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Abstract

We calculate the equilibrium Josephson current through a disordered interacting quan-
tum dot described by a Sachdev-Ye-Kitaev model fully contacted by two BCS supercon-
ductors, such that all modes of the dot contribute to the coupling, which encodes hop-
ping and spin-�ip processes. We show that, at zero temperature and at the conformal
limit, i.e. in the strong interacting limit, the Josephson current is suppressed by U , the
strength of the interaction, as ln(U )/U and becomes universal, namely it gets indepen-
dent on the superconducting gap. At �nite temperature, instead, it depends on the ratio
between the gap and the temperature. A proximity e�ect exists but the self-energy cor-
rections induced by the coupling with the superconducting leads seem subleading as
compared to the self-energy due to the interaction for large number of particles. Fi-
nally we compare the results of the original four-fermion model with those obtained
considering zero interaction, two-fermions and a generalized q-fermion model.
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1 Introduction

�e Sachdev-Ye-Kitaev (SYK) model, a non-Fermi liquid describing fermions with in�nite-range
interactions, has a�racted a lot of scienti�c interest in recent years [1, 2]. Compared to ordi-
nary Fermi liquids, it displays highly unusual properties; for example, its resistivity is linear in
temperature [3–5]. Moreover, it has been shown that the SYK model is dual to an anti-de Sit-
ter space in two-dimensions [2, 6–8], opening an alternative way for investigating black holes.
Regarding its experimental implementation, several proposals have already been formulated in
solid state physics based on quantum dots coupled to topological superconducting wires [9],
graphene �akes with irregular boundary [10, 11], by applying optical la�ices [12], and in the
�eld of cavity quantum electrodynamics [13].

A lot of theoretical studies have been devoted to study many peculiar properties of the SYK
model, either at equilibrium and out-of equilibrium. Di�erent investigations about many aspects
of this model have been carried out, ranging from the dynamics triggered by a quantum quench
[14], to realizing traversable wormholes [15], or about the Bekenstein-Hawking entropy [16,
17] and the existence of anomalous power laws in the temperature dependent conductance [18,
19]. Several studies have been also conducted investigating the mesoscopic physics by the SYK
model, considering a la�ice of SYK dots [20], analyzing the thermoelectric transport [21] and
the charge transport by coupling with metallic leads [22, 23], characterizing the current and
supercurrent driven by double contact setups [24], looking at the dynamics by coupling with
Markovian reservoirs [25], and thermal baths, detecting some peculiar thermalization properties
[26–29]. Several a�empts have been done also to include superconductivity in the SYK model
[30–33] with the need of upgrading the original complex model to a spin-full version with, in
addition, a mechanism of particle a�raction provided by phonons or by a negative Hubbard term.

Despite this intense scienti�c activity done on the transport properties of the SYK model, one
of the most interesting and yet-li�le studied topic is about the currents driven by superconduct-
ing leads. Non-equilibrium currents triggered by a voltage applied either through normal and
superconducting leads have been investigated [24], however a study of the equilibrium Josephson
current is still laking. �e Josephson e�ect provides a fundamental signature of phase-coherent
transport through mesoscopic sample [34]. We calculate the direct Josephson current obtained
by contacting a SYK dot by two conventional Bardeen-Cooper-Schrie�er (BCS) superconductors.
�e coupling between the dot and the superconductors involves uniformly all the degrees of free-
dom of the dot and encodes either hooping and spin-�ip processes, in the same spirit of what
done linking a topological p-wave superconductor with s-wave superconducting leads [35, 36].
We show that a proximity e�ect is induced in the dot, which causes the tunneling current origi-
nated by a phase-di�erence without applying any voltage, however the self-energy of the dot is
weakly a�ected by the coupling with the superconducting leads in the so-called conformal limit,
namely for large interaction and in the limit of large number of particles. We found that, in this
limit, the Josephson current is suppressed by U , the strength of the interaction, as ln(U )/U and
becomes universal, namely the current gets independent on the superconducting pairing. �is
means that the Josephson current, at zero temperature, and in the conformal limit, is the same
for all BCS-like superconductors. Strikingly this result turns out to be formally the same as that
obtained for a chaotic Josephson junction in the ergodic and long-dwell time regime reported
in Ref. [37]. At �nite temperature T , instead, the dependence on the superconducting gap ∆ is
restored. �e current turns out to be dependent on the ratio between the gap and the temper-
ature and goes as ∆2/T 2 for large temperatures. Moreover we also considered the SYK model
with two fermionic operators, keeping the coupling with the leads the same. In this case the cur-
rent depends on ∆ and is highly non sinusoidal. Finally for a generalized q-fermion SYK model,
the SYKq model, we �nd that, for q > 4 and in the weak coupling regime, the current looses
completely its dependence on the gap.
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2 Model

We study a system composed by a dot, modeled by a complex SYK Hamiltonian Hd , and two-
superconducting leads described by H0. �e hybridization of the dot and the superconducting
reservoirs takes place by the tunneling term HT . �e full Hamiltonian is, therefore,

H = H0 + HT + Hd (1)

where the �rst term

H0 =
∑
p=L,R

*.
,

∑
k,σ

(ϵk − µp )c
†

pσkcpσk +
∑
k

∆pe
iϕpc†p↑kc

†

p↓−k
+/
-
+ h.c . (2)

describes the two BCS-Hamiltonians, contacted to the le� side (p = L) and to the right side
(p = R) of the dot, cLσk , cRσk the annihilation and c†Lσk , c†Rσk creation fermionic operators, ϵk is
the single particle spectrum, µL and µR the chemical potentials, ∆L and ∆R the gaps with phases
ϕL and ϕR , respectively.
�e second term is the tunneling Hamiltonian

HT =
1
√
N

∑
p=L,R

∑
k,σ ,n

tpnσ c
†

pσkdn + h.c . (3)

where tLnσ and tRnσ are the spin-dependent hybridization parameters. �is tunneling Hamil-
tonian encodes either the hopping which allows a fermion to jump into or out of the dot with
same spin projection and the spin-�ip processes at the interface for opposite spin projections, in
the same spirit of Refs. [35], [36], where a topological superconductor made of spinless fermions
is coupled to s-wave BCS superconducting electrodes. �e fermionic operators dn and d†n are
de�ned in the dot. �e last term of Eq. (1) is the following complex SYK Hamiltonian of the dot

Hd =
1

(2N )3/2

N∑
i, j,n,l=1

Ui jnl d
†

i d
†

j dndl − µ
∑
i

d†i di (4)

where N fermions have a disordered all-to-all four-body interaction Ui jnl , Gaussian distributed.

2.1 Tunneling term

Let us �rst consider the leads and the tunneling term. We introduce the following Nambu-Jona-
Lasinio spinors

Ψpk = *
,

cp↑k
c†p↓−k

+
-
, Ψ̄pk =

(
c†p↑k cp↓−k

)
(5)

for the fermions of the leads, and

Dn =

(
dn
d†n

)
, D̄n =

(
d†n dn

)
(6)

for the fermions of the dot. �e Hamiltonian of the leads, H0, in this representation, becomes

H0 =
∑
p k

Ψ̄pk
[
(ϵk − µp )τ3 + ∆p cos(ϕp )τ1 − ∆p sin(ϕp )τ2

]
Ψpk (7)

where τ1,τ2,τ3 are Pauli matrices, and the tunneling Hamiltonian HT reads

HT =
1
√
N

∑
p,k,n

(
Ψ̄pkT̂pnDn + D̄nT̂

†
pnΨpk

)
(8)
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where

T̂pn =

(
tpn↑ 0
0 −t∗pn↓

)
, (9)

Let us take µR = µL = µ, i.e. at equilibrium. De�ning

G−1
kp = iω + ξkτ3 + ∆p cos(ϕp )τ1 − ∆p sin(ϕp )τ2 (10)

where ξk = ϵk − µ, and integrating over Ψ,

e−Sc =

∫
DΨ̄DΨ exp



−

∑
pkω


Ψ̄pkG

−1
pkΨpk +

1
√
N

∑
n

(Ψ̄pkT̂pnDn + D̄nT̂
†
pnΨpk )






(11)

we get the contribution to the action of the dot due to the coupling with the leads

Sc = −
∑
nmω

D̄n (ω)Tnm (ω)Dm (ω) (12)

where, a�er de�ning

Γ̃+pnm =
1
2

(
t∗pn↑tpm↑ + tpn↓t

∗
pm↓

)
(13)

