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The quantum impurity, which serves as in-situ probe of the thermal baths, is a prominent topic
in materials research. Its application to quantum spin liquids has attracted great interest in last
decades. However, the comprehensive understanding of the quantum impurity effects in quantum
spin liquids is still an open question, due to the complicated gauge fluctuations and the strong-
correlation between the fractionalized excitations and the impurity. Here, we propose a general
method, a combination of the Chern-Simons fermionization and the Wess-Zumino-Witten theory.
Our method shows that quantum spin liquids with local defects can induce emergent impurity phe-
nomena, and provides a systematic solution to the quantum impurity problem in an important class
of quantum spin liquids, i.e., the Dirac spin liquids. Under the Chern-Simons fermionization, the
gauge fluctuations are apparently suppressed, and the strong-correlation between the fractionalized
excitations and the impurity can be exactly solved by the non-Abelian bosonization. Consequently,
the Fermi liquid and non-Fermi liquid fixed point as well as the crossover between them are iden-
tified, respectively, depending on the relevance of the impurity scattering among the Dirac valleys.
The obtained fixed points lead to several new experimental fingerprints for Dirac spin liquids, in-
cluding a Kondo-induced magneto-thermal effect, a non-monotonous thermal conductivity during
the crossover, and an anisotropic spin correlation function. These findings provide a theoretical
framework as well as the experimental guidance to explore novel Kondo phenomena in quantum
spin liquids.

Introduction.– Quantum spin liquids (QSLs) [1–3],
strongly entangled quantum states that evade ordering
down to zero temperature, pose a great challenge for
their experimental observation. The main difficulty is
due to the fact that the low-lying excitations of QSLs
are fractionalized particles [2, 3], whose nonlocal nature
is beyond the capabilities of usual experimental probes.
For a number of candidate materials, the absence of or-
dering is evidenced by the specific heat and the muon
spin relaxation experiments at ultra-low-temperature [4–
28]. However, the identification of the highly-entangled
liquid states remains elusive [28–32]: the observed ther-
mal conductivity at low temperatures suggests a domi-
nant role played by the phonons, obscuring the contribu-
tions from the fractionalized particles [31, 32], e.g., the
spinons, if any. Therefore, to further validate the QSL
ground states, it is urgent to predict more finger-print ex-
perimental features that are unique to the fractionalized
excitations [2].

An important strategy is to use quantum impurities
as in-situ probes [33–39], which can induce many-body
Kondo resonance and result in global change of the ther-
mal dynamical properties of the bath. The most com-
mon impurities come from the perturbation of external
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dopants, either magnetic or non-magnetic. These can be
referred to as extrinsic impurities, and have drawn grow-
ing attention and were applied to various QSLs since the
last decade [40–42], including the Kitaev spin liquids [43–
46], the spin liquids with spinon Fermi surfaces [47, 48],
and also the deconfined quantum critical point (DQCP)
in frustrated magnets [49–52]. The Kondo signature in
spinon bath was also observed by recent experiments on
Zn-brochantite [53, 54]. In contrast to the extrinsic im-
purities, intrinsic defects are much less studied in QSLs.
The intrinsic impurities introduce no external degrees of
freedom to the bath, and they can appear in different
forms, e.g., a local lattice distortion in candidate materi-
als of QSLs, or a local quench of the spin exchange inter-
actions in frustrated magnets. The intrinsic defects can
also exhibit novel properties as a result of the coupling
to the host material, e.g., lattice dislocations in honey-
comb lattices can generate effective magnetic moments
[55]. Their effects in QSLs still remain elusive to date.

For both extrinsic and intrinsic impurities, there are
several key questions yet to be addressed in QSLs. First,
the fractionalized excitations in QSLs are usually cou-
pled to emergent gauge fields [41, 47, 56], but it is still
not clear whether the gauge fields would participate in
the local many-body resonance triggered by the impu-
rity [47, 57]. Second, the conventional parton mean-field
theory for QSLs is subject to the single-occupation con-
dition [58], and therefore inevitably requires approxima-
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tions such as the large-N treatment when an impurity is
involved. Therefore, a more rigorous approach is highly
desired, which hopefully can generate novel Kondo sig-
natures for QSLs. Third, for the intrinsic impurities,
such as a local quench of the spin-exchange interaction
in frustrated magnets, their effect is strongly dependent
on the hosting materials. Hence, it is intriguing to ask
whether they could generate novel many-body resonance
in a QSL.

In this work, we propose a new analytic approach
- namely, the Chern-Simons fermionization plus Wess-
Zumino-Witten (WZW) theory - to systematically study
the quantum impurity problems in QSLs. Unlike the
conventional studies on the extrinsic impurities, we focus
on the intrinsic defects and reveal their salient many-
body features in a QSL. For demonstration, we pro-
pose a prototypical model describing a 2D XY (frus-
trated) quantum magnet with a local twist of the ex-
change interaction, which we term the locally twisted
XY model (LTXY). Using our proposed method, we
show that the local twist in the frustrated XY magnets
leads to a low-energy effective theory, which describes an
emergent Anderson-type impurity in a Dirac QSL. Novel
Kondo phenomena are then obtained, despite their dif-
ferent origin compared to the conventional magnetic im-
purity problems.

Our study shows that an intrinsic non-magnetic defect
in Dirac QSL can also generate emergent Kondo phenom-
ena. The Dirac QSLs, whose fractionalized excitations
enjoy linear dispersion, are of particular importance as
they are closely related to the quantum antiferromag-
netism as well as the DQCP [59]. They are also pro-
posed as stable ground states of certain quantum spin
models [60–62]. Technically, we fermionize the LTXY
model using the lattice Chern-Simons (CS) fermion rep-
resentation [63–67]. The obtained low-energy physics
corresponds to a number of Dirac valleys with valley-
dependent pseudospin-momentum locking (PSML). The
local twist and its coupling to the rest of the system is
then mapped to an Anderson impurity, which is coupled
to the Dirac fermions in low-energy. The low-energy ef-
fective model, owing to its rotation symmetry, can be
reduced to (1 + 1)D conformal field theories (CFTs),
namely WZW theories. Then, based on the non-Abelian
bosonization, two types of Kondo fixed points, either the
Fermi liquid (FL) or the non-Fermi liquid (NFL), are
identified, depending on the relevance of the impurity
scattering among the Dirac valleys. Remarkably, we show
that, although both of the two fixed points are charge-
insulating, they display novel magneto-thermal conduc-
tivities with distinct scaling behaviors at low tempera-
ture. This property defines new Kondo phenomena in
spin liquids generated by intrinsic defects, and allows ex-
perimental detection of Dirac QSLs with fractionalized
excitations.

