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ABSTRACT

Born’s original 1933 theory of nonlinear electrodynamics (in contrast to the later

Born-Infeld theory) is acausal for strong fields. We explore the issue of strong-field

causality violation in families of theories containing Born and/or Born-Infeld, and

many variants that have been previously proposed in contexts that include cosmology

and black hole physics. Many of these variants are acausal and hence unphysical. A

notable exception is the modified Born-Infeld theory with ModMax as its conformal

weak-field limit.
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1 Introduction

In 1933 Born introduced the first Lorentz-invariant (and gauge-invariant) nonlinear

theory of electrodynamics (NLED) [1]. He was motivated by the idea of an electro-

magnetic origin for the electron mass, which he supposed might be finite in a nonlinear

extension of Maxwell electrodynamics if the electric field had some maximum value.

An analogy with the maximum velocity of relativistic particle mechanics led him to

propose a Lagrangian density of the form1

LBorn = −
√
T 2 − 2TS + T , S =

1

2

(
|E|2 − |B|2

)
, (1.1)

where T is a positive constant with dimensions of energy density2, and S is the

quadratic Lorentz scalar expressed in terms of the electric and magnetic3 fields (E,B).

In the weak-field limit (equivalent to T → ∞) LBorn → S, which is the Maxwell

Lagrangian density in appropriate units, but reality of the Born Lagrangian density

requires the inequality

|E|2 ≤ T + |B|2 , (1.2)

which puts an upper bound on |E| for any given B.

Later in 1933 [3], and again in more detail in 1934 [4], Born and Infeld jointly

proposed a modified Lagrangian density; in our notation this is

LBI = −
√
T 2 − 2TS − P 2 + T , P = E ·B , (1.3)

1We take the opposite overall sign from Born, and add a constant to get zero vacuum energy.
2T is related to Born’s parameter a (which later became b) by Ta2 = 1.
3Born uses the notation H for magnetic field in [1], which is confusing because of the standard

definition H = −∂L /∂B, but H was replaced by B in [2].
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where P is the quadratic Lorentz pseudoscalar. This was also given in the equivalent

manifestly Lorentz invariant form

LBI = −T

√
− det

(
η + F/

√
T
)
+ T , (1.4)

where η is the standard Minkowski-space metric (with “mostly-plus” signature) and

F is the antisymmetric matrix of components of the 2-form field-strength F = dA

for 1-form potential A = dtA0 + dx · A. In this form the BI theory has a natural

generalisation to higher dimensional Minkowski spacetimes, although this was not a

consideration at the time. The BI alternative was initially presented as an illustration

of the point that an electromagnetic origin for the electron mass did not, by itself,

determine the required nonlinearities. Born explored some of the properties of the BI

extension of his theory in a 1937 review article [5]. In particular, he discusses the

“self-duality under Legendre transform” of the BI theory, which is now understood

(see e.g. [6]) to be a consequence of its U(1) electromagnetic invariance, a property

first noticed by Schrödinger [7] that was also reviewed by Born.

Neither Born’s original theory nor its BI extension is now seen as particularly

relevant to electrodynamics, classical or quantum; in that domain, the 1936 Euler-

Heisenberg low-energy effective theory of QED is much more significant [8] (see [9] for

a relatively recent review). However, the special features of the BI theory continued

to attract the attention of theorists (e.g. Dirac in 1960 [10]) and a surprising new

feature of the theory was found around 1970: BI is the unique NLED with a weak-field

limit for which interactions do not lead to birefringence (polarisation dependent disper-

sion relations) [11–13]. This result was originally found in the context of shock-wave

propagation but can also be found by considering a constant uniform electromagnetic

background as a (typically birefringent) homogeneous optical medium through which

plane wave perturbations propagate; this reformulation was introduced by Bialynicki-

Birula in a 1983 review of BI theory that also introduced the conformal strong-field

limit of BI [14], which we refer to here as BB electrodynamics.

In 1985 Fradkin and Tseytlin showed how the BI theory in the form (1.4), but in

a 26-dimensional Minkowski spacetime, arises as an effective low-energy field theory of

open-strings in the bosonic open-string theory [15]. In 1989, this result was extended

by Leigh to the effective low-energy description of D-branes [16]; in this context the BI

theory is extended to a Dirac-Born-Infeld (DBI) theory, which becomes a supersym-

metric DBI theory for the D-branes of the 10-dimensional Type II superstring theories.

In particular, the original BI theory in a 4-dimensional spacetime becomes relevant to

the D3-brane of IIB superstring theory. There have since been many research papers on

BI theory in the context of string/M-theory (see e.g. the 2000 review by Tseytlin [17]

and the 2018 review by Gibbons [18]).

In comparison to this activity in the development and application of Born-Infeld

theory, Born’s original theory has been largely ignored. However, it has re-emerged

in various contexts over the last 30-plus years, often as a special case of some class of
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nonlinear electrodynamics defined by a Lagrangian density that, like Born’s theory, is

a function of the Lorentz scalar S but not of the pseudo-scalar P . Such “Born-type”

theories, with Lagrangian density L (S), were applied to inflationary cosmology around

1990 [19] and more recently to black hole physics [20–24]. Other recent examples are an

“inverse electrodynamics” proposed as a potential competitor to the Euler-Heisenberg

theory in the event of a discovery of birefringence effects in laser physics [25], and three

families of Born-type theories applied to holographic superconductors [26]. In light of

this activity and the current revival of interest in NLED (see e.g. [27]), Born’s original

theory still warrants attention.

The initial impetus for this paper was a recent incidental observation that the

strong-field limit of Born’s original theory, which can be viewed as a T → 0 limit,

differs from that of BI [28]. This fact is not obvious from (1.1) because a simple

T → 0 limit of it cannot be taken. However, the T → 0 limit can be taken in

a Hamiltonian formulation, and then a calculation of dispersion relations using the

general “Hamiltonian birefringence” results of [28] is very simple; it shows that there is

always a range of directions in which one polarisation mode is propagated faster than

light. This implies that the Born theory itself must be unphysical for sufficiently strong

fields, in contrast to BI. It appears that the acausality of Born’s theory was first noticed

in a 2016 paper by Schellstede et al. [29] in which necessary and sufficient conditions

for causal propagation were found for the “Plebański class” of NLED defined (in our

notation) by a Lagrangian density function L (S, P ).

