in perturbation theory, up to order system
size. At O(L) in perturbation theory, however, we can flip the color of a noncontractible
loop, changing the one-form symmetry charge and removing the Krylov structure associated
with the irreducible labels.

Although perturbative dynamics will not melt the Krylov sectors, there may be nonper-
turbative effects that do. At times exponentially long in J/g the system is able to violate
the source-free constraint and leave the groundspace of the classical Hamiltonian. Then, a
noncontractible loop may break apart and retract. This exponentially long timescale is the
prethermal timescale up to which the parent Hamiltonian realizes dynamics with an emergent
one-form symmetry, and may be bounded using now standard techniques [57]. Imposing the
source-free constraint exactly (instead of softly) amounts to setting the prethermal timescale
for k-local dynamics to infinity, in the thermodynamic limit.

3.4 Fragmentation

We are now prepared to describe the fragmentation of the QF Hamiltonian in full detail.
First, let us use the boundary conditions from Sec. 3.2, with smooth boundaries on the top
and bottom and rough boundaries on the left and right. The groundspace has an emergent
U(1)m−1 one-form symmetry, defined on horizontal system-spanning paths. There are O(L)
possible symmetry charges for each independent one-form symmetry, so overall there are
O(Lm−1) symmetry sectors taking the emergent one-form symmetry into account. The
dynamics must, at minimum, be block diagonal by one-form symmetry sector. However, as
we shall now show, each symmetry sector will further be fragmented into exp(L) dynamically
disconnected subblocks.

The basic argument follows the discussion in Sec. 2 for the one-dimensional pair-flip
model. Namely, we can take any horizontal system-spanning path on the lattice and consider
the sequence of colors encountered along this effective one-dimensional system. We can
then sequentially delete same-color neighbors until we are left with an irreducible one-
dimensional sequence or ‘label’ of length 0 ≤ ℓ ≤ L in which no two adjacent entries are
the same color. It is straightforward to see that local deformations of the real-space path
within the source-free subspace do not alter this irreducible label. For example, any system-
spanning path terminating on the left and right boundaries of Fig. 3(a) returns the length



3 The quad-flip model 14

ℓ = 2 label
�� �. This irreducible label essentially enumerates the sequence of distinct

vertical system-spanning loops of nonrepeating color. We do not count adjacent loops of
the same (i.e., repeating) color since these can locally reconnect and flip. In contrast to
the one-dimensional PF model, in the two-dimensional QF model this irreducible label
exhibits topological stability – the only way to change the irreducible label is to flip an entire
system-spanning vertical loop, which requires acting on O(L) degrees of freedom. Thus, this
irreducible label is conserved under any k-local dynamics (with k/L→ 0), and thus defines
a topologically robust Krylov subsector.

The total number of symmetry sectors is O(Lm−1), but, as discussed in Sec. 2, the total
number of Krylov subsectors (now topologically robust) is O[(m−1)L]. This follows because
labels can have length up to L [see Fig. 3(b) for an example of a state with a label of length
ℓ = L], and once the first entry in the label is fixed each subsequent entry has (m − 1)
choices. Thus, there are only polynomially many distinct symmetry sectors, but there are
exponentially many dynamically distinct Krylov subsectors. It follows that the dynamics
must exhibit fragmentation, and cannot be fully ergodic. It further follows that for m≥ 3
fragmentation arises in every symmetry sector. This follows by analogy to Sec. 2 because
for any given value of the symmetry charge, there is a minimal system size Lmin required to
realize it. There exist ‘charge-neutral’ motifs with irreducible labels that can be ‘glued’ on,
e.g., for m = 3 we can consider a sequence of vertical system-spanning loops of the form�� �

, or five other patterns obtained from this one by permuting colors. Of the
six motifs, four have a first spin that does not match the last spin of our chosen pattern.
Gluing such a motif onto the system of size Lmin does not change the symmetry charge but
does multiply the number of Krylov subsectors by four. Such a process can then be iterated
(bearing in mind that for m= 3 only four of the ‘charge-neutral, gluable motifs’ will have
the property that the first loop of the motif does not have the same color as the last loop of
the previous motif), giving a number of Krylov sectors that scales as at least ∼ 4(L−Lmin)/6, for
m≥ 3. Thus, the QF Hamiltonian (with m≥ 3) exhibits fragmentation in generic symmetry
sectors, with the fragmentation furthermore exhibiting topological stability, being robust to
arbitrary k-local perturbations as long as k/L→ 0 in the thermodynamic limit.

A special role is played by densely packed configurations, which generate labels of length
L. As long as we stagger the rough boundary edges, as in Fig. 3, these configurations
correspond to dense packings of noncontractible loops of nonrepeating color, and generate
frozen states that have no dynamics under arbitrary k-local perturbations. For an example of
a frozen state, see Fig. 3(b). The number of such configurations depends strongly on both the
local Hilbert space dimension m and on whether (and, if so, how) the lattice is terminated.
With periodic boundary conditions, the pattern in Fig. 3(b) appearing in the top row can be
shifted either left or right in each subsequent row, subject to the constraint that the pattern
joins up around the periodic boundaries. With open boundary conditions, this freedom is not
present, since the packing would cease to be dense at the left and right boundaries. For m = 2
there are an O(L0) number of frozen configuration with open boundaries, although there are
an exp(L) number of frozen configurations with periodic boundaries [35]. For m≥ 3, the
number of frozen configurations grows exponentially with L even for open boundaries; there
are m choices for color of the boundary loop, and m− 1 choices for each of the other loops.
Hence, the number of frozen configurations is∝ (m− 1)L. Exact (asymptotic) countings of
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(a) (b)

Figure 3: (a) A state belonging belonging to the Krylov sector specified by the label | 〉, which
captures the presence of the green and red system-spanning loops (thick green and red lines, re-
spectively). (b) A close-packed configuration of system-spanning loops that remains frozen under
local dynamics. Note that the offset of the rough boundary differs on the left and right edges to
accommodate a dense packing of loops.

the number of Krylov sectors and the number of frozen states are derived in Appendix B, for
both open and periodic boundary conditions. With open boundaries we have O[(m− 1)L]
frozen states and O[(m−1)L] nonfrozen Krylov sectors for m≥ 3. With periodic boundaries
we have O[(m− 1)L] frozen states but only O[(m− 1)L/L] nonfrozen Krylov sectors for
m≥ 3. We show numerically in Appendix C that, in the presence of periodic boundaries, the
fragmentation in the model is “weak” in the sense that the Krylov sector corresponding to
the trivial label in both directions is dominant, occupying almost all of the corresponding
charge-neutral symmetry sector.

