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Abstract

We calculate the equilibrium Josephson current through a disordered interacting quan-
tum dot described by a Sachdev-Ye-Kitaev model contacted by two BCS superconduc-
tors. We show that, at zero temperature and at the conformal limit, i.e. in the strong
interacting limit, the Josephson current is strongly suppressed byU , the strength of the
interaction, as ln(U )/U and becomes universal, namely it gets independent on the su-
perconducting pairing. At �nite temperatureT , instead, it depends on the ratio between
the gap and the temperature and vanishes as 1/T 2 upon increasing the temperature. A
proximity e�ect exists but the self-energy corrections induced by the coupling with the
superconducting leads seem subleading as compared to the self-energy due to interac-
tion for large number of particles.
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1 Introduction

�e Sachdev-Ye-Kitaev (SYK) model, a non-Fermi liquid describing fermions with in�nite-range
interactions, has a�racted a lot of scienti�c interest in recent years [1, 2]. Compared to ordi-
nary Fermi liquids, it displays highly unusual properties; for example, its resistivity is linear in
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temperature [3–5]. Moreover, it has been shown that the SYK model is dual to an anti-de Sit-
ter space in two-dimensions [2, 6–8], opening an alternative way for investigating black holes.
Regarding its experimental implementation, several proposals have already been formulated in
solid state physics based on quantum dots coupled to topological superconducting wires [9],
graphene �akes with irregular boundary [10, 11], by applying optical la�ices [12], and in the
�eld of cavity quantum electrodynamics [13].

A lot of theoretical studies have been devoted to study many peculiar properties of the SYK
model, either at equilibrium and out-of equilibrium. Di�erent investigations about many aspects
of this model have been carried out, ranging from the dynamics triggered by a quantum quench
[14], to realizing traversable wormholes [15], or about the Bekenstein-Hawking entropy [16,
17] and the existence of anomalous power laws in the temperature dependent conductance [18,
19]. Several studies have been also conducted investigating the mesoscopic physics by the SYK
model, considering a la�ice of SYK dots [20], analyzing the thermoelectric transport [21] and
the charge transport by coupling with metallic leads [22, 23], characterizing the current and
supercurrent driven by double contact setups [24], looking at the dynamics by coupling with
Markovian reservoirs [25], and thermal baths, detecting some peculiar thermalization properties
[26–28].

Despite this intense scienti�c activity done on the transport properties of the SYK model, one
of the most interesting and yet-li�le studied topic is about the currents driven by superconduct-
ing leads. Non-equilibrium currents triggered by a voltage applied either through normal and
superconducting leads have been investigated [24], however a study of the equilibrium Josephson
current is still laking. �e Josephson e�ect provides a fundamental signature of phase-coherent
transport through mesoscopic sample [29]. We calculate the direct Josephson current obtained
by contacting a SYK dot by two conventional Bardeen-Cooper-Schrie�er (BCS) superconductors.
We show that a proximity e�ect is induced in the dot, which causes the tunneling current orig-
inated by a phase-di�erence without applying any voltage, however the self-energy of the dot
is weakly a�ected by the coupling with the superconducting leads in the so-called conformal
limit, namely for large interaction and in the limit of large number of particles. We found that, in
this limit, the Josephson current is strongly suppressed by U , the strength of the interaction, as
ln(U )/U and becomes universal, namely the current gets independent on the superconducting
pairing. �is means that the Josephson current, at zero temperature, and in the conformal limit,
is the same for all BCS-like superconductors. At �nite temperature T , instead, the dependence
on the superconducting gap appears again. �e current turns out to be dependent on the ratio
between the gap and the temperature and vanishes as 1/T 2 upon increasing the temperature.