Assuming LS > 0, which is standard for reasons detailed in [29], these conditions

are

LSS ≥ 0 , LPP ≥ 0 , LSSLPP − L 2
SP ≥ 0 , (1.5)

and

LS + S(LSS − LPP ) + 2PLSP > (LSS + LPP )
√
S2 + P 2 . (1.6)

The conditions (1.5) are precisely those shown in [30] to be equivalent to convexity of

L as a function of E, which is required to avoid superluminal propagation in weak-

field backgrounds [31]. It also ensures the existence of an equivalent Hamiltonian

formulation. However, convexity is insufficient (generically) to exclude superluminal

propagation in strong-field backgrounds. For this we need (1.6), for which we will

provide an alternative derivation by consideration of causality bounds on birefringence

indices.

Despite the relative complexity of the condition (1.6), it has a simple corollary for

any NLED of the “Plebański class” for which L is independent of P (e.g. LBorn) [29].

In this case (1.6) reduces to

LS + SLSS > LSS

√
S2 + P 2 (LP ≡ 0) , (1.7)

but this inequality is necessarily violated for sufficiently large P . This is because the

left-hand side is independent of P while the right-hand side is positive for an interacting

theory of the specified type satisfying (1.5), and increases linearly with P for large P .
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Notice that this argument depends on the fact that there is no upper bound on P . In

contrast, reality of LBI imposes an upper bound on P for any given S, and in this case

the inequality (1.6) is satisfied, as expected from the earlier result of [14] that BI does

not allow superluminal propagation.

This simple argument from [29] rules out as unphysical not only Born’s original

theory but also all “Born-type” theories with Lagrangian density L (S), such as those

mentioned above. A variant of it can be used to rule out many other NLED theories

defined by a Lagrangian density of the form L = F (S) + G(P ), where (F,G) are

functions only of (S, P ), respectively; the convexity/causality conditions are satisfied

if (F ′, F ′′, G′′) are all positive. In such cases (1.6) reduces to

F ′(S) > F ′′(S)(
√
S2 + P 2 − S) +G′′(P )(

√
S2 + P 2 + S) . (1.8)

Both sides are positive but the left-hand side is independent of P . The inequality is

therefore violated for sufficiently large P at any fixed S, unless reality of G(P ) imposes

a sufficiently severe upper bound on P , which does not happen for polynomial G (for

example), and this observation rules out as unphysical several more NLED theories

considered in the literature (e.g. [32–34]).

For more generic theories in the Plebański class the causality condition (1.6) is

still a significant constraint. An example considered in [29] is the Heisenberg-Euler

Lagrangian expanded to quadratic order in (S, P ). While the weak-field causality con-

ditions are satisfied, the strong field causality condition is violated. This approximate

theory is therefore acausal but for fields that are too strong for the validity of the

approximation [29]. Whether the full Heisenberg-Euler theory is causal is unknown.

For the remainder of this paper we investigate precisely how causality is violated (or

not) in strong-field backgrounds, in the context of models previously considered in the

literature, and variants of them, that satisfy the simple weak-field convexity/causality

constraints. Our aim is to develop some further intuition into strong-field causality

violation.

A particularly instructive example is a natural one-parameter family including both

Born and Born-Infeld that was introduced by Kruglov [35]; in our notation the La-

grangian density is

L (ξ) = T −
√

T 2 − 2TS − ξ2P 2 , (1.9)

where ξ is a dimensionless parameter, which we may assume to be positive without loss

of generality. We could replace ξ2 by an arbitrary real parameter but if this parameter

is negative then the Lagrangian density is not convex and the causality conditions (1.5)

are violated. We therefore lose nothing by the parametrisation of (1.9) and this one-

parameter family includes the original Born theory (ξ = 0) and the BI theory (ξ = 1).

As we shall see, the strong-field limit for any non-zero ξ is the same as the Born-Infeld

theory, i.e. the causal BB theory. This led us to expect that the acausality of Born’s

original theory would disappear for ξ ̸= 0, but this does not happen. It turns out that

ξ = 1 is required for causality, which makes Born-Infeld the exceptional member of the
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family. It is also the only one that is electromagnetic duality invariant, and one may

wonder how significant this is.

There are few duality invariant NLED theories for which the Lagrangian density

function L (S, P ) is known explicitly. One is a deformation of BI that has the inter-

acting conformal ModMax electrodynamics as its weak-field limit [36]; here we call it

ModMaxBorn. The ModMaxBorn Lagrangian density depends on the BI parameter

T and a dimensionless coupling constant γ, and it reduces to BI for γ = 0 [38]. For

γ < 0 the convexity/causality conditions (1.5) are violated but they are satisfied for

γ > 0. We find here that the strong-field causality condition (1.6) is also satisfied, thus

establishing ModMaxBorn as a physical deformation of BI.

It should be obvious that electromagnetic duality invariance does not guarantee

causality (a simple counterexample is ModMax with γ < 0 [36]). Neither is it true that

electromagnetic duality invariance is required for causality; we provide counterexamples

here. Nevertheless, it appears to us that almost all NLED theories appearing in the

literature that are not duality invariant are also not causal. We have put many to the

test; most pass the convexity/causality test (1.5) but few pass the strong-field causality

test (1.6). The examples that we present here illustrate this state of affairs.

2 Causality in strong-field backgrounds

For any NLED of the “Plebański” class, the field equations are solved by any con-

stant uniform (E,B). Small-amplitude disturbances of this background propagate as

electromagnetic waves with two independent polarisations, as in the vacuum, but the

dispersion relation for these waves is generically polarisation dependent in the ho-

mogeneous optical medium provided by the background; this is the phenomenon of

birefringence. There are therefore two, generically distinct, dispersion relations for the

wave 4-vector (ω,k), which may be characterised by a pair of birefringence indices λ±.

They take the form [14,31]

(1 + λ|E|2)ω2 + 2λ(k · S)ω = (1 + λ|E|2)|k|2 − λ|k× E|2 − λ|k×B|2 , (2.1)

where S = E×B, and λ may be either λ+ or λ−. Convexity of L (S, P ) as a function

of E ensures that λ± ≥ 0; equality for both λ+ and λ− occurs only in the vacuum, for

which the dispersion relation degenerates to the standard relativistic relation ω2 = |k|2.
For a generic constant uniform background, the vector field S is also constant and

uniform but not necessarily zero, which means that the homogeneous medium in which

electromagnetic waves propagate is generically stationary rather that static. However,

generic stationary backgrounds are Lorentz boosts of static backgrounds and we may

then choose the rest-frame of the medium, in which it is static; i.e. S = 0. In this

frame the dispersion relation (2.1) simplifies to

ω2 = A|k⊥|2 + k2
∥ , (2.2)

5



where k⊥ is orthogonal to the common direction of E and B (k∥ is the remaining

parallel component) and

A =

(
1− λB2

1 + λE2

)
, (2.3)

where E = |E| and B = |B|. As λ is a Lorentz scalar, we may rewrite A in a manifestly

Lorentz invariant form by using the fact that in the background rest-frame P = ±EB,

and hence

E2 =
[√

S2 + P 2 + S
]
S=0

, B2 =
[√

S2 + P 2 − S
]
S=0

. (2.4)

The phase velocity is

vph =

√√√√A|k⊥|2 + k2
∥

|k⊥|2 + k2
∥

(2.5)

This exceeds the velocity of light in vacuum only if A > 1. However, it is generally

the case that causality requires the group velocity vg = |dω/dk| to be subluminal or

lightlike, and this is [14,31]

vg =

√√√√A2|k⊥|2 + k2
∥

A|k⊥|2 + k2
∥
. (2.6)

Notice that vph ≥ vg with equality when k∥ = 0.