We can also define the commutant algebra [42] for the QF model. The operators in the
algebra generalize the symmetry operators (8) and are entirely analogous to those in the
PF model, which were found in Ref. [42]. With our choice of open boundary conditions,
choose a horizontal system-spanning path C = {e0, e1, . . . , eK} on the lattice, where K ≥ L is
the length of the path. The nonlocal integrals of motion (IoMs) are

N̂α1α2 =
∑
j1< j2

(−1) j1+ j2P̂α1
j1
P̂α2

j2
, α1 ̸= α2, 0≤ α1,α2 ≤ m− 1

and the larger operators

N̂α1α2···αk =
∑

j1< j2<···< jk

(−1)
∑

l jl P̂α1
j1
P̂α2

j2
· · · P̂αk

jk
, (19)

with8 0≤ k ≤ L and α j ̸= α j+1. Within the source-free subspace the value of these operators
does not depend on smooth variations of the choice of C. As described in Ref. [42], in a
system with L even (odd), the IoMs with k even (odd) are all linearly independent but the
IoMs with k odd (even) can be written in terms of the former. Just as we can view the
symmetry operators as distinguishing symmetry sectors which consist of collections of Krylov
sectors, we can view the IoMs as distinguishing successively more fine-grained sectors.

8We could define similar operators for k ≤ K , but these longer operators contain redundant information.
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4 Generalized no-crossing models

Having introduced the symmetries that give rise to QF dynamics and its numerous conserved
patterns, we move to discussing related models that exhibit analogous phenomena. These
include models to which the QF Hamiltonian reduces in certain limits, as well as various
dualities of the model, and its extension to higher dimensions. This section is not ‘load
bearing’ for our basic story, and may be safely skipped by readers uninterested in connections
to known models or dualities thereof.

To facilitate the presentation of the various dualities we discuss, it will be useful to define
the following clock operators on each edge e, which act on the m-dimensional Hilbert space
introduced in Eq. (1)

Ẑ |α〉= e2πiα/m |α〉 , X̂ |α〉= |α+ 1〉 , (20)

so that X̂ and Ẑ are unitary and obey ẐX̂ = e2πi/mX̂ Ẑ , which generalizes the anticommuta-
tion of Pauli matrices (m = 2). Since we identify |α+m〉 ≡ |α〉, we also have Ẑm = X̂ m = 1.

4.1 Square ice

For spin-1/2 degrees of freedom (i.e., m = 2), the parent Hamiltonian for the QF model
that we present in Eq. (16) is unitarily equivalent to square ice [43–45] in a magnetic field,
allowing us to make exact statements about the number of constraint-satisfying states. To
see this, consider the unitary transformation that flips the sign of Ẑ operators on vertically
oriented edges:

Û =
∏

e : vertical

X̂e . (21)

Under this transformation, the constraint on faces that selects local ground state configura-
tions becomes

N̂ ↑
∂ f =
∑

e j∈∂ f

(−1) jP̂↑e j

Û7−→
∑

e j∈∂ f

Ẑe j
= 0 , (22)

with the same expression for N̂ ↓
∂ f , up to a sign. Hence, the constraint in this rotated basis

corresponds to requiring that there exist two up spins and two down spins around every
face of the square lattice, which (up to a sublattice-dependent sign) is equivalent to the
two-in-two-out “ice rule” [58, 59]. For consistency with established conventions for square
ice, we will interchange the vertices and faces of the square lattice, such that the constraints
are on vertices. On one sublattice the six constraint-satisfying spin configurations take the
form ���

¶
7→
���
¶
≡
���
¶
,
���
¶
7→
���
¶
≡
���
¶
, (23)

with the sign convention for the arrows reversed for vertices belonging to the other sublattice.
The correspondence in (23) means that we can deduce the size of the constrained Hilbert
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space for the m= 2 QF model, since the number of two-in-two-out configurations is known
to scale as W L2

2 with W2 = (4/3)3/2 [43, 60].
The QF dynamics described in Sec. 3 – in which closed loops of a single color passing

through four spins are simultaneously flipped to a different color – can now viewed as
“ring-exchange” dynamics. In particular, in the rotated basis, spins around a face can be
flipped between clockwise and anticlockwise orientations:

���
¶
↔
���
¶

. (24)

Since the states in Eq. (23) are in one-to-one correspondence with one another, ring-exchange
dynamics acting within the manifold of two-in-two-out states will exhibit conservation laws
identical to those in the m= 2 QF model. However, in the QF model with just two colors,
fragmentation is confined to symmetry sectors of maximal one-form charge [35]; in all other
sectors each symmetry sectors hosts just a single label. This is in stark contrast to the m> 2
generalizations discussed in Sec. 3, which exhibit fragmentation in generic symmetry sectors.

4.2 Dualities and generalized PXP models

4.2.1 From pair-flip to constrained spin flips

We now show how the pair-flip model in one dimension is dual to a parity-sensitive PXP-
type model. We will work with m = 3 for simplicity, with the generalization to m > 3
straightforward. Let us define a Kramers-Wannier duality transformation for clock variables9

Ẑv Ẑv+1 = Ẑe, which relates the degrees of freedom on the edge e and the two adjacent
vertices v and v + 1. As in the edge picture, we define the following states on vertices:
|0〉 ≡ | 〉 , |1〉 ≡ | 〉 , |2〉 ≡ | 〉. With open boundary conditions we must add an extra spin in
the vertex picture that can be chosen arbitrarily (making the mapping one-to-three). Setting
the boundary spin to | 〉, the duality acts as

�� � 7→ | 〉 . (25)

The flippable pairs in the edge picture have been replaced by motifs of the form | 〉 or
| 〉, i.e., a central spin surrounded by two spins of equal value. If the pair from which
this motif is derived is permuted, 00→ 11→ 22→ 00, then, in the dual picture, this has the
effect of permuting the central spin only, 0→ 1→ 2→ 0, leaving its neighbors unchanged.
Hence, in the dual language, the generic pair-flip model from Sec. 2 may be written

ĤPF = g
L−1∑
v=1

m−1∑
α,β ,γ=0

ξα+γ,β+γv P̂γv−1X̂ α−βv P̂βv P̂γv+1 + h.c. . (26)

Note that the central projector does not affect the possible transitions; it merely ensures
that the appropriate matrix element ξαβv is selected. In the above equations X̂ |α〉= |α+ 1〉
permutes the dual m-level systems, while P̂αv = |α〉〈α|v projects onto color α on vertex v.