A general reduction to CFT.– Let us begin with con-
sidering the general Kondo problem with a bath of Dirac
fermions: 2D Dirac valleys labeled by a related by some

FIG. 1. (a) The impurity is coupled to different Dirac valleys,
whose Fermi levels are modulated by external magnetic field
(see below). (b) The low-energy modes of Dirac valleys corre-
spond to chiral fermions with orbital angular momentum and
pseudospin indices (j, s). The impurity is only coupled to the
soft modes with s = + (s = −) and j = ±1/2 for a positive
(negative) chemical potential.

point group [68] in the Brillouin zone, whose low-energy
excitations are described by

HD =
∑
a

∫
d2k

(2π)2
fa†(k)(vFk · τ (a) − µ) fa(k). (1)

Here, we allow a valley-dependent PSML, such that for

each valley a (a = 1, 2, ..., k), the set of pseudospin τ
(a)
i

with i = 1, 2 can be different and are not necessarily the
standard Pauli matrices. Since they satisfy the Clifford

algebra, {τ (a)
i , τ

(a)
j } = 2δij12, we can always appropri-

ately choose τ
(a)
3 , so that there is a unitary transforma-

tion Ua that transforms τ
(a)
i into the standard Pauli ma-

trices τi = Uaτ
(a)
i Ua†. We further consider an impurity

effectively characterized by Simp pinned at r = 0 in real
space. These Dirac fermions have an effective Kondo ex-
change coupling with the impurity Simp,

H ′ =
∑
a,b

λab f
a†(0)

τ

2
f b(0) · Simp, (2)

where τ = (τ1, τ2, τ3) and λ is a symmetric real matrix.
The point group symmetry that relates the Dirac val-
leys imposes constraints on λ. For instance, diagonal
entries are all equal. As we observe, for the Hamiltonian
in Eq.(1), the density of states (DOS) vanish at µ = 0.
At this critical point, the Kondo exchange coupling in
Eq.(2) is irrelevant. Away from the critical point with
µ 6= 0, the low-energy degrees of freedom are described
by the soft fermionic modes in the vicinity of the Fermi
circles (see Fig.1(a)).

For technical convenience, let us transform the pseudo-
spin τ (a) for each valley a into the standard Pauli matri-
ces. That is, we introduce f̃a(k) = Ua†fa(k). In accord
with the Kondo exchange Eq.(2), it is convenient to work
with the polar coordinates. Since the PSML of (1) pre-
serves the total angular momentum Jz = Lz + 1

2τz, we

expand the fields as, f̃a(k) =
∑
j,s f

a
j,s(k)χj,s(φ), where

χj,s(φ) is the eigenstates of Jz, with quantum numbers
(j, s), where j is the half-integer eigenvalues of Jz and
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s = ± labels the eigenvalues of τz. In such basis, in-
coming and out-going radial waves emerge with positive
and negative energies, respectively (see Fig.1(b)). Then,
for µ > 0, the soft modes are right-handed fermions de-
scribed by

HD
eff = vF

∑
a,j

∫ Λ

−Λ

dq

2π
ψa†j (q)qψaj (q), (3)

where ψaj (q) = uaj

√
kF
2π f̃j,+(kF + q) with the index s = +

omitted. Here, an arbitrary U(1) factor freedom uaj is al-
lowed for each soft mode (a, j) for later usage. The Fermi
momentum is kF = µ/vF , and q takes value within a
cutoff, q ∈ [−Λ,Λ]. For µ < 0, analogously the soft
modes corresponds to left-handed fermions, and can be
treated in parallel to the case of µ > 0. Note that

the renormalized soft fermion fields by
√

kF
2π satisfy the

anti-commutation relations of 1D fermions, for instance,

{ψ†j (q), ψj′(q′)} = 2πδ(q − q′).
The Kondo exchange H ′ can be transformed accord-

ingly, reducing to the coupling to 1D soft fermions. Ow-
ing to the U(1) factor uaj of the soft modes, it can be cast
into a simple form where only j = ±1/2 are relevant:

H ′eff =
∑
a,b

gab ψ
a†(0)

σ

2
ψb(0) · Simp, (4)

where ψa†(x) = [ψa†1
2

(x), ψa†− 1
2

(x)], gab = πkFλab, and σ

denotes the Pauli matrix defined in the angular momen-
tum space. Eq.(4) implies a cutoff, with summation over
only j = ±1/2 in Eq.(3).

The above derivation shows that general Kondo prob-
lems in 2D Dirac systems with valley-dependent PSML
can be reduced to k valleys of soft fermions coupled to
the impurity, which generally allows for a CFT descrip-
tion of the underlying infared fixed points [69–76]. The
single valley case is illustrated by Fig.1(b).

Let us firstly consider the case with ignorable inter-
valley scatterings, namely gab = gδab. Then, the Kondo
exchange Eq. (4) becomes H ′eff = gJ(0) · Simp, where

the SU(2) current J(x) =
∑
a ψ
†
a(x)σψa(x)/2. This mo-

tivates us to consider the global symmetry U(1)×SU(k)×
SU(2) of Eq.(3) for the charge, valley and pseudospin sec-
tor, separately, leading to the bosonization for the Hamil-
tonian density as [76],

HDeff =
πvF
2k

J2 +
2πvF
k + 2

J2 +
2πvF
k + 2

J 2, (5)

where the currents for U(1) and SU(k) sector respec-

tively read as, J =
∑
a,j ψ

a†
j ψ

a
j and J A =

∑
j ψ
†
jT

Aψj ,

with TA the generators of SU(k). Since the impurity only
interacts with the pseudospin current operator J , which
satisfies the Kac-Moody algebras SU(2)k, the fermion
bath can enjoy a NFL fixed point [69, 70] characterized by
U(1)×SU(2)k×SU(k)2 CFT. In the generic case with off-
diagonal entries of g, the Kondo exchange Eq.(4) violates

the rotational symmetry in the valley space. Therefore,
in general J is no longer a conserved current, and the
level of SU(2)k will be reduced, resulting in a different
fixed point.