Inspection of the formula (2.6) shows that superluminal propagation is generic

whenever A > 1, and possible for certain choices of the wave-vector k if A < 0. The

necessary and sufficient conditions for causality are therefore the inequalities

A ≤ 1 , A ≥ 0 . (2.7)

The group velocity does not always coincide with the signal velocity4; see [37] for a

discussion. However, the two fail to coincide only for absorptive or gainful materials,

which is not the case here. A relevant point in this context is that the light-cones

defined by the dispersion relations used here were originally found by consideration of

propagating shock-wave discontinuities [11–13], which are clearly signal fronts.

From (2.3) and (2.7) we see that the causality inequalities to be satisfied by λ are

λ ≥ 0 , λB2 ≤ 1 . (2.8)

We also see that λ < 0 allows A > 1 even for weak fields, so we may view λ ≥
0 (equivalently, A ≤ 1) as a weak-field causality condition; it is equivalent to the

conditions (1.5) which, as mentioned in the Introduction, are also convexity conditions.

In contrast, A < 0 is generically possible only for strong fields5, so we may view λB2 ≤ 1

(equivalently A ≥ 0) as a strong-field causality condition.

4We thank Wenqi Ke for raising this point.
5An exception is conformal theories for which there is no weak/strong distinction for field strengths.
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The main aim of this section is show how A > 0 is equivalent to the causality

condition (1.6), at least for propagation in static backgrounds. We exclude A = 0 here,

despite the fact that it is compatible with causality, because it restricts the direction

of wave-propagation, and this implies particular properties of the Hamiltonian density

that are never satisfied by any NLED of the “Plebański” class [28,31]. It is convenient

to first rewrite (1.6) as

LS > (
√
S2 + P 2 + S)LPP + (

√
S2 + P 2 − S)LSS − 2PLSP . (2.9)

In the rest-frame of a static background we may use (2.4) to reduce this inequality to

LS > E2LPP +B2LSS + 2σEBLSP , (2.10)

where P has been written as P = σEB, where σ = +1(−1) for (anti)parallel E and B.

To make contact with the causality conditions (2.7) we need to know the bire-

fringence indices for a generic NLED. They are determined by the first and second

derivatives of L (S, P ). Following [14] (but using the slightly different notation of [31])

we introduce the ‘normalized’ second derivatives

ℓSS =
LSS

LS

, ℓSP =
LSP

LS

, ℓPP =
LPP

LS

, (2.11)

and the definitions

Ξ :=
1

2
(ℓSS + ℓPP ) , Γ := ℓSSℓPP − ℓ2SP , (2.12)

and

J := 1− P 2Γ + 2(PℓSP − SℓPP ) . (2.13)

The convexity/causality conditions (1.5) are now

ℓSS ≥ 0 , ℓPP ≥ 0 , Γ ≥ 0 . (2.14)

Notice that the first two conditions can be replaced by Ξ ≥ 0 when Γ > 0. We may

now write the birefringence indices as

λ± = J−1
[
(Ξ− SΓ)±

√
(Ξ− SΓ)2 − ΓJ

]
. (2.15)

This presupposes that J ̸= 0. The existence of a weak-field limit implies J > 0, which

we now assume.

From the definition of λ±, we see that λ+ ≥ λ− and hence A+ ≤ A−. So the

condition A± > 0 is equivalent to A+ > 0, which is equivalent to λ+B
2 < 1, which

yields

J − (Ξ− SΓ)B2 > B2
√
(Ξ− SΓ)2 − ΓJ . (2.16)

As this inequality requires the left-hand side to be positive, we may take the square of

both sides to get the following equivalent bound:

J
[
J + E2B2Γ− 2ΞB2

]
> 0 . (2.17)
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For the static background assumed here, the definition of J in (2.13) becomes

J + E2B2Γ = 1 + (B2 − E2)ℓPP + 2σEB ℓSP , (2.18)

where, as before, σ is the sign of P . Using this, and J > 0, we find that the bound

(2.17) becomes

1 > E2ℓPP +B2ℓSS + 2σEB ℓSP , (2.19)

which (after multiplication of both sides by LS) is precisely (2.10). We have now

established that the strong-field causality condition A+ > 0 (which implies A− > 0)

coincides (in a static background) with the causality condition (1.6), on the assumption

that there is a weak-field limit.

This weak-field limit assumption may be clarified as follows. An implication of the

causality conditions A± > 0 is that A+A− > 0. Only the sum and product of λ± are

needed to compute A+A−, and the result is

A+A− = F/G , (2.20)

where
F = 1−

[
E2ℓPP +B2ℓSS − 2σEB ℓSP

]
,

G = 1 +
[
E2ℓSS +B2ℓPP + 2σEB ℓSP

]
.

(2.21)

Using the causality/convexity conditions in the form (2.14), we may rewrite G as

G = 1 +
(
E
√

ℓSS −B
√
ℓPP

)2

+ EB
(√

ℓSSℓPP + 2σℓSP

)
. (2.22)

As the last term in this expression is non-negative as a consequence of Γ ≥ 0, we

conclude that G ≥ 0 in any NLED satisfying the convexity/causality conditons of

(1.5). In this context, therefore, A+A− > 0 is equivalent to F > 0, but this is (2.10),

which is (1.6) for our static background. In other words, although (1.6) is implied by

A− ≥ A+ > 0, it is equivalent to A+A− > 0, which allows A+ ≤ A− < 0 and therefore

causality violation.

It appears from this result that the conditions (1.5) and (1.6) are necessary for

causality, but not sufficient. However, any path in field space from a weak-field region

to one in which both A+ and A− are negative, must pass through a point where

A+A− ≤ 0, which would violate the strict equality F > 0 of (2.10) (and, generically,

the weaker F ≥ 0). This argument does not apply if there is no weak-field limit but all

such cases known to us fall outside the Plebański class; they do not have a standard

Lagrangian density that is a function of (S, P ) only.