9This transformation differs slightly from the “standard” Kramers-Wannier transformation for clock variables,
which takes the form X̂e = Ẑ†

v Ẑv+1.
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As stated above, in the dual language (26), spins are only dynamical if their neighbors are
equal to one another. This model strongly resembles the PXP model [8, 61–64], for spin-1/2
degrees of freedom, where spins may only flip if both neighbors are in the ‘0’ (ground) state
due to the Rydberg blockade constraint. Equation (26), on the other hand, also permits
the central spin to flip if both neighbors are in the ‘1’ (excited) state. The dual model (26)
therefore generalizes the Rydberg constraint to a parity-sensitive constraint in which only
the parity of neighboring 1’s determines whether a given spin can flip.

The model in the vertex language appears to have an extra discrete symmetry
∏

v

X̂ (−1)v
v = X̂0 X̂ †

1 X̂2 X̂ †
3 · · · ,

due to the choice of initial spin state. This symmetry can be retained in the edge picture
by keeping track of an extra degree of freedom in the edge picture as a noninteracting spin
on which the symmetry acts. Then, both pictures enjoy a Zm symmetry, although it is local
in the edge picture and global in the vertex picture. This is a generic feature of nonlocal
dualities [65].

In the parity-sensitive PXP picture, we can also create Krylov sector labels via (i) working
from left to right, identify motifs of the form | 〉 (including three identically col-
ored sites), (ii) for each motif identified, replace the pattern by the majority color, e.g.,
| 〉 7→ | 〉, (iii) repeat the previous two steps until there are no such motifs remaining.
This prescription leads to a dual conserved pattern. As an example, all of the following con-
figurations [which are connected by local dynamics generated by the dual Hamiltonian (26)]
map to the same conserved pattern:

� | 〉↔ | 〉↔ | 〉 � 7→ | 〉 . (27)

In general it is not necessary to start with the left-most motif; all choices lead to the same
label. Note that the patterns on the left-hand side are dual to the patterns in (5) and the
label on the right-hand side is dual to the label | 〉 that would be found from removing
paired spins from (5).

4.2.2 Two-dimensional generalization

As for the one-dimensional model, we may introduce dual variables living on vertices via a
similar Kramers-Wannier duality. These variables satisfy Ẑv Ẑv′ = Ẑe for the two neighboring
vertices 〈vv′〉 at either end of the edge e. Note that, for i, j, k, l labeling the edges clockwise
around a face f , we must have ẐiẐ†

j ẐkẐ†
l = 1 for Ẑv to be independent of the path used to

define it. This constraint is automatically satisfied within the source-free subspace.
We can therefore find (via a one-to-m map) the spin configuration on vertices that

corresponds to a given “domain wall” configuration on edges. For example,

→ , , , (28)
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where we have shown the three possible states on the right-hand side, and spins on vertices
have been represented using colored squares. The allowed configurations (9) become

α

α

β

β ←→
a

b a

c

(29)

where a+ b = α mod m and a+ c = β mod m. More generally, if i, j, k, l label spins on
vertices clockwise around the face f , then the operator N̂α

∂ f that measures violations of the
constraint, written in terms of the operators on vertices, is

N̂α
∂ f =

1
m

m−1∑
β=0

e−2πiαβ/m(Ẑβi − Ẑβk )(Ẑ
β

j − Ẑβl ) , (30)

and the ground space is still given by the requirement that N̂α
∂ f = 0 for every face and color α.

From (29) or (30) it is clear that, in the vertex language, every face must have at least one
identically colored diagonal pair in the source-free subspace. This suggests a further dual
description of the system in terms of domain wall variables between such diagonal pairs [35].
More precisely, we introduce two degrees of freedom for every elementary face of the form
Ẑ†

i Ẑk and Ẑ†
j Ẑl , which correspond to domain wall variables between spins belonging to the

same sublattice (i.e., even or odd). In this picture, the constraint implies that domain walls
(defined by Z̄v1

Zv2
≠ 1) between the even and odd sublattices cannot intersect, as illustrated

in Fig. 4(c). A discussion of this final dual description is presented in Appendix A.
In the vertex language, the “parent” Hamiltonian is

Ĥ = J̃
∑

f

∑
α

(Nα
∂ f )

2 − g
∑

v

m−1∑
α=0

m−1∑
β=0

ξ̃αβv |α〉〈β |e , (31)

where J̃ > 0, and the second term is the most general single-site term, which is assumed to
be weaker than the first term. We can play the same game of projecting the dynamics into
the constrained subspace, the groundspace of the first term. In this basis we only need to go
to first order in perturbation theory, finding

ĤQF = −g
∑

v

m−1∑
α=0

m−1∑
β=0

ξ̃αβv |α〉〈β |e Π̂γv, (32)

where Π̂γv =
∏

v′:〈vv′〉 P̂
γ

v′ projects all vertices v′ that neighbor v into the state γ. We can
compare to Eq. (17) to see that ξ̃αβv ∼ ξα+γ,β+γv . The QF Hamiltonian (17) is therefore
dual to a Hamiltonian in which a spin is only dynamical if all four spins on its neighboring
vertices are equal to one another. This correspondence is illustrated in Fig. 4, where flippable
closed loops of length four in (a) map to vertices whose neighbors are all equal in (b). The
model (32) is equivalent (for m = 2) to the first-order term that arises when projecting a
transverse field into the ground space of the “CZp” Ising model introduced in Ref. [35]. As
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(a) (b) (c)

Figure 4: Three dual descriptions of the same state obeying the source-free constraint in models
exhibiting topologically robust fragmentation. (a) The QF model (17), with degrees of freedom on
edges. The four spins around a vertex are able to flip only if they match. (b) The parity-sensitive PXP
model (32), with degrees of freedom on vertices. A given spin is able to flip only if its four neighbors
are equal to one another. (c) The dual description introduced in Appendix A, where a domain wall is
drawn if two adjacent spins belonging to the same sublattice do not match.

in 1D, one can view Eq. (32) for m= 2 as arising from a parity-sensitive Rydberg blockade
constraint. Namely, as shown in Ref. [35], Eq. (32) arises at first order in a model where an
odd number of neighboring 1’s are forbidden around every face.

