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Abstract

In recent years, the use of end-to-end neural networks to analyze Monte Carlo data has
received a lot of attention. However, the application of non-end-to-end generative ad-
versarial neural networks is less explored. Here, we study classical many-body systems
using generative adversarial neural networks. We use the conditional generative adver-
sarial network with an auxiliary classifier (AC-GAN) and introduce self-attention layers
into the generator, enabling the model to learn the distribution of two-dimensional XY
model spin configurations as well as the physical quantities. By applying the symmetry
of the systems, we further find that AC-GAN can be trained with a very small raw dataset,
allowing us to obtain reliable measurements in the model that requires a large sample
size, e.g. the large-sized 2D XY model and the 3D Heisenberg model. We also find that
it is possible to quantify the distribution changes that occur in the configuration of the
models during phase transitions and locate the phase transition points by AC-GAN.
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1 Introduction

In condensed matter systems, a large number of microscopic particles interacting in the lattice
can induce interesting collective physical phenomena [1]. Some of these phenomena give us
hints to develop novel materials with useful properties. However, when we study many-body
systems, we usually face difficulty in doing exact calculations due to the large coupled degree
of freedoms. The stochastic nature of Monte Carlo (MC) simulation has made it an important
tool for the study [2, 3]. Nevertheless, Monte Carlo methods possess problems such as criti-
cal slowdown around phase transitions that could hinder its applicability to complex systems.
Improving the Monte Carlo algorithm or finding alternative tools to replace it has been an
important active research area in the field [4–10].

As a statistical tool, deep learning has attracted lots of attention in physics and other
branches of science in recent years because of its ability to fit arbitrary complex functions
[11–17]. Using Monte Carlo simulation to study many-body systems can generate a large
amount of high-quality data, therefore how to use deep learning to analyse these data has
become a topic of interest. For example, previous work has shown that unsupervised deep
learning can roughly locate the phase transition points in many-body systems through config-
uration samples generated by Monte Carlo simulation [18–20], while supervised learning can
locate the transition points with high precision [21, 22]. There are also efforts in using deep
learning to find the effective non-interacting system of a many-body system and introduce this
subsystem in Monte Carlo simulation to speed up the sampling of the original system [8].

Generative Adversarial Networks (GAN) is a non-end-to-end deep learning model that has
attracted attention for its ability to generate high-quality samples from an implicit probability
distribution. In computer vision, GANs can be used to modify images, create images, and in-
crease image resolution [23–25]. In recent years, GANs have also begun to gain attention in
fields such as chemistry, pharmaceuticals, and engineering [26–31], while in physics, recent
work by Japneet Singh found that implicit-GAN can replace Monte Carlo to sample the XY
model spin configurations and predict the phase transition point without prior knowledge of
symmetry breaking [32]. However, there exists differences between the spin configurations
sampled by implicit-GAN and that sampled by Markov Chain Monte Carlo (MCMC), which
cause the measured physical quantities to deviate in high-temperatures. In this work, we fur-
ther explore the application of GAN to many-body systems and focus on solving the problems
mentioned.

Firstly, to improve the performance of GAN in fitting Monte Carlo data, we use Condi-
tional GAN with an auxiliary classifier (AC-GAN), which is easier to converge, as our main
architecture [33]. To let the Generator performs better in learning the correlation between
spin and spin, multi-head self-attention layers are inserted into the Generator. This results
in the physical quantities measured by AC-GAN agree almost perfectly with those measured
by MCMC [34, 35]. Secondly, we found that an AC-GAN can be successfully trained with an
augmentation dataset obtained by applying rotation, translation, mirror symmetry, etc. on a
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very small raw dataset. This allows us to apply AC-GAN to some many-body systems where
sampling the spin configurations with MCMC is difficult. Finally, we find that GAN can be used
to locate the phase transition point of many-body systems. The existing deep learning models
used to classify phases of matter are still regarded as black boxes. They cannot explain what
happens in the many-body system at the phase transition. In this work, we proposed a mea-
sure of the difference between the distribution of GAN-generated spin configuration samples
and the Boltzmann distribution to locate the critical points based on the observation that the
phase transition is accompanied by a significant change of configuration distribution. In this
aspect, it is worth noting that our method does not require any pre-processing of the raw data,
and is more interpretable than other methods that treat deep learning as a black box to locate
phase transitions [18–22].