Γ̃−pnm =
1
2

(
t∗pn↑tpm↑ − tpn↓t

∗
pm↓

)
(14)

Γ̃s+pnm =
1
2

(
t∗pn↑t

∗
pm↓ + tpn↓tpm↑

)
(15)

Γ̃s−pnm =
1
2

(
t∗pn↑t

∗
pm↓ − tpn↓tpm↑

)
(16)

the kernel reads

Tnm (ω) =
1
N

∑
kp




iω
(
τ0Γ̃
+
pnm + τ3Γ̃

−
pnm

)
− ξk

(
τ3Γ̃
+
pnm + τ0Γ̃

−
pnm

)
ξ 2
k + ∆

2
p + ω

2

+
∆p cos(ϕp )

(
τ1Γ̃

s+
pnm + iτ2Γ̃

s−
pnm

)
− ∆p sin(ϕp )

(
τ2Γ̃

s+
pnm − iτ1Γ̃

s−
pnm

)
ξ 2
k + ∆

2
p + ω

2




(17)

We can integrate over ξk , and introducing ν0 the density of states at the Fermi energy, equal for
both sides, we get

Tnm (ω) =
1
N

∑
p

πν0√
ω2 + ∆2

p

{
iω

(
τ0Γ̃
+
pnm + τ3Γ̃

−
pnm

)
+ ∆p cos(ϕp )

(
τ1Γ̃

s+
pnm + iτ2Γ̃

s−
pnm

)
−∆p sin(ϕp )

(
τ2Γ̃

s+
pnm − iτ1Γ̃

s−
pnm

)}
(18)

De�ning, in the symmetric case, ϕL = −ϕR = ϕ/2, ∆L = ∆R = ∆, tRnσ = tLnσ = tnσ and

Γ±nm = 2πν0Γ̃
±
Rnm = 2πν0Γ̃

±
Lnm (19)

Γs±nm = 2πν0Γ̃
s±
Rnm = 2πν0Γ̃

s±
Lnm (20)

summing over p = R,L, namely summing the right and le� terms, we get

Tnm (ω) =
1
N

iω
(
τ0Γ
+
nm + τ3Γ

−
nm

)
√
ω2 + ∆2

+
1
N

∆ cos(ϕ/2)
(
τ1Γ

s+
nm + iτ2Γ

s−
nm

)
√
ω2 + ∆2

(21)
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Let us now make the reasonable assumption that tnσ = tmσ = tσ for any n andm, then we de�ne
Γ+nm ≡ Γ0 Jnm , Γ−nm ≡ Γ3 Jnm , Γs+nm ≡ Γ1 Jnm and iΓs−nm ≡ Γ2 Jnm , where J is a N × N unit matrix, a
matrix consisting of all 1s

J =

*.....
,

1 1 . . . 1
1 1 . . . 1
...
...
. . .

...

1 1 . . . 1

+/////
-

Speci�cally

Γ0 = πν0 ( |t↑ |
2 + |t↓ |

2) , Γ3 = πν0 ( |t↑ |
2 − |t↓ |

2) , Γ1 = 2πν0 Re[t↑t↓] , Γ2 = 2πν0 Im[t↑t↓] . (22)

For real values of tpnσ we have Γ2 = 0. We can write, therefore,

T (ω) =
1
N

(
iωΓ0

√
ω2 + ∆2

τ0 +
iωΓ3

√
ω2 + ∆2

τ3 +
Γ1∆ cos(ϕ/2)
√
ω2 + ∆2

τ1 +
Γ2∆ cos(ϕ/2)
√
ω2 + ∆2

τ2

)
(23)

such that
Tnm (ω) = T (ω) Jnm . (24)

Strictly, in order to take into account that the anomalous terms (proportional to τ1 and τ2) cannot
have diagonal elements in the mode space which actually give zeros contributions in the action
Eq. (12), we can use the following form

T ′nm (ω) = Tnm (ω) −
1
N

(
Γ1∆ cos(ϕ/2)
√
ω2 + ∆2

τ1 +
Γ2∆ cos(ϕ/2)
√
ω2 + ∆2

τ2

)
δnm (25)

Actually either Eq. (24) and Eq. (25) give the same action Eq. (12), while by using Eq. (25) instead
of Eq. (24) one gets subleading irrelevant terms for the current in the large N limit (as shown in
Appendix A), therefore, at leading orders, these expressions are equivalent.

Finally, let us discuss the role of the random �uctuations in the tunneling matrix. Let us
suppose that tnσ are independent random variables whose distribution has σσ as standard devi-
ation, then we can de�ne tσ ≡ 1

N
∑

n tnσ , the average value, which is still a random variable with
standard deviation of the mean σ̄σ = 1√

N
σσ . As a result the hybridization matrices �uctuate sta-

tistically as Γs,nm ' Γs Jnm +
δ Γnm√

N
with some random variables δΓnm with zero average. Random

�uctuations in the tunneling, therefore, can be neglected for large N , which is the limit we are
interested in and where SYK models can be treated analytically. Actually the terms of order 1/N
for uniform matrices are marginally relevant which leads to �nite contributions also for N → ∞,
while higher order terms are subleading and vanish upon increasing N .
One can take somehow random �uctuations into account a�er de�ning the random distributions
Pσ (tσ ) and ge�ing the distributions for the transmission parameters as ρs (Γ) =

∫
dt↑dt↓δ (Γ −

Γs (t↑, t↓))P↑(t↑)P↓(t↓), where Γs (t↑, t↓) are de�ned above Eq. (23). In this way one can easily in-
corporate the randomness from the couplings between the dot and the leads, by integrating the
observables (i.e. the Josephson current) over the Γs with weights ρs , as done in Ref. [38]. Since
we are going to consider N � 1, we can neglect the e�ects of these random �uctuations. At
�nite N instead, those e�ects should be taken into account, on the same footing of other sources
of �nite N corrections.

3 SYK4 Dot

�e Hamiltonian of the dot is given by Eq. (4), where Ui jnl are complex, independent Gaussian
random couplings with zero mean obeying Ui jnl = −Ujinl = Ui jln , Ui jnl = U

∗
nli j and mean value
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|Ui jnl |
2 = U 2. Introducing r replicas, a = 1, ... , r , labeling the �eld as dna , we can average over

disorder so that the action of the uncoupled dot can be wri�en as follows

S ′d =
∑
n,a

∫ β

0
dτ d†na (τ ) (∂τ − µ ) dna (τ ) −

U 2

4N 3

∑
a,b

∫ β

0
dτdτ ′

������

∑
n

d†na (τ )dnb (τ
′)

������

4

+ Sc (26)

3.1 E�ective action

We can decouple the interaction, in di�erent channels, introducing a number of auxiliary �elds,
e−S

′
d =

∫
D{Q0P0QPP Q∆∆}e−Sd , ge�ing

Sd =
∑
na

∫ β

0
dτ d†na (τ ) (∂τ − µ ) dna (τ ) +

∑
ab

∫ β

0
dτdτ ′

[ N

4c0U 2 [Q0
ab (τ ,τ

′)]2 +
N 3

4c1U 2 |Q
P
ab (τ ,τ

′) |2

+
N 3

4c2U 2 [Q∆
ab (τ ,τ

′)]2 +
N

2
Q0
ab (τ ,τ

′) |Pab0 (τ ,τ ′) |2 −Q0
ab (τ ,τ

′)Pab0 (τ ,τ ′)
∑
n

d†na (τ )dnb (τ
′)

+
1
4
QP
ab (τ ,τ

′)
∑
nm

Pabnm (τ ,τ ′)Pabmn (τ ,τ
′) −

1
2
QP
ab (τ ,τ

′)
∑
nm

d†na (τ )P
ab
nm (τ ,τ ′)dmb (τ

′)

−
1
2
QP
ab (τ ,τ

′)
∑
nm

d†ma (τ )P
ab
mn (τ ,τ

′)dnb (τ
′) +

1
2
Q∆
ab (τ ,τ

′)
∑
nm

|∆ab
nm (τ ,τ ′) |2 (27)