2 Model

We study a system composed by a dot, modeled by a complex SYK Hamiltonian Hd , and two-
superconducting leads described by H0. �e hybridization of the dot and the superconducting
reservoirs takes place by the tunneling term HT . �e full Hamiltonian is, therefore,

H = H0 + HT + Hd (1)

where the �rst term

H0 =
∑
p=L,R

*.
,

∑
k,σ

(ϵk − µp )c
†

pσkcpσk +
∑
k

∆pe
iϕpc†p↑kc

†

p↓−k
+/
-
+ h.c . (2)

describes the two BCS-Hamiltonians, contacted to the le� side (p = L) and to the right side
(p = R) of the dot, cLσk , cRσk the annihilation and c†Lσk , c†Rσk creation fermionic operators, ϵk is
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the single particle spectrum, µL and µR the chemical potentials, ∆L and ∆R the gaps with phases
ϕL and ϕR , respectively.
�e second term is the tunneling Hamiltonian

HT =
1
√
N

∑
p=L,R

∑
k,σ ,n

tpn cpσkd
†
n + h.c . (3)

where tLn and tRn are the probability amplitudes for a fermion to jump into or out of the dot.
�e fermionic operators dn and d†n are de�ned in the dot. �e last term of Eq. (1) is the following
complex SYK Hamiltonian of the dot

Hd =
1

(2N )3/2

N∑
i, j,k,l=1

Ui jkl d
†

i d
†

j dkdl − µ
∑
i

d†i di (4)

where N fermions have a disordered all-to-all four-body interaction Ui jkl , Gaussian distributed.

2.1 Tunneling term

Let us �rst consider the tunneling term and the lead We introduce the following Nambu-Jona-
Lasinio spinors

Ψpk = *
,

cp↑k
c†p↓−k

+
-
, Ψ̄pk =

(
c†p↑k cp↓−k

)
(5)

for the fermions in of the leads, and

Dn =

(
dn
d†n

)
, D̄n =

(
d†n dn

)
(6)

for the fermions of the dot. �e Hamiltonian of the leads, H0, in this representation, becomes

H0 =
∑
p,k

Ψ̄pk
[
(ϵk − µp )τ3 + ∆p cos(ϕp )τ1 − ∆p sin(ϕp )τ2

]
Ψpk (7)

and the tunneling Hamiltonian HT reads

HT =
1
√
N

∑
p,k,n

{
Re(tpn ) (Ψ̄pkτ3Dn + D̄nτ3Ψpk ) − i Im(tpn ) (Ψ̄pkDn − D̄nΨpk )

}
(8)

where τ1,τ2,τ3 are Pauli matrices. Let us take tpn real, and µR = µL = µ, i.e. at equilibrium.
De�ning

G−1
kp = iω + ξkτ3 + ∆p cos(ϕp )τ1 − ∆p sin(ϕp )τ2 (9)

where ξk = ϵk − µ, and integrating over Ψ,

e−Sc =

∫
DΨ̄DΨ exp



−

∑
p,k,ω


Ψ̄pkG

−1
pkΨpk +

1
√
N

∑
n

tpn (Ψ̄pkτ3Dn + D̄nτ3Ψpk )





(10)

we get the contribution to the action of the dot due to the coupling with the leads

Sc =
∑

n,m,ω

D̄n (ω)Tnm (ω)Dm (ω) (11)

where
Tnm (ω) =

1
N

∑
kp

tpntpm
−iω + ξkτ3 − ∆p cos(ϕp )τ1 + ∆p sin(ϕp )τ2

ξ 2
k + ∆

2
p + ω

2 (12)
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we can integrate over ξk , and introducing ν0 the density of states at the Fermi energy, equal for
both sides, we get

Tnm (ω) = −
1
N

∑
p

πν0tpntpm
√
ω2 + ∆2

(
iω + ∆p cos(ϕp )τ1 − ∆p sin(ϕp )τ2

)
(13)

De�ning, in the symmetric case, Γp,nm = πν0tpntpm = Γnm/2, ϕL = −ϕR = ϕ/2 and ∆ = ∆L = ∆R ,
summing over p = R,L, namely summing the right and le� terms, we get

Tnm (ω) = iω
1
N

Γnm
√
ω2 + ∆2

+
1
N

Γnm∆ cos(ϕ/2)
√
ω2 + ∆2

τ1 (14)

Let us now make the reasonable assumption that tpn = tpm for any n and m, then Γnm ≡ Γ Jnm
where J is a N × N unit matrix, a matrix consisting of all 1s

J =

*.....
,

1 1 . . . 1
1 1 . . . 1
...
...
. . .

...

1 1 . . . 1

+/////
-

We can write, therefore,

T (ω) = iω
1
N

Γ
√
ω2 + ∆2

τ0 +
1
N

Γ∆ cos(ϕ/2)
√
ω2 + ∆2

τ1 (15)

such that Tnm (ω) = T (ω) Jnm .

