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Abstract

We calculate the free energy as a function of polarization for the square-lattice J1-J2
Ising model for J2 < |J1|/2 using the Random local field approximation (RLFA) and
Monte Carlo (MC) simulations. Within RLFA, a metastable state with zero polarization
is present in the ordered phase. Moreover, the free energy calculated within RLFA in-
dicates a geometric slab-droplet phase transition at low temperature, which cannot be
predicted by the mean field approximation. In turn, free energy calculations by defini-
tion for finite-size samples using MC simulations reveal metastable states with a wide
range of polarization values, the origin of which we discuss. The calculations also reveal
additional slab-droplet transitions (at J2 > 0.25). These findings enrich our knowledge
of the J1-J2 Ising model and the RLFA as a useful theoretical tool to study phase transi-
tions in spin systems.
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1 Introduction13

The square-lattice J1-J2 Ising model is one of the minimal extension of the standard Ising14

model, in which the coupling J1 between nearest neighbors is complemented by the coupling15

J2 between diagonally next-nearest neighbors. The properties of this model are of both fun-16

damental and practical interest, in particular, since its quantum Heisenberg counterpart is17

relevant to the antiferromagnetism in the parent compounds of the cuprate and pnictide fam-18

ilies of high-temperature superconductors [1–3]. Indeed, recent state-of-the-art numerical19

calculations [4–14] confirm earlier findings [15–22] that diagonal interactions are important20

in describing the available experimental data for these compounds. Magnetic frustration due21

to the J2 coupling leads to the quasi-degeneracy of the ground state [6,19,20] and possibly to22

a qunatum spin liquid state at J2 close to |J1|/2 [23,24].23

We recently highlighted the existence of metastable states with arbitrary polarization in the24

square-lattice J1-J2 Ising model for J2 ∈ (0, |J1|) using Monte Carlo (MC) simulations, which25

was further supported by simple microscopic energy considerations [25]. For the ferromag-26

netic ground state, i.e. for J1 < 0 and J2 < |J1|/2, these states are rectangles with polarization27

opposite to the surrounding, briefly considered much earlier in [26,27]. Significantly, the Ran-28

dom local field approximation (RLFA) [28], also applied in [25], points to a metastable state29

with zero polarization in the same J2 coupling range, thus reflecting the appearance of micro-30

scopic metastable states, which seems impossible for mean field approximations (MFA). Note31

that the above states differ from the metastable states of the standard Ising model, consisting32

of straight stripes, into which a system with zero polarization, when applying the single-spin33

flip MC algorithm and periodic boundary conditions, relaxes after quenching only in about34

30% of cases and only in the absence of an external field [29–31].35

Polarization-dependent (called restricted or Landau) free energy F(m), considered in the36

framework of Landau’s phenomenological theory of phase transitions [32], also provides in-37

formation on metastable states (including those in an external field) and can be used to cal-38

culate the relaxation rate of the system to the ground state via the Landau-Khalatnikov equa-39

tion [33] (see, e.g., [34] for such calculations in ferroelectrics). It should be noted, however,40

that for short-range interactions, the restricted free energy obtained within the MFA differs41

qualitatively from the free energy calculated exactly or using the MC method for finite-size42

samples [35–37]. In the former case, below the phase transition temperature, the free energy43

takes into account only homogeneous states inside the two-phase (spins up and down) co-44

existence region and, as a consequence, is a double-well shaped function of polarization. In45

the latter case, all inhomogeneous states contribute to F(m). Thus, at a temperature close to46

zero, the barrier between two minima with opposite polarization is determined by the inter-47

face energy between two large domains and is proportional to the sample size L. Relative to48

the total energy, proportional to the number of spins N = L2, it vanishes in the thermodynamic49

limit [38, 39]. It was shown that, despite the loss of detailed information about microscopic50

spin configurations, F(m) can be harnessed to well reproduce the MC polarization dynamics51

of the Ising model in good agreement with the droplet theory [40]. These ideas were further52

developed in [41–44]. The temperature dependence of the free energy barrier in the J1-J253