−
1
2
Q∆
ab (τ ,τ

′)
∑
nm

d†na (τ )∆
ab
nm (τ ,τ ′)d†mb (τ

′) −
1
2
Q∆
ab (τ ,τ

′)
∑
nm

dma (τ )∆
ab∗
nm (τ ,τ ′)dnb (τ

′)
]
+ Sc

where the weights c0, c1, c2 are arbitrary positive real numbers such that c0 + c1 + c2 = 1. �e
auxiliary �elds are such thatQ∆

ab (τ ,τ
′) is real, ∆ab

nm (τ ,τ ′) is complex and ∆ab
nm (τ ,τ ′) = ∆ab

mn (τ ,τ
′),

while QP
ab (τ ,τ

′) is complex and QP
ab (τ ,τ

′) = QP∗
ba (τ

′,τ ) and Pabnm (τ ,τ ′) = Pabmn (τ ,τ
′) can be taken

real (it can be complex but only the real part ma�ers), while Q0
ab (τ ,τ

′) = Q0
ba (τ

′,τ ) is real and
Pab0 (τ ,τ ′) = Pba∗0 (τ ′,τ ) complex. Using the representation in Eq. (6), with replica indices, namely

D̄a
n =

(
d†na dna

)
and Db

m =

(
dmb

d†mb

)
, we can write

Sd =
1
2

∑
nmab

∫ β

0
dτdτ ′

{
D̄a
n (τ )

[
δτ τ ′δabδnm (τ0∂τ − τ3µ ) −

1
2
Q0
ab (τ ,τ

′)δnm
(
Pab0 (τ ,τ ′) (τ3 + τ0)

+Pab∗0 (τ ,τ ′) (τ3 − τ0)
)
−

1
2

(
QP
ab (τ ,τ

′)Pabnm (τ ,τ ′) (τ3 + τ0) +Q
P
ba (τ

′,τ )Pbanm (τ ′,τ ) (τ3 − τ0)
)

−
1
2
Q∆
ab (τ ,τ

′)
(
∆ab
nm (τ ,τ ′) (τ1 + iτ2) +∆

ab∗
nm (τ ,τ ′) (τ1 − iτ2)

) ]
Db
m (τ ′)

}
+

∑
ab

∫ β

0
dτdτ ′

[ N

4U 2

( 1
c0

[Q0
ab (τ ,τ

′)]2 +
N 2

c1
|QP

ab (τ ,τ
′) |2 +

N 2

c2
[Q∆

ab (τ ,τ
′)]2

)
(28)

+
N

2
Q0
ab (τ ,τ

′) |Pab0 (τ ,τ ′) |2 +
1
4
QP
ab (τ ,τ

′)
∑
nm

(Pabnm (τ ,τ ′))2 +
1
2
Q∆
ab (τ ,τ

′)
∑
nm

|∆ab
nm (τ ,τ ′) |2

]
+ Sc

We have to remind that the terms Pnm and ∆nm , should be �nite only for n , m. Let us now
calculate the main contributions to the partition function, deriving the saddle point equations.

6



SciPost Physics Submission

3.2 Saddle point equations

Imposing δSd = 0 under varying the auxiliary �elds we derive the following saddle point equa-
tions

Pab0 (τ ,τ ′) = −
1

2N

∑
n

Tr
(
〈Db

n (τ
′)D̄a

n (τ )〉(τ3 − τ0)
)

(29)

Pba0 (τ ′,τ ) = −
1

2N

∑
n

Tr
(
〈Db

n (τ
′)D̄a

n (τ )〉(τ3 + τ0)
)

(30)

Pabnm (τ ,τ ′) = −
1
2

Tr
(
〈Db

m (τ ′)D̄a
n (τ )〉(τ3 + τ0)

)
(31)

Pbamn (τ
′,τ ) = −

1
2

Tr
(
〈Db

m (τ ′)D̄a
n (τ )〉(τ3 − τ0)

)
(32)

∆ab
nm (τ ,τ ′) = −

1
2

Tr
(
〈Db

m (τ ′)D̄a
n (τ )〉(τ1 − iτ2)

)
(33)

∆ab∗
nm (τ ,τ ′) = −

1
2

Tr
(
〈Db

m (τ ′)D̄a
n (τ )〉(τ1 + iτ2)

)
(34)

Q0
ab (τ ,τ

′) = −c0U
2
{
|Pba0 (τ ′,τ ) |2 +

1
2N

∑
n

Tr
[
〈Db

n (τ
′)D̄a

n (τ )〉
(
(τ3 + τ0)P

ab
0 (τ ,τ ′)

+ (τ3 − τ0)P
ab∗
0 (τ ,τ ′)

)]}
= c0U

2 |Pba0 (τ ′,τ ) |2 (35)

QP
ab (τ ,τ

′) = −
c1U

2

N 3

{∑
nm

(Pbanm (τ ′,τ ))2 +
∑
nm

Tr
(
〈Db

m (τ ′)D̄a
n (τ )〉(τ3 − τ0)

)
Pbanm (τ ′,τ )

}
=
c1U

2

N 3

∑
nm

(Pbanm (τ ′,τ ))2 (36)

QP
ba (τ

′,τ ) = −
c1U

2

N 3

{∑
nm

(Pabnm (τ ,τ ′))2 +
∑
nm

Tr
(
〈Db

m (τ ′)D̄a
n (τ )〉(τ3 + τ0)

)
Pabnm (τ ,τ ′)

}
=
c1U

2

N 3

∑
nm

(Pabnm (τ ,τ ′))2 (37)

Q∆
ab (τ ,τ

′) = −
c2U

2

N 3

{∑
nm

|∆ba
nm (τ ′,τ ) |2 +

1
2

∑
nm

Tr
[
〈Db

m (τ ′)D̄a
n (τ )〉

(
(τ1 + iτ2)∆

ab
nm (τ ,τ ′)

+ (τ1 − iτ2)∆
ab∗
nm (τ ,τ ′)

)]}
=
c2U

2

N 3

∑
nm

|∆ba
nm (τ ′,τ ) |2 (38)

We restrict our a�ention to replica diagonal solutions, Pab0 (τ ,τ ′) = δabG0 (τ ,τ
′), Pabnm (τ ,τ ′) =

δabGnm (τ ,τ ′) and ∆ab
nm (τ ,τ ′) = δabFnm (τ ,τ ′) = δabF

∗
nm (τ ′ − τ ). We de�ne

Gnm (τ ,τ ′) =

(
−G0 (τ

′,τ )δnm +Gnm (τ ,τ ′) F ∗nm (τ ,τ ′)
Fnm (τ ,τ ′) G0 (τ ,τ

′)δnm −Gmn (τ
′,τ )

)
(39)

and the self-energies

Σ(τ ,τ ′) = −

(
Q0 (τ ,τ ′)G0 (τ ,τ

′) 0
0 −Q0 (τ ′,τ )G0 (τ

′,τ )

)
(40)

7
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Lnm (τ ,τ ′) = −

(
QP (τ ,τ ′)Gnm (τ ,τ ′) 0

0 −QP (τ ′,τ )Gmn (τ
′,τ )

)
(41)

Anm (τ ,τ ′) = −

(
0 Q∆ (τ ,τ ′)Fnm (τ ,τ ′)

Q∆ (τ ,τ ′)F ∗nm (τ ,τ ′) 0

)
(42)

We can de�ne

G0 (τ ,τ
′) =

(
−G0 (τ

′,τ ) 0
0 G0 (τ ,τ

′)

)
, (43)

Gnm (τ ,τ ′) =

(
Gnm (τ ,τ ′) 0

0 −Gmn (τ
′,τ )

)
, (44)

Fnm (τ ,τ ′) =

(
0 F ∗nm (τ ,τ ′)

Fnm (τ ,τ ′) 0

)
(45)

At the saddle point, from Eqs. (29)-(34), we have

Gnm (τ ,τ ′) = G0 (τ ,τ
′)δnm + Gnm (τ ,τ ′) + Fnm (τ ,τ ′) = −〈Dm (τ ′)D̄n (τ )〉 (46)

which depends on the time di�erence τ̄ = τ ′ − τ ∈ [−β, β], namely Gnm (τ ,τ ′) = Gnm (τ̄ ).
In Fourier space the full matrix Ĝ(τ̄ ) in spinorial and in the multimodal spaces, including the
tunneling contribution T̂ (ω) = T (ω) J , reads

Ĝ(ω) =
[(
iωτ0 + µτ3 − Σ(ω)

