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We argue that one can model deviations from the ensemble average in non-

equilibrium statistical mechanics by promoting the Boltzmann equation to an equa-

tion in terms of functionals , representing possible candidates for phase space distri-

butions inferred from a finite observed number of degrees of freedom.

We find that, provided the collision term and the Vlasov drift term are both

included, a gauge-like redundancy arises which does not go away even if the functional

is narrow. We argue that this effect is linked to the gauge-like symmetry found

in relativistic hydrodynamics [1] and that it could be part of the explanation for

the apparent fluid-like behavior in small systems in hadronic collisions and other

strongly-coupled small systems[2].

When causality and Lorentz invariance are omitted this problem can be look at

via random matrix theory show, and we show that in such a case thermalization

happens much more quickly than the Boltzmann equation would infer. We also

sketch an algorithm to study this problem numerically
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I. INTRODUCTION

The problem of apparent hydrodynamic behavior of small systems [2] is one of the most,

if not the most important conceptual problem thrown at us by heavy ion collisions. Exper-

imental data [3, 4] seems to suggest that “collectivity” (precisely defined as the number of

particles present in correlations relevant for anisotropic flow) is remarkably insensitive to the

size of the system produced in hadronic collisions, down to proton-proton and γ − nucleus

collisions with 20 final state particles.

Most of the theoretical response to this has been centered around the concept of “hydro-

dynamic attractors”/hydronamization [5, 6], based on the idea of taking a “microscopic”

theory (usually Boltzmann equation, a theory with a gravity dual or classical Yang-Mills)

in a highly symmetric (lower dimensional) setup and showing that hydrodynamic behavior

occurs for gradients much higher than those “naively expected”. The basic issue is that

the main puzzle of the onset of hydrodynamics in such Small systems is not the size of the

gradients, but rather the small number of degrees of freedom [7, 8], which generate fluctua-

tions in every cell even if the mean free path was zero [9]. Yet all indications seem to show

that fluctuations are reducible only to fluctuations in initial conditions [3]. This absence of

fluctuations can be thought of as another sign of “perfect” hydrodynamics [10–12], which

also seems to appear beyond its naive range of validity. In this regime most microscopic

theories based on large N approximations (Boltzmann equation with its molecular chaos,

AdS/CFT in the planar limit, classical Yang Mills theories with large occupation numbers,

even Kubo formulae and Schwinger-Keldysh approaches requiring asymptotic limits for soft

modes [13–16]) become suspect.

Similarly, approaches based on “anomalous viscosity” and plasma instabilities [17, 18]

look suspect because while on average they might reproduce a low-viscosity fluid, fluctua-

tions around this average are expected to be much larger than hydrodynamic expectations

[10]. Multi-particle correlation analysis seems to suggest,on the other hand, the absence of

“dynamical” fluctuations not reducible to initial state effects, even in small systems [3].

Here one must remember that a universal hydrodynamic-like behavior in small systems

has been noted in a much larger set of circumstances than the debate around heavy ion

collisions usually includes: Cold atoms seem to have achieved the onset of hydrodynamics

with comparatively few particles [7, 8]. It has long been known that Galaxies behave “as a
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fluid”, even though the assumptions related to transport are highly suspect [19]. Even in

everyday physics,phenomena such as the “Brazil nut effect” [20] point to a universality of

the hydrodynamic description even in systems with few particles, provided they are strongly

correlated. This apparent universality is cited by mathematicians such as [21] to study the

multi-particle problem in depth.

Recently it was argued [1, 23] that a way to approach this conundrum is to think in

a Gibbsian rather than a Boltzmannian way [24, 25]: The latter treats the phase space

as a frequentist probability density distribution, and hence is in a sense well-defined only

in an infinite particle limit. The latter arrives at phase space distributions via Bayesian

inferencing of non-measurable microscopic quantities via macroscopically measurable coarse-

grained degres of freedom (the two descriptions are proven to be equivalent for an ideal gas

in a thermodynamic limit only [24, 25]).

For a strongly coupled system with a small number of degrees of freedom, since only the

energy-momentum tensor and conserved current components are measurable, fluctuations

bring with them a redundancy of hydrodynamic descriptions, each with it’s flow vector and

Bayesian probability that this is the “true flow vector” and any anisotropy is due to a

fluctuation. If the system is strongly coupled enough for the fluctuation-dissipation theorem

to apply locally, each of these descriptions is as good as the others as long as the total

energy-momentum is the same. It is not surprising therefore that as fluctuations become

larger the probability of a good description near the ideal hydrodynamic limit could actually

grow, or at least it does not go down [1]. In a sense this picture is the inverse of that of

an attractor. This description parallels the role of Gauge symmetry in the renormalizability

of Quantum field theory [26]: The fact that “most fluctuations” can be accomodated by

Gauge redundances lowers the degree of divergences in the ultraviolet and perhaps (in the

Gribov-Zwanziger picture) also the number of degrees of freedom in the infrared [27].

