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Abstract

We present a numerical quantum Monte Carlo (QMC) method for simulating the 3D
phase transition on the recently proposed fuzzy sphere [Phys. Rev. X 13, 021009 (2023)].
By introducing an additional SU(2) layer degree of freedom, we reformulate the model
into a form suitable for sign-problem-free QMC simulation. From the finite-size-scaling,
we show that this QMC-friendly model undergoes a quantum phase transition belonging
to the 3D Ising universality class, and at the critical point we compute the scaling dimen-
sions from the state-operator correspondence, which largely agrees with the prediction
from the conformal field theory. These results pave the way to construct sign-problem-
free models for QMC simulations on the fuzzy sphere, which could advance the future
study on more sophisticated criticalities.
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1 Introduction20

Critical phenomena emerging at classical and quantum phase transitions are of great interest21

due to their experimental relevance and theoretical significance [1, 2]. Many critical phe-22

nomena are believed to be described by conformal field theories (CFTs), which are strongly-23

interacting and pose challenges for studies in higher space-time dimensions beyond 2D (i.e.,24

1+1D). A recent method known as fuzzy (non-commutative) sphere regularization [3] has25

been invented to investigate 3D (i.e., 2+1D) critical phenomena governed by 3D CFTs on a26

cylindrical geometry represented as S2 × R. Compared to traditional lattice regularization,27

the fuzzy sphere regularization offers numerous advantages in the study of 3D CFTs, primarily28

due to the utilization of radial quantization in S2 ×R [4, 5] as well as the exact preservation29

of sphere SO(3) symmetry [6,7], as convincingly demonstrated recently [3,8–11].30

Firstly, the fuzzy sphere enables direct access to information regarding the emergent con-31

formal symmetry in the critical state [3, 10]. Secondly, it allows for the direct extraction of32

various data of the CFTs, including numerous scaling dimensions of conformal primary op-33

erators [3, 10], operator product expansion coefficients [8], and four-point correlators [9].34

For instance, scaling dimensions can be computed directly from excitation energies of the sys-35

tem, and their accuracy can be further improved using conformal perturbation [12]. Thirdly,36

the fuzzy sphere scheme is applicable to a variety of 3D CFTs, including Ising [3], O(N)37

Wilson-Fisher, SO(5) deconfined phase transition [10], critical gauge theories [10], and de-38

fect CFTs [11]. Lastly, the fuzzy sphere regularization exhibits an incredibly small finite-size39

effect when the Hamiltonian is reasonably fine-tuned. These advantageous features of fuzzy40

sphere regularization present an exciting opportunity to explore 3D CFTs with high efficiency,41

accuracy, and comprehensiveness.42

The fuzzy sphere regularization considers a microscopic quantum Hamiltonian modeling43

fermions (with multiple flavors) on continuous spherical space and projecting fermions into the44

lowest spherical Landau level [3,6,13]. In comparison with the regular lattice model, the fuzzy45

sphere model preserves the continuous rotational symmetry exactly in the UV limit. Thanks to46

the extremely small finite-size effect achieved through fine-tuning, numerical algorithms such47

as exact diagonalization (ED) and density matrix renormalization group (DMRG) methods are48

highly effective in studying the fuzzy sphere model of the 3D Ising CFT and SO(5) deconfined49

phase transition. However, the computational cost of these two algorithms will eventually50

grow exponentially with the system size. More importantly, for cases involving a large number51

of fermion flavors, the computational costs of ED and DMRG quickly surpass practical resource52

and time limitations. In these cases, it would be helpful to be able to study models on the fuzzy53

sphere using a method that scales polynomially in time, such as quantum Monte Carlo (QMC).54

The aim of this paper is to utilize the 3D Ising CFT as an example to demonstrate the55

application of the QMC approach in studying 3D CFTs on the fuzzy sphere. A similar discussion56

for the fuzzy torus model can be found in Ref. [13, 14]. In contrast to the fuzzy sphere Ising57

model introduced in Ref. [3], we introduce an additional flavor index to the fermions, which58

results in no sign problem for the QMC simulations. As a benchmark, we provide numerical59
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results of finite-size scaling, indicating that this model also belongs to the 3D Ising universality60

class. Furthermore, we introduce observables that enable the extraction of energy gaps in the61

spectrum corresponding to specific symmetry quantum numbers. This allows us to investigate62

the presence of conformal symmetry at criticality and extract scaling dimensions through the63

state-operator correspondence. Our numerical results for energy gaps are consistent with the64

universality of the 3D CFT Ising model, albeit with a larger finite-size effect compared to the65

previously studied fuzzy sphere Ising model [3]. In summary, we believe the QMC enriches66

the arsenal to study the fuzzy sphere model.67

This paper is organized as follows: in Section II we introduce the model and its sym-68

metries, and we discuss how it can be implemented in auxiliary-field QMC simulations. We69

also argue for why the simulations are sign-problem-free. In Section III we discuss finite-size-70

scaling results and give evidence that the model is in the 3D Ising universality class, and we71

discuss energy spectrum results and give evidence for emergent conformal symmetry. Section72