In fact, the m = 2 case of the 2D parity-sensitive PXP model with periodic boundary
conditions is precisely the CZp model of Ref. [35]. The CZp model exhibits topologically
robust ergodicity breaking, but only in maximal one-form charge sectors and with those
sectors being fully frozen. Maximal charge sectors shatter into O(2L) frozen states, while
nonmaximal sectors are fully ergodic. Meanwhile, with open boundary conditions, the
maximal charge sectors of the CZp model have only a single state and there is no ergodicity
breaking to be had. In contrast, with m > 2 the parity-sensitive PXP model (like the QF
model) exhibits ergodicity breaking with both periodic and open boundary conditions, there
is fragmentation in generic symmetry sectors (not just sectors of maximal charge), and the
fragmentation is not ‘all or nothing,’ i.e., there exist Krylov subsectors with a distribution of
sizes between one (frozen states) and exponentially large in system size. the size of the full
symmetry sector. As with the CZp model, this basic phenomenology is topologically robust.

4.3 Three-dimensional models

The natural generalization of the PF and QF models to 3D is a model on a cubic lattice
with a 2-form symmetry. To define the model, let us put m-level degrees of freedom (1)
on the edges of a cubic lattice. The symmetry operators take the same form as in Eq. (8),
now defined on one-dimensional paths embedded in three-dimensional space. The 2-form
symmetry once again breaks the constrained Hilbert space into O(Lm−1) symmetry sectors.

Requiring N̂α
∂ f = 0 on all faces f allows the same configurations as shown in Eq. (9),

now on faces in any orientation. Graphically, these constraints require that the 3D state
decomposes into a collection of closed membranes that do not intersect, both contractible
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and noncontractible.
The allowed dynamics involve flipping all the spins around a vertex, of which there are

now six. We will call the whole family of models the vertex-flip (VF) models. When viewed
on a 2D slice of the system, the allowed moves look the same as those in (11). The VF move
changes the color of the smallest contractible membrane:

,

where the red spheres live on the edges of the primary cubic lattice and the shaded faces
connect vertices of the dual cubic lattice. As in 2D, any contractible membrane may be
flipped by a series of VF moves. Flipping a noncontractible membrane without violating the
constraint now requires simultaneously flipping O(L2) spins.

Operators charged under the 2-form symmetry are membranes on the dual lattice. As in
2D, they have nontrivial microscopic geometric requirements. They are required to turn at
every edge of the dual lattice. For example, the operator

is a section of a valid charged operator, drawn on the dual lattice. For clarity of illustration,
we have omitted the spins and the edges of the underlying lattice.

We can once again define rough and smooth boundary conditions. The smooth boundary
conditions are simple: just truncate the lattice so that no edges stick out. Charged operators
may end on this boundary but symmetry operators may not. The rough boundaries must
again be defined on a staggered lattice truncation. In a cubic lattice, the edges sticking out
from a ordinary rough boundary form a square lattice. Now, remove the outward-pointing
edges from one sublattice. This leaves behind doubled boundary faces, on which we permit
configurations as in (13). Finally, we put the rough boundary conditions on two opposite
boundaries and smooth boundary conditions on the other four boundaries. With this choice
of boundary conditions, the counting of sectors works the same way as in the PF and QF
models. There are O(Lm−1) symmetry sectors and O[(m− 1)L] Krylov sectors, some frozen
and some nonfrozen.

Sectors are labeled by a pattern of system-spanning membranes of nonrepeating color.
One key difference to the two-dimensional case is that, if all source-free states have equal
energy, there is a macroscopic energy barrier between states from any two different Krylov
sectors. If, instead, source-free states are separated by an extensive energy∝ g, there can
exist energetic competition between the constraint violations (scaling as J |∂ R|) and this
extensive energy (scaling as g|R|), leading to an energy barrier ∼ J2/g that diverges as
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g → 0. This timescale is analogous to magnetization reversal in a 2D Ising model at finite
temperature in the presence of a longitudinal field. This energy barrier could make the
fragmentation in the 3D VF model even more robust than the fragmentation in the QF model.
This possibility remains to be fully explored.

5 Conclusions

We have constructed a family of quantum loop based models exhibiting ergodicity breaking
with topological robustness. These models simultaneously generalize the CZp model of
Ref. [35] to local Hilbert space dimensions m> 2 (in a dual representation), and the pair-flip
model [41, 42] to higher dimensions, with the extra dimension(s) endowing the system with
a topological stability that the pair-flip model lacks. The ergodicity breaking derives from
(d − 1)-form symmetries in d > 1 spatial dimensions, which can emerge (in a prethermal
sense) from simple parent Hamiltonians that softly (i.e., energetically) implement a ‘source-
free’ constraint. The simplest m = 2 version of this physics—the CZp model—exhibits
exponential fragmentation of Hilbert space, but only with periodic boundary conditions, and
only in sectors of extremal symmetry charge. Moreover, the fragmentation is ‘all or nothing,’
i.e., either a given symmetry sector is fully frozen, or it is not fragmented at all. Once
we generalize to m > 2, fragmentation is no longer limited to sectors of extremal charge,
survives (suitable) open boundary conditions, and is not ‘all or nothing.’ That is, there arise
Krylov subsectors of size intermediate between one (frozen states) and exponentially large
in system size. All of this phenomenology is topologically stable, i.e., it is robust to arbitrary
k-local perturbations, as long as k/L→ 0 as we take system size L→∞. The results are
exact if the constraint is imposed exactly (exact one-form symmetry), and valid up to an
exponentially long prethermal timescale if the constraint is imposed energetically (emergent
one-form symmetry).

This work opens up a new direction for exploration of ergodicity-breaking quantum
dynamics. The models we have constructed provide proof of principle that qualitatively new
phenomena in many-body quantum dynamics can arise protected by higher-form symmetries
(which can emerge from simple local Hamiltonians). The exploration of emergent higher-
form symmetries and their consequences, however, has only just begun. Particularly fruitful
in this regard is the extension of such constructions to three spatial dimensions – we have
sketched some considerations in Sec. 4.3, but a detailed exploration remains to be performed.
We look forward to further exploration of these ideas.