For now such a picture is still abstract and qualitative. In this work, we would like to make

a link to microscopic theory, via a generalization of the Boltzmann-Vlasov equation which

goes in the “Gibbsian sense” outlined earlier. The basic idea is that when the number of

degrees of freedom is small, the phase space distribution f(x, p) will not be known but must

be inferred by some kind of Bayesian reasoning. This is admittedly a very heuristic approach,

and some further arguments motivating it and placing it within the more conventional

transport theory have been left to the next section.
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The fact that one does not know f(x, p) beyond a few data points can be represented by

considering a functional representing the probability of f(x, p) being what it is. In this case,

the integrals corresponding to the Boltzmann collision operator and the Vlasov potential

operator will not be two copies of f(x, p) but two different functions f(x, p) and f ′(x, p), the

latter integrated over.

The next section II gives further details of the shortcomings of the state-of-the-art trans-

port approaches and why a Boltzmann equation with functionals is a possible path forward

in a certain well-defined regime of validity. Section III gives some mathematical detays,

and shows that the limit close to equilibrium of the functional Boltzmann equation is very

different from the usual Boltzmann equation, exactly because of the residual ambiguities

pointed out in [1]. Section IV argues this can be shown in terms of random matrices, and

Section IVB suggests an algorithm to test these ideas numerically.

II. TRANSPORT APPROACHES AND THEIR LIMITS

A. Free streaming, perfect hydrodynamics and ensemble averaging

Transport theory can be thought of as a limit of a classical N → ∞ particle system,

where the Hamilton Jacobi equation tends to a distribution function, xi=1,N , pi,N →
︸︷︷︸

N→∞

f(x, p)

[21]. The Hamiltonian evolution of this limit also tends to be infinitely unstable, with

the Boltzmann collision term cutting off this instability “at the price” of time-reversibility.

More complicated correlations f(x1, p1, x2, p2, ...) are also possible, arranged in the so-called

BBGKY hyerarchy [28]. The ideal hydrodynamic limit is reached by imposing a further

local equilibrium condition on the Boltzmann collision term, and assuming the Vlasov term

to average out.

As can be seen, ideal hydrodynamics thought in this way is a coincidence of several

limits, and this can lead to “paradoxes”. For instance, let us take eq 6 in the free streaming

collisionless case, adding a mass for the result to have a good classical limit

pµ

m
∂µf(x, p) = 0 (1)

Physically, an obvious solution corresponds to the Galilean motion of particles at constant
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velocity that have been released

f(x, p) = f
(

x0 +
p

m
t, p

)

(2)

However, what is counter-intuitive is that not the only solution; Consider the case where

the particles are in a thermal distribution according to some field βµ(x). In this case, it is

trivial to check that

f(x, p) ∼ exp [−βµp
µ] , ∂µβν + ∂νβµ = 0 (3)

also solves Eq. 1 . In particular, an irrotational vortex ~v ∼ Γ
2πr

θ̂ will correspond to a gas

rotating forever.

Mathematically, this is understandable: The right hand side of the transport equation

vanishes for both free streaming and ideal hydrodynamic limits, and in the latter the flow

vector is the Killing vector. But physically, on the surface this makes no sense! How can

a gas of non-interacting particles just rotate? There is no force keeping them rotating.

More generally, the condition on Eq. 3 is that of a Killing vector, in line with the idea

that flow is a killing vector of the co-moving frame in ideal hydrodynamics [29, 30]. But

once again, these are non-interacting particles: Pressure gradients do not correspond to any

force on neighboring volume elements since particles just propagate freely. Very clearly no

system of non-interacting particles, when freely released, will start “flowing”. This paradox

+ +

=

8+...

...

FIG. 1. A representation of how an uncountable number of physically sensible free-streaming

configurations of finite trajectories can become a smooth but curved “fluid” when summed together

as an ensemble average. In the ideal fluid dynamics limit, on the other hand, particle trajectories

in each sub-event would follow the ensemble average

is resolved by remembering that f(x, p) is defined in an ensemble average limit where the



6

number of particles is not just “large” but uncountable. Just like the limit of many straight

segments is curved, once an infinite number of trajectories are summed over, the maximum

density of trajectories can be a curve even if trajectories are straight. This means that

if we divide f(x, p) in any number of “physical” sub-events each with a finite number of

particles, none of the sub-events will look like Eq. 3 , but each will look like some version

of Eq. 2 . However,the number of copies of each Eq. 2 close to it’s neighborhood in phase

space will have a curvature, so when this is summed over a smooth “killing vector” emerges.