The paper is organized as follows. In Sec. 2, we introduce GAN and AC-GAN. We then
compare the results in the two-dimensional (2D) XY model with configurations sampled by AC-
GAN and MCMC in Sec.3. Sec. 4 shows the results of 2D XY model configurations and three-
dimensional (3D) Heisenberg model configurations trained with data augmentation. Section
5 introduces the generative configurations property in GANs and shows how we can use this
property to locate the phase transition of the 2D Ising model and the 2D XY model. Finally, a
conclusion is given in Sec.6.

2 Conditional GAN with auxiliary classifier

The basic structure of GANs composes of a generator(G) and a discriminator(D), which are
two independent deep learning models, and a database for storing the real samples. The in-
put to the generator is a random matrix z and the output are the generated samples. The
generated samples together with the real samples are then input to the discriminator which
outputs a binary classification that classifies the input into the generated and the real samples.
The target of the discriminator is to best distinguish between the generated and real samples,
while that for the generator is to produce samples as close as the real samples in order to fool
the discriminator [23]. In practice, the discriminator and the generator are trained alternately
and such an adversarial training allows the two models to improve their performances in pa-
rameter updates repeatedly.

In AC-GAN, besides the random matrix z, constrains are added in form of a conditional
matrix c in the input to the generator. The discriminator now has to simultaneously determine
whether the input is a real sample or a generated sample, as well as which conditional class
that the input sample belongs to. This extra output can better guide the discriminator on up-
dating the machine’s parameters during backward propagation which in turn results in a more
stable training and faster convergence [33]. A schematic diagram of the AC-GAN architecture
is shown in Fig.1.

For the many-body systems we considered in the following, we took the spin configura-
tions at each site to form the input matrices and divided the continuous temperature range at
an interval of 0.2 to form Nc conditional classes. In general, the elements in the configuration
matrix are correlated as spatial correlations are present in the many-body system [36–38].
However, the kernel in the convolutional neural network (CNN) in a classical generator has
a small receptive field (the common kernel size is 3x3 in which the effective receptive field is
only 2x2) [39]. This is disadvantageous for the generator to produce configurations with long
correlation lengths. To improve the performance, we introduced the self-attention layers to
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Figure 1: (a) shows the main architecture of the AC-GAN. The input to the gener-
ator are a noise matrix with elements generated from a Gaussian distribution and
a condition matrix. (b) and (c) show the architecture of the generator (G) and the
discriminator (D), respectively. The generator composes of a series of CNN blocks
and self-attention blocks while the discriminator consists of a series of CNN blocks
only and outputs the real/fake classification and condition class classification.

our generator. The self-attention layers can extract global features from the feature map and
update the configuration matrix elements according to the extracted long-range information
when the neural network propagates forward, thus allowing our GAN to generate configura-
tions with large system sizes [34,35] (see Appendix A for an introduction to the self-attention
layer).

The random matrix elements are generated from a Gaussian distribution with mean 0 and
variance 1. Together with the conditional matrix, the random matrix is fed into the generator
which then go through several CNN blocks and multi-head self-attention layers (Fig. 1(b)).

4



SciPost Physics Submission

The neural networks map the input data into spin configurations that satisfy the temperature
conditions, and generate diversified spin configurations from the random matrix. The discrim-
inator is a classical CNN neural network, which consists of multiple CNN blocks (Fig. 1(c)).
The loss functions of the generator and the discriminator are
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respectively [33]. In the above equations, D1 is one output branch of the discriminator which
classify the input configuration into real data or generated data, and D2 is another branch that
determines which conditional class the input configuration belongs to, X real and X gen are the
real data and the generated data, respectively, Y denotes the true condition class correspond-
ing to the X fed into the discriminator, and E[· · · ] represents the expectation value. It can be
seen that GLoss expects the discriminator to misclassify real and generated data, while DLoss
expects the discriminator to correctly classify the data. On the other hand, both GLoss and
Dloss expect the discriminator to correctly classify the conditional classes of the input samples.