3 SYK Dot

�e Hamiltonian of the dot is given by Eq. (4), where Ui jkl are complex, independent Gaussian
random couplings with zero mean obeying Ui jkl = −Ujikl = Ui jlk , Ui jkl = U

∗
kli j and mean value

U 2
i jkl = U 2. Introducing n replicas, a = 1, . . . ,n, labeling the �eld as dna , we can average over

disorder so that the action of the uncoupled dot can be wri�en as follows

Sd =
∑
n,a

∫ β

0
dτ d†na (τ ) (∂τ − µ ) dna (τ ) −

U 2

4N 3

∑
a,b

∫ β

0
dτdτ ′ *

,

∑
n

d†na (τ )dnb (τ
′)+

-

4

+ Sc (16)

3.1 E�ective action

We can decouple the interaction, in di�erent channels, introducing a number of auxiliary �elds,
ge�ing

Sd =
∑
na

∫ β

0
dτ d†na (τ ) (∂τ − µ ) dna (τ ) +

∑
ab

∫ β

0
dτdτ ′

[ N

4c0U 2 [Q0
ab (τ ,τ

′)]2 +
N 3

4c1U 2 |Q
P
ab (τ ,τ

′) |2

+
N 3

4c2U 2 [Q∆
ab (τ ,τ

′)]2 +
N

2
Q0
ab (τ ,τ

′) |Pab0 (τ ,τ ′) |2 −Q0
ab (τ ,τ

′)Pab0 (τ ,τ ′)
∑
n

d†na (τ )dnb (τ
′)

+
1
4
QP
ab (τ ,τ

′)
∑
nm

Pabnm (τ ,τ ′)Pabmn (τ ,τ
′) −

1
2
QP
ab (τ ,τ

′)
∑
nm

d†na (τ )P
ab
nm (τ ,τ ′)dmb (τ

′)

−
1
2
QP
ab (τ ,τ

′)
∑
nm

d†ma (τ )P
ab
mn (τ ,τ

′)dnb (τ
′) +

1
2
Q∆
ab (τ ,τ

′)
∑
nm

|∆ab
nm (τ ,τ ′) |2 (17)

−
1
2
Q∆
ab (τ ,τ

′)
∑
nm

d†na (τ )∆
ab
nm (τ ,τ ′)d†mb (τ

′) −
1
2
Q∆
ab (τ ,τ

′)
∑
nm

dma (τ )∆
ab∗
nm (τ ,τ ′)dnb (τ

′)
]
+ Sc
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where the weights c0, c1, c2 are arbitrary positive real numbers such that c0 + c1 + c2 = 1. �e
auxiliary �elds are such thatQ∆

ab (τ ,τ
′) is real, ∆ab

nm (τ ,τ ′) is complex and ∆ab
nm (τ ,τ ′) = ∆ab

mn (τ ,τ
′),

while QP
ab (τ ,τ

′) is complex and QP
ab (τ ,τ

′) = QP∗
ba (τ

′,τ ) and Pabnm (τ ,τ ′) = Pabmn (τ ,τ
′) can be taken

real (it can be complex but only the real part ma�ers), while Q0
ab (τ ,τ

′) = Q0
ba (τ

′,τ ) is real and
Pab0 (τ ,τ ′) = Pba∗0 (τ ′,τ ) complex. Using the representation in Eq. (6), with replica indices, namely

D̄a
n =

(
d†na dna

)
and Db

m =

(
dmb

d†mb

)
, we can write

Sd =
1
2

∑
nmab

∫ β

0
dτdτ ′

{
D̄a
n (τ )

[
δτ τ ′δabδnm (τ0∂τ − τ3µ ) −

1
2
Q0
ab (τ ,τ

′)δnm
(
Pab0 (τ ,τ ′) (τ3 + τ0)

+Pab∗0 (τ ,τ ′) (τ3 − τ0)
)
−

1
2

(
QP
ab (τ ,τ

′)Pabnm (τ ,τ ′) (τ3 + τ0) +Q
P
ba (τ

′,τ )Pbanm (τ ′,τ ) (τ3 − τ0)
)

−
1
2
Q∆
ab (τ ,τ

′)
(
∆ab
nm (τ ,τ ′) (τ1 + iτ2) +∆

ab∗
nm (τ ,τ ′) (τ1 − iτ2)