IV contains our conclusions.73

2 Model and Method74

2.1 Review of fuzzy sphere regularization75

The fuzzy sphere regularization considers fermions moving on a sphere in the presence of76

a magnetic monopole with 4πs flux sitting in the center of the sphere. In general, we can77

consider multi-flavor fermions ψα with the flavor index α, described by a Hamiltonian,78

H = Hkin +Hint. (1)

Here Hkin is the kinetic term of fermions, and Hint is an interaction which takes forms such as79

a density-density interaction,80

∫

d2~r1d2~r2 U(~r1 − ~r2)n
a(~r1)n

b(~r2), (2)

where na(~r ) = ψ†(~r )αψ(~r )βMa
αβ

and Ma is a matrix defined in the fermion flavor space.81

U(~r1 − ~r2) is a rotationally invariant interaction, and we take it to be short ranged such as82

δ(~r1 − ~r2) and ∇2δ(~r1 − ~r2).83

The energy levels of Hkin form quantized Landau levels, whose wave-functions are de-84

scribed by the monopole Harmonics (i.e. spin-weighted spherical Harmonics) Y (s)n+s ,m(θ ,ϕ) [15],85

with n = 0, 1, · · · as the Landau level index and (θ ,ϕ) as the spherical coordinates. Each Lan-86

dau level has an energy En = [(n + 1/2) + n(n + 1)/2s]ωc/2π, with the cyclotron frequency87

ωc [6, 16]. The states of each Landau level have an angular momentum L = s + n, hence88

they are (2s + 2n + 1)-fold degenerate, which can be labeled by the quantum number of the89

z-component of the angular momentum Lz , m = −s − n,−s − n + 1, · · · , s + n. We consider90

the limit that Hkin � Hint such that we can project the system into the lowest Landau level91

(LLL). The annihilation operator ψ(θ ,ϕ) on the LLL can be written as92

ψα(θ ,ϕ) =
1
p

N

s
∑

m=−s

Ȳ (s)s ,m(θ ,ϕ) cm,α, (3)

where cm,α stands for the annihilation operator of Landau orbital m, and it is independent of93

coordinates (θ ,ϕ). N = 2s + 1 is the number of orbitals, playing the role of area of the 2D94

space. The prefactor 1/
p

N ensures that the density operator,95

na(θ ,ϕ) =
1

N

∑

m1,m2

Y (s)s ,m1
Ȳ (s)s ,m2

c†
m1,αcm2,βMa

αβ
, (4)
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is an intensive quantity.96

Under this LLL projection Eq. (3), any rotation invariant density-density interaction in the97

form of eq. (2) can be written as the Haldane pseudopotentials [6] in terms of second quantized98

fermion operators,99

∑

m1,m2,m3,m4

Vm1,m2,m3,m4
(c†

m1,αMa
αβ

cm4,β)(c
†
m2,ηM b

ηγcm3,γ) (5)

with100

Vm1,m2,m3,m4
= δm1+m2,m3+m4

2s
∑

l=0

Vl (4s − 2l + 1)

×
�

s s 2s − l
m1 m2 −m1 −m2

��

s s 2s − l
m4 m3 −m3 −m4

�

, (6)

where

�

j1 j2 j3
m1 m2 m3

�

is the Wigner 3 j -symbol. Vl are numbers whose values are specifically101

depending on the form of the interaction U(~r1− ~r1). For the remainder of this work, we focus102

on U(~r1−~r1) = U(Ω12) =
g0

N δ(Ω12)+
g1

N2∇2δ(Ω12)withδ(Ω12) = δ(ϕ1−ϕ2)δ(cosθ1−cosθ2).103

The corresponding Haldane pseudo-potentials are104

V0 =
2s + 1

4s + 1
g0 −

s

4s + 1
g1, V1 =

s

4s − 1
g1, Vl≥2 = 0. (7)