3 Generating spin configurations of the XY model

3.1 The 2D XY Model

The Hamiltonian of the 2D XY model is given by

H = −J
∑

〈i, j〉

cos(θi − θ j), (3)

where J is the spin-spin interaction strength, θi ∈ (0,2π] is the spin angle on the i-th site, and
the sum is over all the nearest neighbours. The XY model on a square lattice is a classical model
that exhibits a Kosterlitz–Thouless (KT) transition where the spin-spin correlations decays al-
gebraically and exponentially in the low and high temperature phase, respectively. [40]. In the
low-temperature phase, the vortexes and anti-vortexes stay as close to each other as possible
to minimise the system’s energy and tend to annihilate, causing the local winding numbers
goes to zero. In the high-temperature phase, the vortexes and anti-vortexes become free. The
transition takes place at Tc = 0.89, where the unbinding of vortex-antivortex pairs starts as
temperature increases.

3.2 Training data and training process

We used MCMC to generate training data of the XY model with linear system size L = 16
and L = 32. To avoid critical slowing down, we sample the data in temperature region away
from the phase transition point, specifically T ∈ ([0,0.8] ∪ [1.4,2]). A total of 10,000 spin
configurations are obtained and they are used as the real samples (database data in Fig.1 (a))
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to train the AC-GAN.

For the discriminator, the continuous temperature conditions are divided into 10 classes
with an interval equal to 0.2. Since the generator easily generates unreasonable configurations
in the early stage of the training, an extra class is introduced to label the conditional class not
in the temperature range T ∈ ([0, 2]). In other words, we label database data with integer
1− 10 and the generated data with 11 as condition class respectively.

For each epoch, we first feed a batch of noise matrices and temperature condition (in the
temperature range T ∈ ([0,0.8]∪[1.4, 2])) into the generator to produce a batch of generated
configurations. Another batch of real configurations are sampled from the database and mixed
with the generated configurations. Next, the discriminator is trained with the mixture data for
two times. A new batch of noise matrices and temperature condition are sampled and used to
train the generator twice.

The optimizer used in both the generator and the discriminator is RMSprop with a learning
rate of 2.5×10−4 and a clip-value of 0.1. The sigmoid function is used as the activation function
of D1 in Eq. (1) and Eq. (2), in which the output value can be any values between 0 and 1.
A linear function is used as the activation function of D2 and the output value ranges from 0
to 2. The kernel size of the CNN layer is specified in Fig. 1. The batch size of each epoch is
64, consisting of 32 real input data and 32 generated input data for the discriminator and 64
random input data for generator. There are totally 5000 epochs for one complete training.

3.3 Results

To quantify the performance of the AC-GAN, we sample spin configurations from a well-trained
AC-GAN in the full temperature range and compare the physical quantities measured by the
AC-GAN spin configurations with that measured by MCMC spin configurations. There are
three physical quantities that are of our interests. The first one is the energy since it is the
fundamental feature of a physical system. As the XY model reveals the magnetic dipole-dipole
interactions between spins, the magnetization as a function of the temperature is also tested.
The third physical quantity is the vorticity which quantifies the binding of vortex-antivortex
pairs and gives a richer physics of the XY model as compared to the Ising model.