)
Î + T̂ (ω) −

(
L̂(ω) + Â(ω)

) ]−1
(47)

where, from Eqs. (35)-(38), the self-energies Σ(ω), L̂(ω) and Â(ω) are the Fourier transforms of

Σ(τ̄ ) = c0U
2G0 (τ̄ )

2G0 (−τ̄ ) = −c0U
2
(
G0 (τ̄ )

2G0 (−τ̄ ) 0
0 −G0 (−τ̄ )

2G0 (τ̄ )

)
(48)

and of L̂(τ̄ ) and Â(τ̄ ), whose elements are

Lnm (τ̄ ) = −
c1U

2

N 3

∑
kl

Gkl (−τ̄ )
2Gnm (τ̄ ) = −

c1U
2

N 3

∑
kl

(
Gkl (−τ̄ )

2Gnm (τ̄ ) 0
0 −Gkl (τ̄ )

2Gmn (−τ̄ )

)
(49)

Anm (τ̄ ) = −
c2U

2

N 3

∑
kl

Fkl (τ̄ )
2Fnm (τ̄ ) = −

c2U
2

N 3

∑
kl

(
0 |Fkl (τ̄ ) |

2 Fnm (τ̄ )
|Fkl (τ̄ ) |

2 F ∗nm (τ̄ ) 0

)
(50)

One has to solve self-consistently Eqs. (47)-(50), �xing then c0, c1, c2, with constraint c0+c1+c2 =

1, by minimizing the action at the saddle point. However what we found is that, if Gnm and
Fmn ∼ 1/N δ with δ > 0, the self-energies L̂ and Â can be neglected in the large N limit. As we
will see in Section 4.3, this seems to be the case.

4 Josephson current

As shown in the previous section, the self energies induced by he coupling can be neglected in
the large N limit. In such approximation the Green’s function of the dot can be wri�en as

G−1
nm = G

−1
0 δnm + T Jnm (51)

8
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where G0 is the Green’s function of the uncoupled dot, solution of the equations

G−1
0 (ω) = iωτ0 + µτ3 − Σ(ω) (52)

Σ(τ ) = U 2G0 (τ )
2G0 (−τ ) (53)

Actually if we include T or T ′ in Eq. (52) we have just subleading corrections of order O (1/N )
in the diagonal self-energy Σ(ω), which can be neglected. Let us write the self-energy in the
following form

Σ(ω) = Σ0 (ω)τ0 + Σ3 (ω)τ3 (54)
so that we can write

G−1
0 (ω) = G̃−1

0 (ω)τ0 + G̃
−1
3 (ω)τ3 ≡

(
iω − Σ0 (ω)

)
τ0 +

(
µ − Σ3 (ω)

)
τ3 (55)

Actually, from Eq. (43), de�ning

G0 (ω) =
1
2

∫
dτ eiωτ

(
G0 (τ ) −G0 (−τ )

)
, G3 (ω) =

1
2

∫
dτ eiωτ

(
G0 (τ ) +G0 (−τ )

)
(56)

we have that

G̃−1
0 (ω) =

G0 (ω)

G0 (ω)2 −G3 (ω)2
, G̃−1

3 (ω) =
G3 (ω)

G3 (ω)2 −G0 (ω)2
(57)

�e Josephson current can be obtain from the phase derivative of the free energy

I = −
1
β
∂ϕ

∑
ω

ln
(
det[G−1 (ω)]

)
(58)

where β = 1/T is the inverse of the temperature and the determinant of G−1 (ω), from Eq. (73),
is given by

det[G−1] =
(
det[G−1

0 ]
)N (

1 + N Tr[T G0] + N 2 det[T ]
det[G−1

0 ]

)
(59)

from which, using det[G−1
0 ] = (G̃−1

0 )2 − (G̃−1
3 )2, we get the following expression

det[G−1] =
(
det[G−1

0 ]
)N−1

(60)

×



(
G̃−1

0 (ω) +
iω Γ0
√
ω2 + ∆2

)2
−

(Γ2
1 + Γ2

2 ) ∆
2 cos2 (ϕ/2)

ω2 + ∆2 −

(
G̃−1

3 (ω) −
iω Γ3
√
ω2 + ∆2

)2
.

We observe that, since
Γ2 ≡ Γ2

1 + Γ2
2 = 4π 2ν2

0
��t↑t↓��2 (61)

the coupling is �nite for �nite values of both t↑ and t↓, namely there should be �nite values
of both spin projections, therefore also spin-�ip processes in the presence of strongly polarized
fermions in the dot, in order to have a non-vanishing Josephson current.
From Eq. (58) we �nally obtain the Josephson current

I =
sin(ϕ)
β

∑
ω

Γ2∆2

Γ2∆2 cos2 (ϕ/2) −
(
G̃−1

0 (ω)
√
ω2 + ∆2 + iωΓ0

)2
+

(
G̃−1

3 (ω)
√
ω2 + ∆2 − iωΓ3

)2 (62)

By numerically solving of Eqs. (52), (53), using Eqs. (54), (55), one gets the Josephson current for
the SYK dot from Eq. (62). As a remark we point out that, using Eq. (25) instead of Eq. (24), we
get the same expression for the current with subleading terms of order O (1/N ) (see Appendix
A). �e same observation is valid if we want to improve the bare SYK solution including 1/N
corrections. Actually If we include those corrections in the bare Green’s function, the phase
independent part of the free energy acquires a term of order O (1) but does not contribute to the
Josephson current since it is phase independent, while the phase dependent part, which is O (1),
and therefore, the Josephson current, acquires trivially a term O (1/N ), which is subleading and
vanishes for large N . As a result, the Josephson current remains the same in the large N limit.

9
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4.1 Large interaction limit at zero temperature

In the so-called conformal limit, namely for very largeU , i.e. for |ω | � U , the analytical solution
of Eqs. (52) and (53), obtained for Σ3 (0) = µ, implying G3 (0) = 0 and G̃0 = G0, and for T → 0, is
given by [1, 5, 16]

G−1
0 (ω) = iC sgn(ω) |ω |1/2 (63)

with C = (U 2/π )1/4, solution of the equations G−1
0 (ω) = −Σ0 (ω) and Σ0 (τ ) = −U

2G0 (τ )
2G0 (−τ ).

�e Josephson current, Eq. (62), for T → 0, in the continuum, becomes

I =
Γ2∆2

π
sin(ϕ)

∫ ∞

0

dω

Γ2∆2 cos2 (ϕ/2) +
(
C
√
ω (ω2 + ∆2) + ωΓ0

)2
− ω2Γ2

3

(64)

�e termω2Γ2
3 does not lead to any singularity since Γ2

0 −Γ
2
3 = 4π 2ν2

0
��t↑t↓��2 which is exactly equal

to Γ2, Eq. (61), and is positive de�ned. �is equation, for U � Γ, can be well approximated by

I '
Γ2

π
sin(ϕ)

∫ ∆

0

dω

Γ2 cos2 (ϕ/2) +C2ω
(65)

ge�ing the following analytical result

I '
Γ2

πC2 sin(ϕ) ln
(
1 +

C2∆

Γ2 cos2 (ϕ/2)

)
(66)

For U∆ � Γ2, the current I drops the dependence on ∆, except for logarithmic corrections,

I '
1
√
π

Γ2

U
sin(ϕ) ln

(
U∆

√
π Γ2 cos2 (ϕ/2)

)
(67)

namely, we get a universal behavior, I ∼ ln(Ũ )/Ũ , with Ũ = U /Γ2, that is valid for all BCS-like
superconductors. �ite interestingly a very similar result for the Josephson current reported in
Eq. (67), had been obtained for a disordered Josephson junction in the so-called ergodic regime
with long dwell time, namely when the ergotic time is small compare to ∆−1 and the �ouless
energy scale ET is such that ET � ∆ [37]. In our case Γ2/U plays the role of ET , or alternatively
U /Γ2 the role of the dwell time, so that a large interactionU corresponds to a large di�usion time
in the dot. We remind that, contrary to the case reported in Ref. [37], where the dot is a cavity
weakly linked to the superconducting leads and the coupling with the leads involves few modes
of the dot, in the present paper we considered a dot fully contacted to the leads, namely all the
modes contribute to the coupling. �e long dwell time in Ref. [37] is due to the di�usion of the
particles in the cavity while, in our case, it is due to strong correlations which produces such a
sort of self-trapping phenomenon. Moreover the anomalous self-energy plays a crucial role in
Ref. [37], while in our case this term is negligible for large N because of the uniform coupling.