This is illustrated in Fig. 1 [31] 1. In contrast, in the ideal hydrodynamic limit,even away

from the pure ensemble averaging each microscopic particle will “flow“ under the action of

pressure gradients, and the probability that it flows differently goes to zero in the ensemble

limit. Some put this as the real definition of hydrodynamics [12]: Initial conditions and

conservation laws fix the final state for individual particles. Note that this is what seems to

emerge from multi-particle cumulant analysis of experimental data [3].

What this suggests is that, analogously to the volume in phase transitions, the ensemble

average limit is non-analytic. Being arbitrarily close to it does not necessarily give a quali-

tatively similar description w.r.t. it. In other words, the transport properties of a system of

finite degrees of freedom need not be close to their Boltzmann equation results even if the

number of degrees of freedom is large. It also suggests that away from the non-analytic limit

stochasticity due to a limited number of degrees of freedom interplays with the Knudsen

length scale in a highly non-trivial way: One can regard each sub-ensemble as a frequentist

“world”, random scattering as the interaction “between worlds” and Vlasov evolution as

a semi-classical interaction “within a world”. A functional picture, where “every world”

corresponds to a probabilistic ensemble of phase space functions, might be the ideal way of

dealing with this picture in a consistent manner.

B. Transport in quantum mechanics and field theory

The arguments in the last section are fundamentally classical. Quantum mechanics comes

with a further “expansion scale” ~ (in reality, ~ can be thought of as unity and the expansion

1 In reality this much studied “billiard stadium” setup is a bit different, for the particles interact with the

boundaries, and this provides a measure of chaos that leads to a fractal rather than continuous density

profile. But the main idea behind taking a limit prevails. An “free streaming fluid” in such a stadium

initialized as an ensemble limit thermalized distribution would evolve as a turbulent fluid with “fractal”

scale-free flow
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is around the action S ≫ ~ or equivalently state occupancy). Furthermore, the expansion

around ~ and T do not commute. Let us review the current consensus of how transport

theory fits in with quantum field theory [13, 14].

The current consensus is that in quark-gluon plasma physics the Vlasov terms are taken

care of by resummation and screening. The idea is that such terms would be relevant at

a “soft” scale k ∼ gT (where g is the quantum field coupling constant), where field are

classical. Thus, in a manner somewhat analogous to the argument in [21], the soft modes

are taken care of by the Vlasov equation while the hard modes are put in the collision

Kernel. For this to work within a quantum field theory perturbative expansion, one needs

an intermediate scale, which can be the temperature or more generically the occupancy of

soft states. We can then resum the soft modes

V lasov ∼ g2
〈
A2

〉
∼ g2

∫
d3p

Ep
f(Ep, T ) , Boltzmann ∼ g2

〈
A4

〉
∼ f × f (4)

with all interactions between them counted as a correction to the propagator. The hard

mode (k ∼ T ) interactions ∼ g2 〈A4〉 are then accommodated as a Boltzmann equation with

distributions and collision kernels calculated via such propagators [14]. In this regime, the

main effect of the fields is Debye screening and if the mean free path is well above the Debye

screening length the Vlasov terms become irrelevant.

There are two issues in this description when a finite number of degrees of freedom are

excited and one is well away from a thermodynamic limit: The first is that the ultra soft

modes k ∼ g2T couple to the soft modes via Plasma instabilities and can not generally be

treated perturbatively. If the boundary is fixed, for example by an asymptotic expansion

around a hydrostatic state (as is done via Kubo/Schwinger-Keldysh formulae), this provides

boundary conditions that render these ultra-soft modes irrelevant, but for small systems this

is suspect.

The second is that while “to leading order” one can obtain a “resummed Boltzmann

equation” it is not clear what the next to leading order is and how good is the convergence of

this series [32]. The fact that to zeroth order in the collision term an infinite quantum thermal

loop summation leads to a classical Vlasov equation [33] ilustrates how careful must we be

with any such expansion: Basically the expansion in correlations, in ~ and in temperature

do not commute. Moreover, there is an ambiguity in where the “field description”, relevant

for low momenta and high occupancy numbers, gives into a “particle” description [34].
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What we are looking for in this work is a limit where these correlations are classical-

probabilistic rather than quantum. In this case they parametrize our ignorance of the phase

space distribution rather than quantum correlations. So the question is where would this

ansatz lie in corrections of the coupling constant g and Planck scale ~. The different regimes

h

.....  (divergence)

Boltzmann

BBGKY
expansion

Kadanoff
Baym

Wigner function

....