) ]
Db
m (τ ′)

}
+

∑
ab

∫ β

0
dτdτ ′

[ N

4U 2

( 1
c0

[Q0
ab (τ ,τ

′)]2 +
N 2

c1
|QP

ab (τ ,τ
′) |2 +

N 2

c2
[Q∆

ab (τ ,τ
′)]2

)
(18)

+
N

2
Q0
ab (τ ,τ

′) |Pab0 (τ ,τ ′) |2 +
1
4
QP
ab (τ ,τ

′)
∑
nm

(Pabnm (τ ,τ ′))2 +
1
2
Q∆
ab (τ ,τ

′)
∑
nm

|∆ab
nm (τ ,τ ′) |2

]
+ Sc

Let us now calculate the main contributions to the partition function, deriving the saddle point
equations.

3.2 Saddle point equations

Imposing δSd = 0 under varying the auxiliary �elds we derive the following saddle point equa-
tions

Pab0 (τ ,τ ′) = −
1

2N

∑
n

Tr
(
〈Db

n (τ
′)D̄a

n (τ )〉(τ3 − τ0)
)

(19)

Pba0 (τ ′,τ ) = −
1

2N

∑
n

Tr
(
〈Db

n (τ
′)D̄a

n (τ )〉(τ3 + τ0)
)

(20)

Pabnm (τ ,τ ′) = −
1
2

Tr
(
〈Db

m (τ ′)D̄a
n (τ )〉(τ3 + τ0)

)
(21)

Pbamn (τ
′,τ ) = −

1
2

Tr
(
〈Db

m (τ ′)D̄a
n (τ )〉(τ3 − τ0)

)
(22)

∆ab
nm (τ ,τ ′) = −

1
2

Tr
(
〈Db

m (τ ′)D̄a
n (τ )〉(τ1 − iτ2)

)
(23)

∆ab∗
nm (τ ,τ ′) = −

1
2

Tr
(
〈Db

m (τ ′)D̄a
n (τ )〉(τ1 + iτ2)

)
(24)

Q0
ab (τ ,τ

′) = −c0U
2
{
|Pba0 (τ ′,τ ) |2 +

1
2N

∑
n

Tr
[
〈Db

n (τ
′)D̄a

n (τ )〉
(
(τ3 + τ0)P

ab
0 (τ ,τ ′)

+ (τ3 − τ0)P
ab∗
0 (τ ,τ ′)

)]}
= c0U

2 |Pba0 (τ ′,τ ) |2 (25)

QP
ab (τ ,τ

′) = −
c1U

2

N 3

{∑
nm

(Pbanm (τ ′,τ ))2 +
∑
nm

Tr
(
〈Db

m (τ ′)D̄a
n (τ )〉(τ3 − τ0)

)
Pbanm (τ ′,τ )

}
=
c1U

2

N 3

∑
nm

(Pbanm (τ ′,τ ))2 (26)
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QP
ba (τ

′,τ ) = −
c1U

2

N 3

{∑
nm

(Pabnm (τ ,τ ′))2 +
∑
nm

Tr
(
〈Db

m (τ ′)D̄a
n (τ )〉(τ3 + τ0)

)
Pabnm (τ ,τ ′)

}
=
c1U

2

N 3

∑
nm

(Pabnm (τ ,τ ′))2 (27)

Q∆
ab (τ ,τ

′) = −
c2U

2

N 3

{∑
nm

|∆ba
nm (τ ′,τ ) |2 +

1
2

∑
nm

Tr
[
〈Db

m (τ ′)D̄a
n (τ )〉

(
(τ1 + iτ2)∆

ab
nm (τ ,τ ′)

+ (τ1 − iτ2)∆
ab∗
nm (τ ,τ ′)

)]}
=
c2U

2

N 3

∑
nm

|∆ba
nm (τ ′,τ ) |2 (28)

We restrict our a�ention to replica diagonal solutions, Pab0 (τ ,τ ′) = δabG0 (τ ,τ
′), Pabnm (τ ,τ ′) =

δabGnm (τ ,τ ′) and ∆ab
nm (τ ,τ ′) = δabFnm (τ ,τ ′) = δabF

∗
nm (τ ′ − τ ). We de�ne

Gnm (τ ,τ ′) =

(
G0 (τ ,τ

′)δnm +Gnm (τ ,τ ′) F ∗nm (τ ,τ ′)
Fnm (τ ,τ ′) −G0 (τ

′,τ )δnm −Gmn (τ
′,τ )