It is also interesting to note that our results are exact when the higher-form symmetries
are exact, and it has been shown that emergent higher-form symmetries can in fact be exact
in the low-energy subspace [39, 66]. Might results analogous to ours therefore continue to
hold even beyond the exponentially long ‘prethermal’ timescale that we estimate? This too
presents a fruitful topic for future investigation.

Another potentially interesting direction for future research is establishing a more general
connection between higher-form symmetries and robust fragmentation. Higher-form symme-
tries do not generically lead to robust fragmentation, as can be seen in simple systems like the
2D toric code. More surprisingly, the specific higher-form symmetry considered here, which
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Figure 5: The sign convention that we introduce to define domain wall variables of the form Ẑ†
i Z j

living on faces, which correspond to domain walls amongst even sublattice spins and amongst odd
sublattice spins. Vertices that contribute a Z (Z†) to the domain wall degree of freedom on a given
face are denoted by red (blue) shaded regions. This choice affects the local constraints that any
domain wall configuration must satisfy.

produces robust fragmentation on the square lattice, does not lead to robust fragmentation
on a generic 2D lattice. To see this, note that imposing the source-free constraint N̂α

∂ f = 0
on a six-sided face does not implement a no-crossing constraint, since there exist nontrivial
uncharged labels of length six. Clarifying the connection between higher-form symmetries
and robust fragmentation on arbitrary lattices is an interesting problem for future work.

Finally, while our discussion has focused on the quantum dynamics, the equilibrium
properties of generalized loop model could also be of interest. During the preparation of
this manuscript, we became aware of parallel work [67] on the ground-state properties of
no-crossing models, and this too presents an interesting direction for future work.
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A Additional dualities

Here, we describe a further duality of the two-dimensional models (17) and (32), which
involves introducing two degrees of freedom per face that correspond to domain wall
variables between spins belonging to the same sublattice. That is, a spin situated at a vertex
with coordinates (x , y) belongs to the even (odd) sublattice if x + y is even (odd). The
introduction of these new degrees of freedom is motivated by Eq. (30), which requires that,
around a given face, the two spins on the even sublattice must match, or the two spins on
the odd sublattice must match (or both). Explicitly, given four vertices around a face, v1, v2,
v3, and v4 (no ordering implied), with v1, v3 belonging to the even sublattice, and v2, v4 to
the odd sublattice, we construct domain wall variables τ̂z

f ,+ = Ẑ†
v1

Ẑv3
and τ̂z

f ,− = Ẑ†
v2

Ẑv4
. In

this language, the constraint is particularly simple: On any face f , domain walls (defined by
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τz
f ,s ̸= 1) cannot intersect.

For m > 2, the Ẑv operators are not Hermitian, so there exists a choice in which Ẑ
operators are conjugated. Illustrating those vertices that contribute a Ẑ (Ẑ†) by red (blue)
shaded regions, the convention that we utilize is illustrated in Fig. 5. In principle, there are
m− 1 species of domain wall per sublattice. However, when illustrating spin configurations
we choose not to distinguish between domain walls on the even and odd sublattices. The
configurations on faces for m= 3 consistent with the constraint are:

(0, 0) (1,0) (0,1) (2,0) (0, 2)

where the labels denote (α f ,+,α f ,−) assuming the top left and bottom right vertices belong
to the even sublattice (for a given face and sublattice, α is defined by τz = e2πiα/m). The
convention in Fig. 5 enforces constraints on the colors of domain walls on adjacent faces.
Namely, the domain wall variables on the four faces around a vertex v, belonging to sublattice
s, satisfy
∏

f ∈v τ̂
z
f ,−s = 1, equivalent to

∑
f ∈v α f ,−s = 0 mod m. Graphically, a domain wall

will therefore change color at every vertex, unless it branches or meets another domain wall
(at a vertex), as shown in Fig. 4(c).

B Enumerating sectors and frozen states

B.1 Krylov sectors in the pair-flip model

The Bethe lattice mapping presented in Fig. 1 can also be applied in 1D to facilitate the
counting of labels and Krylov sector dimensions [41, 42]. The ‘final’ position on the Bethe
lattice after traversing the entire system from left to right, having begun at the root node of
the Bethe lattice, is in one-to-one correspondence with the label introduced in Sec. 2, which
identifies distinct Krylov sectors in the 1D pair-flip model with open boundaries. Similarly,
each walk is in one-to-one correspondence with a spin configuration. Hence, the number
of spin configurations that map to the same label (with length ℓ) is equal to the number of
walks of length L that reach a given point with depth ℓ on the Bethe lattice (note that this
number will depend only on ℓ). The number of such walks G(ℓ)L – equal to the dimension of
the Krylov sector for a label of length ℓ – is enumerated by the generating functions found in
Refs. [41, 68]:

G(ℓ)(x) =
∞∑
L=0

G(ℓ)L x L =

�
1−p1− 4(m− 1)x2

2(m− 1)x

�ℓ
2(m− 1)

m− 2+m
p

1− 4(m− 1)x2
. (33)

Note that G(ℓ)(x) enforces that G(ℓ)L = 0 if ℓ and L have opposite parity, as is required. The
number of sites on the Bethe lattice that are accessible after L steps is given by Eq. (7).
The exponential growth the Krylov sector dimension G(ℓ)L is determined directly (up to
subexponential factors) by the radius of convergence of Eq. (33) [69]. Specifically, we have

G(ℓ)L ∼ (2
p

m− 1)L (34)
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as L→∞ for fixed ℓ. Insight into the subexponential factors can be obtained by performing
a singularity analysis of Eq. (33) [41, 69, 70]. Expanding around the singularities at x =
±2
p

m− 1, we find that

G(ℓ)L = 2
�
ℓ+

m
m− 2

� m− 1
m− 2

√√ 2
πL3

2L
p

m− 1
L−ℓ �

1+O(L−1)
�

, (35)

as L→∞ for fixed, O(1) values of ℓ. This result shows that, at least for m> 2, sectors with
larger label lengths ℓ are exponentially suppressed in size with respect to the ℓ= 0 sector.
Additionally, we can deduce that no Krylov sector grows faster than (2

p
m− 1)L as L→∞.