Mrowczynski/
Muller

Our
ansatz

i j

p
(micro)

i

i

x

FIG. 2. The domain of validity of the ansatz proposed here, in terms of fluid cell coarse graining

and microscopic variables xi, pi

of many body theory are illustrated in Fig. 2. In practice, we hope to describe a system

which is

Strongly correlated: , so that the BBGKY hierarchy can not be used as an “expansion”

but must be handled “non-perturbatively”, analogously to functional methods in QFT

[35]. This is the meaning of α = 〈fn(x,p)〉
〈f(x,p)〉n

≫ 1. Otherwise, one can try to truncate

the BBGKY hierarchy and the limit of this is the Boltzmann equation. Vlasov terms

together with functionals of f (including arbitrary n-point functions) will keep track

of long-term correlations, while collision type terms will keep track of short-term ones.

Classical-probabilistic: in the sense that statistical independence has to hold. In other

words the CHSH inequality [36].

〈xi, qj〉 − 〈xi, pj〉+ 〈xi, qj〉+ 〈xi, pj〉 ≤ 2 (5)

must hold for any pair of conjugate observables (position,momentum, spin for fluids

with polarization) from any cells i, j This is required for the probabilities of any field

configuration must be classical functionals rather than quantum operator averages.

In this sense, h ≪ 1 (or equivalently state occupancy ≫ 1). Otherwise, phase space

functions and functionals stop being classical objects. Note that the saturation of Eq.
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5 might be done by decoherence with unseen degrees of freedom or by “Eigenstate

thermalization” of a strongly coupled quantum evolution [37], something described in

some detail in [23], and within effective field theory in [38]

In certain situations [39–42] the spectral function of the theory is dominated by quasi-particle

peaks. In this case, the assumptions above lead to a Boltzmann-Vlasov equation with a

strong mean field term and things like in-medium masses. However, there is no guarantee

for this to happen, and such mean-field theory is not known to produce a hydrodynamic-like

behavior in small systems. We therefore go in a different direction, giving up the quasi-

particle assumption but retaining the quasi-classical behavior.

III. MATHEMATICAL DEVELOPMENT OF A BOLTZMANN EQUATION

WITH FUNCTIONALS

Let us start from the Boltzmann-Vlasov equation Eq. 6

pµ

Λ

∂

∂xµ
f(x, p) = C[f ]− gF µ ∂

∂pµ
f(x, p) (6)

where Λ is a generic IR momentum scale, usually associated with the particle mass, but

might also be the virtuality, the Debye screening length and so on. We note that we wrote

Eq. 6 in an unusual way for, other than the generic virtual scale, usually the Vlasov term

is on the right-hand side. F µ is the four-force.

This way of writing,however, is physically justified as we will show. The Vlasov term

is of the same order of magnitude in the Coupling constant as the Boltzmann term, and

is thought to dominate for long-range correlations where, due to Bose-enhancement, the

occupation numbers of bosons are high requiring a semi-classical field. It is thought that

instabilities due to thermal fluctuations and Debye screening make this term obsolete but,

for “small” but highly correlated systems, there is no justification for this.

More formally, the Boltzmann equation is known to be a good approximation of a quan-

tum field theory evolution in the “ensemble average”. One way to express this is to consider

that the Wigner functional can be approximated by a one particle Wigner function which

in turn becomes a classical phase space distribution function [13]. In terms of α (defined in
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section IIB ) it is

W(W (x, p)) ≃
︸︷︷︸

α≪1

δ (W ′(x, p)−W (x, p)) ≃
︸︷︷︸

~≪1

δ (f ′ − f(x, p)) (7)

One can relax the α ≪ 1 assumption but not the ~ ≪ 1 assumption using Wigner functionals

[43], defined over field configurations f1,2(x) in configuration space

W (f1(x), f2(x)) ≃

∫

Dφ(x) exp [−if2(x)φ(x)]

〈

f1(x) +
1

2
φ(x)

∣
∣
∣ ρ̂

∣
∣
∣ f1(x)−

1

2
φ(x)

〉

(8)

where ρ is the density matrix, defined via the partition function (See [44]) This expression

is exact at the quantum level, and hence it’s momentum equivalent is a straight-forward

infinitely dimensional Fourier transform with f̃1,2(p). It also contains every possible corre-

lation of the BBGKY hierarchy, encoded, in configuration space in “bunchings” between

f1(x) and f2(x) as explained in the appendix (f(x1, x2, ..., xn) would be related to the n− th

cumulant of the functional).