Ising model, but only in three dimensions, was analytically estimated in [27] in connection54

with domain growth and shrinking after low-temperature quenching.55

Here we calculate the restricted free energy F(m) for the square-lattice J1-J2 Ising model56

in the framework of RLFA, exactly for a square sample size L = 6 and using the MC method57

for L = 10. We pay special attention to the metastable states, which appear in this model58

and were studied earlier in [25], and explore how they are reflected in the free energy. The59

features of the geometric slab-droplet phase transition in the free energy calculated by both60

methods are also briefly discussed.61
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Figure 1: (a) The RLFA solution for J2 = 0.3 (see also Fig. 2 in [25] for different
values of J2). Red circles define temperatures T0 < T1 < T2. (b) Restricted free
energy F0(m) within RLFA for J2 = 0.3 as a function of temperature. Red points
correspond to the local maximum of F0(m) at each temperature (a barrier), dark
blue points correspond to its global minimum (stable states), and light blue points
correspond to its local minimum (metastable states), which are zoomed in on in
Fig. 2a. Metastable states with zero polarization appear at temperatures from zero
to T0 ≈ 0.6 and from T1 ≈ 1.1 to Tc < T2 (T2 ≈ 1.26), at which a first order phase
transition occurs.

2 Model62

The square-lattice J1-J2 Ising model Hamiltonian reads63

H = J1

∑

〈i, j〉

si s j + J2

∑

〈〈i, j〉〉

si s j −
∑

i

hi si , (1)

where each spin takes the value plus or minus 1. The sums are over nearest 〈i, j〉 and diag-64

onal next-nearest 〈〈i, j〉〉 neighbors, as well as over each spin coupled to the external field hi65

at its position. In what follows, we set the values of the coupling constants values J1 = −166

and J2 < 1/2, which correspond to the ferromagnetic ground state (the case J2 > 1/2 with67

a striped antiferromagnetic ground state is similar in many aspects, but has a more complex68

spin topology and will be considered separately). Note that the model is invariant with respect69

to the simultaneous change of the sign of J1 and the replacement of homogeneous polariza-70

tion with Néel checkerboard one, corresponding to the antiferromagnetic order of the parent71

compounds of cuprate superconductors [45].72

3 Random local field approximation73

RLFA is based on the exact formula for the average spin [28,46]:74

〈si〉 = 〈tanhβ(hs
i + hi)〉, (2)

where β = 1/T is the inverse temperature in energy units. The local field, hs
i
= −
∑

j Ji j s j ,75

acting on the spin si is caused by all spins s j coupled with it.76
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Figure 2: (a) Restricted free energy F0(m) within RLFA for J2 = 0.3 and polariza-
tion limited by m ∈ (0, 0.5) to show the appearance at low temperature of a barrier
at m ̸= 0 whose height first increases and then decreases as the temperature ap-
proaches zero. (b) The barrier height ∆Fbar = Fbar − F(0) for the metastable state
at m = 0, which appears in the restricted free energy F(m) calculated within RLFA,
as a function of temperature T . Only J2 < 0.31 are considered when T0 < T1 (for
temperatures definition see Fig. 1a), since these two temperatures become undefined
at larger J2 [25].

The brackets in Eq. (2) correspond to thermal averaging, which is performed with proba-77

bility distribution [28,47]:78

P =
∏

j

(1+m j s j)/2, (3)

where the product is taken over all spins s j coupled to si , and m j = 〈s j 〉 = meiqr j is the79

thermally averaged polarization at position r j , the variation of which in space is determined80

by the propagation vector q. Here we consider only homogeneous polarization m and external81

filed h, which corresponds to q = (0, 0). Note that Eq. (3) implies that, within RLFA, the82

fluctuations of each spin are considered independent.83

Eq. (2) follows from equating to zero the derivative of the restricted free energy F(m) [40],84

which corresponds to thermodynamic equilibrium at a fixed value of polarization m [48]. To85

obtain the correct dependence of F(m) on the external field h, we rewrite Eq. (2) in the86

form ∂ F/∂ m = f (m) − h, integration of which yields F(m) − F(0) =
∫ m

0 f (m)dm − hm.87

Although F(0) depends on temperature, this is of little interest to us and for convenience we88