Chern-Simons Dirac fermions in spin liquids.– We now
demonstrate how the above formalism can be related to
a general 2D Dirac QSL. Our scheme is to utilize the CS
fermionization [63–67] to describe the Dirac QSLs. We
represent the local spin-1/2 state as a spinless fermion
state attached with a unit of U(1) gauge flux to preserve
the bosonic statistics, or equivalently in terms of oper-
ators, S±r = f±r e

±iUr with Ur =
∑

r′ 6=r arg(r − r′)f†r fr.
The flux attachment for each fermion is enabled by cou-
pling the fermions to a U(1) gauge field described by a CS
term [64, 66]. Under the fermionization, the low-energy
physics of a frustrated spin system can be derived as the
emergent Dirac CS fermions with competing nonlocal in-
teractions induced by gauge field [66, 67]. A gapped spin
liquid is then formed when certain bosonic orders are
generated [66], while the gapless Dirac QSL naturally
emerges when the interaction becomes irrelevant [67].

We specify our study using the Hamilltonian for a 2D
XY quantum magnet as starting point,

H0 =
∑
r,r′

Jr,r′(S
x
r S

x
r′ + SyrS

y
r′). (6)

Here, we consider a honeycomb lattice as an example.
For the J1 − J2 honeycomb XY model, signatures of a
gapless Dirac spin liquid state are numerically revealed at
the critical point J2/J1 ∼ 0.23 [77]. Here, since our focus
is to solve the impurity problem, the Dirac QSL ground
state is assumed. Jr,r′ includes the first several nearest
neighbor (NN) interactions with frustration. Then we
consider an intrinsic defect on top of Eq.(6), i.e., we re-
place the nearest neighbor XY exchange interaction at
site r0 by the ZZ interaction,

Hdef = J ′Szr0,AS
z
r0,B , (7)

where A and B denote the sublattice sites A and B
of r0, and J ′ denotes the coupling coefficient between
them. On the lattice bond located at r0, the original
Sxr0,AS

x
r0,B

+ Syr0,AS
y
r0,B

term has been “twisted” into
Szr0,AS

z
r0,B

. We term the locally defected XY model

(6)+(7) the LTXY model, as schematically shown in
Fig.2(a). We shall further analyze the LTXY model un-
der CS fermionization.

After fermionization of Eq.(6), the CS fermions are
cast into the same Hamiltonian as Eq.(1), with additional
gauge field-mediated interactions (Fig.1(a)) [64–67]. We
now focus on honeycomb lattice, where two Dirac valleys
a = ± emerge at K and K′, related by mirror symme-
try, and accordingly τ (+) = τ and τ (−) = −τT are Pauli
matrices defined in the pseudospin (sublattice) space [64–
66], indicating the valley-dependent PSML. For other lat-
tices, there can be more Dirac valleys related by point
groups [66, 67]. We restrict ourselves to studying a sta-
ble Dirac QSL [78, 79] such that the gauge field-induced
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FIG. 2. (a) The LTXY model on a honeycomb lattice, which
is a XY model with one of its lattice bounds r0 twisted into
Sz
r0,AS

z
r0,B . (b) The LTXY model can be mapped into an

effective Anderson impurity model. The local defect/twist is
mapped into an effective Anderson impurity, coupled to the
bath consisting of the surrounding honeycomb lattice via the
nearest neighbour couplings shown as red lines.

interactions between the Dirac fermions are irrelevant op-
erators [64].

The CS fermion representation reveals that, the chem-
ical potential µ of the CS Dirac fermions is tunable by
an out-of-plane field B. This is because, as long as the
Dirac QSL remains stable, the field B generates the out-
of-plane polarization that modulates the density of CS
fermions n via

∑
r〈Szr 〉/N = n− 1/2 ∝ B [65, 67].

We shall show in the appendix that after CS fermion-
ization of Eq.(7), Hdef takes the form of an effective
Anderson impurity, which couples to the Dirac QSL
via nearest neighbour couplings and perturbs its ground
state (see Fig.2(b)). The Schrieffer-Wolff transformation
then transforms the Anderson impurity model to an ef-
fective Kondo exchange model

H ′ =
∑
r

λ(r)f†(r)
τ

2
f(r) · Simp, (8)

where we have set r0 = 0, and τ denotes the pseudospin
(sublattice). λ(r) is the coupling strength where a r-
dependence is allowed for generality. Simp is an effective
local spin-1/2 impurity. Interestingly, the CS fermion-
ization translates the original local defect into a Kondo
exchange in the pseudospin (sublattice) space.

It is natural to assume that λ(r) exponentially de-
cays away from the impurity, namely, λ(r) = λ0e

−|r|/ξ,
where ξ is the characteristic scattering length. Then,
with projection into the low-energy window, Eq.(8) takes
the form of Eq. (2). Specifically, the diagonal and off
diagonal entries of λ, λd and λt, correspond to the in-
tervalley and the intravalley scattering strength, respec-
tively. They are explicitly given by λd = 2πλ0ξ

2 and
λt = 2πλ0ξ

2/(1 + |Q|2ξ2)3/2 with Q = K − K′ for
Λ � ξ−1. Here, λt is vanishingly small compared to λd
for long-range scattering but is non-negligible for short-
range scattering.

The above shows a systematic mapping from the
quantum impurity model in frustrated magnet to the

Kondo model in 2D Dirac fermions with valley-dependent
PSML, i.e., Eqs. (1) and (2). Accordingly, the reduc-
tion to the low-energy soft modes follows, producing
Eq. (4) with the diagonal and off-diagonal entries as,
gd/t = πkFλd/t.