For a given spin configuration, the vorticity is characterised by the local winding numbers.
In the continuous case, the winding number is defined as the integration over a close loop γ

W (γ) =
1

2π

∮

γ

(xd y − yd x), (4)

where x and y represent the spin components in Cartesian coordinates. In the lattice model,
we first choose a specific site i and pick out the eight sites around it. The eight sites form a
loop and we compute the difference in the spin orientations between the neighboring spins
around this loop. The mean of the differences is then taken as the winding number of i, which
is given by

Wi =
1

8 sin π4

8
∑

j=1

�

sinθ j+1 cosθ j − sinθ j cosθ j+1

�

, (5)

where θ j+1 represents the spin orientation adjacent to that of the j-th site (i.e. θ j) in the anti-
clockwise direction on the loop.
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Figure 2: The spin configurations (black arrows) of XY model on a square lattice
sampled from AC-GAN (left column) and Monte Carlo simulations (right column)
at various temperatures. The color represents the local winding number. The spin
configurations sampled from AC-GAN and Monte Carlo simulations shows consistent
features. At low temperature, the spins tend to align and local winding number
tends to zero anywhere. As the temperature increase across the KT transition, the
spins become more disordered. The pair of the vortex (red) and the antivortex (blue)
unbinds.

Figure 2 shows the spin configurations for L = 16 generated by GAN and MCMC respec-
tively at low temperature (top panel), phase transition point (middle panel) and high temper-
ature (bottom panel). The color represents the winding number discussed above. Benefiting
from the self-attention layer, our GAN captures the correlation between spins and generates
spin configurations with a relatively uniform orientation at low temperature, which is con-
sistent with the spin configurations obtained from MCMC. At the phase transition point and
high-temperature region, the thermal fluctuation gradually becomes severe and makes the
spin configurations generated by MCMC disorder. The spin configurations generated by our
AC-GAN shows similar features.

We further compare the mean energy per site, mean magnetization and the mean vorticity
(absolute of winding number per site) measured by AC-GAN and MCMC, and the results are
shown in Fig. 3. In the region of T ∈ ([0, 0.8]∪[1.4,2]), since we use a large amount of train-
ing data to train AC-GAN, the mean and variance of the observable measured by AC-GAN have
an overall similar trend to those measured by MCMC. In contrast, while Implicit-GAN [32] and
AC-GAN have similar performance in magnetization measurement, our AC-GAN outperforms
Implicit-GAN in the other two quantities measurement, especially the vorticity (a quantitative
comparison is presented in Appendix B).

We notice that in Fig. 3, the AC-GAN results are not within the error range of the MCMC
results for L = 16 in the low-temperature region but it is consistent with MCMC results in the
high-temperature region. This comes from the fact that in small systems, fluctuations from
a few spins at low temperatures can significantly affect the measured macroscopic quantity.
Such a situation can be improved in a larger system, and as shown in Fig. 3 (b, d, f) where
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Figure 3: The mean energy density (top panel), the mean magnetization (middle
panel) and the mean vorticity (bottom panel) as a function of temperature of the XY
model with a linear system size of L = 16 (left column) and L = 32 (right column)
measured from AC-GAN and MC. The error bars show the standard deviation of 100
data sampled by AC-GAN or Monte Carlo. The results from the two methods agree
reasonably well with each other.

the system size is doubled, the AC-GAN results fall well within the error range of the MCMC
results in the whole temperature range.

Moreover, it is worth noting that AC-GAN performs well at high temperatures for L = 16
and at low temperatures for L = 32. This shows that the spin configuration distribution at
any temperature is learnable by the AC-GAN in principle. However, learning the spin config-
uration distribution of the entire temperature range in a single training can be challenging,
and is in fact still an open question under active investigations in generative learning research.
Using more sophisticated training techniques such as inserting spectral normalization layers
between CNN layers, using multiple generators to generate data, or replacing cross-entropy
loss of the discriminator by Wasserstein loss [41–43] may improve the result over the entire
temperature range. Nevertheless, our results here have demonstrated the potential of using
GANs to accelerate MCMC sampling.