)
(29)

and the self-energies

Σ(τ ,τ ′) = −

(
Q0 (τ ,τ ′)G0 (τ ,τ

′) 0
0 −Q0 (τ ′,τ )G0 (τ

′,τ )

)
(30)

Lnm (τ ,τ ′) = −

(
QP (τ ,τ ′)Gnm (τ ,τ ′) 0

0 −QP (τ ′,τ )Gmn (τ
′,τ )

)
(31)

Anm (τ ,τ ′) = −

(
0 Q∆ (τ ,τ ′)Fnm (τ ,τ ′)

Q∆ (τ ,τ ′)F ∗nm (τ ,τ ′) 0

)
(32)

We can de�ne

G0 (τ ,τ
′) =

(
G0 (τ ,τ

′) 0
0 −G0 (τ

′,τ )

)
, (33)

Gnm (τ ,τ ′) =

(
Gnm (τ ,τ ′) 0

0 −Gmn (τ
′,τ )

)
, (34)

Fnm (τ ,τ ′) =

(
0 F ∗nm (τ ,τ ′)

Fnm (τ ,τ ′) 0

)
(35)

At the saddle point, from Eqs. (19)-(24), we have

Gnm (τ ,τ ′) = G0 (τ ,τ
′)δnm + Gnm (τ ,τ ′) + Fnm (τ ,τ ′) = −〈Dm (τ ′)D̄n (τ )〉 (36)

which depends on the time di�erence τ̄ = τ ′ − τ ∈ [−β, β], namely Gnm (τ ,τ ′) = Gnm (τ̄ ).
In Fourier space the full matrix Ĝ(τ̄ ) in spinorial and in the multimodal spaces, including the
tunneling contribution T̂ (ω) = T (ω) J , reads

Ĝ(ω) =
[(
iωτ0 + µτ3 − Σ(ω)

)
Î + T̂ (ω) −

(
L̂(ω) + Â(ω)

) ]−1
(37)

where, from Eqs. (25)-(28), the self-energies Σ(ω), L̂(ω) and Â(ω) are the Fourier transforms of

Σ(τ̄ ) = −c0U
2G0 (τ̄ )

2G0 (−τ̄ ) = −c0U
2
(
G0 (τ̄ )

2G0 (−τ̄ ) 0
0 −G0 (−τ̄ )

2G0 (τ̄ )

)
(38)
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and of L̂(τ̄ ) and Â(τ̄ ), whose elements are

Lnm (τ̄ ) = −
c1U

2

N 3

∑
kl

Gkl (τ̄ )
2Gnm (−τ̄ ) = −

c1U
2

N 3

∑
kl

(
Gkl (τ̄ )

2Gnm (−τ̄ ) 0
0 −Gkl (−τ̄ )

2Gmn (τ̄ )

)
(39)

Anm (τ̄ ) = −
c2U

2

N 3

∑
kl

Fkl (τ̄ )
2Fnm (τ̄ ) = −

c2U
2

N 3

∑
kl

(
0 |Fkl (τ̄ ) |

2Fnm (τ̄ )
|Fkl (τ̄ ) |

2F ∗nm (τ̄ ) 0

)
(40)

One has to solve self-consistently Eqs. (37)-(40), �xing then c0, c1, c2, with constraint c0+c1+c2 =

1, by minimizing the action at the saddle point. However what we found is that, if Gnm and
Fmn ∼ 1/N δ with δ > 0, the self-energies L̂ and Â can be neglected in the large N limit. As we
will see in the last section, this seems to be the case.