Before proceeding, we compare the Dirac fermion bath
in the spin liquids with that in semimetals [80, 81] and
the surface states of topological insulators [82]. While
both have linear dispersion, the Dirac CS fermions in the
spin liquids enjoy extraordinary features: First, the CS
fermions are both charge-insulating and spinless. Second,
the Kondo exchange acts in the sublattice rather than the
true spin space. Third, the chemical potential is tunable
by magnetic field, rather than by the electric potential.

Kondo fixed points and thermal conductivity.– For the
present spin liquid with two Dirac valleys, the pseudospin
and valley currents both satisfy SU(2)2 algebra. The
bosonization of the low-energy modes are given by Eq.(5).
Accordingly, if gt is negligible, we expect that the impu-
rity is over-screened, and the fermion bath corresponds to
the NFL fixed point governed by U(1)×SU(2)2×SU(2)2

CFT.
Otherwise, with nonvanishing exchange gt, the ro-

tational symmetry in the valley space will be broken.
Thus, we introduce ψ1,2 = (ψ+ ± ψ−)/

√
2 to diago-

nalize the Kondo exchange term Eq.(4) into H ′eff =∑
α=1,2 gαJα(0) · Simp, where Jα = ψ†ασψα/2 with α =

1, 2 and g1,2 = gd ± dt. Accordingly, the two flavors
of fermions in Eq.(1) should be bosonized individually,
which leads to

H(α)
0 =

πvF
2
J2
α +

2πvF
3
J2
α. (9)

The bosonized Hamiltonian H(α)
0 suggests a FL fixed

point corresponds to U(1)× SU(2)1 CFT.
The above expectations from CFT can be verified by

the perturbative RG calculations. To third order ex-
pansion of g1 and g2 (see appendix), we obtain the fol-
lowing RG flow, dg1/dl = g2

1 − g1(g2
1 + g2

2)g1/2 and
dg2/dl = g2

2 − g2(g2
1 + g2

2)g1/2. The flow trajectory is
shown in Fig.3(a), where two fixed points are revealed
as indicated by the red and green dot, respectively. The
green dot has one of the couplings been renormalized to
zero, thereby describing a FL fixed point, while the red
preserves the symmetric two-channel couplings, suggest-
ing the NFL behavior.

Using the CFT techniques [69–71], the Green’s func-
tion (GF) at Kondo fixed points can be calculated by fu-
sion with Simp = 1/2 conformal tower. It is obtained that
the quasi-particle weight of CS fermions is fully preserved
and lost for the FL and NFL fixed point, respectively.
The latter predicts an interesting phenomena that the
fractionalized excitations in spin liquid lose their quasi-
particle nature due to the competing screening channels.
Furthermore, via a double fusion procedure [69–71], the
scaling behavior of impurity dynamical susceptibility is
obtained as χ(ω) ∝ ω0 for NFL, while χ(ω) ∝ ω for the
FL fixed point.
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FIG. 3. (a) RG flow diagram of the coupling constants g1,
g2, which reveal the NFL and FL fixed points. (b) The imag-
inary part of the impurity dynamical susceptibility of spin
calculated by NRG. The NFL and FL behaviors as well as a
crossover are shown in the low temperature regime for differ-
ent coupling constants. The inset shows the dependence of
Kondo temperatures versus chemical potential µ.

To confirm the CFT results, we set up numerical renor-
malization group (NRG) calculations starting from the
initial Hamiltonian, Eq.(1),(2). The calculations are per-
formed using the full-density-matrix NRG [83] method
implemented in the QSpace tensor library [84, 85]. As
shown in Fig.3(b), for g1 6= g2 [g1 = g2], the numerical re-
sults of dynamical susceptibility indeed shows χ(ω) ∝ ω
[χ(ω) ∝ ω0] at low energies, clearly demonstrating the
FL [NFL] fixed point. For g1 ∼ g2, a crossover from NFL
to FL is also found. Importantly, the inset of Fig.3(b)
shows that the Kondo energy scale TK is dependent on
the chemical potential of CS fermions, implying a tunable
Kondo screening by external field B.

Some key features should be pointed out, in contrast
with the FL and NFL fixed points in normal metals [74].
First, the inherent valleys of Dirac QSLs complicate the
situations. The scattering potential among valleys mat-
ters. For short-range scattering, the inter-valley scat-
tering is non-negligible, favoring the FL, whereas, the
long-range scattering prefers the NFL fixed point. Sec-
ond, the CS fermions carry no electron charges and are
free from any resistivity anomalies [74]. However, for the
FL [NFL] fixed point, the exact screening [overscreening]
of the pseudospin takes pace. This should result in an
anomalous thermal effect as it generates a many-body
local resonance of the CS fermions.

To investigate the Kondo-generated thermal effect, we
combine the CFT of CS fermions and the linear response
theory (see appendix and [86]). The thermal conductiv-
ity can be calculated from the current-current correla-

tion functions, π(iωn) = −
∫ β

0
dτeiωnτ 〈T̂τ jE(τ) · jE(0)〉,

where jE(τ) is the thermal current, and the thermal con-
ductance TσE(T ) = − limω→0 ImπR(ω)/ω, where πR is
the retarded correlation function obtained via analytic
continuation. Further inserting the self-energy obtained
from CFT, we obtain the thermal conductivity at low
temperature as (see appendix),

σE(T )/T = π3ρ0/[9(1− S)nimp], (10)

where we have assumed a dilute distribution of impu-
rities with density nimp, and S = −1 [S = 0] for the
FL [NFL] fixed point. Eq.(10) indicates that σE(T ) is
sensitive to the DOS of CS fermions at Fermi energy,
ρ0, which is in turn proportional to field B, implying
a field-modulated thermal conductivity, termed as the
magneto-thermal effect. Moreover, since the phonon’s
contribution is field-independent, the predicted Kondo
phenomena provides a controllable way to distinguish the
intrinsic degrees of freedoms of QSLs. For finite temper-
ature, the higher order corrections from the irrelevant
operators in CFT come into play [74, 75], generating dif-
ferent scaling behaviors for the two different fixed points,
i.e., σFLE (T )/T = π3ρ0/18nimp−aT 2 and σNFLE (T )/T =

π3ρ0/9nimp− bT 1/2, where a, b are universal coefficients.
Therefore, in the crossover regime from NFL to FL shown
in Fig.3(b), we expect a non-monotonous thermal con-
ductivity σE(T )/T versus T when the Kondo resonance
is formed.