To realize the 2+ 1D Ising transition, Ref. [3] introduced a Hamiltonian that has two flavors105

of fermions ψ† = (ψ†
↑, ψ

†
↓) with their interaction,106

H =

∫

N2 dΩ1dΩ2 U(Ω12)
�

n0(θ1,ϕ1)n
0(θ2,ϕ2)− nz(θ1,ϕ1)n

z(θ2,ϕ2)
�

− h

∫

N dΩnx (θ ,ϕ), (8)

where Ω = (θ ,ϕ) is a spherical coordinate and na(θ ,ϕ) = ψ†(θ ,ϕ)σaψ(θ ,ϕ) is a local107

density operator with σx ,y,z being Pauli matrices, σ0 = I2×2. The first term behaves like an108

Ising ferromagnetic interaction, while the second term is the transverse field.109

It is straightforward to solve the second quantized Hamiltonian Eq. (5) using unbiased110

numerical algorithm such as the ED and the DMRG, although their computational costs grow111

exponentially with the system size N = 2s + 1. So it is highly desirable to develop QMC112

method for the simulation of a fuzzy sphere model, and it is the focus of this paper.113

It is worth mentioning why the LLL projection leads to a fuzzy sphere. We can consider the114

projection of the coordinates of a unit sphere, denoted as x = (sinθ cosϕ, sinθ sinϕ, cosθ ).115

After the projection, the coordinates are transformed into (2s +1)× (2s +1) matrices, where116

(X)m1,m2
=
∫

dΩ x Ȳ (s)s ,m1
(Ω)Y (s)s ,m2

(Ω). These matrices satisfy the following relations:117

[Xi , X j] =
1

s + 1
iεi jk Xk ,

3
∑

i=1

Xi Xi =
s

s + 1
12s+1. (9)

The fact that the three coordinates satisfy the SO(3) algebra formally defines a fuzzy sphere118

[7]. It is interesting to note that in the limit as s →∞, the fuzziness disappears and a unit119

sphere is recovered.120
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2.2 The density form of interaction121

To facilitate QMC simulation, we would like to write the Hamiltonian in terms of the density122

operator in the angular momentum space na
l,m

, defined as,123

na(θ ,ϕ) =
1

N

∑

l,m

na
l,mY m

l (θ ,ϕ). (10)

Here Y m
l
(θ ,ϕ) is the spherical harmonics, with m = −l,−l + 1, · · · , l and l ∈ Z. na

l,m
can be124

obtained using the spherical harmonic transformation,125

na
l,m = N

∫

dΩ Ȳ m
l (θ ,ϕ)na(θ ,ϕ)

= N

√

√2l + 1

4π

s
∑

m1=−s

(−1)3s+m1

�

s l s
−m1 m m1 −m

�

×
�

s l s
−s 0 s

�

c†
m1,αcm1−m,βMa

αβ
(11)

To have the term

�

s l s
−m1 m m1 −m

�

non-vanishing, we should have l ≤ 2s . One can show126

n†
l,m
= (−1)mnl,−m .127

In this context, it is convenient to decompose the potential U(θ12) =
∑

l
2l+1
4π Ul Pl(cosθ12)128

using the Legendre polynomials, Pl(cosθ12) =
4π

2l+1

∑l
m=−l Ȳ m

l
(Ω1)Y m

l
(Ω2), such that the129

interaction terms take the form130

∫

N2dΩ1dΩ2U(θ12)n
a(θ1,ϕ1)n

b(θ2,ϕ2)

=
2s
∑

l=0

Ul

l
∑

m=−l

(na
l,m)

†nb
l,m, (12)

with the coefficients Ul = g0/N − l(l + 1)g1/N2.131

2.3 Four component fuzzy sphere model132

In comparison to Ref. [3], we consider four flavors of fermions,ψ† = (ψ†
↑,+,ψ†

↑,−,ψ†
↓,+,ψ†

↓,−),133

i.e., we introduce an additional “layer" degree of freedom (+,−). The Pauli-matrices σi and134

τi act on the spin (↑,↓) and layer indices, respectively. Let us define the operators n0
l,m

and135

nz
l,m

according to Eq. (11) with M0 = σ0τ0 and M z = σzτ0, respectively. The Hamiltonian136

reads137

H =
2s
∑

l=0

Ul

l
∑

m=−l

�

(n0
l,m)

†n0
l,m − (n

z
l,m)

†nz
l,m

�

+ h
∑

c†
mσ

xτ0 cm,

(13)

and the interaction favors a ferromagnetic state for g0, g1 > 0.138

There are four symmetries of this model, which are139

1. Ising Z2 symmetry: cm → σxτ0 cm .140
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Figure 1: Order parameter data for V0 = 0.5564 and V1 = 0.1, which shows evidence
for a continuous phase transition consistent with that of the 3D Ising Model. (a)
Binder ratio data showing a crossing that drifts somewhat in system size: N = 12 and
N = 14 cross around h = 0.21, whereas N = 8 and N = 10 cross closer to h = 0.20.
(b) Magnetization data showing consistent crossing between h = 0.21 and h = 0.22
for N = 10, 12, 14. Ising ∆σ = 0.518 is assumed. (c) Magnetization data plotted
along with a universal scaling function fit. Fixing ∆σ = 0.518 and ∆ε = 1.41 (as
shown in this figure) yields a good fit (χ2 = 1.305) with hc = 0.2129(8), consistent
with 3D Ising universality. Fitting using an h = 0.21 estimate consistent with the
Binder ratio and magnetization crossing data gives∆σ = 0.49(2) and∆ε = 1.28(6).