3 From Born to Born-Infeld

We begin our investigation of the consequences of the causality conditions (1.5) and

(especially) (1.6) by considering the one-parameter family of Lagrangian densities men-

tioned in the Introduction: L (ξ) = T −
√

T 2 − 2TS − ξ2P 2.
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The first derivatives with respect to (S, P ) are

LS =
T

T − L (ξ)
, LP =

ξ2P

T − L (ξ)
. (3.1)

We remark here that the condition for a Lagrangian density L (S, P ) to define an

electromagnetic-duality invariant theory is [14]

L 2
S − 2S

P
LSLP − L 2

P = 1 , (3.2)

and this is satisfied by L (ξ) only for ξ = 1, the BI case.

The second derivatives of L (ξ) are

LSS =
T 2

[T − L (ξ)]3
, LSP =

ξ2TP

[T − L (ξ)]3
, LPP =

ξ2T (T − 2S)

[T − L (ξ)]3
. (3.3)

Using these expressions, one finds that the convexity/causality conditions (1.5) are

satisfied for any value of ξ; for example, LPP ≥ 0 since reality of Lξ requires T (T −
2S) ≥ ξ2P 2 ≥ 0, and

LSSLPP − L 2
SP =

ξ2T 2

[T − L (ξ)]4
≥ 0 . (3.4)

Sinilarly, one finds that the causality condition (1.6) yields the following inequality6:[
T − (S +

√
S2 + P 2)

] [
T − ξ2

(
S +

√
S2 + P 2

)]
> 0 . (3.5)

For the original Born theory (ξ = 0), this reduces to T − S >
√
S2 + P 2, which is

violated for sufficiently large P , as shown in [29]. In the Born-Infeld case (ξ = 1) the

left-hand side is a perfect square and the inequality is manifestly satisfied. For all other

cases (ξ(1−ξ) ̸= 1) the inequality (3.5) is violated whenever we can choose (S, P ) such

that 
T
ξ2

< S +
√
S2 + P 2 < T (ξ > 1)

T < S +
√
S2 + P 2 < T

ξ2
(ξ < 1) .

(3.6)

However, the possible values of (S, P ) are restricted by the fact that L (ξ) is real only

when (T 2 − 2TS − ξ2P 2) ≥ 0, which is equivalent to

S +
√

S2 + ξ2P 2 ≤ T . (3.7)

This must be taken into account in drawing conclusions from (3.6):

• ξ > 1. In this case it suffices to consider P = 0. The causality inequality of (3.5)

is violated whenever 2S/T ∈ (ξ−2, 1). These values of S are permitted by the

restriction 2S/T ≤ 1 required for reality of L (ξ). Also, the violation of causality

can occur for zero magnetic field B; in this case it occurs when |E|2/T ∈ (ξ−2, 1).

6Equality is possible for T = 0 but this case falls outside the “Plebański class” considered in [29].
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• ξ < 1. For P = 0 a violation of causality now requires 2S > T , which is

incompatible with the restriction 2S < T required for reality of L (ξ), so we

need only investigate P ̸= 0. It will suffice to consider S = 0, in which case the

causality inequality of (3.5) is violated whenever |P |/T ∈ (1, ξ−2). Reality of L (ξ)

now imposes the restriction |P |/T ≤ ξ−1, which excludes some values of |P |/T in

the interval (1, ξ−2) but allows those in the subinterval (1, ξ−1). Causality can be

violated for these values but now a non-zero magnetic field is needed for causality

violation (because P ̸= 0).

It follows from this analysis that that Born-Infeld (ξ = 1) is the only causal NLED in

the one-parameter family defined by L (ξ).

This is a rather surprising result because the strong-field limit is the causal BB the-

ory for all ξ ̸= 0. This feature can be seen by consideration of the following Lagrangian

density, equivalent to L (ξ) but involving a pair of auxiliary scalar fields (u, v):

L (ξ)
(RT ) = T − T

2

{
v +

(1 + u2)

v

}
+ vS + ξ uP . (3.8)

For ξ = 1 this is the Roček-Tseytlin (RT) form of LBI [39]; it is notable that it

generalises to any ξ but not to the version of L (ξ) for which ξ2 is replaced by a

negative real parameter. One advantage of this reformulation is that it allows us to

take the T → 0 limit. As T has dimensions of energy density, this is equivalent to a

strong-field limit in which the field energy density goes to infinity for fixed T . Provided

that ξ ̸= 0 we have, defining u′ = ξu

lim
T→0

L (ξ ̸=0)
(RT ) = vS + u′P , (3.9)

which is the Lagrangian density found in [40] for BB electrodynamics; the scalar fields

(u, v) are now Lagrange multipliers for the constraints S = 0 and P = 0. However,

when ξ = 0 we have

lim
T→0

L (ξ=0)
(RT ) = vS , (3.10)

which was shown in [28] to be the Lagrangian density for the strong-field limit of Born’s

original theory.

Thus, both the Born theory and the Born-Infeld theory are exceptional cases within

the ξ-family. All, except the Born theory, have the causal BB as a strong-field limit,

but all except Born-Infeld are acausal. For the remainder of this section, we shall elab-

orate on this observation, by recovering it from previous results of [14, 28, 31] on wave

propagation in constant uniform background fields, and by providing a Hamiltonian

perspective, which is simpler than the Lagrangian perspective in two related ways.

The Hamiltonian variables are not subject to inequalities analogous to (3.7) and it is

possible to take a T → 0 limit without having to introduce constraints analogous to

those of (3.9) or (3.10).
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3.1 Hamiltonian formulation

The RT-type Lagrangian density of (3.8) is a good starting point for the passage to the

Hamiltonian formulation because it is linear in (S, P ). Let us recall here that variation

of L (ξ)
(RT ) with respect to the auxiliary fields (u, v) yields algebraic field equations that

are jointly equivalent to

u =
ξP

T − L (ξ)
, v =

T

T − L (ξ)
, (3.11)

and that substitution for (u, v) in L (ξ)
(RT ) yields L (ξ).