In the vicinity of the phase transition without the training data, our AC-GAN results are
also similar to that of MCMC, suggesting the deep learning model can extract information
about the phase transition by learning configurations outside the critical region. Implicit-GAN
obtains similar results in system sizes of 8× 8 and 16× 16 [32]. From Fig. 3, it is also worth
noting that the performance of our AC-GAN does not deteriorate with the increase in the sys-
tem size, suggesting its capability to generate configurations in larger-sized systems.
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4 Learning with a few raw data

Using MCMC to obtain samples from large-sized 2D and most of the 3D condensed matter
models requires a lot of computational power. In these cases, it is difficult to obtain a large
amount of raw data through MCMC to train GANs. In this section, we present a method
to obtain a large amount of training samples from just a few raw MCMC data by symmetry
operations.

4.1 The models and the training data

We testified our scheme on the 2D XY model and 3D Heisenberg model. For the XY model, we
sampled a total of 16 spin configurations with MCMC in the temperature range T ∈ ([0,0.8]∪[1.4, 2])
with an interval of 0.1. We then apply the following symmetry operations to each spin config-
uration: (1) randomly shift whole spins in xy plane, (2) reflect a spin configuration along the
x-axis with 0.5 probability, (3) reflect a spin configuration along the y-axis with 0.5 probability,
(4) transpose a spin configuration with 0.5 probability (random transposition), and (5) ran-
domly rotate all spins with an angle θ . A training dataset of 10,000 samples is obtained. The
2D XY model here serves as a benchmark for comparing the performance of learning with a
few raw data to the results obtained from learning with a large amount of data in the previous
section, allowing us to have a deeper understanding of the advantages and disadvantages of
the method presented here.

We also examined whether the scheme is applicable in models at higher dimension, where
obtaining a lot of configurations by MCMC becomes computationally expensive. Specially, we
considered the 3D Heisenberg model [44] on a simple cubic lattice, whose Hamiltonian is
given by

H = −J
∑

〈i, j〉

Si · S j . (6)

In the above equation, J is the interaction strength between the nearest neighbouring spins
and is taken to be one, Si is the spin on the i-th site, which can be parameterised by the
polar angle φ and the azimuthal angle θ as Si = (sinφi cosθi , sinφi sinθi , cosφi). The critical
temperature Tc for this model reported in previous work is about 1.44 [45,46]. A total of 31
spin configurations in the temperature range T ∈ ([0, 1.5] ∪ [3.5,5]) with an interval of 0.1
are sampled from MCMC. We then apply the same symmetry operations as mentioned above
for the 2D XY model to obtain 10,000 training samples.

4.2 Results

Figure 4 shows the results of the 2D XY model with system size 32×32 and the 3D Heisenberg
model with system size 16 × 16 × 16. The training process is the same as that described in
Sec. 3. The observables as a function of temperature as measured from AC-GAN show a very
similar qualitative behavior as that from MCMC. This evidence that a very small set of raw
MCMC configurations can successfully train an AC-GAN. We expect such a data augmentation
scheme can also be extended to other tasks where deep learning is used to study many-body
systems to reduce the computational time for collecting training data.

Comparing the results shown in Fig. 4 (a-c) to that shown in Fig. 3 (right column), we
note that the AC-GAN trained with a small dataset did not perform as well as that trained with
a large number of training samples. However, we can reduce 99.84% of the time in collecting
the training data using this data augmentation scheme while the results are still acceptable.
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Figure 4: (a-c) show the mean energy density, mean magnetization and mean vor-
ticity as functions of the temperature of a 2D XY model with system size 32 × 32
as measured by AC-GAN and MCMC. The AC-GAN1 and AC-GAN2 results were ob-
tained using only 1 and 10 raw data respectively for each temperature interval

. (d-e) show the mean energy and the mean squared magnetization as functions of the
temperature of the 3D Heisenberg model with system size 16× 16× 16. The error bars show

the standard deviation of 100 data sampled by AC-GAN or Monte Carlo.

This will be particularly useful when we sample a system with a large size or strong auto-
correlation where the time to collect training data will be much longer than the time to train
GANs.

The main reason for the deteriorated performance is that although we obtain a large
amount of training samples through data augmentation, these augmented data possess similar
features which can be captured easily by the discriminator. However, it is preferred that the
generator and the discriminator shall gradually improve their performance in the process of
training in order to achieve the purpose of adversarial learning. The use of the augmented
data greatly reduces the training difficulty of the discriminator and makes it converges to a
good local minimum more rapidly than the generator, this makes the training process unstable.