4 Josephson current

As shown in the previous section, the self energies induced by he coupling can be neglected in
the large N limit. In such approximation the Green’s function of the dot can be wri�en as

G−1
nm = G

−1
0 δnm + T Jnm (41)

where G0 is the Green’s function of the uncoupled dot, solution of the equations

G−1
0 (ω) = iωτ0 + µτ3 − Σ(ω) (42)

Σ(τ ) = −U 2G0 (τ )
2G0 (−τ ) (43)

Let us write the self-energy in the following form

Σ(ω) = Σ0 (ω)τ0 + Σ3 (ω)τ3 (44)

so that we can write

G−1
0 (ω) = G̃−1

0 (ω)τ0 + G̃
−1
3 (ω)τ3 ≡

(
iω − Σ0 (ω)

)
τ0 +

(
µ − Σ3 (ω)

)
τ3 (45)

Actually, from Eq. (33), de�ning

G0 (ω) =
1
2

∫
dτ eiωτ

(
G0 (τ ) −G0 (−τ )

)
, G3 (ω) =

1
2

∫
dτ eiωτ

(
G0 (τ ) +G0 (−τ )

)
(46)

we have that

G̃−1
0 (ω) =

G0 (ω)

G0 (ω)2 −G3 (ω)2
, G̃−1

3 (ω) =
G3 (ω)

G3 (ω)2 −G0 (ω)2
(47)

�e Josephson current can be obtain from the phase derivative of the free energy

I = −
1
β
∂ϕ

∑
ω

ln
(
det[G−1 (ω)]

)
(48)

where β = 1/T is the inverse of the temperature and the determinant of G−1 (ω), from Eq. (41),
is given by

det[G−1] =
(
det[G−1

0 ]
)N (

1 + N Tr[T G0] + N 2 det[T ]
det[G−1

0 ]

)
(49)

7
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from which, using det[G−1
0 ] = (G̃−1

0 )2 − (G̃−1
3 )2, we get the following expression

det[G−1] =
(
det[G−1

0 ]
)N−1



(
G̃−1

0 (ω) + iω
Γ

√
ω2 + ∆2

)2
−
Γ2∆2 cos2 (ϕ/2)

ω2 + ∆2 −
(
G̃−1

3 (ω)
)2


(50)

From Eq. (48) we �nally obtain the Josephson current

I =
Γ2∆2

β
sin(ϕ)

∑
ω

1

Γ2∆2 cos2 (ϕ/2) −
(
G̃−1

0 (ω)
√
ω2 + ∆2 + iωΓ

)2
+

(
G̃−1

3 (ω)
√
ω2 + ∆2

)2 (51)

By numerically solving of Eqs. (42), (43), using Eqs. (44), (45), one gets the Josephson current for
the SYK dot from Eq. (51).

4.1 Large interaction limit

In the so-called conformal limit, namely for very largeU , i.e. for |ω | � U , the analytical solution
of Eqs. (42) and (43), obtained for Σ3 (0) = µ, implying G3 (0) = 0 and G̃0 = G0, and for T → 0, is
given by [1, 5, 16]

G−1
0 (ω) = iC sgn(ω) |ω |1/2 (52)

with C ∼ U 1/2. �e Josephson current, Eq. (51), for T → 0, in the continuum, becomes

I =
Γ2∆2

π
sin(ϕ)

∫ ∞

0

dω

Γ2∆2 cos2 (ϕ/2) +
(
C
√
ω (ω2 + ∆2) + ωΓ

)2 (53)

�is equation can be well approximated by

I '
Γ2

π
sin(ϕ)

∫ ∆

0

dω

Γ2 cos2 (ϕ/2) +C2ω
(54)

ge�ing the following analytical result

I '
Γ2

πC2 sin(ϕ) ln
(
1 +

C2∆

Γ2 cos2 (ϕ/2)

)
(55)

For U∆ � Γ2, the current I drops the dependence on ∆, except for logarithmic corrections, so
that

I ∼
Γ2

U
sin(ϕ) ln

(
U

Γ cos2 (ϕ/2)

)
(56)

namely, we get a universal behavior since it is valid for all BCS-like superconductors.

4.2 Finite temperature

At �nite temperature, the analytical solution Eq. (52) becomes [1, 5, 16]

G−1
0 (ω) ∼ iC

√
2πT eiθ

Γ(3/4 + ω/2πT + iϵ )
Γ(1/4 + ω/2πT + iϵ )

(57)

where Γ(x ) is the Gamma function, C = (U 2 cos(2θ )/π )1/4, while θ and ϵ are linked by e2πϵ =

sin(π/4 + θ )/ sin(π/4 − θ ), and G0 (τ = 0−) = 1/2 − θ/π − sin(2θ )/4. Let us �x the density of
particles at half-�lling, θ = 0, ϵ = 0. De�ning