To proceed to the Hamiltonian formulation we first define the electric-displacement

field D (the Legendre dual to E) by

D :=
∂

∂E

[
L (ξ)

(RT )

]
= vE+ ξuB ⇒ E = v−1 (D− ξuB) . (3.12)

We then define

H ′
(ξ) := E ·D− L (ξ)

(RT ) =
1

2v

{
|D− ξuB|2 + T (1 + u2)

}
+

v

2

(
T + |B|2

)
− T , (3.13)

where the prime is a reminder that this “Hamiltonian density” is a function of the

auxiliary fields (u, v) in addition to (D,B); their elimination7 yields

H(ξ) =

√
(T + |D|2) (T + |B|2)− ξ2

(
T + |B|2
T + ξ2|B|2

)
(D ·B)2 − T . (3.14)

For the BI theory (ξ = 1) we have the standard result

HBI =
√
(T + |D|2)(T + |B|2)− (D ·B)2 − T , (3.15)

and for the Born theory (ξ = 0) we have

HBorn =
√
(T + |D|2)(T + |B|2)− T . (3.16)

Let us reconsider the strong-field (T → 0) limit in this Hamiltonian context. Pro-

vided that ξ is non-zero we find that

lim
T→0

H(ξ) = |D×B| (ξ ̸= 0). (3.17)

This is the Hamiltonian density for the conformal BB electrodynamics, originally found

this way [14] and later interpreted in [40] as a field theory of “photon dust”. In contrast,

for ξ = 0 we have

lim
T→0

HBorn = |D||B| , (3.18)

which is a very different conformal field theory. We thus confirm the exceptional nature

of the Born theory in this respect.

7By extremisation of H ′
(ξ) with respect to (u, v), not by use of (3.11).
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The process of elimination of the auxiliary fields (u, v) from H ′
(ξ) determines them

as functions of (D,B):

u =
ξ(D ·B)

T + ξ2|B|2
, v =

T + H(ξ)

T + |B|2
. (3.19)

Using these relations we find from (3.12) that

E = (T + H(ξ))
−1

(
T + |B|2

T + ξ2|B|2

)[
(T + ξ2|B|2)D− ξ2(D ·B)B

]
, (3.20)

from which it follows that

P =

(
T + |B|2

T + ξ2|B|2

)(
T D ·B
T + H(ξ)

)
. (3.21)

In addition, comparison of the expressions for v in (3.11) and (3.19) yields the relation

(T − L (ξ))(T + H(ξ)) = T (T + |B|2) , (3.22)

which, combined with (3.21), determines S in terms of (D,B).

For Born’s original theory, the relation (3.20) simplifies to

(
√
T + |D|2)E = (

√
T + |B|2)D , (3.23)

which implies that

|D|2 =
(

T

T − 2S

)
|E|2 . (3.24)

Recalling that 2S ≤ T is required for reality of LBorn, we see that the maximum value

of |E|, for any given B, corresponds to |D| → ∞. There is therefore no restriction on

the range of the Hamiltonian field variables (D,B), and this is true for all NLED in

our ξ-family, which explains why the strong-field limit is equivalent to a simple T → 0

limit in the Hamiltonian formulation.

3.2 Wave propagation

We shall now see how our causality results for the Born-BI interpolation family are

recovered from the causality bounds on the birefringent indices for wave propagation

in a constant uniform electromagnetic background. From the formulae of section 2 we

find that

Ξ =
(1 + ξ2)T − 2ξ2S

2 (T 2 − 2TS + ξ2P 2)
, Γ =

ξ2

T 2 − 2TS + ξ2P 2
, (3.25)

and

J =
(T − 2S) (T − 2ξ2S)

T 2 − 2TS + ξ2P 2
. (3.26)

Using these expressions in (2.15) we find that

(λ+, λ−) =

{
(λ1, λ2) ξ ≤ 1 ,

(λ2, λ1) ξ > 1 ,
(3.27)
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where

λ1 =
1

T − 2S
, λ2 =

ξ2

T − 2ξ2S
. (3.28)

Birefringence occurs when these two indices differ, which they do in this case except

when ξ = 1; this is the well-known result that BI is a “zero-birefringence” NLED.

Notice too that λ2 = 0 for ξ = 0, which implies that ω2 = |k|2 and hence vg = 1

for this polarization; this is a feature of any NLED for which LP ≡ 0. Using these

birefringence indices in the formula of (2.3) we have

A1 =
T − E2

T +B2
, A2 =

T − ξ2E2

T + ξ2B2
, (3.29)

where the correspondence with A± is the same as for λ± specified above.

To determine whether either A1 or A2 can be negative one must take into account

that the background fields (E,B) are restricted by the condition T 2 − 2TS ≥ ξ2P 2

required for reality of Lξ. This is what we did in the analysis of (3.5) (which is

essentially the condition A+A− > 0) from which we concluded that BI (ξ = 1) is

the only causal case. It is instructive to see how the same conclusion is arrived at in

Hamiltonian variables.

For the static background we find from (3.20) that

E =

(
T +B2

T + ξ2B2

)(
TD

T + H(ξ)

)
, (3.30)

where, in this background,

T + H(ξ) =

√
T (T +B2)(T + ξ2B2 +D2)

T + ξ2B2
. (3.31)

We thus find that

A1 = Ā1

[
1− (1− ξ2)

B2D2

(T + ξ2B2)2

]
,

A2 = Ā2

[
1 + (1− ξ2)

TD2

(T + ξ2B2)2

]
,

(3.32)

where

Ā1 =
T (T + ξ2B2)

(T +B2)(T + ξ2B2 +D2)
,

Ā2 =
T

(T + ξ2B2 +D2)
.

(3.33)

For use below we give the approximate results for (A1, A2) for a strong-field region of

field space for which D2 ≫ B2 ≫ T :

A1 = −(1− ξ2)

ξ2

(
T

B2

)[
1 + O

(
T

B2
,
B2

D2

)]
,

A2 =
T

B2

[
B2

D2
+

(1− ξ2)

ξ4
T

B2

] [
1 + O

(
T

B2
,
B2

D2

)]
.

(3.34)

We now consider implications for the various qualitatively distinct values of ξ:
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• ξ = 0. Born’s original theory. In this case

A1 = A+ =
T 2 −B2D2

(T +B2)(T +D2)
, A2 = A− = 1 . (3.35)

We see that A± ≤ 1, and A− > 0, but A+ < 0 for |BD| > T . The Born

theory allows superluminal propagation for sufficiently strong electric field in the

presence of a magnetic field, in agreement with [29].

The T → 0 limit of (3.35) yields

A+ = −1 , A− = 1 (T = 0), (3.36)

but the T → 0 limit of the Born Lagrangian density used to derive (3.29), from

which we deduced (3.35), is a zero Lagrangian, so this result for T = 0 is not

obviously justifiable. However, it can be justified by a direct computation of A±

within the Hamiltonian formulation using the results of [28]. The result is that

the strong-field limit of Born’s theory is “strongly” acausal, in the sense that one

polarisation is always superluminal.