Conclusions and discussions.– We have presented
a general method, namely a combination of the CS
fermionization [64–66] with the WZW theory, to explore
novel quantum impurity effects in Dirac QSLs. Conse-
quently, we show that effective Kondo phenomena can
emerge in Dirac QSLs with local defects. FL and NFL
behaviors as well as a crossover between them are found,
leading to several remarkable predictions, including a
Kondo-induced magneto-thermal effect in the charge-
insulating state, a non-monotonous thermal conductivity
during the crossover, and an anisotropic spin correlation
function because of the PSML. The last one is similar
to the pseudospin Kondo-singlet discussed in topological
superconductors [39]. These predicted Kondo phenom-
ena naturally provide protocols to probe the features
of host Dirac QSLs. In this regard, our findings may
be relevant for materials such as κ − ET2Cu2(CN)3 [4]
and M[Pd(dmit)2]2 [29], which enjoys triangular lattice
geometry and could be promising candidates for Dirac
QSLs [60, 67]. Finally, we note a recent unusual field-
dependence of the muon relaxation at low fields in Zn-
brochantite [53]. It is an inspiring direction to investigate
whether it is related to the mechanism discussed here.
Our work reported here therefore is expected to have
wide applications and major implications for further ex-
ploration of novel quantum impurity effects in QSLs.
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Appendix A: The effect of the defect on the Dirac
CS fermions

In this section, we show the effect of the local defect on
the 2-dimensional XY quantum magnet model. Namely,
the defect effectively acts as an Anderson impurity, which
induces an effective Kondo exchange in the pseudo-spin
(sublattice) space.

First, we need to separate the local sites at r0 from the
rest of the system. We regard the sites at r0 as the in-
trinsic impurity and the rest of the system as the hosting
bath. Thus, the bath here actually consists of a Dirac
liquid but with two local sites at r0 forbidden. This can
be well captured by introducing a large onsite potential
V at r0 [87], namely,

Hbath = HD + V f†r0fr0 , (A1)

where HD is given by equation (1) of the main text,
which is the 2-dimensional XY quantum magnet model
H0 given by equation (6) of the main text after CS
fermionization, and fr0 = [fr0,A, fr0,B ]T . We empha-
size that this large on-site potential term has little im-
pact on the Kondo physics of our setup, especially for
finite µ, since its effect is only to bring about the local
particle-hole asymmetry that in turn favors the Kondo
fixed point, as has been proved in [88].

Next, consider the local defect Hdef given by equation
(7) of the main text:

Hdef = J ′Szr0,AS
z
r0,B . (A2)

Under CS fermionization with

Szr = f†r fr −
1

2
, (A3)

it is cast into

Hdef ≡ Himp =
∑
α

εff
†
r0,αfr0,α + J ′f†r0,Afr0,Af

†
r0,B

fr0,B ,

(A4)

where α ∈ {A,B} denotes the sublattice index and εf =
−J ′/2. Therefore, the local defect is transformed to a
symmetric Anderson impurity, with the local effective CS
fermions subjected to a Hubbard interaction.

Then, we consider the coupling Hhyb between Hbath

and the effective impurity Himp, in the form of hoppings
between the impurity sites and their nearest neighboring
sites in the bath:

Hhyb =
∑
r′

Jr0,r′
(
f†r0,Afr′,B + f†r0,Bfr′,A

)
+ h.c. , (A5)

where r′ includes the nearest neighboring sites of r0. Af-
ter a Schrieffer-Wolf transformation, Himp+Hhyb can be
further written in the Kondo regime simply as the ex-
change coupling to an effective local spin-half impurity
Simp formed by the local CS fermions at r0:

Himp +Hhyb =
∑
r

λ(r)f†r,αταβfr,β · Simp, (A6)

where τ is the Pauli matrix defined in the pseudospin
(sublattice) space. To be more general, we allow r-
dependence of the exchange coupling λ(r), describing the
scattering potential to the effective quantum impurity.
We have shown that the effect of the local defect on the
frustrated magnet can be cast into an effective Kondo-
exchange in the pseudospin space. This leads to Eq.(8)
of the main text.

Appendix B: mapping to the impurity model
coupled to 1D soft fermions

In the main text, we have shown the general proce-
dure how to map from the impurity model in 2D Dirac
fermions to that in 1D soft modes. In this section, we
illustrate the detailed transformations using the honey-
comb lattice model as the example.

After projection to long-wave regime near the Dirac
CS valleys K and K′, the bath is described as

H0 = vF
∑
k

f
(+)†
k,α (ταβ · k− µ)f

(+)
k,β

+ vF
∑
k

f
(−)†
k,α (−τT

αβ · k− µ)f
(−)
k,β , (B1)

with valley-dependent PSML. H ′ is projected into the
long-wave regime as,

H ′p = gd
∑

k,k′,a=±

f
(a)†
k,α ταβ · Simp, f

(a)
k′,β

+ gt
∑

k,k′,a=±

f
(a)†
k,α ταβ · Simp, f

(a)
k′,β , (B2)

where a denotes the two valleys. One firstly make a uni-
tary transformation to diagonalize CS fermions at each
Dirac valley, H ′p transform accordingly under the unitary
transformation, leading to

H ′p = gd
∑

k,k′,a=±

c
(a)†
k U (a)(θk)τ iU (a)†(θk′)c

(a)
k′ S

i
imp

+ gt
∑

k,k′,a=±

c
(a)†
k U (a)(θk)τ iU (a)†(θk′)c

(a)
k′ S

i
imp,

(B3)

where c
(a)
k is the transformed spinor in band (sublattice)

space at valley a, U (a)(θk) the unitary rotation matrix
applied for fermions at valley a which is only dependent
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on the angle of momentum θk. Then, utilizing the rota-
tional symmetry of the impurity scattering, we transform
the fermions to the orbital angular momentum partial

waves using c
(a)
k =

∑
l e
ilθc

(a)
l,k /
√

2πk, where l is the par-
tial wave index. After insertion of the specific form of
the unitary rotation matrix U (a)(θk), the integral over
the polar angle automatically picks up several different
partial waves l, generating the following coupling as,