choose F(0) = 0 at each temperature and define F0(m) =
∫ m

0 f (m)dm − hm.89

The RLFA solution and the restricted free energy F0(m) calculated in this way for J2 = 0.390

are shown in Fig. 1. The calculated free energy indeed points to the metastable state with91

m = 0, discussed in [25], which we have zoomed in on in Fig. 2a. With decreasing temper-92

ature, a barrier appears at T0 ≈ 0.6 near m = 0, see Fig. 1a. Then its height first increases93

and its position shifts up to m ≈ 0.29, after which, at a temperature slightly less then J2, the94

height begins to decrease linearly in T to zero, see Fig. 2b. The maximum barrier height of95

about 0.002 is close to the estimate in [25] based on the value of the coercive field. In Fig. 2b,96

the barrier height for various values of J2 is shown. At J2 ≈ 0.31 we have T0 = T1, where T1 is97

the highest temperature at which F(m) is maximum at m = 0, see Fig. 1. For larger J2, these98

two temperatures are not defined [25], and the unstable RLFA solution m = 0 extends from 099

to the critical temperature Tc < T2, where T2 is the temperature below which the minimum100

of F(m) at m ̸= 0 appears. It should be noted that within RLFA the transition turns out to101

be first order for 0.25 ≲ J2 ≲ 1.25 [25], while recent more accurate calculations narrow this102

interval to a small region around J2 = 0.5 [49–52].103
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Figure 3: Restricted free energy F0(m) calculated within RLFA (solid lines) for several
values of J2 at temperature T = 0.1, which shows a kink at magnetization around
m = 0.5. The dashed lines are the MFA free energy.

At low temperature, the RLFA restricted free energy shows a kink at a polarization value104

mc ≈ 0.5 for J2 = 0.3, see Fig. 1b. This kink corresponds to a polarization for which the105

most likely configuration changes from a slab (for m < mc) to a droplet (for m > mc) [40].106

For J2 = 0, the RLFA predicted critical polarization mc ≈ 0.53 is close to the exact value107

mc = 0.5 [53], see Fig. 3. In general, this effect is called geometric phase transition and108

is present in finite-size systems when periodic boundary conditions are used in the simula-109

tion [53, 54]. For the two-dimensional Ising model, it was thoroughly studied by the Monte110

Carlo method used to calculate the free energy in [55, 56]. We emphasize that RLFA is able111

to predict the geometrical phase transition, in contrast to MFA. We have also checked that112

even the four-spin cluster approximation, formulated as in [57], does not predict this transi-113

tion, despite the good accuracy of the approximation in describing ferroelectric phase transi-114

tions [58–61]. It is also worth noting that the RLFA free energy becomes flat, signifying the115

absence of a phase transition, in the limit J2→ 0.5 [25].116

4 Exact values of restricted free energy117

Now we want to compare the above results with the free energy obtained by definition,118

F(M) = −T log
∑

E

g(M , E)exp(−E/T), (4)

where the sum is over all possible energies E and g(M , E) is the density of states with total119

spin M = mN and energy E for N spins.120

For small samples, the sum in (4) can be computed exactly. For a square sample of size121

L = 6, yielding the total number of spins N = 36, the result for J2 = 0.3 is shown in Fig. 4.122

In all calculations we apply periodic boundary conditions. The critical temperature for L = 6123

is equal to Tc = 1.67, while for L = 100 (which practically corresponds to an infinite sample124

size) it is Tc = 1.26 [25].125

Configurations that contribute to the free energy F(M) at zero temperature (i.e. have126

the lowest energies) for different values of M are shown in Fig. 5. At zero temperature, at127

m ≲ 0.5, the free energy is flat for 0 < J2 < 0.5, Fig. 6a. The pits, also mentioned in [40], are128

due to spin configurations with completely flat interface between two slabs with opposite spin129
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Figure 4: Restricted free energy per spin, F0/N, calculated exactly by Eq. (4) at
J2 = 0.3 for sample size L = 6 as a function of total spin M and temperature T . The
free energy is defined only for integer even values of M and linearly interpolated
between them. For ease of comparison with the RLFA results in Fig. 1, we set here
F = 0 at M = 0 at each temperature. Dark blue points correspond to the global
minimum of F0/N at each temperature.