Analogously how f is theO (h0) limit ofW [45] one can imagine the Boltzmann functional

is the corresponding limit of the Wigner functional in [43], a decohered system with an

undefined probability density. More formally, the regime where the ansatze presented in

this work are valid are in section 2 of the appendix.

In this regime, where Eq. 7 is relaxed Eq. 6 would become something like this

pµ

Λ

∂

∂xµ
f1(x, p) = 〈C[f1, f2]〉f2 − g 〈Vµ[f1, f2]〉f2

∂

∂pµ
f1 (9)

the left-hand side is identical, but the RHS is written in terms of

〈O〉f2 ≡

∫

Df2O(f1, f2)W (f1, f2) (10)

with C,Vµ being the generalizations to functional averages of Vlasov and Boltzmann collision

operators.

Physically, the we are “keeping track” of f1 and letting f2 represent our ignorance of the

“real distribution”. Hence, the Vlasov term can be physically interpreted as “an ensemble

of forces defined by our ignorance of the real distribution” acting on a distribution f1 of

particles. The Boltzmann term is, analogously, an ensemble of collision terms. Note that, at

least for a renormalizeable theory (irreducible diagrams are a maximum of 2 → 2) additional

functional integrals of the type
∫
Df2Df3O(f1, f2, f3) are also subleading in ~ and hence
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neglected in the semiclassical expansion. For this reason we can safely use a Gaussian

functional integral.

Note that [21] one can consider the latter as the UV completion of the former, scattering

is the continuation “within the coarse grained cell” of the Vlasov evolution, increasingly

unstable at smaller scales2. As “infinitely unstable infinitely local” interactions degenerate

into random scattering, they are taken care of by the Boltzmann collision term, while long-

range correlations are taken care of by the Vlasov drift term. Thus one expects, when one

coarse grains, each term to be scale dependent but not the difference.

Very roughly, such “two independent scales up to a redundancy” parallel the Pauli-Villars

renormalization scheme, where two infinities are needed to maintain Gauge symmetry [26].

Analogously, if Boltzmann is the “UV completion” of the Vlasov term (as was argued for

in [21]), this can not result in physics depending on whether an interaction happens “via a

Vlasov term above the cut-off” or a “Boltzmann term below it”.

We also note that a way to generalize the H-theorem is not apparent here, since micro-

scopic entropy as it is usually defined will be inherently scale dependent [44]. However, a

generalization of local equilibrium based around the vanishing of the RHS Eq. 9 is imme-

diately apparent, as is apparent, from the corresponding “LHS=0” equation, the onset of

ideal hydrodynamic behavior.

To go further, we have to make some ansatze. We will assume any phases between degrees

of freedom oscillate “fast” w.r.t. any time-scale, so position and momentum decouple into

a classical probability in both position and momentum space. We will also assume, taking

inspiration from field theory [35] a Gaussian ansatz for this probability. So

W (f1(x), f2(x)) ≃ ρ[f(x, p), f ′(x, p)] =
1

Z
exp

[

−
D[f, f ′]

2σ2
f

]

(11)

where the obvious choice of a distance measure is

D[f, f ′] =

∫

d3xd3p (f(x, p)− f ′(x, p))
2

(12)

with the Boltzmann-Vlasov equation recovered for σf → 0. The large number theorem

makes it likely that σf ∼ N
−1/2
DoF , the square root of the number of degrees of freedom so

2 [21] contrasts this instability in terms of KAM’s theorem, which on the contrary implies the existence of

an ǫH0 +HI , where H0,I are respectively integrable and non-integrable hamiltonians, where integrability

is not broken. However this ǫ generally depends as O
(
e−N

)
and to make the transition to a probability

density function, xi, pi → f(x, p) requires i → ∞, which nullifies the lower KAM limit. This is a heuristic

explanation as to why Vlasov type equations are always unstable at all scales
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it is certainly away from the ensemble average limit for the “small” fluids seen in hadronic

collisions and ultra-cold atoms. The terms on the right hand side of Eq. 9 converge to

C[f1, f2] =

∫

d3 [k1,2,3] σscattering

(

f1(x, p)f2(x, k1)− f2(x, k2)f1(x, k3)

)

(13)

where the Vlasov operator here V is the Vlasov operator

Vµ[f1, f2] =

∫

dx1,2F
µ(x1 − x2)Θ((x1 − x2)

2)f2f1 (14)

Where |M |2 is the scattering matrix element and F µ the force field, augmented by a Θ

function enforcing causality. Note that

• The integral in C is in momentum space while in Vµ it is in position space. f1,2(x1,2, p1,2)

are of course defined in both but the gradients expected in any expansion will

be,respectively,in position and momentum.