We can also write down a generating function that counts the number of labels belonging
to each symmetry sector. That is, using this generating function, we can deduce into how
many Krylov sectors a particular symmetry sector decomposes. To do this, we must account
for the U(1) charges associated with each of the m colors. Let the generating variables
y= {yα} keep track of the charge Nα defined in Eq. (2). Restricting to m= 3 for simplicity,
we can then introduce the two transfer matrices [the row (column) index corresponds to the
current (previous) step]

Tσ = x




0 yσr yσr
yσg 0 yσg
yσb yσb 0


 , (36)

with σ = ±1. More generally, the transfer matrix will be an m×m matrix with the above
structure; the zeros along the diagonal enforce that the color of a given dot cannot match
the color of the previous dot in the label. The sign σ corresponds to whether an even or an
odd edge is being traversed, which add to or subtract from the corresponding U(1) charge.
The generating variable x records the length of the label. For open boundary conditions, the
full generating function admits the expansion

F(x;y) = 1+
m∑

i=1

(T0 + T−T0 + T+T−T0 + T−T+T−T0 + . . . )i , (37)

where the initial condition T0 = x(yr , yg , yb)T corresponds to the first (unconstrained) dot,
which we assume belongs to the even sublattice. In the presence of periodic boundaries, an
analogous expression can be obtained by removing the initial condition T0 and replacing the
sum over i by a trace. Factoring out the repeating combination T+T−, we find that

F(x;y) = 1+
m∑

i=1

∞∑
ℓ=1

[(1+ T−)(T+T−)
ℓ−1T0]i (38a)

= 1+
m∑

i=1

[(1+ T−)(1− T+T−)
−1T0]i . (38b)

where we used
∑∞

n=0 An = (1− A)−1, which is convergent if the spectral radius of the matrix
A is strictly less than unity. The matrix inverse in Eq. (38b) can be evaluated exactly to arrive
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at the expression

F(x;y) =

�
1− x2
� �

1+ x(yr + yg + yb) + 2x2
�

1+ x2 + 4x4 − x2
�

yr
yg
+ yr

yb
+

yg

yb
+

yg

yr
+ yb

yr
+ yb

yg

� . (39)

As required, throwing away the information about the U(1) charges reduces to F(x;1) =
(1+ x)/(1− 2x), with coefficients 3× 2n−1 for n≥ 1, equal to the total number of labels of
length n. Performing the same procedure for case m= 2 provides another simple example:

yr yb

�
1− x2
� �

1+ x(yr + yb) + x2
�

(x2 yr − yb) (x2 yb − yr)
= 1+

∞∑
n=1

yn
r + yn

b

(yr yb)⌊n/2⌋
xn , (40)

since there is only one label associated with each symmetry sector.
Returning to m= 3, let us evaluate the total number of labels that live in the symmetry

sector with vanishing charge for all three colors, Nα = 0. Such “uncharged” labels are also
useful for constructing labels of arbitrary length compatible with a given set of symmetry
quantum numbers: Given a label belonging to the appropriate sector, an uncharged label
can be appended or prepended (subject to the constraint that neighbors may not match)
to produce new labels belonging to the same sector. To extract the generating function of
uncharged labels, we are required to evaluate the integral
∫ π

−π

dφrdφgdφb

(2π)3

�
1− x2
� �

1+ x(eiφr + eiφg + eiφb) + 2x2
�

1+ x2 + 4x4 − 2x2
�
cos(φr −φg) + cos(φg −φb) + cos(φb −φr)

� . (41)

The number of labels belonging to other symmetry sectors can be obtained similarly by first
multiplying by exp(−i

∑
αφαN

α). We can make progress by shifting (say) φg,b→ φg,b +φr ,
making the integral over φr trivial. Additionally, we define the function E(x) = (1+ x2 +
4x4)/x2 and restructure the trigonometric functions, which brings the integral into the form
�
1− x2
�
(1+ 2x2)

x2

∫ π

−π

dk1dk2

(2π)2
1

E(x)− 2
�
cos(k1) + 2cos( k1

2 ) cos( k1
2 − k2)
� . (42)

This integral is equal to the Green’s function of a single tight-binding quantum particle
hopping on a triangular lattice [71], for which (in appropriate coordinates) the dispersion
relation may be written E(k) = 2

�
cos(k1) + 2 cos( k1

2 ) cos( k1
2 − k2)
�
. We can therefore write

down an exact expression for the generating function of uncharged configurations

F0(x)≡ [y0
r y0

g y0
b]F(x;y) =

2
�
1− x2
�
(1+ 2x2)

πx2(λ− 1)3/2(λ+ 3)1/2
K

�
4λ1/2

(λ− 1)3/2(λ+ 3)1/2

�
, (43)

where K(x) is the complete elliptic integral of the first kind and we have introduced λ(x) =p
3+ E(x). The first few pattern lengths that belong to the uncharged symmetry sector that

derive from Eq. (43) are

F0(x) = 1+ 6x6 + 6x8 + 42x10 + 120x12 + 426x14 + . . . (44)
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Figure 6: Exact distribution of Krylov sectors in the uncharged symmetry sector, obtained from the
generating functions (33) and (43). P(ℓ) is the probability that a state drawn at random from the
uncharged symmetry sector with uniform probability belongs to a Krylov sector corresponding to label
length ℓ. The largest Krylov sector, which corresponds to label length ℓ= 0, represents a vanishingly
small fraction of the symmetry sector. The distribution is centered around ℓ/L = 1/3 (dashed line).

The shortest uncharged pattern has length six and corresponds to a three-dot pattern repeated
twice, such as
�� �

. The six labels of length ℓ = 8 are the same six labels as
ℓ = 6 surrounded by the unique color that is not equal to the first or last color in the
corresponding ℓ = 6 label. Asymptotically, the number of patterns of length ℓ within the
uncharged symmetry sector scales (up to polynomial corrections) as ∼ 2ℓ.