H ′p = gd
∑
a

∫
dkdk′

√
kk′c

(a)†
l,k U (a)(l)τ · SimpU (a)†

l c
(a)
l,k′

+ gt
∑
a

∫
dkdk′

√
kk′c

(a)†
l,k U (a)(l)τ · SimpU (a)†

l c
(a)
l,k′ ,

(B4)

where constants have been absorbed into the tuning pa-
rameter gd and gt, the sum over repeated notations such

as l is implicit. U
(a)
l is the rotation matrix again trans-

formed to the angular orbital momentum space, whose
components are delta functions that select the channel l
relevant to the impurity, i.e.,

U
(a)
l =

1√
2

(
δl,0 aδl,−a
δl,0 −aδl,−a

)
, (B5)

where a = ± denotes the two valleys. Eq.(B4) implies
that the impurity is coupled to an effective CS fermions

d
(a)
k =

∑
l U

(a)†(θk)c
(a)
l,k , which is combinations of 1D

CS fermions with different index l for different valleys.
l = 0,−1 are coupled to the impurity at K whle l = 0, 1
are involved at K′ valley. Therefore, the impurity only
picks up these relevant l channels. Since the bath, after
rotation to the angular orbital momentum space, enjoy
independent l components with l being good quantum
number due to the rotational invariance of the problem,
we can select from the bath these relevant channels, lead-
ing to,

H0 =
∑

l=−1,0

∫ ∞
0

dk(εk,α − µ)c
(+)†
k,l,αc

(+)
k,l,α

+
∑
l=0,1

∫ ∞
0

dk(εk,α − µ)c
(−)†
k,l,αc

(−)
k,l,α, (B6)

where εk,α = αvF k. It is convenient to introduce the
energy representation for the impurity problem [82], and
define the effective CS fermions with combination of op-
erators for the conduction and valence Dirac band as,

d(+)
ε =

1√
2

[c
(+)
ε,0,+θ(ε) + c

(+)
ε,0,−θ(−ε), c

(+)
ε,−1,+θ(ε)− c

(+)
ε,−1,−θ(−ε)]T,

d(−)
ε =

1√
2

[c
(−)
ε,0,+θ(ε) + c

(−)
ε,0,−θ(−ε),−c

(−)
ε,1,+θ(ε) + c

(−)
ε,1,−θ(−ε)]T.

(B7)

Using d
(a)
ε , H0 is cast into a simple form as,

H0 =
∑
a,σ

∫ ∞
−∞

dε(ε− µ)d(a)†
ε,σ d

(a)
ε,σ, (B8)

where vF is set to 1. d
(a)
ε,σ=1,2 are the two entries of the

spinor defined in Eq.(19) and (20). Accordingly, the hy-
bridization term H ′p is reduced to the following form as,

H ′p = gd
∑
a

∫ +∞

−∞
dεdε′[ρ(ε)ρ(ε′)]1/2d(a)†

ε τ · Simpd(a)
ε′

+ gt
∑
a

∫ +∞

−∞
dεdε′[ρ(ε)ρ(ε′)]1/2d(a)†

ε τ · Simpd(a)
ε′ ,

(B9)

where ρ(ε) = |ε|/2πv2
F is the density of states of Dirac

CS fermions, leading to a pseudogap in the above hy-
bridizations. Detailed studies on the pseudogapped cases
have shown that the strong coupling fixed points at zero
temperature are not modified by approximating the den-
sity of states by that of the Fermi energy [89], as long as
µ 6= 0. With this approximation, one can absorb the den-
sity of states into the couplings and rename the fermionic
field as ψa. This leads to an Kondo-exchange model cou-
pled to 1D chiral soft modes, in consistent with the gen-
eral form, i.e., Eq.(3),(4) in the main text.

Appendix C: derivation of the decoupled
Wess-Zumino-Witten CFT using non-Abelian gauge

invariance

The infrared fixed point of the reduced model (im-
purity coupled to the 1D soft modes) is described by
a Wess-Zumino-Witten (WZW) CFT. We now show in
this section that the underlying CFT has a decoupled
multichannel structure and can be derived simply from
the principle of gauge invariance. The following contents
are separated into three steps including the derivation
of Ward identities from the non-Abelian gauge symme-
try, the chiral symmetry, and the deduction of the exact
functional free energy.

1. Ward Identity from non-abelian gauge
transformations

From the mapped 1D model of soft modes, we can
start from a Dirac field in a representation r of a Lie
group G coupled with a given gauge field A,namely L =
ψ̄(i /D −m)ψ with Dµ = ∂µ − igAµ. We define the free
energy W as

e−iW [A] = Z[A] =

∫
DψDψ̄ eiS . (C1)

The classical theory is invariant under the gauge trans-
formations, ψ → Uψ,ψ̄ → ψ̄U−1, and Aµ → AU =
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UAµU
−1 + i

gU∂µU
−1, whose infinitesimal version is ψ →

(1 + iα)ψ, ψ̄ → ψ̄(1 − iα), and Aµ → Aµ + 1
gDµα. As-

suming that the functional measurement Dψ̄Dψ is also
gauge invariant, the free energy satisfies

W [A] = W [AU ] + 2πn[U ] (C2)

with n being an integer determined by U , which vanishes
for infinitesimal transformations. Accordingly,

0 = W [Aµ +Dµα]−W [Aµ] =

∫
dx

δW

δAaµ
(Dµα)a

= −
∫
dx trαDµ

δW

δAµ
,

which implies

Dµ
δW

δAµ
= 0. (C3)

The variation of the free energy to the gauge field is then
calculated as

−i δW
δAµ

=
1

Z

δZ

δAµ
=

1

Z

∫
DψDψ̄ i

δS

δAµ
eiS

= i
1

Z

∫
DψDψ̄ JµeiS = i〈Jµ〉A.