2. SO(3) sphere rotation symmetry: cm=−s ,...,s form the spin-s representation of SO(3).141

3. Particle-hole symmetry: cm → iσyτ0 c†
m, and i →−i.142

4. Layer SU(2): generated by cm → σ0τx ,y,z cm .143

The first three of these symmetries are the same as those of the two-flavor model studied144

in [3]. The layer symmetry is an additional symmetry for the four flavors, which allows for145

sign-problem-free QMC simulations of this model. At the Ising transition, the layer SU(2)146

degrees of freedom need to be gapped. We have verified this in Appendix C.147

Before moving on, we remark that the four component fuzzy sphere model Eq. 13 is not a148

simple product of the two-component model Eq. 8, so the phase transition point hc of the four149

component model is distinct from that of the two-component model. Nevertheless, we ensure150

the universality of the four component model falls in the 3D Ising class, as shown below.151

3 Results152

3.1 QMC Simulations153

We simulate the model, eq. (13), using projector auxiliary Quantum Monte Carlo (AFQMC).154

To fit this goal, we rewrite the sums of quartic terms in the following way155

Ul

l
∑

m=−l

�

na
l,m

�†
na

l,m = Ul

l
∑

m=−l

(−1)m
�

na
l,−m

�

na
l,m

=
Ul

4

l
∑

m=−l

�

(1+ i)na
l,m + (1− i)(−1)mna

l,−m

�2
,

(14)

6
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where in the first equality we make use of the density operator identity156

nl,m
† = (−1)mnl,−m. (15)

The squared operators in the second line of (14) are Hermitian, and thus AFQMC as imple-157

mented in [17] is applicable. The projector we use is the half-filled solution to the model when158

g0 = g1 = 0, where the Ising spins are polarized by the transverse field term h
∑

c†
mσ

xτ0 cm .159

Now we show, that the QMC simulation of this model is sign-problem-free. After the160

Hubbard-Stratonovich transformation, we have a prefactor of
p

−∆τUl/4. If g0−g1l(l+1)/(2s+1)161

of the expression in (13) is always positive, then we get an extra factor of i for the n0 terms,162

which picks up a sign under antiunitary transformations. The antiunitary particle-hole trans-163

formation P ,164

c†
m → iσyτ0 cm, i →−i

nz
l,m → (−1)mnz

l,−m

n0
l,m →−(−1)mn0

l,−m,

(16)

is a symmetry with P2. Combined with the SU(2) layer symmetry, it guarantees the absence165

of the sign-problem in this model. [18]166

In this particular model, we focus on the critical point that occurs in a regime where both167

g0, g1 > 0. We have not proven in the discussion above that the absence of a sign problem168

occurs when instances of g0 − g1l(l + 1)/(2s + 1) is positive for small l but is negative for169

large l, yet we encountered no sign problem in our simulations. One explanation may be that170

the Wigner-3j prefactor

�

s l s
−s 0 s

�

decays exponentially in l, causing a suppression of terms171

that change the overall prefactor signs in (13), and so the smallness of the couplings of these172

terms may be important.173

Due to the nonlocal nature of the operators in (13), controlling Trotter discretization errors174

becomes a more demanding task, as observed in [14]. We alleviate some of these effects175

by adopting a stabilized second-order Trotter decomposition developed by Blanes et al., as176

discussed in [19]. The effectiveness of these alternate splitting schemes in the realm of AFQMC177

was shown in [20]. Furthermore, to implement the Wigner-3j prefactors efficiently, we utilize178

the software package detailed in [21].179

Here we utilize QMC to compute the evolution of the order parameter and CFT dimen-180

sionless two-point correlators across the transition point, as well as extract energy gaps for181

the lowest lying states using time-displaced correlation functions (see Appendix B). While the182

Lowest Landau level basis has already been used for a QMC study in [22], the CFT-inspired183

use of time-displaced correlation functions and two-point correlators on the fuzzy sphere is184

new for QMC studies.185

Below we will set V1 = 0.1, V0 = 0.5564, and tune h to realize a 2+1D Ising transition.186