• 0 < ξ < 1. We see from (3.32) that A+ = A1 will be negative for sufficiently large

|BD|, as for Born’s original theory but the value of |BD| needed for superluminal

propagation increases with ξ, becoming infinite at ξ = 1.

We also see from (3.34) that although A± = 0 in the T → 0 limit, A+ is negative

as this limit is approached through the strong-field region with D2 ≫ B2 ≫ T

This explains how acausality at strong coupling is consistent with causality of

the strong-coupling limit.

• ξ = 1; i.e. Born-Infeld. In this case

A± = Ā0 =
T

T +B2 +D2
. (3.37)

There is no birefringence, and superluminal propagation is not possible. In the

T → 0 limit we get A± = 0 but this result is again not obviously justifiable, and

not only for the reason given above in the context of the Born theory. Here there

is the additional problem that the T → 0 limit of BI is BB, for which there is

no static background solution, so our initial assumption of a static background

cannot be valid at T = 0. To understand the T → 0 limit it is necessary

to start with the dispersion relations for a non-static background, within the

Hamiltonian formation, as done in [28, 41]. We pass over this here except to

say that wave-propagation in BB is lightlike, but only in the direction of the

(necessarily non-static) background-field momentum density.

• ξ > 1. In this case A2 = A+, which will be negative for sufficiently large D.

In contrast to the ξ < 1 cases, including ξ = 0, superluminal propagation is
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possible even in backgrounds with zero magnetic field (in agreement with our

earlier Lagrangian analysis). In particular, the behaviour of A± as the strong-

field limit is approached through a region with D2 ≫ B2 ≫ T , A± = 0 can be

read off from (3.34). As for the 0 < ξ < 1 case, we have A± = 0 at T = 0 but

A+ is negative for any non-zero T when the ratio TD2/B4 is sufficiently large.

These results confirm our earlier conclusion that the only causal member of the L (ξ)

family is Born-Infeld. It is also the only member of the family with a Hamiltonian

density that is invariant under the U(1) electromagnetic-duality transformation

(D+ iB) → eiθ(D+ iB) . (3.38)

This fact suggests that we examine some other duality-invariant NLED. Of the few

explicitly-known examples, the simplest is ModMax and its BI-type duality-invariant

extension [36,38], which we refer to here as ModMaxBorn.

4 ModMax and ModMaxBorn

Following [30], we begin by considering the Lagrangian density

L (S, P ) = aS + b
√
S2 + P 2 , (4.1)

where (a, b) are arbitrary real constants. The first derivatives of L are

LS = a+
bS√

S2 + P 2
, LP =

bP√
S2 + P 2

. (4.2)

In order to have LS > 0 for all (S, P ) we need a > 0 and b2 < a2. The second

derivatives are

LSS =
bP 2

(S2 + P 2)
3
2

, LSP = − bSP

(S2 + P 2)
3
2

, LPP =
bS2

(S2 + P 2)
3
2

. (4.3)

Since LSSLPP = L 2
SP (which is a consequence of conformal invariance) the convex-

ity/causality conditions of (1.5) require b ≥ 0, and the combined constraints on (a, b)

become

0 ≤ b < a . (4.4)

The general solution to these inequalities may be parametrised as follows:

a = c cosh γ , b = c sinh γ , (4.5)

where c is an arbitrary positive constant that determines the overall normalisation of

L , and γ is a non-negative coupling constant. The choice c = 1 yields the ModMax

Lagrangian density [36]

LMM = (cosh γ)S + (sinh γ)
√
S2 + P 2 . (4.6)
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We still have to consider the more complicated causality condition of (1.6). For

any conformal theory this reduces to8

LS > (LSS + LPP )
(√

S2 + P 2 + S
)
, (4.7)

and for ModMax this is the constraint a > b, which is nothing new. In this case

convexity is sufficient for causality. This was also the conclusion of [30] but arrived at

by consideration of the birefringence indices; from which one finds that

λ− = 0, λ+ =
b

a
√
P 2 + S2 − bS

=
2b

(a+ b)B2 + (a− b)E2
. (4.8)

In the last equality we assumed parallel (E,B) with magnitudes (E,B), in order to

apply the the formula of (2.3); for the above birefringence indices this formula yields

A− = 1 , A+ =
a− b

a+ b
=

1− tanh γ

1 + tanh γ
. (4.9)

Notice that 0 < A± ≤ 1. This tells us that wave propagation in a static homogeneous

ModMax background is causal. The fact that A− = 1 (which follows from λ− = 0)

tells us that one polarisation is lightlike.

We now turn to ModMaxBorn; the Lagrangian density is [38]

LMMB = T −
√

T 2 − 2T
[
(cosh γ)S + (sinh γ)

√
S2 + P 2

]
− P 2 . (4.10)

This reduces to LMM in the weak-field (T → ∞) limit, which is causal for γ ≥ 0. This

is therefore a causality constraint on ModMaxBorn, but is it sufficient for causality?

The main task of this section is to prove that it is.

It is straightforward to show that ModMaxBorn satisfies the convexity/causality

conditions of (1.5) for γ ≥ 0. We could now proceed to a direct check of whether

(1.6) is also satisfied, but it is simpler in this case to check strong-field causality via a

computation of the birefringence indices; we pass over the straightforward but tedious

details to give the results. The birefringence indices are

λ+ =

√
P 2 + S2 + T sinh(γ)

T cosh(γ)
√
P 2 + S2 − ST sinh(γ)− 2S

√
P 2 + S2

,

λ− =
cosh(γ)

√
P 2 + S2 + S sinh(γ)

T
√
P 2 + S2 − sinh(γ) (P 2 + 2S2)− 2S cosh(γ)

√
P 2 + S2

.

(4.11)

In the T → ∞ limit we recover the birefringence indices (4.8) of ModMax. For γ = 0

we recover the BI birefringence indices: λ± = 1/(T − 2S).

For a static background field configuration with parallel electric and magnetic fields,

the ModMaxBorn birefringence indices simplify to

λ+ =
B2 + E2 + 2T sinh(γ)

B4 − E4 + T (B2eγ + E2e−γ)
,

λ− =
B2 + e2γE2

(B4 − E4e2γ + Teγ(B2 + E2)
.

(4.12)

8This can be proved using relations derived in [30] from the degree-1 homogeneity of L (S, P ).
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The ModMax results of (4.8) are reproduced in the T → ∞ limit, as expected. Using

this result to compute A±, we find that

A− =
T − eγE2

Teγ +B2
, A+ = e−2γA− . (4.13)

For the same static background we have

LMMB = T −
√

(T − eγE2)(T + e−γB2) , (4.14)

from which we see that reality requires eγE2 ≤ T , and hence A± ≥ 0. We also have

A+ < A− ≤ 1 provided that γ ≥ 0. We thus conclude that ModMaxBorn is a causal

theory because

0 ≤ A± ≤ 1 . (4.15)

As already mentioned, the possibility of A± = 0 is not realizable within a standard

Lagrangian formulation, but we suspect that it could be realized by limits of Mod-

MaxBorn within the Hamiltonian formulation, as discussed for BI in [28].