4.1.1 Perturbative analysis

Before we proceed, let us reconsider the previous case by expanding the free energy for small
tunneling parameters Γα , with α = 0, 1, 2, 3. From Eq. (59), expanding in terms of Γα , we have

ln
(
det[G−1]

)
= N ln

(
det[G−1

0 ]
)
+ ln

(
1 + N Tr[T G0] + N 2 det[T ]

det[G−1
0 ]

)
(68)

= N ln
(
det[G−1

0 ]
)
+ N Tr[T G0] + N 2 det[T ]

det[G−1
0 ]
−

1
2
N 2 (Tr[T G0])2 + o(Γ2

α )

10
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where T is given by Eq. (23) and the bare Green’s function is simply G0 = G0τ0, as before. As a
result we have

ln
(
det[G−1]

)
= −2NTr ln(G0) +

2iG0ωΓ0
√
ω2 + ∆2

+
G2

0
ω2 + ∆2

[
(Γ2

0 + Γ2
3 )ω

2 − Γ2∆2 cos2 (ϕ/2)
]
+ o(Γ2

α ) (69)

where Γ2 is given by Eq. (61). �e Josephson current, Eq. (58), at the leading order in the tunneling
parameters, then, reads

I = −
Γ2∆2

β
sin(ϕ)

∑
ω

G0 (ω)
2

ω2 + ∆2 + o(Γ
2
α ) (70)

which can be obtained also expanding Eq. (62). At zero temperature, in the continuum, and in
the conformal limit, using Eq. (63), we have

I '
Γ2∆2
√
πU

sin(ϕ)
∫ ∞

λ

dω

ω (ω2 + ∆2)
'

Γ2
√
πU

sin(ϕ) ln
(∆
λ

)
(71)

where we introduced a positive infrared cut-o� λ to guarantee the convergence of the integral.
�ite interestingly Eq. (71) has the same form of Eq. (67), with λ ∝ Γ2/U . Actually, from �rst
principles, λ has to be a function of the the prefactor Γ2/U and viceversa, in such a way that when
λ → 0 also Γ2/U → 0, ge�ing a vanishing current. Conversely, if λ and Γ2/U were independent,
there would be a possibility to reduce λ ge�ing absurdly an arbitrary large current at �xed, even
weak, tunneling parameter or strong interaction. �is dependence agrees with the fact that the
tunneling and the spectral properties are related.

What we learned is that the leading order in the tunneling parameters is enough to catch
the logarithmic form of the Josephson current in our system, also because the strong interaction
limit is equivalent to the weak tunneling regime, U � Γ, validating the perturbative expansion.

4.1.2 Random phases

Let us now introduce phase �uctuations in the tunneling amplitudes, relaxing the uniform form
for the tunneling matrix Tnm . We will consider

tnσ = |tσ | e
iθσn (72)

where σ =↑,↓ and θσn can be a random angle depending on the orbital index of the SYK dot. Let
us now redo the expansion for the free energy in the presence of a more general matrix Tnm . Let
us write

G−1 = G−1
0 I + T̂ (73)

with T̂ a matrix whose elements are Tnm reported in Eq. (21), where, now, from Eqs. (13)-(16),
(19), (20), and (72),

Γ+nm =
1
2

(
Γ↑e−i (θ

↑
n−θ

↑
m ) + Γ↓ei (θ

↓
n−θ

↓
m )

)
(74)

Γ−nm =
1
2

(
Γ↑e−i (θ

↑
n−θ

↑
m ) − Γ↓ei (θ

↓
n−θ

↓
m )

)
(75)

Γs+nm =
Γ

2

(
e−i (θ

↑
n+θ

↓
m ) + ei (θ

↓
n+θ

↑
m )

)
(76)

Γs−nm =
Γ

2

(
e−i (θ

↑
n+θ

↓
m ) − ei (θ

↓
n+θ

↑
m )

)
(77)

with
Γ↑ = 2πν0 ��t↑��2 , Γ↓ = 2πν0 ��t↓��2 , Γ = 2πν0 ��t↑t↓�� . (78)

11
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�e free energy, apart from -β−1, then reads

ln
(
det[G−1]

)
= N ln

(
det[G−1

0 ]
)
+ Tr ln

(
I + G0T̂

)
(79)

Expanding Eq. (79) in terms of the tunneling matrix, we obtain

ln
(
det[G−1]

)
= −2NTr ln(G0) +

∑
n

Tr (G0Tnn ) −
1
2

∑
nm

Tr (G0TnmG0Tmn ) + o(T
2) (80)

Let us consider the terms separately. �e �rst order term is given by∑
n

Tr (G0Tnn ) =
iG0ω
√
ω2 + ∆2

(Γ↑ + Γ↓) =
2iG0ω Γ0
√
ω2 + ∆2

(81)

which is exactly the same as that appearing in Eq. (69), since Γ0 = (Γ↑ + Γ↓)/2, from Eq. (22).
�e second order term is the one relevant for the Josephson current

−
1
2

∑
nm

Tr (G0TnmG0Tmn ) =
1
N 2

G2
0

ω2 + ∆2

∑
nm

[
ω2 (

Γ+nmΓ+mn + Γ−nmΓ−mn
)

−∆2 cos2 (ϕ/2)
(
Γs+nmΓs+mn − Γs−nmΓs−mn

)]
(82)

From Eqs. (74)-(77) we have

Γ±nmΓ±mn =
1
4

[
Γ↑2 + Γ↓2 ± 2Γ↑Γ↓ cos(θ ↑m − θ

↑
n + θ

↓
m − θ

↓
n )

]
(83)

Γs±nmΓs±mn =
Γ2

2
[
cos(θ ↑m + θ

↑
n + θ

↓
m + θ

↓
n ) ± 1

]
(84)

therefore, intriguingly, in the combinations entering Eq. (82)

Γ+nmΓ+mn + Γ−nmΓ−mn =
1
2

(
Γ↑2 + Γ↓2

)
= Γ2

0 + Γ2
3 (85)

Γs+nmΓs+mn − Γs−nmΓs−mn = Γ2 (86)

the phase dependence cancels out completely. As a result the second order term simpli�es as
follows

−
1
2

∑
nm

Tr (G0TnmG0Tmn ) =
G2

0
ω2 + ∆2

[(
Γ2

0 + Γ2
3
)
ω2 − Γ2∆2 cos2 (ϕ/2)

]
(87)

which is the same term appearing in Eq. (69), therefore, the Josephson current is also exactly the
same as that reported in Eq. (71). In conclusion, replacing Eqs. (81) and (87) in Eq. (80) we get the
same free energy obtained for a uniform phase, Eq. (69), and, then, the same current.

We proved, therefore, that, at least up to second order in the tunneling parameters, the ran-
dom phases in the tunneling amplitudes do not play any role. At the same time we showed
that the second order term is enough to derive the logarithmic form of the Josephson current,
therefore the result in Eq. (71) is robust against random phase �uctuations.