Here we are showing the extreme case where only one training sample at each tempera-
ture interval are given. As we increase the number of raw data from only 1 to 10 raw data
in each temperature interval, the performance of the AC-GAN increases and the sampling re-
sults from AC-GAN agree better with that from MCMC in general as shown in Fig. 4 (a-c).
When applying the scheme to real research tasks, one can effectively reduce the drawback on
performance by increasing the amount of raw data to strike a balance between the required
computational resources and simulation time and the performance.
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5 Detecting phase transitions by distribution difference

When a system is in a particular phase, the high-probability states following the Boltzmann
distribution form a subspace in the entire Hilbert space. Upon undergoing a phase transition
and transitioning to another phase, the distribution’s subspace undergoes a drastic change.
From the perspective of spin configurations, the correlation length experiences a significant
variation. For instance, in the classical 2D Ising model at low temperatures, spontaneous sym-
metry breaking leads to all spins in the system aligning in one direction, resulting in a large
correlation length. Conversely, at high temperatures, due to the restoration of symmetry, spins
in the system randomly point up or down, leading to a small correlation length. Similarly, in
the classical XY model, although true spontaneous symmetry breaking doesn’t occur due to
the presence of vortices, phenomena resembling spontaneous symmetry breaking emerge in
finite system sizes at low temperatures. In this case, the correlation length of spins becomes
substantial. When employing GANs to learn the spin configuration distribution at different
temperatures, these distribution characteristics are captured. This capability allows us to use
data generated by GANs to identify phase transitions effectively.

5.1 Definition of order parameter: distribution overlap of spin orientations

We trained our AC-GAN for 5000 epochs using the full temperature range MCMC spin configu-
rations. The AC-GAN converges after 2000 epochs, and for the next 3000 epochs, we sampled
spin configurations from AC-GAN with temperature intervals of 0.1. To measure the distribu-
tion difference, we calculated the overlap of the distribution sampled from AC-GAN and that
from MCMC (to collect a sufficiently diverse dataset, we repeatedly restart the Markov chain
and employ various random initial spin configurations) in each temperature interval.

Theoretically, one should calculate the overlap of the two distributions in all dimensions of
the configuration space. However, for a many-body system, the dimension of the configuration
space is usually high. One needs to sample a large number of configurations from AC-GAN
and MCMC in order to calculate the overlap accurately but that will require a lengthy compu-
tation. Instead of calculating the overlap between the two distributions in the whole space,
we randomly select two sites from the spin configurations and calculate the overlap of their
distributions using the

CrossArea(Si , S j) =
min(FMC(Si , S j), FGAN (Si , S j))

FMC(Si , S j)
, (7)

where Si is the randomly selected spin on site i, FMC and FGAN are the distribution of the spin
configuration from MCMC and AC-GAN respectively. To minimize the error of the overlap cal-
culated by the two sites and by the full-dimensional space, we repeated the random selections
of two sites for 100 times at each temperature and calculated the average of the overlap.

5.2 Results

We applied our scheme of phase transition detection to the 2D square lattice Ising model with
L ∈ {16, 32,64} and the 2D square lattice XY model with L ∈ {16, 32} and the results are
shown in Fig. 5. The data collection process and the training process of the AC-GAN are
similar to that as described in Sec. 3 except that we are now using training data in the full
temperature range. In Fig. 5 (a), the overlap (cross area) between the distribution of AC-GAN
and MCMC is about 0.5 at low temperature, which indicates that half of the spin configurations
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from MCMC are pointing up and the other half are pointing down, while all spin configura-
tions from AC-GAN are pointing up (or all pointing down). As the temperature increases, the
spin configurations of MCMC eventually become disordered and the distribution transforms
into a uniform one. The overlap between the AC-GAN and MCMC distributions thus increases
to a value close to one. Figure 5 (c) shows the first derivative of the CrossArea with respect to
the temperature. The derivative shows a significant change around the transition. From the
maximum of the gradient, we estimated the transition temperature to be 2.5, 2.4 and 2.3 for
L = 16,32, and 64, respectively. The estimated transition temperature tends to the theoretical
value as the system size increases.