5 Causality without Duality

In order to dispel any idea that causality requires duality invariance, we now discuss

a particular two-parameter family of NLED theories proposed by Kruglov [42] as a

generalisation of his earlier one-parameter family that we analysed in section 2. As we

shall see, this contains a one-parameter subfamily that is causal within a parameter

range that includes BI.

The Lagrangian density for the two-parameter family is

L =
T

2q
(1−∆q) , ∆ ≡ 1− 2S

T
− a

P 2

T 2
. (5.1)

The weak-field (T → ∞) limit is Maxwell for any q. For q = 1
2
we have the one-

parameter family that we analysed in section 3 (where we replaced a by ξ2). We

exclude q = 0 because this case is essentially the “logarithmic electrodynamics” that

we consider below in a separate subsection. Notice that

LS = ∆q−1 . (5.2)

For q = 1 the condition LS > 0 is trivially satisfied, but then a = 0 yields the free-field

Maxwell theory and the Lagrangian density for a ̸= 0 has the form L = F (S) +G(P )

with polynomial G; as explained in the Introduction, such cases trivially fail the strong-

field causality test. Thus, q = 1 may be excluded.

For q ̸= 1, the LS > 0 condition requires positive ∆, i.e.

T 2 − 2TS − aP 2 > 0 (q ̸= 1). (5.3)
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To apply the convexity/causality conditions of (1.5) we need the following quantities:

ℓSS = 2(1− q)T−1∆−1 ,

ℓSP = 2a(1− q)PT−2∆−1 ,

ℓPP = aT−1 ∆−1

[
∆+ 2a(1− q)

P 2

T 2

]
,

(5.4)

which yields

Γ ≡ ℓSSℓPP − ℓ2SP = 2a(1− q)T−2∆−1 . (5.5)

We see from these results that the convexity/causality conditions (1.5) are satisfied for

q ̸= 1 if and only if

a ≥ 0 , q < 1 . (5.6)

We now need to determine whether additional restrictions on parameters are re-

quired by the strong-field causality inequality (1.6). Again excluding q = 1, which we

have already dealt with, we find (after dividing by the positive factor ∆q−2) that

(T − 2aV ) [2(2q − 1)U(T − 2aV ) + T (T − 2V )] > 0 , (5.7)

where

U =
1

2

(√
S2 + P 2 − S

)
, V =

1

2

(√
S2 + P 2 + S

)
. (5.8)

Notice that U and V are both non-negative, and that

T 2∆ = (T − 2V )(T + 2U) + 4(1− a)UV . (5.9)

To deduce the implications of (5.7) we must take into account restrictions on the

domain of L . For any non-integer q, reality of L requires ∆ > 0 but this is equivalent,

for any q < 1, to the condition LS > 1, which can be expressed as the following upper-

bound on V :

V < V0 , V0 :=
T (T + 2U)

2(T + 2aU)
. (5.10)

Let us first consider a ̸= 1. As V < V0, we may probe the strong-field region in

field-space by choosing V = V0 − Tϵ, with 0 < ϵ ≪ 1. Expanding the left-hand side

of (5.7) in powers of ϵ, we arrive at the following version of the strong-field causality

inequality, valid to leading order in a power-series expansion in ϵ:

−4(a− 1)2(1− q)T 4U

(T + 2aU)4
+O(ϵ) > 0 . (5.11)

This inequality is violated for q < 1. We thus conclude that all members of the 2-

parameter family with q < 1 and a ̸= 1 are acausal. We learn nothing from (5.11)

when a = 1, but in this case the strong-field causality inequality (5.7) simplifies to

(T − 2V )2 [T + 2(2q − 1)U ] > 0 (a = 1). (5.12)
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As 2V < T is required for ∆ > 0 at a = 1, this inequality is satisfied for q < 1 provided

2q ≥ 1.

We have now shown that all members of the initial 2-parameter NLED family

defined by the Lagrangian density (5.1) are acausal except for the one-parameter sub-

family defined by
1

2
≤ q < 1 , a = 1 . (5.13)

This family contains BI as the q = 1
2
case. It is perhaps noteworthy that a = 1 is the

value for which ∆ = − det(η + F/T ), which yields the BI Lagrangian density in the

form of (1.4) for q = 1
2
.

We conclude by showing that BI is the only member of this one-parameter family

of causal NLED theories that is electromagnetic-duality invariant. As mentioned in

section 3, a Lagrangian density L (S, P ) will define a duality invariant NLED theory

only if it satisfies the PDE (3.2). For independent variables (U, V ) this PDE takes the

very simple form [43]

LULV = −1 ,

(
LU :=

∂L

∂U
, LV :=

∂L

∂V

)
. (5.14)

A calculation for the Lagrangian density of (5.1) with a = 1 yields

LULV = −∆2q−1 , (5.15)

and hence only the q = 1
2
case (BI) is duality invariant. For general a, q, one obtains

LULV = −
(
1 +

2aU

T

)(
1− 2aV

T

)
∆2q−2 , (5.16)

which shows that in the two-parameter family only {a = 0, q = 1} (Maxwell) and

{a = 1, q = 1
2
} (BI) are duality invariant.

5.1 Logarithmic electrodynamics

A case that is closely related to those considered above has

L = −T

2
ln

[
1− 2S

T
− a

P 2

T 2

]
, (5.17)

where a is a dimensionless constant. The a = 0 case dates back to 1995 [44]. The

the a = 1 case was introduced in [45] (and recently applied in [46]) and extended

to arbitrary a in [47]. For any value of a the weak-field limit is Maxwell and all

convexity/causality conditions of (1.5) are satisfied. However, the strong-field causality

condition (1.6) is not satisfied for any a, as we now show.

The a = 0 case is a “Born-type” theory (LP ≡ 0) and hence acausal for reasons

already explained in the Introduction. The a ̸= 0 cases require only slightly more
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analysis. Reality of L imposes a restriction on the allowed values of (S, P ), but these

allowed values include S < 0 with P = 0, for which (1.6) reduces to

2S + T > 0 , (5.18)

which is violated for 2S < −T , i.e. for sufficiently large magnetic field. We conclude

that logarithmic electrodynamics is acausal for any value of the parameter a.