4.2 Finite temperature

At �nite temperature, the analytical solution Eq. (63) becomes [1, 5, 16]

G−1
0 (ω) = iC

√
2πT eiθ

Γ(3/4 + ω/2πT + iϵ )
Γ(1/4 + ω/2πT + iϵ )

(88)

12
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where Γ(x ) is the Gamma function, C = (U 2 cos(2θ )/π )1/4, while θ and ϵ are linked by e2πϵ =

sin(π/4 + θ )/ sin(π/4 − θ ), and G0 (τ = 0−) = 1/2 − θ/π − sin(2θ )/4. Let us �x the density of
particles at half-�lling, θ = 0, ϵ = 0. De�ning

дω = i ΓG0 (ω) (89)

from Eq. (62), in the case UT � Γ2, the Josephson current becomes

I '
∆2

β
sin(ϕ)

∑
ω

д2
ω

ω2 + д2
ω∆2 cos2 (ϕ/2) + ∆2 (90)

�e Green’s function G0 (ω) is cut-o�ed by 1/
√
T at low frequency. We approximate, therefore,

дω ≈ д0 in Eq. (90) and, a�er summing over the Matsubara frequencies, we get

I '
∆

2α
sin(ϕ) д2

0

tanh
(
β
2 ∆

√
1 + д2

0 cos2 (ϕ/2)
)

√
1 + д2

0 cos2 (ϕ/2)
(91)

which is a function of the temperature T = 1/β , and of the interaction U since д0 = rΓ/
√
UT ,

with r a numerical coe�cient, r = Γ(1/4)/(
√

2π 1/4Γ(3/4)). We �nd numerically that Eq. (90) is
be�er approximated by the same expression where дω is replaced by д0 if we include an overall
factor α ≈ 5.6. Since д2

0 � 1, calling c = r 2/(2α ) the numerical coe�cient, we have

I ' c
Γ2∆

UT
sin(ϕ) tanh

( ∆
2T

)
(92)

therefore, for large temperature, T � ∆, it reads

I '
c

2
Γ2∆2

U T 2 sin(ϕ) (93)

namely, approaching the superconductive critical temperature Tc , it vanishes as ∆2

T 2 ∝
Tc (Tc−T )

T 2 .
On the contrary, in the intermediate regime with small enough temperatures, speci�cally for
∆ � T � Γ2/U , we can approximate the hyperbolic tangent by one, ge�ing a 1/T decay

I '
∆

2α
sin(ϕ)

д2
0√

1 + д2
0 cos2 (ϕ/2)

' c
Γ2∆

U T
sin(ϕ) (94)

For UT � Γ2 (д0 � 1), instead, we have to distinguish two regions in frequency space, with
|ω | < ΛT and |ω | > ΛT , where ΛT ∼ T is an energy cut-o� below which дω ∼ д0 while above
дω ∼ C−1sgn(ω) |ω |−1/2, as for the zero temperature limit. We have, therefore, the following
expression

I '
1
β

sin(ϕ)



∑
|ω |<ΛT

∆2

ω2 + ∆2 cos2 (ϕ/2) + д−2
0 ∆2 +

∑
∆> |ω |>ΛT

Γ2

Γ2 cos2 (ϕ/2) + д−2
ω




(95)

Since T � 1 we can use the integrals, 1
β
∑
ω →

∫
dω
2π , ge�ing

I '
∆

π
sin(ϕ) д0

arctan
(

д0ΛT√
1+д2

0 cos2 (ϕ/2)

)
√

1 + д2
0 cos2 (ϕ/2)

+
Γ2

πC2 sin(ϕ) ln
(
Γ2 cos2 (ϕ/2) +C2∆

Γ2 cos2 (ϕ/2) +C2ΛT

)
. (96)

13



SciPost Physics Submission

4.3 Proximity e�ect

Let us discuss, now, how the dot is a�ected by the presence of the superconducting leads and
check whether we can neglect the self-energy corrections in the large N limit. We will focus in
particular on the hybridization of the dot due to the superconducting pairing, considering the
following tunneling matrix, neglecting, for simplicity, the term proportional to τ0,

T̂ (ω) '
1
N
T1 (ω) τ1 J ≡

Γ∆ cos(ϕ/2)
N
√
ω2 + ∆2

τ1 J (97)

We make the following ansatz for the anomalous contribution to the self-energy: Aτ1 J . �e
Green’s function, then, reads

G−1
nm ' G

−1
0 τ0 δnm +

( 1
N
T1 (ω) −A

)
τ1 Jnm (98)

From Eq. (33), we have the following e�ective equal-time pairing between two generic modes
n ,m

F ≡ Fnm (τ ,τ ) =
1
β

∑
ω

Tr
(
G (ω)τ1

)
nm

(99)

and, therefore, from Eq. (50), we will have, consistently,

A = −
U 2F 3

N
(100)

At low temperature the sum in Eq. (99) becomes an integral, which reads

F =

∫ Λ

−Λ

dω

2π
T1 (ω)/N −A

N 2 (T1 (ω)/N −A)2 −G
−2
0

(101)

and, using Eqs. (63), (97) and (100),

F =
1
N

∫ Λ

−Λ

dω

2π
Γ∆ cos(ϕ/2)

√
ω2 + ∆2 +U 2F 3 (ω2 + ∆2)(

Γ∆ cos(ϕ/2) +U 2F 3
√
ω2 + ∆2

)2
+C2 |ω |(ω2 + ∆2)

(102)

where we introduced a cut-o� since ω � U for the expression of G0 to be valid, therefore we
can take Λ ∼ U .
For large U and for large but still �nite N such that U 2F 3 � Γ, we can approximate Eq. (126)
ge�ing

F '
1
N

∫ Λ

0

dω

π

U 2F 3

(U 4F 6 +C2ω)
=

U 2F 3

πNC2 ln
(
1 +

C2Λ

U 4F 6

)
(103)

which has to be solved in terms of F . For U 4F 6 � C2Λ ∼ U 2, we get, for F and A, the following
results

F ≈
( Λ

NπU 2

)1/4
, A ≈ −

U 2/3

N

( Λ

Nπ

)3/4
(104)

We found that the pairing is super-extensive, meaning that a single particle in the dot is paired
with all the other particles in such a way that NF is not O (1) but O (N 3/4).
We expect thatU 2F 3 becomes irrelevant upon further increasing N , therefore Eq. (126) becomes

F =
1
N

∫ ∞

−∞

dω

2π
Γ∆ cos(ϕ/2)

√
ω2 + ∆2

Γ2∆2 cos2 (ϕ/2) +C2 |ω |(ω2 + ∆2)
(105)

which can be approximated by

F '
Γ∆2

Nπ
cos(ϕ/2)

∫ Λ

0

dω

Γ2∆2 cos2 (ϕ/2) +C2∆2ω
'

1
N

Γ

πC2 cos(ϕ/2) ln
(
1 +

C2Λ

Γ2 cos2 (ϕ/2)

)
(106)
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where now Λ ∼ max(∆, Γ cos(ϕ/2)). �erefore we have

F ∼
1
N

Γ

U
cos(ϕ/2) ln

(
U

Γ cos2 (ϕ/2)

)
, A = −

U 2F 3

N
∼ −

(
Γ ln(U )

)3

UN 4 (107)

�is result implies that, even if the pairing is a uniform matrix whose elements are ∝ 1
N , the

corresponding self-energy decays much faster upon increasing N , validating the approach used
for calculating the Josephson current.

5 Other cases

Let us consider a couple of di�erent situations in order to compare the results with those obtained
for the SYK model. �e �rst case is just the non-interacting dot with N modes. �e second one
is the bilinear version of the SYK model, also called SYK2 (the original model is also called SYK4),
that is a non-interacting all-to all random hopping model.

5.1 Zero interaction

For U = 0 we have Σ = 0, therefore G̃−1
0 = iω and G̃−1

3 = µ, therefore the Josephson current,
Eq. (62), becomes

I =
Γ2∆2

β
sin(ϕ)

∑
ω

1

Γ2∆2 cos2 (ϕ/2) +
(
ω
√
ω2 + ∆2 + ωΓ0

)2
+

(
µ
√
ω2 + ∆2 − iωΓ3

)2 (108)

For Γ0 � ∆, using Γ2
0 − Γ2

3 = Γ2, and approximating Eq. (108) as follows

I '
Γ2∆2

β
sin(ϕ)

∑
ω

1
Γ2∆2 cos2 (ϕ/2) + µ2∆2 + ω2 (Γ2 + µ2) − 2iωµΓ3∆

(109)

we can sum over the Matsubara frequencies by complex analysis. Introducing the transmission
coe�cient, to ranging from 0 to 1,

to =
Γ2

Γ2 + µ2 (110)

we get the following analytical form

I '
∆

2
sin(ϕ)

to sinh
(
β∆

√
1 − to sin2 (ϕ/2) + to (1 − to )Γ2

3 /Γ
2
)

cosh
(
β∆

√
1 − to sin2 (ϕ/2) + to (1 − to )Γ2

3 /Γ
2
)
+ cosh

(
β∆

√
to (1 − to )Γ3/Γ

)
×

1√
1 − to sin2 (ϕ/2) + to (1 − to )Γ2

3 /Γ
2

(111)

For Γ3 = 0, namely for ��t↑�� = ��t↓��, Eq. (111) reduces to the same result of a spinfull single level dot

I '
∆

2
sin(ϕ)

to tanh
(
β
2 ∆

√
1 − to sin2 (ϕ/2)

)
√

1 − to sin2 (ϕ/2)
(112)

For T → 0, Eq. (111) becomes simply

I '
∆

2
sin(ϕ)

to√
1 − to sin2 (ϕ/2) + to (1 − to )Γ2

3 /Γ
2

(113)
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For large temperature, T � ∆, the current in Eq. (111) becomes

I '
∆2to
4T

sin(ϕ) (114)

namely, it decays as ∆2/T . �is result has to be contrasted with Eq. (93) obtained for large
interaction.