We find this choice of (V0, V1) has a smaller finite size effect. By inverting the equations in187

(7), we have188

g0 =
4s + 1

2s + 1
V0 +

4s − 1

2s + 1
V1

g1 =
4s − 1

s
V1,

(17)

so this corresponds to the region g0, g1 > 0.189
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3.2 Finite-Size-Scaling190

To look for a phase transition, we begin with the order parameter for the Ising phase transition,191

which in the Landau Level basis (see Appendix A) is given by192

M =
s
∑

m=−s

c†
mσ

zcm. (18)

In Figure 1(a), we have plotted the Binder cumulant, given by193

U4 = 1−




M4
�

3 〈M2〉2
, (19)

and we see a crossing in the vicinity of 0.20− 0.21, that drifts to larger couplings with larger194

N = 2s +1. With this evidence of there being a quantum phase transition, we can find further195

evidence that the phase transition is in the Ising universality class by assuming that∆σ is equal196

to 0.518, as is known for the universality class [23], and checking the the magnetization data,197

as seen in Figure 1(b). Here we see a good crossing for N = 10, 12, 14, which is consistent198

with the choice of ∆σ. The crossing is at a larger h than the Binder cumulant crossing, that199

is because the Binder cumulant suffers from larger finite size effects. Similar finite size effects200

have also been observed in the two-layer model [3].201

To see that the data is consistent with both η(= 2∆σ−1) and ν(= 1/(3−∆ε)), critical ex-202

ponents in the 3D Ising universality class, we have performed a data collapse to a universal scal-203

ing function, assuming that



M2
�

/
�p

N
�4−2∆σ has a functional form of f0+ f1x+ f2x2+ f3x3,204

where x = (h − hc)
�p

N
�3−∆ε . When we fix ∆σ = 0.518 and ∆ε = 1.41 and leave the other205

five parameters free, we get a good fit for the data N = 10, 12, 14, with χ2 = 1.305 and an206

estimate for the critical coupling of hc = 0.2129(8), as seen in Figure 1(c). If instead we fix207

h = 0.21, as suggested by the Binder ratio, and leave six parameters including the critical208

exponents free, the fitting gives us ∆σ = 0.49(2) and ∆ε = 1.28(6), values consistent with209

Ising universality.210

3.3 Dimensionless two-point correlator211

To take the advantage of fuzzy sphere regularization, below we compute CFT dimensionless212

two-point correlators on a sphere [9] at equal time,213

Gφφ(θ ) = 〈φ(θ = ϕ = 0)φ(θ ,ϕ = 0)〉

=
1

(2 sin (θ/2))2∆φ
,

(20)

where φ is a CFT primary operator, and (θ ,ϕ) are the spherical coordinates specifying the214

positions of the two operators. We mainly focus on the lowest Z2-odd primary σ, which can215

be well approximated by the UV operator nz [8, 9], up to a non-universal normalization (say216 p
A) and higher order corrections O(1/

p
N) from operators with higher scaling dimensions.217

So we can first compute the equal-time two-point correlator,218

f (θ ) = 〈nz(θ = ϕ = 0)nz(θ ,ϕ = 0)〉

=
2s
∑

l=0

Ȳl,m=0(θ , 0)Yl,m=0(0, 0)
¬

nz
l,0nz

l,0

¶

,
(21)

and then219

Gσσ(θ ) = Af (θ ) + O(1/
p

N), (22)

8
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Figure 2: Data from CFT dimensionless two-point correlators. (a) Values of ∆proxy
σ

from Gσσ using the equal-time correlators. The crossing of the∆proxy
σ values through

the∆σ = 0.518 critical exponent value occurs at larger h-values as N increases, con-
sistent with the finite-size-scaling drift that was observed earlier. (b) Extrapolation
to infinite lattice size∆σ from Gσσ correlation functions for different values of h and
N = 6, 8, 10, 12, 14. Linear fits suggest that, from this dataset, h = 0.212 is closest
to criticality. (c) Plotting of the angle-dependence of the Gσσ correlator with data
from N = 6, 8, 10, 12, 14 at h = 0.212.

where A is a nonuniversal number. Because we have an explicit expression for f , we know220

the exact values for f (θ = π) and f ′′(θ )|θ=π, where the derivatives are taken in θ . Then by221

assuming that Gσσ has the critical scaling form of (20), we can solve the following system,222

Af (π) = 1/(2 sin(π/2))2∆
proxy
σ

Af ′′(θ )
�

�

θ=π =
∂ 2

∂ θ 2

�

1/(2 sin(θ/2))2∆
proxy
σ

�

�

�

�

θ=π
,

(23)