• For a consistent coarse-graing the scattering cross-section matrix elements and the long

distance semi-classical potential are strictly related, as forces are related to scattering

via potentials. For scalar particles

F µ(x) = ∂µV (x) , σscattering ∼ |M(k)|2dΩ(k) , M(k) =

∫

d3xeikxV (x)

(15)

with the appropriate extension for vector potentials. Thus in general both terms are

present.

The point here is that for finite functional width σf in equation 11, even away from the

Gaussian parametrization, there arises a hidden “gauge” symmetry within the RHS of Eq.

6 . Consider all possible transformations such that

f(x, p) → f ′(x, p) ,
〈

Ĉ (f(x, p), f ′(x, p))
〉

︸ ︷︷ ︸

limf→f ′∼∂f/∂x

=
〈

V̂µ (f(x, p), f ′(x, p))
〉 ∂f

∂pµ
︸ ︷︷ ︸

limf→f ′∼∂f/∂p

(16)

In the ensemble average Eq. 11 has no physical meaning because f(x, p) → f(x′, p′) can

only be a shift in phase space, not a shift in functions.

In the Gibbsian picture, however, f(x, p) is itself unknown, and only estimated via a

coarse-graining. Hence the RHS of Eq. 9 can be dominated by redundancies so as to be

qualitatively very different equation from Eq. 9 , even for small σf , ie narrow distributions in
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functional space. In other words, if only the Boltzmann term or the Vlasov term are present

one assumes that as the Boltzmann functional converges to a δ-functional,ie a function, the

equation of motion for it converges to a Boltzmann or Vlasov equation. But if both terms

are included, the redundancy in the difference spoils this convergence.

Physically, the manifestation of this is that the RHS of eq 6 vanishes in just two cases,

free streaming and ideal hydrodynamics. However, for eq 9 there is a wealth of situations,

parametrized by Eq. 16 where the system flow looks isentropic. In other words, there will

be many configurations where the system will look like an ideal fluid, along the lines of [1].

This is shown schematically in Fig. 3 What happens is that close to the local equilibrium

f(p) or    f(x) δ            δ

f(p)

f(x)

δ

δ

RHS=0

RHS=0

FIG. 3. A representation of how when both Boltzmann and Vlasov terms are considered

the limit of the Boltzmann functional converging to a function admits a continuum of min-

ima where Eq. 9 is indistinguishable from an ideal fluid dynamic equation. In this notation

δf(p) =
∫
dx (f(x, p) − f ′(x, p)) , δf(x) =

∫
dp (f(x, p) − f ′(x, p))

limit we do not know if the volume cell is being moved by microscopic pressure (described by

a Boltzmann type equation) or rather by a macroscopic force (described by a Vlasov term).

The set of configurations where a pressure gradient is exchanged for a force corresponds

exactly to the set of configurations where the difference between the two sides of Eq. 9 does

not change. In a Gibbsian picture, therefore, all such f need to be counted in the entropy

which generally results in differences w.r.t. the Boltzmannian entropy [25].

At the classical level, it has long been known [21] that the Boltzmann term can function as

a “counter-term” cutting off the effect of short-range instabilities of the Vlasov term. At the
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quantum level this picture is indeed confirmed by the fact that the Boltzmann term describes

“microscopic” and the Vlasov term “macroscopic” DoFs. The set of transformations leaving

the RHS of eq. 9 invariant can be thought of as defining a “Gauge orbit” across the space

of f(...) which are part of the same “Gibbsian” ensemble. Gibbsian here would mean that

the observer has at their disposal an ensemble {x, p}, allowing them to infer a 〈f(x, p)〉 and

it’s uncertinity δf(x, p), the latter related to a some scale defined by the coarse-graining

in the distribution of {x, p}). Different functions in 〈f(x, p)〉 ± δf(x, p) will have different

Boltzmann and Vlasov terms but the same RHS of Eq. 9 . Note that the above argument

needs to be updated with spin and vortical susceptibility if non-conservative fields, such as

magnetic fields [22], are considered (the Gauge-like ambiguity would be if angular momentum

is exchanged via vortical motion augmented with spin-orbit coupling or magnetic fields)

Quantitatively, these redundancies should ensure that the system is indistinguishable

from local equilibrium in a much wider array of circumstances than a purely Boltzmann

description would suggest. As there is no small parameter in the functional expansion

around the average f(x, p), an analytical quantification of this statement is non-trivial.