6 Summary and Outlook

Causality is an essential requirement for relativistic field theories, nonlinear electro-

dynamics (NLED) in particular. For weak fields it is usually a simple matter to en-

sure causality. Causality violations requiring strong fields are generally associated (in

ℏ = c = 1 units) with some characteristic energy density scale. When this scale comes

from higher-derivative terms there are typically additional propagating modes of neg-

ative energy; this is a well-known problem. In the NLED context, it is the reason

why the Lagrangian density is restricted to be a function L (S, P ) of the indepen-

dent Lorentz invariants (S, P ) constructed from the electric and magnetic fields, but

not their derivatives. In the terminology of [29], this defines the “Plebański class” of

NLED theories.

From a Hamiltonian perspective, the restriction to the Plebański class ensures that

the interactions do not change the canonical structure, which ensures that the local de-

grees of freedom are the same as the free Maxwell theory. Thus, interaction terms in the

NLED Lagrangian are not “higher derivative” even though they introduce (typically)

an energy density scale. Born’s original 1933 theory and its subsequent Born-Infeld

(BI) modification were the first examples; the Born parameter (called T here) sets the

scale. However, it was not appreciated at that time by Born, or even much later by

many others, that strong-field causality violations invisible to weak-field analysis can

emerge at the Born scale.

We suspect that one of the reasons that strong-field causality has rarely been an

issue in past work on NLED is that theorists have focused on the Born-Infeld theory,

which happens to be causal for both weak and strong fields. Another reason may

be that the NLED of principal phenomenological interest is still the Euler-Heisenberg

theory, which is derived from QED as an effective field theory. Whatever the reason, it

appears to us that most work over the past few decades on applications of new NLED

theories, motivated (as was Born’s original model) by phenomenological ideas, has been

carried out without awareness of the possibility of strong-field causality violation.

Until relatively recently, work on causality in NLED theories focused on particular

theories; the first example may be the proof in [14] that BI is a causal theory. In that

work the group velocity for propagation of plane waves perturbations of the optical

medium provided by a constant electromagnetic background was calculated for BI.

The same calculation for a general NLED theory leads to the conclusion that the
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propagation is causal provided that a particular function A of the background fields

takes values in the interval [0, 1] [31]. The structure of this function is such that weak-

field causality violation is associated with A > 1 whereas A < 0 requires strong fields.

Moreover, A is easily found from the birefringence indices, which are known functions

of the first and second derivatives of L (S, P ). It is then a relatively small step to

express the causality conditions directly in these terms, and we have done this here.

The result, however, was first found, via a different method, by Schellstede et al. [29].

Specifically, Schellstede et al. found the necessary and sufficient conditions for

causality of any NLED in the Plebański class, expressed as inequalities involving the

first and second derivatives of L (S, P ). In our review of their result (in our nota-

tion) we have separated their causality inequalities into two types. The first type are

those of (1.5), which are the weak-field causality conditions; they coincide with the

conditions for convexity derived in [30] and we have therefore referred to them as the

convexity/causality conditions. The second type is the inequality of (1.6), which we

have confirmed (using the method sketched above) and interpreted as a strong-field

causality condition.

Shellstede et al. applied their results to a few cases. In particular, they gave a very

simple proof that any NLED theory with a Lagrangian density function L (S), such

as Born’s original model, is acausal. This already rules out as unphysical many NLED

theories proposed in the literature; we have mentioned some of them. A very similar

argument can be used for Lagrangian density functions of the form L = F (S)+G(P ),

and this eliminates a few more NLED theories, but a more detailed analysis is required

for models with a more generic Lagrangian density within the Plebański class.

One aspect of this analysis is that it is generally necessary to take into account

constraints on the domain of the Lagrangian density function L (S, P ) since it must

be a real function and this may restrict the allowed values of (S, P ). This is nicely

illustrated by a NLED model with one free dimensionless parameter, initially proposed

by Kruglov, which includes both Born and BI. The Born theory is acausal because,

essentially, there is no restriction on P ; moving in parameter space away from Born

towards BI, a restriction on P appears but it is too weak to eliminate the field-space

region in which acausality appears until BI is reached. Moving beyond BI we now get

a restriction on S that is too weak to prevent acausality, which leads to the conclusion

that BI is the unique causal member of the family.

A surprising feature of this Kruglov model, which was our initial motivation for

investigating it, is that the strong-field (T → 0) conformal limit is the same for all

members of the family except the Born theory, and this limit is the causal Bialynicki-

Birula electrodynamics. The strong-field conformal limit of Born’s theory is a strongly

acausal theory, so it is not surprising that Born’s theory is itself acausal for sufficiently

strong fields. In contrast, it appears paradoxical that other members of the Born-

BI family can be acausal for strong fields but causal in the strong-field limit. The

resolution of this paradox becomes clear in the Hamiltonian formulation (which is

also much simpler because there are no constraints on the domain of the Hamiltonian

21



density function): although A → 0 in the strong field limit in all non-BI cases except

Born, A < 0 is always possible before this limit is reached.

We have also analysed a two-parameter extension of the Born-BI family, again pro-

posed by Kruglov [42], finding that a one-parameter subset is causal. This subset, men-

tioned in the Introduction, contains BI as the unique electromagnetic duality-invariant

member, thus providing examples of causal theories that are not electromagnetic dual-

ity invariant. This is not a surprise because there was never a reason to suppose that

electromagnetic duality is required for causality. Nevertheless, it is remarkable that

most NLED theories proposed in the literature that are not duality invariant are also

not causal, whereas the reverse is true for duality invariant theories, as we now explain.

There are not many known duality-invariant NLED theories; BI is the most well-

known. Recent additions are ModMax and its BI-type extension [36, 38]; we have

proposed the name ModMaxBorn for this NLED family, which has a dimensionless

parameter γ in addition to a Born scale parameter T . In the weak-field limit it reduces

to ModMax, which is known to be causal for γ ≥ 0 (it reduces to Maxwell at γ = 0)

and acausal for γ < 0, so we know in advance that ModMaxBorn can be causal only for

γ ≥ 0. Remarkably, this is sufficient for all causality inequalities to be satisfied. Mod-

MaxBorn is causal. In other words, weak-field causality implies strong-field causality

for the entire ModMaxBorn family. As we show in a separate publication, this is a

general feature of self-dual theories [48].

The main purpose of this paper has been to stress the importance of taking into ac-

count the possibility of strong-field causality violations in applications of novel NLED

theories. In particular, we think that this should be a primary consideration for ap-

plications that include gravity. Black Hole singularity theorems can be evaded with

simple Born-type NLED theories coupled to gravity [20], but the existence of event

horizons for black holes depends on the impossibility of acausal propagation.
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