дω = i ΓG0 (ω) (58)
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from Eq. (51), in the case UT � Γ2, the Josephson current becomes

I '
∆2

β
sin(ϕ)

∑
ω

д2
ω

ω2 + д2
ω∆2 cos2 (ϕ/2) + ∆2 (59)

�e Green’s function G0 (ω) is cut-o�ed by 1/
√
T at low frequency. We approximate, therefore,

дω ≈ д0 in Eq. (59) and, a�er summing over the Matsubara frequencies, we get

I '
∆

2α
sin(ϕ) д2

0

tanh
(
β
2 ∆

√
1 + д2

0 cos2 (ϕ/2)
)

√
1 + д2

0 cos2 (ϕ/2)
(60)

which is a function of the temperature T = 1/β , and of the interaction U since д0 = rΓ/
√
UT ,

with r a numerical coe�cient, r = Γ(1/4)/(
√

2π 1/4Γ(3/4)). We �nd numerically that Eq. (59) is
be�er approximated by the same expression where дω is replaced by д0 if we include an overall
factor α ≈ 5.6. Since д2

0 � 1, calling c = r 2/(2α ) the numerical coe�cient, we have

I ' c
Γ2∆

UT
sin(ϕ) tanh

( ∆
2T

)
(61)

therefore, for large temperature, T � ∆, it vanishes as 1/T 2,

I '
c

2
Γ2∆2

U T 2 sin(ϕ) (62)

On the contrary, in the intermediate regime with small enough temperatures, speci�cally for
∆ � T � Γ2/U , we can approximate the hyperbolic tangent by one, ge�ing a 1/T decay

I '
∆

2α
sin(ϕ)

д2
0√

1 + д2
0 cos2 (ϕ/2)

' c
Γ2∆

U T
sin(ϕ) (63)

For UT � Γ2 (д0 � 1), instead, we have to distinguish two regions in frequency space, with
|ω | < ΛT and |ω | > ΛT , where ΛT ∼ T is an energy cut-o� below which дω ∼ д0 while above
дω ∼ C−1sgn(ω) |ω |−1/2, as for the zero temperature limit. We have, therefore, the following
expression

I '
1
β

sin(ϕ)



∑
|ω |<ΛT

∆2

ω2 + ∆2 cos2 (ϕ/2) + д−2
0 ∆2 +

∑
∆> |ω |>ΛT

Γ2

Γ2 cos2 (ϕ/2) + д−2
ω




(64)

Since T � 1 we can use the integrals, 1
β
∑
ω →

∫
dω
2π , ge�ing

I '
∆

π
sin(ϕ) д0

arctan
(

д0ΛT√
1+д2

0 cos2 (ϕ/2)

)
√

1 + д2
0 cos2 (ϕ/2)

+
Γ2

πC2 sin(ϕ) ln
(
Γ2 cos2 (ϕ/2) +C2∆

Γ2 cos2 (ϕ/2) +C2ΛT

)
(65)

4.3 Zero interaction limit

For U = 0 we have Σ = 0, therefore G̃−1
0 = iω and G̃−1

3 = µ, therefore the Josephson current,
Eq. (51), becomes the same as that for a single-level dot

I =
Γ2∆2

β
sin(ϕ)

∑
ω

1

Γ2∆2 cos2 (ϕ/2) +
(
ω
√
ω2 + ∆2 + ωΓ

)2
+ µ2 (ω2 + ∆2)

(66)

9
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which for Γ � ∆ has an analytical form

I =
∆

2
sin(ϕ)

to tanh
(
β
2 ∆

√
1 − to sin2 (ϕ/2)

)
√

1 − to sin2 (ϕ/2)
(67)

which, for T → 0, becomes simply

I =
∆

2
sin(ϕ)

to√
1 − to sin2 (ϕ/2)

(68)

where to is the transmission coe�cient, 0 ≤ to ≤ 1,

to =
Γ2

Γ2 + µ2 (69)

For large temperature, T � ∆, the current in Eq. (67) becomes

I '
∆2to
4T

sin(ϕ) (70)

namely, it decays as 1/T . �is result has to be contrasted with Eq. (62) obtained for large inter-
action.