5.2 SYK2 dot

Let us consider the SYK version with two fermions, called SYK2, which reads

Hd =
1
√
N

N∑
i, j=1

Ui jd
†

i dj (115)

withUi j random variables whose mean value is |Ui j |2 = U
2. In the strong coupling and for large

N , at for zero temperature, the single particle Green’s function has an analytic form

G−1
0 (ω) = iU sgn(ω) (116)

As done for the SYK4 model, we can integrate over disorder ge�ing

S ′d =
∑
n,a

∫ β

0
dτ d†na (τ ) (∂τ − µ ) dna (τ ) +

U 2

2N

∑
a,b

∫ β

0
dτdτ ′

������

∑
n

d†na (τ )dnb (τ
′)

������

2

+ Sc (117)

which can be decoupled as

Sd =
∑
na

∫ β

0
dτ d†na (τ ) (∂τ − µ ) dna (τ ) +

∑
ab

∫ β

0
dτdτ ′

[ N

2U 2
���Σ

ab (τ ,τ ′)���
2
+

N

2U 2

∑
nm

���F
ab
nm (τ ,τ ′)���

2

+iΣba (τ ′,τ )
∑
n

d†na (τ )dnb (τ
′) −

1
2

∑
nm

(
d†na (τ )F

ab∗
nm (τ ,τ ′)d†mb (τ

′) + dnb (τ
′)Fabnm (τ ,τ ′)dma (τ )

) ]
+ Sc

with Σab∗ (τ ,τ ′) = Σba (τ ′,τ ) and Fabnm (τ ,τ ′) = Fabmn (τ ,τ
′). In the diagonal replica index, and for

zero replica limit, the saddle point equations are

Σ(τ ,τ ′) = −
iU 2

2N

∑
n

〈d†n (τ )dn (τ
′)〉 (118)

Fnm (τ ,τ ′) =
U 2

2N
〈d†n (τ )d

†
m (τ ′)〉 (119)

One has to solve these equations self-consistently. Let us consider, for simplicity, µ = 0, and tσ
real, so that Γ2 = 0, and t↑ = t↓ which implies Γ3 = 0. �e tunneling matrix, therefore has only
components proportional to τ0 and τ1. We then select only the self-energies in the same channels.
�e Green’s function G, then reads

G−1
nm = G

−1
0 δnm + (T + F̂ ) Jnm = (iω − Σ)τ0 δnm +

1
N

[
T0 τ0 + (T1 + NF ) τ1

]
Jnm (120)

where we absorb i in Σ, namely iΣ→ Σ, and consider uniform F̂ like T . We also de�ne

T0 =
iωΓ0

√
ω2 + ∆2

, T1 =
Γ1∆ cos(ϕ/2)
√
ω2 + ∆2

(121)
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with Γ0 = Γ1 ≡ Γ for our choice of the parameters tσ . We can write the self-consistent equations,
in Fourier space, in the following form

Σ =
U 2

2N

∑
n

Tr (Gnnτ0) (122)

F =
U 2

2N
Tr (Gnmτ1) (123)

We recognize in Eqs. (122), (123) the rainbow diagram equations reported in Refs. [39] and [37].
�e self-energies can be obtained by employing Eq. (161) where we replace G′0 by G0 (we neglect
corrections of order 1/N in the diagonal part, encoding Pauli exclusion principle, which would
lead to subleading terms, as shown in Appendix A) and T by (T + F̂ ), namely

Gnm = G0 δnm −
[(
N (T + F̂ ) + G−1

0
)−1

(T + F̂ )G0
]
Jnm (124)

�e self-consistent equations Eqs. (122), (123), using Eq. (124), read explicitly

Σ =
U 2

(iω − Σ)

[
1 −

1
N

(
(iω − Σ + T0)T0 − (T1 + NF )2

(iω − Σ + T0)2 − (T1 + NF )2

)]
(125)

F = −
U 2

N

[
(T1 + NF )

(iω − Σ + T0)2 − (T1 + NF )2

]
(126)

In the large N limit Eq. (125) reduces to the uncoupled self-energy Σ = U 2

(iω−Σ) whose solution is

Σ =
i

2
(
ω − sgn(ω)

√
ω2 + 4U 2

)
(127)

which implies the following uncoupled dot Green’s function

G0 = G0τ0 = (iω − Σ)−1τ0 =
i

2U 2

(
ω − sgn(ω)

√
ω2 + 4U 2

)
τ0 (128)

and for large U one recovers Eq. (116), where sign(ω) comes from requiring vanishing Σ in the
zero interaction limit and then odd function in imaginary time. One can check that actually
Eq. (128) is obtained by summing over the rainbow diagrams using the bare Green’s function
(iω)−1

G0 =
1
iω

∞∑
n=0
Cn

(U
iω

)2n
(129)

where Cn = (2n)!
(n+1) n! are the Catalan numbers. By inspection of Eq. (126) we have F ∼ 1/N

therefore it can not be neglected in the large N limit, since NF appears in the Green’s function.
De�ning for simplicity

A = T 2
1 + 3

(
(iω − Σ + T0)

2 +U 2
)

(130)

B = 2T 3
1 + 9

(
U 2 − 2(iω − Σ + T0)

2
)
T1 (131)

we can solve algebraically Eq. (126) ge�ing

NF = −
2
3
T1 +

S

3
A

(
2

B +
√
B2 − 4A3

)1/3
+
S∗

3
*
,

B +
√
B2 − 4A3

2
+
-

1/3

(132)

where S = 1, for T1 > 0 (0 ≤ ϕ ≤ π ), and S = − 1+i
√

3
2 , for T1 < 0 (π ≤ ϕ ≤ 2π ). Inserting Eq. (127)

one can calculate the Josephson current

I = −
1
β

∑
ω

∂ϕ ln
[
(T1 + NF )2 − (iω − Σ + T0)

2
]

(133)
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which, since Σ does not depend on ϕ, can be also wri�en as

I = −
2

U 2β
N

∑
ω

F ∂ϕ (T1 + NF ) (134)

Let us now consider the limit of very largeU , namelyU � Γ and ∆. In this limit Σ→ −iU sgn(ω),
and A → T 2

1 , B → 33U 2T1, therefore

NF ' sgn(cos(ϕ/2))

(
U 2Γ∆ ��cos(ϕ/2)��

)1/3

(ω2 + ∆2)1/6 (135)

Notice that this expression is accurate for ϕ far from π , since the term
(
(iω − Σ + T0)

2 + U 2
)

induces a gap close to ϕ = π for any �nite value of U . �e Josephson current is, therefore

I ' −
1

U 2β
N 2

∑
ω

∂ϕF
2 (136)

since NF � T1. At zero temperature, introducing an ultraviolet cut-o� Λ, we have

I '
∆

6π

( Γ
U

)2/3 sin(ϕ)
(cos2 (ϕ/2))2/3

∫ Λ

0

dω

(ω2 + 1)1/3 ≈
∆

2π

( Γ
U

)2/3 sin(ϕ)
(cos2 (ϕ/2))2/3Λ

1/3 (137)

Since Eq. (116) is valid for U � |ω | the cut-o� Λ might be taken ∼ U .
Here a comment is in order. If we used a di�erent coupling with the leads, such that only few

and speci�c modes of the dot were involved, the tunneling matrix would be sparse diagonal, with
many null elements. In our case, since the dot is made by spinless fermions, stricktly speaking
the anomalous terms should vanish. Nevertheless let us consider this case discussed in Ref. [37]
where two superconducting leads were coupled to a chaotic metallic cavity. �e calculation is
pre�y similar to what reported here. �e only di�erence is that both T and F are now diago-
nal. �e saddle point equations are again equivalent to those obtained by resummation of the
non-crossing diagrams, as shown also in our case. We have, then, to solve the self-consistent
equations, where Eq. (120) is replaced by the following Eq. (140),

Σ =
U 2

2N

∑
n

Tr (Gnnτ0) (138)

F =
U 2

2N

∑
n

Tr (Gnnτ1) (139)

G−1
nm = [(iω − Σ + T0)τ0 + (T1 + F )τ1]δnm (140)

since Γnm ∝ δnmΓn and Γn , 0 for n = 1, ... ,nc and Γn = 0 for n = nc + 1, ... ,N . We have exactly
the same kind of equations reported in Ref. [37]. �ite strikingly, in the so-called ergodic and
long dwell-time regime, the authors of Ref. [37] solved Eqs. (138)-(140) for N � nc ge�ing
a Josephson current of the same form of Eq. (67), where the �ouless energy ET is replaced
by Γ2/U � ∆. �e crucial di�erence between the SYK2 model discussed here, with respect to
the case of a chaotic tunneling Josephson junction discussed in Ref. [37], is that the dot here is
considered fully coupled with the leads, because all modes of the dot are equivalent to each other.