directions, see configurations with M = 0 (M0) and M = 12 (M12) in Fig. 5. When a spin flips130

on this interface (configurations M2 and M14 in Fig. 5) the energy increases by 4J1. When131

the last spin in the row flips, the energy decreases by this value (see transition M10→ M12 in132

Fig. 5 and Fig. 6a). The distance between two neighbor pits of F(M) at m ≲ 0.5 is equal to133

2L, since any spin flip changes the total moment by 2.134

At m ≳ 0.5, the configurations that contribute to the free energy F(M) at zero temperature135

correspond mainly to the droplet (starting from configuration M18 in Fig. 5), but depend on136

J2, as indicated in the bottom row of Fig. 5. The latter also affects the dependence of the137

energy barrier height, ∆FM = FM − FM−2, on J2 (Fig. 6a). As shown in Fig. 7a, for M = 22138

at J2 < 0.33 and for M = 26 at J2 < 0.25, the barrier height is 4J2 and is determined by the139

spin flip at the corner of the droplet. Note that the exact values of J2 are equal to 1/3 and 1/4140

and follow from the energy ratio of the different configurations M22, M24, and M26 in Fig. 5.141

At larger values of J2 for both values of M , there is a reverse transition to the slab phase and142

then back again, as can be seen in the bottom row of Fig. 5. When a spin flips on a side of the143

droplet whose length D > 1, the energy does not change until the last spin on the side flips,144

then the energy decreases by ∆E = 4(J1 + J2) (see transitions M22 → M24 at J2 < 0.25 and145

M26 → M28 at J2 < 0.33 in Fig. 5 and Fig. 6a). For D = 1, ∆E = 4(J1 + 2J2), which is valid146

for transitions M30→ M32 and M32→ M34 in Fig. 6a. At J2 ≤ 0, we see only decrease in free147

energy with M for the droplet phase in Fig. 6a.148

At higher temperatures, other higher energy configurations in addition to those shown in149

Fig. 5 contribute to the partition function in Eq. (4) for each value of M . This affects the150

dependence of the above discussed energy barriers on temperature, which for J2 = 0.3 is151

shown in Fig. 8a. The metastable state barrier at M = 22 disappears at T ≈ 0.65, which is152

close to the corresponding temperature T0 ≈ 0.6 from the RLFA solution (see Fig. 1). Note153

that at this value of J2 the barrier at M = 26 is determined by the slab-droplet transition and154

not by the metastable state (see Fig. 5 and Fig. 7a).155
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Figure 5: Configurations that contribute to the restricted free energy F(M) at zero
temperature, i.e. have minimal energies, for all possible values of the total spin M
at L = 6. The configurations that change for J2 > 0.25 and J2 > 0.33 are shown
separately in the bottom row (they affect the dependence of the energy barrier ∆FM
on J2 shown in Fig. 7).
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Figure 6: Restricted free energy F as a function of total spin M = mL2 at zero
temperature T = 0, calculated according to Eq. (4) for several values of J2 (listed
in the legend, valid for both plots), (a) exactly for the sample size L = 6, (b) using
Monte Carlo method for L = 10. The solid lines provide guides to the eye.
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Figure 7: Restricted free energy barrier height, ∆FM = FM − FM−2, as a function of
J2 for several values of the total spin M at zero temperature. (a) The sample size is
L = 6. (b) The sample size is L = 10. Lines for different values of M overlap. The
lines corresponding to M = 62, 78 and overlaping {66, 86} are marked separately.
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Figure 8: Restricted free energy barrier height, ∆FM = FM − FM−2, as a function of
temperature for several values of the total spin M and J2 = 0.3. (a) The sample size
is L = 6. (b) L = 10. The three upper curves correspond to M = 2, 22 and 42, and
in the middle is M = 62.