4.4 Proximity e�ect

Let us discuss, now, how the dot is a�ected by the presence of the superconducting leads and
check whether we can neglect the self-energy corrections in the large N limit. We will focus in
particular on the hybridization of the dot due to the superconducting pairing, considering the
following tunneling matrix, neglecting, for simplicity, the term proportional to τ0,

T̂ (ω) ' T1 (ω) τ1 J ≡
Γ∆ cos(ϕ/2)
N
√
ω2 + ∆2

τ1 J (71)

We make the following ansatz for the anomalous contribution to the self-energy: Aτ1 J . �e
Green’s function, then, reads

G−1
nm ' G

−1
0 δnm + (T1 (ω) −A) τ1 Jnm (72)

From Eq. (23), we have the following e�ective equal-time pairing between two generic modes
n ,m

F ≡ Fnm (τ ,τ ) =
1
β

∑
ω

Tr
(
G (ω)τ1

)
nm

(73)

and, therefore, from Eq. (40), we will have, consistently,

A = −
U 2F 3

N
(74)

At low temperature the sum in Eq. (73) becomes an integral, which reads

F =

∫ Λ

−Λ

dω

2π
T1 (ω) −A

N 2 (T1 (ω) −A)2 −G
−2
0
=

1
N

∫ Λ

−Λ

dω

2π
Γ∆ cos(ϕ/2)

√
ω2 + ∆2 +U 2F 3 (ω2 + ∆2)(

Γ∆ cos(ϕ/2) +U 2F 3
√
ω2 + ∆2

)2
+C2 |ω |(ω2 + ∆2)

(75)
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where we introduced a cut-o� since ω � U for the expression of G0 to be valid, therefore we
can take Λ ∼ U .
For large U and for large but still �nite N such that U 2F 3 � Γ, we can approximate Eq. (75)
ge�ing

F '
1
N

∫ Λ

0

dω

π

U 2F 3

(U 4F 6 +C2ω)
=

U 2F 3

πNC2 ln
(
1 +

C2Λ

U 4F 6

)
(76)

which has to be solved in terms of F . For U 4F 6 � C2Λ ∼ U 2, we get, for F and A, the following
results

F ≈
( Λ

NπU 2

)1/4
, A ≈ −

U 2/3

N

( Λ

Nπ

)3/4
(77)

We found that the pairing is super-extensive, meaning that a single particle in the dot is paired
with all the other particles in such a way that NF is not O (1) but O (N 3/4).
We expect that U 2F 3 becomes irrelevant upon further increasing N , therefore Eq. (75) becomes

F =
1
N

∫ ∞

−∞

dω

2π
Γ∆ cos(ϕ/2)

√
ω2 + ∆2

Γ2∆2 cos2 (ϕ/2) +C2 |ω |(ω2 + ∆2)
(78)

which can be approximated by

F '
Γ∆2

Nπ
cos(ϕ/2)

∫ Λ

0

dω

Γ2∆2 cos2 (ϕ/2) +C2∆2ω
'

1
N

Γ

πC2 cos(ϕ/2) ln
(
1 +

C2Λ

Γ2 cos2 (ϕ/2)

)
(79)

where now Λ ∼ max(∆, Γ cos(ϕ/2)). �erefore we have

F ∼
1
N

Γ

U
cos(ϕ/2) ln

(
U

Γ cos2 (ϕ/2)

)
, A = −

U 2F 3

N
∼ −

(
Γ ln(U )

)3

UN 4 (80)

�is result implies that, even if the pairing is a sparse matrix whose elements are ∝ 1
N , the

corresponding self-energy decays much faster upon increasing N , validating the approach used
for calculating the Josephson current.

5 Conclusions

We studied the Josephson e�ect obtained by contacting a SYK dot by two superconducting leads.
We showed that a proximity e�ect is induced in the dot, however the self-energy is weakly
a�ected by the coupling with the leads in the so-called conformal limit, namely for large interac-
tion and large number of particles. We found that, in this limit, the Josephson current is strongly
suppressed by U , the strength of the interaction, as ln(U )/U and becomes universal, since the
current turns out to be independent on the superconducting pairing. �is result implies that the
Josephson current, at zero temperature, and in the conformal limit, is the same for all BCS-like
superconductors. At �nite temperature T , instead, the dependence on the superconducting gap
is restored. �e current becomes dependent on the ratio between the gap and the temperature
and vanishes as 1/T 2 upon increasing the temperature.
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