However, the universality of random matrix theory could provide a quantitative validation

of this point if causality is neglected.

IV. A NON-RELATIVISTIC INSIGHT FROM RANDOM MATRICES

Let us discretize the system (using i for position and j for momentum variables) and

use random matrix theory, f(x, p) → fij(xi, pj) C → Ci1,i2,V → Vj1,j2. Of course we have

neglected causality (the θ-term in Eq. 14 as well as Lorentz invariance (broken in the

discretization), but this is a round qualitative estimate, perhaps relevant for cold atom

measurements such as [7, 8]

Equation 9 becomes of the form

˙fij −

[
~pk
Λ
.∆k

]

fij =

∫

d
[
f ′
i1j1

]
[

Wi1j1ij

(

Cjj1
(
fijf

′
i1j1 − fij1f

′
i1j

)
− Vµ

ii1
fijf

′
i1j1

∆fij
∆pµ

)]

(17)

∆ is the discrete derivative (the difference between lattice points normalized by lattice

spacing) and Wi,i1,j,j1 is a discretized version of Eq. 11 (in agreement with the definition

Eq. 10 ). Double summation is used in the (...) bracket but W... is multiplied separately.

As we describe in detail below, the RHS can be thought of as a Gaussian random matrix
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ensemble

• V, C are deterministic matrices of i, j. Hence, one can do a change of variables

d
[
f ′
i1j1

]
→







C−1

V−1






d
[
f ′
i1,j1

]
(18)

This results in a series of Gaussian ensembles, with a transformed W as the weight,

equivalent to a previous one up to a normalization factor. These ensembles are invari-

ant under similarity transformations that mix C,V with the distribution of fij , and in

fact are related to the functional symmetries we are argue for.

• Provided the system is governed by central force type equations
{
fi1j2f

′
i2j2Vi1i2

}
∼

f (x− x′)2 êx−x′ (contracted with ∆f/∆pµ, where ên is th unit vector in direction n),

is an antisymmetric ensemble in i1,2. j1,2 is traced over in a normalization factor

• Cj1j2
(
fi1j1f

′
i2j2 − fi1j2f

′
i2j2

)
is also an anti symmetric in j1j2, i1,2 are traced over in a

normalization factor.

• This is however a deformed ensemble, since the average 〈fij〉 is non-zero.

• In the σf → 0 limit of Eq. 11 one expects 〈fij〉 to reflect the general Boltzmann Vlasov

estimate. More generally, we note Cj1j2 conserves momentum and Vi1i2 respects Lorentz

invariance, so momentum conservation on average can be implemented via Lagrange

multipliers where the quantity maximized is the local entropy given the choice of dΣµ

(invariance w.r.t. dΣµ would then be enforced by the gauge symmetry described in

the previous section and [1]). Thus one expects 〈fij〉 away from σf → 0 will be of the

form

〈fij〉 ∝ exp
[
−dΣµ(xi)βν(xi)p

µ
j p

ν
j

]
(19)

for some choice of βµ, dΣµ in line with the gauge-like expectations from [1]

This problem is the combination of ensembles studied for many decades [49–51] but an

elegant solution was shown in [52], where it was shown that the distribution is that of the

Wigner semi-circle and outliers.

ρ(λ) = ρ0(λ) +
1

N

∑

k,λ∗

k
>J

(δ(λ− µk) + δ(λ+ µk)) , ρ0(λ) =
1

πJ

√

1−
λ2

4J2
(20)
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the RHS of Eq. 9 will be the difference between two such “shifted” Gaussian ensembles.

ḟ(x, p, t)−
~p

m
.∇f(x, p, t) = Np(t)F (Jp(f(x, p, t))−Nx(t)

∂f

∂p
F (Jx(f(x, p, t)) (21)

where Np,x are extra normalizations (from Eq. 18 ) and

F (J) = J

∫

ρ0(x)e
−x2

dx+
∑

exp
[
−µ2

k[J ]
]

(J is perhaps related to the cut-off for the Vlasov and Boltzmann modes). Thus, neglecting

the “sparse” exponential terms, the evolution will be driven by a difference between two

Bessel-function type terms, where Nx,p and Jx,p will bring the system to relaxation where

the RHS is negligible and the system flows as an ideal fluid (see appendix section IIA). This

is much faster than the relaxation time of the Boltzmann equation, where the corresponding

equation to Eq. 21 is

ḟ(x, p, t)−
~p

m
.∇f(x, p, t) =

f0(x, p, t)− f(x, p, t)

τ0
, ḟ0(x, p, t) =

~p

m
.∇f0(x, p, t)

Of course, the model presented here is highly acausal. Including causality in the Vlasov

potential would add a non-trivial correlation to the random matrix which we do not at the

moment know how to perform analytically.