Lastly, we note that fragmentation in the PF model is strong [11, 12]: In the thermody-
namic limit, an arbitrary state chosen from any fixed symmetry sector (i.e., one whose charge
does not scale with L) belongs to that sector’s largest Krylov sector with probability zero. To
see this, recall that any symmetry sector has a minimal length Lmin on which it exists. To
bound the size of the symmetry sector, we can then place any uncharged spin configuration
on the remainder of the system. For m = 3 and systems of length L = Lmin + 6n, we can
place n red spins, n blue spins, and n green spins on the even sublattice (and similarly for
the odd sublattice), giving

Dsym
0 >

�
(3n)!
(n!)3

�2
∼ 36n+1

4π2n2
(45)

uncharged spin configurations. Hence, every fixed symmetry sector has a dimension that
scales asymptotically as ∼ 3L−Lmin up to polynomial corrections, while no Krylov sector grows
faster than ∼ (2p2)L (34). For larger m, symmetry sectors contain ∼ mL states, while no
Krylov sector grows faster than ∼ (2pm− 1)L. This result is illustrated for the uncharged
symmetry sector in Fig. 6, which shows that an arbitrary state is most likely to belong to a
Krylov sector of intermediate size, and that the probability of belonging to any particular
Krylov sector vanishes in the thermodynamic limit.
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B.2 Labels in 1D with periodic boundaries

Let us consider PF dynamics with periodic boundaries. The procedure for finding the label is
the same, except that spins on the left and right ends of the system may be paired so that the
first and last spin in the label must not match. For labels of size L this is the end of the story;
there are (m− 1)L + (−1)L(m− 1) such sectors, the number of m-colorings of the cycle CL.
Each sector consists of a single frozen state.

For shorter labels, the dots are mobile, in the sense of Eq. (5). This allows us to cyclicly
translate the label by a distance of two. Instead of just keeping track of the length of the
label ℓ, let us also keep track of the shortest repeating pattern (“motif”) in a label and its
length j. A motif can be repeated up to n = ⌊L/ j⌋ times. For j odd, a nonfrozen sector
is labeled by a motif and a choice of n. For j even (which can only occur if L is even), a
nonfrozen sector is labeled by a motif, n, and a choice of parity bit, since the label can only
be shifted two positions at a time. Note that we could extend this labeling to frozen states if
we supplement with a starting position within the motif, of which there are j.

The number of motifs of length j is given by the recurrence relation

Nmotif
j = (m− 1) j + (−1) j(m− 1)−

∑
k | j

Nmotif
k , (46)

where k | j means k divides j. The subtraction removes motifs that are periodic with period k.
Asymptotically, we have Nmotif

j ∼ (m−1) j. Explicit expressions for the subleading corrections
can be found when j is a power of a prime, but are not particularly illuminating. Then, the
number of labels of length ℓ is dominated by labels with a single motif, and also scales as
(m− 1)ℓ. But, since the dots are mobile, sectors correspond to labels up to translation by 2.
For odd j, translations by 2 are fully general so that any two motifs related by translation
correspond to the same sector when repeated n times. This tells us there are ∼ (m− 1)ℓ/ℓ
sectors with label of length ℓ. If j is even then two motifs that are related by a translation by
one cannot be transformed into each other. This means that sectors must have an additional
parity bit which introduces a factor of 2 into the counting, but does not affect the scaling.

This all tells us that despite having ∼ (m− 1)L frozen states, the PF model with periodic
boundary conditions asymptotically has only ∼ (m− 1)L/L nonfrozen sectors. This contrasts
with open boundary conditions, where we found ∼ (m− 1)L frozen sectors and ∼ (m− 1)L

nonfrozen sectors.

B.3 Labels in 2D with periodic boundaries

The labeling procedure in 2D with PBC is more complicated still, but does have some nice
graphical interpretation. We now have the option of choosing a motif with length j and two
integers, nx and x y , such that max(| jnx |, | jny |)≤ L. Then the horizontal label is the motif
repeated nx times (from left to right) and the vertical label is the motif repeated ny times
(from top to bottom). Negative values correspond to repeating the motif in reverse. A sector
consists of a single frozen state if either jnx = L or jny = L. Such states are discussed in
Sec. B.4. Here, we will focus on nonfrozen sectors.
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nx = 2, ny = 0 nx = 2, ny = −1 nx = 2, ny = −2 nx = 1, ny = 2 nx = 0, ny = 2

Figure 7: In 2D, we can choose to repeat a particular motif (in this case, | 〉) an integer number
of times both horizontally and vertically. For example, in the left-most figure the motif is repeated
nx = 2 times horizontally and ny = 0 times vertically. In the middle figure we have ny = −2 because
the label is reversed when read from top to bottom. We could in addition have states with nx > 2 or
ny > 2, with an upper limit set by L/2 (L/ j in general).

Different choices of nx and ny define how many times a motif is repeated horizontally
and vertically. These values also define the average slope of the noncontractible loops: The
average slope is ±nx/ny . Figure 7 demonstrates how a particular motif can be included
different numbers of times either horizontally or vertically.

As in 1D, two nonmaximal labels related by translation (by two) belong in the same sector.
This means there are once again only ∼ (m− 1)L/L nonfrozen sectors in PBC, compared to
∼ (m− 1)L nonfrozen sectors in OBC, or ∼ (m− 1)L frozen states in either case.

B.4 Frozen states in the QF model

The counting of frozen states in the presence of periodic boundaries is more complicated
than the case of open boundary conditions presented in the main text. We will work using
the language of the QF Hamiltonian (i.e., spins on edges) and with square systems of size
L × L for simplicity. The first ingredient in counting the number of such states is to identify
the number of 1D configurations that are not mobile under pair-flip dynamics; namely,
the number of configurations that do not contain any neighbors of the same color. When
these 1D configurations are turned into system-winding loops in the second dimension,
there will be no adjacent loops of the same color. For a ring of length j, the number of
configurations with no identically colored neighbors is (m−1) j+(m−1)(−1) j. Suppose that
such a constraint-satisfying pattern with j = L is placed in the first row of the system. In the
subsequent rows, the pattern can be shifted either left or right subject to the constraint that
it must come back to itself around the periodic boundaries. Consequently, any periodicity of
the pattern plays a nontrivial role; if the pattern repeats every j edges, the final displacement
x of the pattern need only satisfy x = 0 mod j.