Figure 5 (b) shows the results of the 2D XY model. When the system is at low temper-
ature, the configurations sampled by MCMC can have spins lining up in any direction. As
mentioned above, this linear distribution of two spins in multidimensional space can cause
AC-GAN to experience a symmetry-breaking-like phenomenon. As a result, the configurations
sampled by AC-GAN will have spins line up in one direction while the input noise only cause
small local fluctuation in the spins. Therefore, the overlap between MCMC data and AC-GAN
data is low. When the temperature of the system gradually increases across the phase tran-
sition, the distribution of MCMC data gradually tends to a uniform distribution, which is a
friendly and easy-to-fit distribution for AC-GAN. Thus, the AC-GAN will not experience the
symmetry-breaking-like phenomenon, and the resulting overlap between the MCMC and the
AC-GAN data is high. The overlap converges to about 0.5 above T = 1.2. It is worth noting
that the overlap tends to 0.5 at high temperatures does not mean that AC-GAN experiences the
symmetry-breaking-like phenomenon. Instead it is caused by an insufficient number of sam-
ples when we calculate the overlap of two distributions. While the spins of the Ising model are
binary and we can accurately calculate the overlap, the spins of the XY model can have orien-
tation ranged (0, 2π]. This requires more samples to better reflects the distribution of MCMC
data and AC-GAN data on the 2-dimensional plane. If the number of samples increases, the
overlap is expected to converge to a value closer to one. Nevertheless, to detect the phase
transition, we only care about if there is a significant change in the overlap as a function of
the driving parameter but not the value to which the overlap converges. Figure 5 (d) shows
the first derivative of the CrossArea with respect to the temperature and the estimated phase
transition point from the maximum gradient is Tc = 1.0 and Tc = 0.9 for L = 16 and L = 32,
respectively. Note that similar to other unsupervised machine learning methods of phase tran-
sition detection [18, 19, 21, 47–51], a detailed error estimation on the predicted Tc is not
available. However, the convergence of the predicted Tc as the system size increases suggests
the validity of the method.

Finally, we would like to remark that the method proposed here does not require any pre-
processing of the data and it is a universal method for locating phase transitions. It is also
different from other machine learning methods in detecting phase transitions where the ma-
chine works as a black-box. Our method has a physical interpretation that the phase transition
is accompanied by the change in the configuration distribution.

6 Conclusion

In this work, we investigated the application of GANs in many-body systems. First, we found
that AC-GAN with self-attention layers can better capture the spin-spin correlation in many-
body systems and generate high-quality configurations. We tested our deep learning model on
the 2D XY model. The spin configurations sampled by AC-GAN were almost identical to that
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Figure 5: Cross-area as a function of temperature in (a) the 2D Ising model and (b)
the 2D XY model with various system sizes. (c) and (d) is the first derivative of the
Cross-Area in (a) and (b) with respect to temperature, respectively.

The transition temperature estimated by the maximum of the gradients for the largest system
agrees well with the theoretical transition temperature (vertical dash-dotted line). The error

bars represent standard deviations of 100 samples.

sampled by MCMC. The calculated mean energy, magnetization and vorticity from AC-GAN
also agree well with that calculated from MCMC.

We further examined the performance of AC-GAN trained with only a few raw data. We
used MCMC to sample a few spin configurations and apply data augmentation on these con-
figurations using symmetry operations. The AC-GAN can be successfully trained with the aug-
mented data and it performed well. The success of this data augmentation method not only
allows us to study condensed matter models which have difficulties in MCMC sampling through
AC-GAN but also suggests that the method can be applied to other deep learning tasks where
a large number of configurations is required.