Thus we prove the Ward identity

Dµ〈Jµ〉 = 0. (C4)

2. Ward Identity from chiral invariance

Now we study the chiral gauge transformations given
by ψ → ψ′ = (1 + iαγ5)ψm ψ̄ → ψ̄′ = ψ̄(1 + iαγ5)
and Aµ → A′µ = Aµ + Dµαγ5. It is straightforward
to check that the classical theory is invariant under the
gauge transformations. However the functional measure-
ment does not respect the transformations, leading to a
Jacobian determinant J . Thus the Ward identity should
be modified because of W [A′] 6= W [A]. From the parti-
tion function, we obtain,

Z[A] =

∫
DψDψ̄ eiS[ψ,ψ̄,A] =

∫
Dψ′Dψ̄′ J eiS[ψ′,ψ̄′,A′]

= Z[A′] +

∫
DψDψ̄

∫
dx

δJ
δαa
|α(x)=0α

a(x)eiS[ψ,ψ̄,A′],

leading to

Z[A′]− Z[A]

Z[A]
= −〈

∫
dx

δJ
δαa
|α(x)=0α

a(x)〉. (C5)

Besides, we have

Z[A′]− Z[A]

Z[A]
= −ig〈

∫
dx(DµJ5µ)aαa〉. (C6)

Thus, conservation equation for the axial current is ob-
tained as,

DµJ5µ = −i1
g

δJ
δα
|α=0. (C7)

The remaining task is then to evaluate the Jacobian de-
terminant. This can be readily done using the method
developed by Fujikawa, which is also utilized in a similar
situation of 3+1D with the chiral anomaly. A straight-
forward calculation in 1+1D then generates the Ward
identity for the axial current as,

DµJ5µ = −C(r)

2π
εµνFµν . (C8)

where in the derivation we have defined the Dirac ma-
trices γ0 = σ2, γ1 = iσ1 and γ3 = γ0γ1 = σ3 and used
tr(tatb) = C(r)δab with C(r) a constant for eacg repre-
sentation r with ta the representation matrix.

3. The exact functional determinant in two
dimensions

Noting that there exists a unique relation only in 1+1D
dimensions, γµγ3 = −εµνγν , which enables us to rewrite
the chiral current as J3µ = −εµνJν . Therefore, the two
Ward identities derived above are collected into a united
form of the CS fermion current as,

DµJµ = 0 (C9)

εµνDµJν =
C(r)

2π
εµνFµν . (C10)

Now the uniqueness of dimension two, compared with
higher dimensions, lies in that the current Jµ is com-
pletely determined by the two Ward identities. Before
solving the equations we first introduce the chiral coor-
dinates, x+ = x0 + x1, x− = x0 − x1. In the chiral
coordinates the metric η and total anti-symmetric tensor
ε are represented, respectively, as

ηµν =

(
0 1

2
1
2 0

)
, εµν =

(
0 2
−2 0

)
. (C11)

Accordingly we define J+ = J0 + J1, J− = J0− J1, and
A+ = A0 + A1, A− = A0 − A1. In these notations the
two identities can be cast into the following symmetric
form,

∂+J− − i[A+, J−] =
C(r)

2π
F+− (C12)

∂−J+ − i[A−, J+] =
C(r)

2π
F−+. (C13)

To obtain the explicit form of the solution, we introduce
the expression for the gauge fields, A+ = ig−1∂+g, A− =
ih−1∂−h. with g and h being fields of group elements in
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G. Then it is straightforward to check that

J+ =
C(r)

2π
(ig−1∂+g − ih−1∂+h) (C14)

J− =
C(r)

2π
(ih−1∂−h− ig−1∂−g), (C15)

are the solutions of the equations.
As promised we shall work out an explicit expression

of the free energy W [A], which is gauge invariant, using
the fields g and h. The field t(x) ∈ G gives the gauge
transformations,

A+ = ig−1∂+g −→ itg−1∂+gt
−1 + it∂+t

−1

= i(gt−1)−1∂+(gt−1)

A− = ih−1∂−h −→ ith−1∂−ht
−1 + it∂−t

−1

= i(ht−1)−1∂−(ht−1), (C16)

which are translated to g and h as

(g, h) −→ (g, h)t−1. (C17)

The gauge invariance of W [A] is now expressed as

W [g, h] = W [gt−1, ht−1], (C18)

for any field t(x). So it is sufficient to work with the
gauge A− = 0, or equivalently h constant.

δW = − 1

π

∫
dx tr(g−1∂−g δ(g

−1∂+g))

=− 1

π

∫
dx

(
tr(∂+∂−g

−1δg)− tr(g−1∂+g g
−1∂−g g

−1δg)
)

(C19)

Noting that

δ

∫
dx tr∂−g−1∂+g

=− 2

∫
dx tr(∂+∂−g

−1)δg

+

∫
dx tr(g−1∂+g g

−1∂−g g
−1δg)

+

∫
dx tr(g−1∂−g g

−1∂+g g
−1δg),

we have

δW = − 1

8π
δ

∫
dx tr(g−1∂µg g−1∂µg)

+
1

4π

∫
dx εµνtr(g−1∂µg g

−1∂νg g
−1δg). (C20)

Let us assume that G = SU(N) and the spacetime mani-
fold is compactified as S2. Then it is well-known that the
second term on the right hand of the above equation is a
variation of a Wess-Zumino term. Thus the free energy

can be explicitly written as

W [g] =− 1

8π

∫
d2x tr(g−1∂µg g−1∂µg)

+
1

12π

∫
dτd2x εµνρtr(g̃−1∂µg̃ g̃

−1∂ν g̃ g̃
−1∂ρg̃),

(C21)

where g̃(τ, x) with τ ∈ [0, 1] is a continuous extension of
g(x) with g̃(0, x) = g(x) and g̃(1, x) being constant.