For simplicity, we will first focus on linear system sizes of the form Lk = 2k, although
the methods we present can be used to identify the number of frozen states for arbitrary
L. Given this simplification, the pattern can, in principle, repeat every jn = 2n edges for
1≤ n≤ k. For k > 1, the number of frozen patterns of length Lk with no periodicity is

Nk = (m− 1)Lk + (m− 1)(−1)Lk −
∑

1<n<k

Nn , (47)
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Figure 8: Exact number of frozen states that wrap around the torus in one direction (49), obtained by
numerical evaluation of the recursion relation (47), relative to the predicted asymptotic scaling (50)
as a function of linear system size L (only even L are plotted). For all m, the asymptotic scaling is
obeyed for sufficiently large L. The solid lines correspond to the contributions to (49) from j = L
and j = L/2, which provide a good description of the behavior down to O(1) values of L.

where the second term on the right-hand side subtracts off the contribution from periodic
patterns; more generally, one must sum over all divisors of the length of the pattern, as in
Eq. (46). The recursion relation (47) can be solved exactly to give

Nk = (m− 1)Lk/2
�
(m− 1)Lk/2 − 1
�

for k > 1 , (48)

and N1 = m(m− 1). Asymptotically, we have Nk ∼ (m− 1)Lk for k≫ 1, as expected. That
is, the contribution from periodically repeating patterns is exponentially suppressed. For a
system of size Lk × Lk, the full number of frozen configurations that wrap around the system
in (at least) one direction is therefore

Fk =
∑
j | Lk

2Lk/ j∑
n=0

�
Lk

1
2 n j

�
Nℓ , (49)

where the first summation is over nontrivial motif lengths j that divide Lk, i.e., j ∈ {2n}kn=1.
The leading term in the summation comes from the term j = Lk, which gives (for m> 2) the
asymptotic growth

Fk =

�
2+
�

Lk
1
2 Lk

��
NLk
+O

�
2Lk

p
Lk

(m− 1)Lk/2

�
∼
√√ 2
πLk
[2(m− 1)]Lk , (50)

For m = 2, there is just a single frozen pattern composed of alternating colors of loops. Since
this pattern necessarily has periodicity j = 2, there is no exponential enhancement of large,
nonrepeating patterns. Hence, in this case, one must sum over all binomial coefficients,
giving
∑Lk

n=0

�Lk
n

�
= 2Lk . The asymptotic scaling in Eq. (50) is compared with the exact number
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Figure 9: Ratio of the size of the Krylov sector corresponding to trivial labels (both horizontal and
vertical), D;, to the total dimension of the constrained Hilbert space, Dtot. For the smallest system
sizes, we plot the exact value of the ratio obtained by exact numerical enumeration. For larger
systems, we sample at infinite temperature from constraint-satisfying states using the loop Monte
Carlo algorithm described in the text. All systems have periodic boundary conditions, even linear
system size, and degrees of freedom on edges.

of frozen states computed numerically for arbitrary L in Fig. 8, which suggests that (50)
describes the leading asymptotic growth for all even L. Note that an exact count of all
frozen states would require us to enumerate configurations that wrap the torus in the other
direction [not all of which are distinct from the states already counted in Eq. (49)]; the
asymptotic growth, however, will remain unchanged.

C Weak vs strong shattering

To determine the “strength” of the shattering in quad-flip (QF) model, we perform a variety
of numerical simulations. We find evidence in support of weak fragmentation: the largest
Krylov sector, which corresponds to the trivial irreducible label in both directions, occupies
almost all of the corresponding uncharged symmetry sector in the thermodynamic limit.
In fact, our numerics support the slightly stronger statement that the largest Krylov sector
occupies almost all of the entire constraint-satisfying Hilbert space. Consequently, the effects
of the fragmentation are most pronounced starting from “low-entropy” initial conditions that
correspond to nontrivial irreducible labels.

The constraint on configurations around faces, illustrated in (9), makes sampling allowed
states with uniform probability nontrivial. To sample such states at infinite temperature,
we design a loop update that is (i) ergodic, in the sense that the update will sample all
Krylov sectors and all symmetry sectors, and (ii) satisfies detailed balance, ensuring that the
uniform distribution is the stationary state [72, 73]. For m= 2, the update reduces to the
standard loop algorithm for square ice [74].
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The loop update proceeds as follows. For simplicity, we focus on periodic boundary
conditions and work with degrees of freedom on edges of the square lattice that host three-
level systems. Analogous algorithms can be constructed in the vertex language of Sec. 4.2.2,
or with models with larger on-site Hilbert spaces.

1. Pick a spin at random from a uniform distribution over edges,

2. choose, with uniform probability, one of the two colors (say β) complementary to the
current color α, and a direction,

3. interchange α↔ β on all horizontal bonds,

4. the path followed on the dual lattice is determined by traversing edges such that their
colors form the sequence αβαβ · · ·αβ until the path returns to the initial site (never
choosing the same edge more than once); whenever there is a direction choice, pick
which direction to take with uniform probability,

5. interchange α↔ β along the path, producing the sequence βαβα · · ·βα,

6. interchange α↔ β on all horizontal bonds.

The choice to exchange α↔ β on all horizontal before choosing a path bonds merely
simplifies the rules according to which the sequence of colors is chosen. One may show that
interchanging α↔ β along a closed path in step 5 preserves the constraint. We now show
that these updates indeed give rise to an irreducible Markov chain. We already showed in
the main text that quad-flip updates are sufficient to connect any two states belonging to
the same Krylov sector, and that different Krylov sectors are related by different patterns
of noncontractible loops. The minimal loop update effected by steps 1–7 is indeed a quad
flip. Furthermore, the loop update is able to change the color of any noncontractible loop,
thereby changing Krylov sector. Hence, any two constraint-satisfying states are connected by
the nonlocal loop updates described above. The algorithm also satisfies detailed balance
using arguments analogous to those presented in Ref. [74].

The results are shown in Fig. 9, along with exact numerical results for systems of size
4× 4 and 6× 6 (total Hilbert-space dimensions 332 and 372, respectively), which are the
largest systems we were able to access using a transfer-matrix approach. We observe that the
ratio of the largest Krylov sector (which corresponds to the empty label in both directions)
to the total constrained Hilbert space dimension grows monotonically with linear system
size L. As a result, we expect that the ratio tends to unity as L becomes thermodynamically
large. We note, however, that the growth is rather slow; even in systems of size 18 432 spins,
the largest sector occupies only ≈ 3/4 of the total constrained Hilbert space.
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