We also found that the the symmetry-breaking-like phenomenon in AC-GAN can be used to
locate the phase transitions. We first used full temperature range MCMC data to train AC-GAN.
By calculating the overlap between the distribution of configurations sampled by AC-GAN and
MCMC, we measured the distribution difference and further locate the phase transition point
of the system. The critical points in the 2D Ising model and the XY model on a square lattice are
successfully determined. Such an approach of phase transition detection provide us physical
insights into the information contained in the configuration space itself instead of the order
parameters. One may apply the scheme to more complicated systems such as the random bond
model [52] in which the order parameter is still unknown or it is hard to calculate the order
parameter accurately using Monte Carlo simulations to study phase transition.
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A Self-attention layers

In the classical convolutional GAN, the decoder and encoder in the generator are multi-layer
convolutional neural network (CNN). The performance of this GAN model will be limited by
the kernel size of the CNN layers. Even though the receptive field of the kernel increases as the
encoder deepens, the kernel only operates on the matrix elements within its size in the feature
map and information from elements far away is ignored. However, long-range correlations can
play a significant role in condensed matter models. If the generator is unable to capture this
long-range information in the feature map, the generated spin configurations will be of low
quality. To overcome this deficiency, we introduced the self-attention layers into the network.
The self-attention layers can learn the global relationship between the elements and further
adjust the value of each element in the feature map, thus allowing the generator to fine-tune
the spin on each site in the generated configurations according to the long-range correlation.

Feature 
maps

(�, �, �)

Q (� × �, �)

Transpose

KT

(�, � × �)

Q×KT
Soft-
max

QK×V

Attention 
maps

(�, �, �)

1x1Conv
& reshape

K
(� × �, �)

V
(� × �, �)

QK
(� × �, � × �)

Reshape1x1Conv
& reshape

1x1Conv
& reshape

Figure 6: The architecture of the self-attention layer.

The architecture of the self-attention layer is shown in Fig.6. Specifically, the feature maps
input to the self-attention layer is a 3D tensor with a shape of height, width, and channel
(H, W, C). The feature maps are fed into three CNN layers with a kernel size of 1x1 and re-
shaped into (H ×W, C), and we get three matrices named query (Q), key (K) and value (V)
respectively. The transpose of K is multiplied by Q to obtain a matrix QK, which is also called
the energy matrix, with shape (H ×W, H ×W ). The (i, j)-th element in the energy matrix
represents the relationship between the i-th element in the feature map on all channels and
the j-th element on all channels (Note that here we only use one index to define the position
of an element in the feature map since we have flatten each feature map into a 1D vector). By
applying the softmax activation function on QK, all elements of each row of QK now add up
to one. This re-scaling makes the self-attention layer converge faster. Finally, QK is multiplied
by V to incorporate the channel information. The resultant matrices are then reshaped into a
3D tensor having the same shape as the input feature maps.
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B Comparing the performance between AC-GAN and Implicit-GAN

To compare the performance of AC-GAN and Implicit-GAN quantitatively, we computed the
percentage difference between the GAN-generated results and the MCMC results in the XY
model. Figure 7 shows the results for measurements on various physical quantities. While
both GANs perform similarly in magnetization measurements (Fig. 7(b)), the AC-GAN sur-
passes the Implicit-GAN in the energy and vorticity measurements. Specifically, in the energy
measurement, the Implicit-GAN gives a percentage difference that is about two times of our
AC-GAN in the high-temperature regime (Fig. 7(a)). Besides, in the calculation of vorticity,
the Implicit-GAN performs very poorly in the low-temperature regime, where the percentage
difference is generally higher, and can be 10 times higher, as compared to the case of using
our AC-GAN (Fig. 7(c)). This provides strong evidence that our AC-GAN performs better than
Implicit-GAN.
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Figure 7: The percentage difference in (a) the energy, (b) the magnetization, (c)
the vorticity between the GAN and MCMC results for the XY model with system size
L = 16. Our AC-GAN generally gives significantly smaller percentage difference
in the energy measurement at high temperatures and vorticity measurement at low
temperatures.
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