5.3 SYKq dot

Let us conclude discussing the generalized model with q fermions. As shown previously, for
q = 2 and fully contacted dot the e�ect of the hybridization and, more speci�cally, the induced
pairing in the dot are very strong also in the large N limit. For q = 4 instead the self-energy
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induced by the coupling with the leads remains the bare one for large N . One expect that the
same situation is valid for any q ≥ 4. In this situation we can directly write the large U limit for
the Josephson current as

I =
Γ2∆2

2π
sin(ϕ)

∫ ∞

−∞

dω

Γ2∆2 cos2 (ϕ/2) −
(
G−1

0 (ω)
√
(ω2 + ∆2) + iωΓ0

)2
− ω2Γ2

3

(141)

where we �xed µ = 0 and, for q ≥ 2, the exact Green’s function in the large N limit reads [40]

G−1
0 (ω) = iCq U

2
q sgn(ω) |ω |1−

2
q (142)

with coe�cient Cq =
(2π )1/q sec( πq )

2
[(

1− 2
q

)
tan( πq )

]1/q
Γ(1− 2

q )
.

For any q > 4 and for weak tunneling, Γ � ∆, we get the following result for the current

I '
Γ2

π
sin(ϕ)

∫ ∞

0

dω

Γ2 cos2 (ϕ/2) +C2
qU

4
qω2− 4

q
(143)

namely the superconducting pairing drops out completely, since ∆ does not even play the role
of an ultraviolet cut-o�, as for q = 4. Introducing a cut-o� Λ the result, for any q ≥ 4, is

I '
sin(ϕ) Λ

π cos2 (ϕ/2) 2F1
*.
,

q

2(q − 2)
, 1, 1 +

q

2(q − 2)
;−

C2
qU

4
qΛ2− 4

q

Γ2 cos2 (ϕ/2)
+/
-

(144)

where 2F1 (a,b, c; z) is the hypergeometric function. For q = 4, we recover the result reported in
Eq. (67) with Λ = ∆, while for any q > 4 the limit Λ→ ∞ is �nite therefore we do not need to
use any cut-o�.
For the very extreme case of q → ∞ we have thatCq → 1/2 andG−1

0 (ω) → iω/2, and always for
Γ � ∆, the current reduces simply to

I ' Γ
sin(ϕ)

��cos(ϕ/2)��
(145)

namely, it approaches a π -junction upon increasing q, loosing the dependence also on U .
In the other limit, Γ � ∆ and for q such that U 2/q � Γ, e.g. q → ∞, from Eq. (141) we get

I '
∆

2
sin(ϕ)

��cos(ϕ/2)��
(146)

which is the same current for the non-interacting case, Eq. (113) for to = 1, at resonance.

6 Conclusions

We studied the Josephson e�ect obtained by contacting a SYK4 dot by two superconducting leads.
We showed that a proximity e�ect is induced in the dot, however the self-energy is weakly af-
fected by the coupling with the leads in the so-called conformal limit, namely for large interaction
and large number of particles. We found that, in this limit, the Josephson current is suppressed by
U , the strength of the interaction, as ln(U )/U and becomes universal, since the current turns out
to be independent on the superconducting pairing, and robust under phase �uctuations. �is re-
sult implies that the Josephson current, at zero temperature, and in the conformal limit, is almost
the same, up to logarithmic corrections, for all BCS-like superconductors. At �nite temperature
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T , instead, the dependence on the superconducting gap is restored. �e current becomes depen-
dent on the ratio between the gap and the temperature and goes as ∆2/T 2 for su�ciently large
temperatures. Finally we compare the Josephson current got for the SYK4 with those obtained
for other SYKq models.
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A Appendix

If we used Eq. (25) instead of Eq. (24) in Eq. (73), to take into account that the diagonal terms in
the action Eq. (12) are null, we would get corrections of orderO (1/N ) in the diagonal self-energy.
Speci�cally, since δG0 ∝ G0 (T1τ1 +T2τ2)G0 where G0 contains only τ0 and τ3, then at the leading
order in 1/N the self energy is corrected by δΣ ∝ G2

0δG0 which is only proportional to τ1 and τ2.
Let us consider

G′−1
nm = iωτ0 + µτ3 − Σ −

δΣ

N
+ T ′nm (147)

where δΣ/N is the self-energy correction and T ′nm as in Eq. (25). We can de�ne conveniently the
following generic form for the Green’s function

G′−1
0 = G̃−1

0 τ0 + G̃
−1
1 τ1 + G̃

−1
2 τ2 +G

−1
3 τ3 (148)

where now

G̃−1
0 = iω − Σ0 (149)

G̃−1
1 = −

1
N

(
Γ1∆ cos(ϕ/2)
√
ω2 + ∆2

+ δΣ1

)
(150)

G̃−1
2 = −

1
N

(
Γ2∆ cos(ϕ/2)
√
ω2 + ∆2

+ δΣ2

)
(151)

G̃−1
3 = µ − Σ3 (152)

so that Eq. (147) can be wri�en as

G′−1
nm = G

′−1
0 δnm + T Jnm (153)

where T is de�ned in Eq. (23), or, to simplify the notation,

T =
1
N

(T0 τ0 + T1 τ1 + T2 τ2 + T3 τ3) (154)

We can, now, employ Eq. (59) simply replacing G0 by G′0 and G by G′, namely

det[G′−1] =
(
det[G′−1

0 ]
)N−1 (

det[G′−1
0 ] + N Tr[T G′0] det[G′−1

0 ] + N 2det[T ]
)

(155)

ge�ing, from Eqs. (148) and (154),

det[G′−1] =
(
det[G′−1

0 ]
)N−1 [(

G̃−1
0 + T0

)2
−

(
G̃−1

1 − T1
)2
−

(
G̃−1

2 − T2
)2
−

(
G̃−1

3 − T3
)2]

(156)
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so that

ln det[G′−1] = (N − 1) ln
[
(G̃−1

0 )2 − (G̃−1
1 )2 − (G̃−1

2 )2 − (G̃−1
3 )2

]

+ ln
[(
G̃−1

0 + T0
)2
−

(
G̃−1

1 − T1
)2
−

(
G̃−1

2 − T2
)2
−

(
G̃−1

3 − T3
)2]

(157)

Expanding in 1/N we get

ln det[G′−1] = ln[(G̃−1
0 )2 − (G̃−1

3 )2]N−1 + ln
[(
G̃−1

0 + T0
)2
− T 2

1 − T
2

2 −
(
G̃−1

3 − T3
)2]
+O

( 1
N

)
= ln det[G−1] +O

( 1
N

)
(158)

which is equal to the logarithm of Eq. (60) up to corrections of order O (1/N ).
Finally, we can invert a matrix of the form reported in Eq. (153), by using the geometric series,

G′ =
(
I + G′0T J

)−1
G′0 =

∞∑
n=0

(−1)n (G′0T J )
nG′0 (159)

and noticing that Jn = N (n−1) J . We get the following result

G′ =

(
I +

1
N

∞∑
n=1

(−1)n (NG′0T )n J
)
G′0 = G

′
0 I +

(
τ0 + NG

′
0T

)−1
G′0T G

′
0 J (160)

which can be rewri�en explicitly as

G′nm = G
′
0 δnm −

[(
NT + G′−1

0
)−1
T G′0

]
Jnm (161)

useful to calculate the self-energy corrections due to the coupling with the leads.
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