∆
proxy
σ is a number that will extrapolate to the universal ∆σ at the critical point as N →∞.223

Second derivatives are used for the second equation in (23) because the first derivatives in θ224

are zero for both f and critical Gφφ at θ = π.225

Figure 2(a) shows the extracted ∆proxy
σ values for different values of h in the vicinity of226

the hc determined by finite-size-scaling. Here we see that the ∆proxy
σ indeed crosses through227

the 3D Ising∆σ = 0.518 value in this region, and furthermore we see that the h at which this228

crossing occurs increases with system size N, which is consistent with the drift that we saw in229

the finite-size-scaling. Moreover, the drift appears to be slowing with increasing N, another230

consistency with finite-size scaling.231

We can see more consistencies with finite-size-scaling from the results in Figure 2(b), which232

linearly extrapolate the values of∆proxy
σ as N →∞ for different values of h. Here we see that233

for the infinite N extrapolation, the h = 0.212 data is closest to the critical ∆σ, which is234

consistent with the earlier universal scaling fit of hc = 0.2129(8). We use this h = 0.212 data235

to show the calculation of Gσσ(θ ) as a function of θ for QMC data at N = 6, 8, 10, 12, 14 and236

how it approaches the exact expression as N increases. The QMC data-derived expressions for237

Gσσ(θ ) are given in Figure 2(c) and are rescaled so that they are equal to the exact expression238

of Gσσ(θ = π).239
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3.4 Energy gaps and state-operator correspondence240

Next we turn to the state-operator correspondence [4, 5] on the sphere, namely, the scaling241

dimensions ∆n are related to energy gaps by242

δEn = En − E0 =
v

R
∆n, (24)

where R is the radius of the sphere and v is the model-dependent velocity of light.243

While we are unable to get the full low lying energy spectrum directly using QMC, we244

are able to obtain energy gaps for the lowest lying states in each symmetry quantum number245

sector by using time-displaced correlation functions (see Appendix B). For an operator OS with246

the quantum number S, we have:247

〈OS (τ)OS (0)〉 =
∑

n

a2
ne−τ(ES,n−E0), (25)

where E0 is the ground state energy, ES,n represents the energies of eigenstates |ψn〉 in the248

quantum number sector S, an is an operator OS and state |ψn〉 dependent non-universal factor.249

At long time τ � 1, the lowest energy will dominate and can be extracted by fitting the250

exponential decay.251

In the data that follows, we will use density operators ni
l,m

to measure energy gaps in252

different quantum number sectors. Specifically,253

1) nz
l,m

can measure gaps in the Z2-odd, parity-even, and angular momentum (i.e. Lorentz254

spin) l sector;255

2) nx
l,m

can measure gaps in the Z2-even, parity-even, and angular momentum l sector;256

3) n0
l,m

can measure gaps in the Z2-even, parity-odd, and angular momentum l sector.257

Figure 3 shows QMC data at the critical point h = 0.212. The energy gaps are scaled such258

that the gap measured from n0
l=2,m=0

is rescaled to 4, the scaling dimension of the lowest259

parity-odd descendent of the energy-momentum tensor, ∆ενρη∂ρTµν . In doing so, we find the260

gaps measured from other operators to be consistent with the scaling dimensions of primary261

and descendant operators of the 3D Ising CFT. The density operator (nx
l=2,m=0

) we measured262

does not seem to have an overlap with the state of stress tensor (with ∆Tµν = 3). Instead it263

gives the level-2 descendant of ε primary, i.e., ∂µ∂νε.264

4 Conclusions265

We have introduced a model that is amenable to using sign-problem free quantum Monte266

Carlo to simulate the (2+1)−D transverse Ising model on a fuzzy sphere. Through finite-size267

scaling we have found data consistent with the model’s phase transition being in the 3D Ising268

universality class, and we also have shown that we can recover the same critical exponents269

from the model’s energy spectra, which is evidence of emergent conformal symmetry.270

While these calculations are not competitive with ED and DMRG for small lattices, this271

work opens the door to larger scale calculations for models where there are too many degrees272

of freedom to make ED/DMRG calculations infeasible, or for when large sizes are desired for273

more accurate determination of critical exponents. One interesting target is the critical gauge274

theories proposed in Ref. [10].275
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Figure 3: Comparison between 3D Ising CFT data and rescaled energy gaps for N = 8
and h = 0.212 measured by density operators. The energy gaps are rescaled by the
factor that makes the lowest Z2-even, parity-odd gap at l = 2 equal to the lowest
parity-odd descendent of the energy-momentum tensor, 4.0.
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A Order Parameter290