Last, for the Dirac fields with both the spin and fla-
vor as in Eq.(1) of the main text, the above derivation
works but needs to be generalized with coupling to two
non-Abelian gauge field Aµ and Bmu, resulting in the
following Langrangian as,

L = ψ̄ia(iγµ∂µδ
ijδab +Aijµ δ

ab + δijBabµ )ψjb

= ψ̄(iγµ∂µ1n ⊗ 1m +Aµ ⊗ 1m + 1n ⊗Bµ)ψ,

where accordingly we haveA+ = ig−1
A ∂+gA, A− =

ihA∂−hA, B+ = ig−1
B ∂+gB , and B− = ihB∂−hB , such

that

A+ ⊗ 1m + 1n ⊗B+ = ig−1
A ⊗ g

−1
B ∂+(gA ⊗ gB) (C22)

A− ⊗ 1m + 1n ⊗B− = ih−1
A ⊗ h

−1
B ∂+(hA ⊗ hB) (C23)

For two arbitrary matrices M and N , one has the fol-
lowing property tr(M ⊗ N) = tr(M)Tr(N). Moreover,
for g ∈ SU(n), tr(g∂µg

−1) = 0 since the Lie algebra con-
sists of n × n traceless Hermitian matrices. With the
above two identities, it is straightforward to derive that
the following WZW emerges:

W [gA ⊗ gB ] = MW [gA] +NW [gB ]. (C24)

This is the decoupled WZW CFT, from which one can
read of the fusion rules in order to obtain the Kondo
fixed points, which are discussed in the main text for
both cases, i.e., with and without the off-diagonal entries
of the scattering gab (Eq.(4) of the main text).

Appendix D: perturbative RG calculation of
β-functions of exchange couplings

In order to determine the fixed points at the strong-
coupling regime, we perform a perturbative RG calcula-
tion of the β-functions with respect to the derived effec-
tive 1D model, which reads as H = H0 +H ′p, where H0 is
the rotated Hamiltonian in the valley space with respect
to Eq.(B6), which is of the form,

H0 =
∑
m=1,2

∑
σ

∫ ∞
−∞

dε(ε− µ)d†ε,m,σdε,m,σ, (D1)
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and H ′p is approximated by using the density of states at
the Fermi energy, ρ0, leading to

H ′p =g1

∫ ∞
−∞

dεdε′d†ε,1,στσσ′ · Simpdε′,1,σ′

+g2

∫ ∞
−∞

dεdε′d†ε,2,στσσ′ · Simpdε′,2,σ′ , (D2)

where a rotation in the valley space is performed, leading
to the channel m = 1, 2, and g1 = ρ0(gd + gt), g2 =
ρ0(gd − gt). The perturbative expansion over the two
terms in H ′p can be constructed with Feynman diagrams
to the two-loop order. Integrating out the fast mode
momentum leads to the renormalization group flow as,

dg1/dl = g2
1 − g1(g2

1 + g2
2)g1/2, (D3)

dg2/dl = g2
2 − g2(g2

1 + g2
2)g1/2. (D4)

where dl = dΛ/Λ is the RG scaling parameter. The first
term obtained from second order is relevant, showing the
asymptotic free of the exchange coupling, and the second
term from the third order contributes a suppression of
the relevant flow, generating a channel-mixed fixed point
with finite values of g’s, as shown by Fig.3(a) of the main
text.

Appendix E: The thermal conductivity from CS
fermions

We now list in this section details for calculation of
the thermal conductivity, with respect to both of the
two Kondo-generated fixed points. The starting point is
Eq.(D1) and (D2), which have been bosonized in the non-
Abelian fashion before. Following [70], we introduce the
left and right movers denoted by the operators dL/R,m,σ,
and Eq.(D1) can be transformed into an equivalent form
describing a semi-infinite 1D chain. The correlation func-

tion 〈d†L,m,σ(z1)dR,m,σ(z2)〉, with z being the complex
coordinate, can be readily calculated. Due to the semi-
infinite geometry of the 1D chain, a boundary occurs in
the complex plane. For a “free” boundary (the weak cou-
pling fixed point), the correlation function is obtained

as 〈d†L,m,σ(z1)dR,m,σ(z2)〉Free = 1/(z1 − z2). Follow-

ing [69–75], when the boundary is nontrivial (the Kondo
fixed point), the correlation function is evaluated to

be 〈d†L(z1)dR(z2)〉Kondo = S〈d†L,m,σ(z1)dR,m,σ(z2)〉Free,
where S is a scattering matrix which is reduced to S = −1
(0) for the FL (NFL) fixed point. Furthermore, we also
assume that the impurities are dilute in the studied 2D
system with the impurity density nimp. In this case, the
scattering time τs is related to the retarded self-energy
ΣR(ω) via τ−1

s = −2ImΣR(ω). Note that ΣR(ω) can be
readily obtained from the scattering matrix S [74].

The thermal current is caused by the energy transport
carried by the d-fields, which is proportional to the par-
ticle density and the group velocity, i.e.,

jE = −vF k̂
∑
m,σ

∫
dε(ε− µ)d†ε,mσdε,m,σ, (E1)

where k̂ = k/k is the unit vector along direction of k
and vF is set to 1 in the following calculations. The
thermal conductivity is related to the retarded current-
current correlation function πR(ω), and can be computed
via TσE(ω) = −ImπR(ω)/ω|ω→0.

To calculate πR(ω), we firstly calculate the imaginary-
time current-current correlation function, π(τ) =

〈T̂τ jE(τ)jE(0)〉, where T̂τ is the imaginary time ordering
operator. Then, one firstly use Eq.(E1) and then make
Fourier transformation and analytic continuation to ob-
tain the retarded correlation function, πR(ω). Finally,
the thermal conductivity is obtained as

TσE =
1

3

∫
dεξ2

∫
dνδ(ε− ν)τs(−

∂

∂ν
nF (ν)), (E2)

where nF (ν) = 1/exp[β(ν − µ) + 1] denotes the Fermi
distribution function. With keeping the lowest order
dependence on T , it can be derived from Eq.(E2) that
σE(T )/T = (π3ρ0)/[9(1 − S)nimp]. At finite temper-
atures, the higher-order dependence on T needs to be
taken into account [74, 75]. With considering these cor-
rections, we obtain the temperature dependence of the
thermal conductivity for both the FL and the NFL fixed
point, as shown by the main text.
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