5 Monte Carlo simulations156

For larger square samples, with L = 7 and L = 8, the free energy from Eq. (4) can only be157

calculated using supercomputers, given the large number of 2N configurations for N spins. Al-158

ternatively, it can be calculated approximately with sufficiently high accuracy using the Monte159

Carlo method. We use the Wang-Landau algorithm [62–64], which has proven to be very160

efficient for this purpose at low temperature. It consists in performing a random walk in po-161

larization and energy space to extract an estimate for the density of states g(M , E) that gives162

a flat histogram.163

Using the Wang-Landau algorithm, we reproduce the exact results for L = 6 with high164

accuracy and obtain similar result for L = 10, see Fig. 6b and Fig. 9, where the free energy165

barriers at m > mc are clearly visible at low temperature and J2 = 0.3. For J2 = 0, the166

calculated free energy at zero temperature, Fig. 6b, agrees with [40]. I note that the free167

energy for larger samples could also be calculated, as was done, for example, in [40] for168

J2 = 0. However, for the purposes of this article, namely to show how metastable states are169

reflected in the free energy, the size L = 10 seems optimal, and all metastable states are clearly170

8



SciPost Physics Submission

L = 10, J2 = 0.3

0 20 40 60 80 100

-145

-140

-135

-130

-125

-120

M

F

T
0.0

0.4

0.8

1.3

1.5

Figure 9: Restricted free energy F as a function of total spin M for J2 = 0.3 calculated
by the MC method at several temperatures below and above the phase transition. The
sample size is L = 10.

visible and convenient for analysis.171

The barrier heights for metastable states at m > mc correspond to the spin flip at the corner172

of the droplet and are equal to 4J2 for J2 < 0.25 (Fig. 7b). For J2 > 0.25, this dependence173

changes due to additional slab-droplet and vice versa transitions, as in the case of L = 6. The174

dependence of these barriers on temperature is shown in Fig. 8b. It is almost linear and the175

barriers disappear in the temperature range from approximately 0.6 to 0.7, which is close to176

the RLFA predicted T0 in Fig. 1. We verified that the linear dependence of barriers height on177

temperature and their disappearance at a temperature close to T0, obtained within RLFA, are178

also valid for other values of J2. Note that the linear dependence on T at low temperature179

follows directly from the definition of the free energy F = U − TS, where U is the energy and180

S is the entropy.181

6 Discussion182

The primary goal of this work was to confirm, by calculating the restricted free energy, the183

presence of metastable states in the J1-J2 Ising model, recently found in the RLFA solution184

and MC simulations of low-temperature quenching [25]. The restricted free energy F(m) as a185

function of polarization calculated within RLFA indeed shows local minima at zero polarization186

at low temperature for J2 > 0, see Fig. 1 and Fig. 2, thus indicating a metastable state.187

At the same time, the exact calculations of F(m) for a small sample size L = 6 (Fig. 4188

and Fig. 6a) and MC simulations for L = 10 (Fig. 6b and Fig. 9) indicate local minima corre-189

sponding to metastable states with various values of polarization. Some of them, at m ≲ 0.5,190

are due to long stripes with an activation energy of 4J1 of a spin flip on a flat domain bound-191

ary (Fig. 5). In the standard Ising model, the system can become stuck in these states with a192

final polarization following a Gaussian distribution after zero-temperature quenching from an193

initially random configuration with zero polarization [30].194

Metastable states at m ≳ 0.5 are caused by droplet-shaped domains with an activation195

energy of 4J2 of a spin flip in their corner, at least at J2 < 0.25 for both sample sizes L = 6196

and L = 10 (Fig. 7). It is interesting whether this value of J2 holds true for larger sample197

sizes. At J2 > 0.25, the dependence of the barrier height on J2 for some metastable states198

changes. Our exact energy calculations for a sample size of L = 6 show that for J2 > 1/4199

and then for J2 > 1/3 the sequence of minimal energy configurations for increasing total spin200

M changes (see Fig. 5) and a return occurs into the slab phase at certain values of M , which201

9
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may be important for some applications. Indeed, the importance of the geometrical slab-202

droplet transition for various physical situations, including the dewetting transition between203

hydrophobic surfaces, was highlighted in [54].204

Although the zero polarization of the metastable state and the low height of the barrier205

proportional to the temperature near zero (see Fig. 2) is not exactly what follows from MC206

calculations, where the barrier heights are much higher and decrease with temperature (see207

Fig. 8), the fact of even a rough indication of the metastable state by RLFA is very valuable.208