The Ising order parameter is nz , and for QMC simulations we measure the two-point correla-291

tion function,292

〈nz(θ ,ϕ)nz(θ ′,ϕ′)〉 =
∑

l,m,l′,m′
〈nz

l,mnz
l′,m′〉Y

m
l (θ ,ϕ)Y m′

l′ (θ
′,ϕ′)

=
∑

l,m

(−1)m〈nz
l,0nz

l,0〉Y
m
l (θ ,ϕ)Y−m

l (θ ′,ϕ′). (A.1)
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The last equation comes from the conservation of angular momentum,293

〈nz
l,mnz

l′,m′〉 =
�

l l′ 0
m m′ 0

�

Ol

= δl,l′δm,−m′

�

l l 0
m −m 0

�

〈nz
l,0nz

l,0〉/
�

l l 0
0 0 0

�

= (−1)mδl,l′δm,−m′〈nz
l,0nz

l,0〉. (A.2)

Therefore, we need to evaluate 〈nz
l,0

nz
l,0
〉 for each l. To do the finite-size-scaling, we cal-294

culate the order parameter 〈M2〉, with M =
∫

dΩnz(θ ,ϕ),295

〈M2〉 =
∫

dΩdΩ′〈nz(θ ,ϕ)nz(θ ′,ϕ′)〉

=
∑

l,m

(−1)m〈nz
l,0nz

l,0〉
∫

dΩdΩ′ Y m
l (θ ,ϕ)Y−m

l (θ ′,ϕ′)

= 4π〈nz
0,0nz

0,0〉 (A.3)

The last equation comes from
∫

dΩY m
l
(θ ,ϕ) =

p
4πδl,0δm,0. Using Wigner-3j identities, we296

find that,297

nz
0,0 = (2s + 1)

√

√ 1

4π

s
∑

m1=−s

(−1)3s+m1

�

s 0 s
−m1 0 m1

��

s 0 s
−s 0 s

�

c†
m1
σzcm1

=

√

√ 1

4π

s
∑

m1=−s

c†
m1
σzcm1

. (A.4)

Therefore, the order parameter M2 is298

〈M2〉 =
s
∑

m1,m2=−s

〈(c†
m1
σzcm1

)(c†
m2
σzcm2

)〉. (A.5)

B Extracting Energy Gaps299

In projector QMC, we are able to get the energy gap between the first excited state in symmetry300

sector S and the ground state in the following way. Assuming a trial wavefunction, |ψ0〉, an301

operator that creates overlap between the states in symmetry sector S and the ground state,302

OS, and a complete set of states
∑

n |n〉 〈n|, where |n〉 is an eigenstate with energy eigenvalue303

En , we have that304

〈OS (τ)OS (0)〉 =
〈ψ0| e−(β−τ)H OSe−τH OS |ψ0〉

〈ψ0|ψ0〉

=
∑

n

〈ψ0| e−(β−τ)H OS |n〉 〈n| e−τH OS |ψ0〉
〈ψ0|ψ0〉

=
∑

n

〈ψ0|OS |n〉 〈n|OS |ψ0〉
〈ψ0|ψ0〉

e−βE0e−τ(En−E0).

(B.1)

This term has contributions from all eigenstates that have the symmetry S. The higher energy305

states will have gaps that will be suppressed relative to the smallest energy gap, and so we can306

approximate307

〈OS (τ)OS (0)〉 = C1e−τ
�

E0
S−E0

�

+ C2e−τ
�

E1
S−E0

�

, (B.2)
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Figure 4: Fits to one exponential using semilog plots. The vertical lines show the
locations of the endpoint and startpoints for the data. Plots (a), (b), and (c) show
the data from nz

0,0, nz
1,0, and nz

2,0, respectively. Plot (d) shows the data from n0
2,0 and

plot (e) shows the data from nx
2,0.

where E0
S and E1

S are the lowest energy and second lowest energy corresponding to states in308

symmetry sector S, respectively.309

In practice, we found that in order to extract E0
S , sometimes a fit to the two exponentials310

with prefactors C1 and C2 in (5) is necessary, but sometimes a fit to a single exponential (which311

assumes C2 = 0) is more appropriate. The procedure for fitting to one versus two exponentials312

involves the following steps:313

1. Find the τ interval where the data is distinguishable from zero according to error bars.314

The largest time in this interval is the initial “endpoint” guess.315

2. Initially guess that the “midpoint” in time–where one exponential versus the other ex-316

ponential dominates–is 30% of the full time interval.317

3. Test a fit to a single exponential–if the initial data point is smaller than the t = 0 value318

for the fitted function, gradually adjust the midpoint and endpoint guesses down until319