A. Zubarev hydrodynamics and random matrices

The connection to random matrices of the above two sections can also be extended

via Zubarev hydrodynamics. Consider a general strongly coupled system in a volume V

(Boltzmann-Vlasov, quantum chaos, whatever). Divide V at a given time-step into a “ran-

dom lattice” of a large N points Σi=1...N
µ (t) such that

∆V ≡ ∆3Σi ,

N∑

i=1

∆Vi =

N∑

j=1

3∏

j=1

(
Σi+1

j − Σi
j

)
= V (22)

Now take the output of the microscopic system over its evolution, and simply maximize the

Zubarev statistical operator

lnZ = ln

[
N∏

i=1

exp
(
∆3Σµ (βνT

µν − µiJ
µ)
)

]

(23)

with, as constraints, βµ (for the energy-momentum current) and µi (for chemical potential).

dΣi are free parameters, under the constraint of total volume invariance
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This is a very complicated Lagrange multiplier problem (The number of multipliers is

3+1+Number of conservec charges per point), but it is still a linear problem. Since unstable

solutions of “large systems of linear equations” approach random matrix theory ([53] and

references therein) a connection is clear.

A numerical simulation is for now necessary to see how good is Zubarev hydrodynamics

using a given highly non-linear system with many degrees of freedom. If lnZ defined as Eq.

23 leads to a “large” value for the likelihood, some fluctuating hydrodynamics is a good

approximation for the systems evolution, if not not. The dependence of this on the number

of degrees of freedom is far from clear, in particular it is far from clear that it should always

increase with the number of degrees of freedom.

B. A numerical algorithm

The discretized Eigenvalue analysis in [46] (but also [47]) allows us to make an estimate of

Eq. 9 initializing it close to a fluctuating equilibrium and seeing at every step if something

like “an ideal hydrodynamic evolution” is maintained on average even at gradients of βµ

where a typical Boltzmann configuration would be far away from the hydrodynamic regime.

The algorithm is summarized as follows

(i): Start with an average 〈Tµν〉. Create an ensemble {f} of configurations in every cell

xi, pi using equation Eq. 23 for P [f(xi, pi)], with a sample {Tµν} ∼ {pµpν} This can

be done from a Metropolis type algorithm, with βµ being Lagrange multipliers.

An immediate issue is the choice of dΣµ, the foliation. Since we are simulating using a

square grid around a hydrostatic limit [46], consistency requires dΣµ = dV
(

1,~0
)

. One

might need to check that the gauge-like symmetries with respect to a reparametrization

of Σµ of [1, 23] will emerge. βµ is given by the Landau condition βµT
µν ∝ βν

(ii): Expand {f} in Eigenvalues and Eigenvectors, according to to [46]

(iii): Evolve each {f} → {f}′ according to the Boltzmann equation, using the Eigenvalue

analysis of [46]. This time a Vlasov operator respecting causality can be constructed

via Eq. 14

(iv): Construct 〈Tµν〉 (xi) = 〈pµpν〉 (xi) and βµ(xi) from {f ′} and return to step (i)
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If the picture argued for in this work is correct then, while perhaps the typical f in the

ensemble at each step is far from the equilibrium value, fluctuations within the {f} will

smear out non-hydrodynamic effects and the evolution of βµ(xi) will follow the hydrodynamic

description on average. Causality means this model would be different from the random

matrix ansatz discussed in the previous section (the matrices would be “locally random”

within a causal diamond) so a comparison would be interesting.

V. DISCUSSION

This has been a very speculative exercise. At the moment, we do not have a way to check

quantitatively if a functional Boltzmann equation approach will give the desired result, an

approach to local equilibrium which

• Is significantly faster than that of the Boltzmann equation

• Does not increase as the number of degrees of freedom goes down

At best, a “Galilean” model (instant signal propagation) can be looked at from a random

matrix perspective, and universality of random matrix ensembles seems to show that indeed

this scenario is plausible (Note that this universality has some similarity to the “inverse

attractor” postulated in [1], where every system “looks” similar when sampled a certain

way). Nevertheless, heuristically when the number of degrees of freedom is small ensemble

average notions such as “phase space distribution function” are obviously inadequate and

must be generalized, and a functional approach, with discretization, might be the best way

to achieve this. Meanwhile,experimental tests of collectivity in smaller and smaller systems,

both cold atoms [7, 8] and heavy ion collisions [3, 4] will tell us if a theoretical justification

of hydrodynamics with small systems is worth pursuing.
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