Another valuable RLFA prediction that turns out to be quite accurate is the geometric slab-209

droplet phase transition at low temperature (Fig. 1b and Fig. 3). The reason why RLFA is so210

effective in this situation, in our opinion, is that by definition it takes into account the local211

field due to all possible configurations of spins interacting with the central spin, not just the212

mean field. The probability of these configurations, in turn, is determined by the mean spin.213

The distance between striped metastable states along the M axis (at m ≲ 0.5) is equal214

to 2L and, as a result, their number is proportional to L. For droplet metastable states (at215

m ≳ 0.5), the distance is determined by the droplet size, which becomes smaller as M in-216

creases. Thus, one can expect that the number of droplet metastable states scales as L2 and217

they are distributed along the M axis much more densely. This is confirmed by our MC simu-218

lations in Figs. 6, 7, and 9. This could be the reason why, during low-temperature quenching219

from high temperature in an external field, the system is not captured into striped metastable220

states in the standard Ising model [30], but gets stuck in droplet metastable states with finite221

polarization when J2 ∈ (0, 1/2) [25]. Note that the polarization of such a final state turns out222

to be about 0.5 at zero temperature [25], which is close to the slab-droplet phase transition,223

from where droplet metastable states begin to appear as M increases (Fig. 9). However, the224

polarization after quenching (from high temperature) sharply decreases with final tempera-225

ture [25] and does not correspond to the critical polarization mc of the slab-droplet transition226

in the standard Ising model, the temperature dependence of which resembles the equilibrium227

polarization [53].228

It should be noted here that the metastable states into which the system relaxes after low-229

temperature quenching in [25] are not exactly the same as shown in Fig. 5 and which deter-230

mines the free energy at zero temperature. The energy of the former is much higher, and the231

system is more likely to get stuck in them, relaxing in energy during quenching on the way to232

thermal equilibrium. Metastable states like in Fig. 5 can in principle be reached after quench-233

ing at non-zero temperature after a sufficiently long relaxation time and domain coarsening,234

with a higher probability for those closer to the equilibrium polarization. At the same time,235

any of these states will be reached inevitably if the total spin is conserved during quenching,236

as in the Kawasaki [65] two-spin exchange algorithm, which is relevant for models describing237

transport phenomena caused by spatial inhomogenity such as diffusion, heat conduction, etc.238

Finally, we will mention some recent advances in the experimental observation of metastable239

states using sub-picosecond optical pulses, which we believe can be applied to reveal metastable240

states discussed here and in [25]. For instance, in the quasi-two-dimensional antiferromag-241

net Sr2IrO4, a long-range magnetic correlation along one direction was converted into a glassy242

condition by a single 100-fs-laser pulse [66]. Atomic-scale PbTiO3/SrTiO3 superlattices, coun-243

terpoising strain and polarization states in alternate layers, was converted by sub-picosecond244

optical pulses to a supercrystal phase in [67]. In a layered dichalcogenide crystal of 1T -TaS2,245

a hidden low-resistance electronic state with polaron reordering was reached as a result of a246

quench caused by a single 35-femtosecond laser pulse [68]. See also the references to relevant247

superconducting and magnetic materials with next-nearest-neighbor interactions mentioned248

in Introduction and [25].249
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7 Conclusion250

In conclusion, we calculated the restricted free energy F(m) as a function of polarization m251

for the square-lattice J1-J2 Ising model (at J2 < |J1|/2) within RLFA and using the MC method.252

Both approaches indicate the appearance of metastable states at low temperature, correspond-253

ing to local minima of F(m) along the m coordinate. The zero-polarization metastable state254

predicted by RLFA reflects the true metastable states with various polarization values at m ≳ 0.5255

that appear in our exact calculation and MC simulations of the restricted free energy. We show256

that RLFA predicts the slab-droplet phase transition for the J1-J2 Ising model as a kink in the257

polarization dependence of F(m) at low temperature. Exact calculations of F(m) for a sample258

size of L = 6 reveal also additional slab-droplet transitions at J2 > 0.25. We believe, easy-to-259

use RLFA can help reveal the presence of metastable states and geometrical phase transitions260

in more complex systems, e.g., with site or bond disorder and spin tunneling in a transverse261

field.262
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