this is not the case.320

4. If the initial data point is still within errors of the t = 0 value for the single-exponential321

fitted function, fit the data to a single exponential. If not move on to a two-exponential322

fit and then revise the midpoint guess such that the value of the larger exponential in323

the fit is negligible compared to that of the smaller exponential at the midpoint.324
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Figure 5: Fits to two exponentials using semilog plots. The vertical solid lines show
the locations of the endpoint and midpoint for a restricted fit–where the C1 expo-
nential and the C2 exponential are fitted separately but iteratively using information
from previous results to arrive at a final answer. The dashed lines give an interval of
midpoints that were tested in order to estimate the error bar. The solid diagonal lines
give the two-exponential restricted and unrestricted fits (“fit” and “fit-unrestricted”).
The dashed diagonal lines are fits for each of the two exponentials, both for restricted
(“fit-part”) and unrestricted (“fit-part_ur”) fits. Plot (a) shows the data from nx

0,0, and
plot (b) shows the data from nx

1,0.

For the operators nz
l,0

, n0
2,0, and nx

2,0, the fit to a single exponential ends up being more ap-325

propriate. Figure 4 shows the fits to a single exponential (in the cases of n2
2,0 and nx

2,0, we326

chose a single exponential because there was very little small τ data to fit to a higher expo-327

nential). However, the nx
0,0, nx

1,0 observables require two exponentials. Figure 5 shows the328

two exponential fits for these operators at coupling h = 0.212 and s = 3.5.329

For the two-exponential fits, we first use the midpoint data to iteratively fit one exponential330

at a time: midpoint to endpoint is the fit for the lower energy and then the startpoint to the331

midpoint is the fit for the higher energy. We alternate fitting one exponential versus the other332

while fixing the parameters of the nonfitted exponential according to the previous fit. This333

gives us the “restricted” fit listed as “fit” in Figure 5. We then use these fitted energy values as334

initial guesses for an “unrestricted” fit that fits both exponentials at once. This gives the “fit-335

unrestricted” in Figure 5. The value of the energy estimate is the mean of these restricted and336

unrestricted fit energies. Finally, we obtain error bars by performing fits to a single exponential337

for the smaller energy from a midpoint to the endpoint, where we calculate the midpoint as338

τ = −
1

(E1
S − E0

S ) ln
�

εC1

C2

�
, (B.3)

where ε is a small number representing the time when the value of C2e−τ
�

E1
S−E0

�

is ε times339

C1e−τ
�

E0
S−E0

�

. We take a range of ε ∈ {0.01, 0.1} to fit E0
S and use this range of E0

S values to340

estimate the error for the energy. The boundaries of this range of midpoints are given by the341

dashed vertical lines in Figure 5.342

C Finite size scaling of energy gaps343

Because the QMC model studied has an additional SU(2)-layer symmetry, one check to make344

is whether the degrees of freedom in the layer SU(2) non-singlet representations are gapped345
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Figure 6: Data showing the energy gaps obtained from the SU(2) singlet operators
as a function of 1/

p
N for N = 8, 10, 14. This data is in the vicinity of the critical

point at V1 = 0.1, V0 = 0.5564, h = 0.2. The gaps decrease with system size, as
expected. Extrapolations are shown for the Z2-odd sector, but not the even sector
since the error bars are so large.
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Figure 7: Data showing the energy gaps obtained from operators of the form σiτz as
a function of 1/

p
N for N = 8, 10, 14 (operators of the form σiτx ,y would give the

same states, making this the SU(2) triplet symmetry class). This data is in the vicinity
of the critical point at V1 = 0.1, V0 = 0.5564, h = 0.2. These energies appear to be
gapped out.
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at the phase transition. All the operators in the Hamiltonian are of the form σiτ0, which are346

the singlets of the layer SU(2) symmetry. Figure 6 shows the energy gaps obtained from these347

operators as a function of 1/
p

N at h = 0.2, which is in the vicinity of the critical point. All348

gaps are decreasing with system size and the gaps for the Z2-odd sector seem to be trending349

linearly towards the origin, as required by the state-operator correspondence. The Z2-even350

sector gaps are also decreasing with increasing system size, but they have larger error bars351

due to interference with other higher energy descendants in their spectrum, and the details of352

their fits are given in Appendix B of the Supplementary Material. On the other hand, the layer353

SU(2) non-singlet, e.g., layer triplet gaps should be finite in the thermodynamic limit. Figure354

7 shows layer triplet energy gaps measured by σiτx ,y,z , as a function of 1/
p

N, and from here355

we see that these excitations appear to be gapped.356
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