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Abstract

The barrier crossing event for superdiffusion in the form of symmetric Lévy flights is
investigated. We derive from the fractional Fokker-Planck equation a general differential
equation with the corresponding conditions useful to calculate the mean residence time
of a particle in a fixed interval for an arbitrary smooth potential profile, in particular
metastable, with a sink and a Lévy noise with an arbitrary index α. A closed expression
in quadrature of the nonlinear relaxation time for Lévy flights with the index α = 1 in
cubic metastable potential is obtained. Enhancement of the mean residence time in the
metastable state, analytically derived, due to Lévy noise is found.
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1 Introduction

Anomalous diffusion, which is a deviation from normal Gaussian diffusion, has one of the man-
ifestations in Lévy flights [1,2]. These are stochastic processes characterized by the occurrence
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of extremely long jumps, obeying the Lévy stable distribution. Lévy flights, characterized by
a scale invariance property, are extensively observed in physics, chemistry, biology, ecological
and financial sytems, see [3–5] and references therein. Furthermore, using the Markovianity
of Lévy flights, the generalized Kolmogorov equation can be derived from the Lévy noise-driven
Langevin equation [6].

Metastability, as well as the transition process between metastable states, is a ubiquitous
phenomenon in nature affecting different fields of natural sciences and advancing in its un-
derstanding it is a key challenge in complex systems [7–20]. Experimental [16, 21–24] and
theoretical [19,25–27] results show that long-lived metastable states, even if observed in dif-
ferent areas of physics, were not fully explained.

Recently, the first passage time properties of Lévy flights for random search strategies have
been investigated [29–31]. Furthermore, noise-induced escape from a metastable state in the
presence of Lévy noise governs a plethora of transition phenomena in complex systems, of
physical, chemical and biological nature, ranging from the motion of molecules to climate
signals (see [3, 12, 15, 32–36] and references therein). The main focus in these papers is to
understand how the barrier crossing in different potential profiles V (x), is modified by the
presence of the Lévy-stable noise Lα(t) with index α. This is achieved by particle displace-
ment analysis, which obeys the following Langevin equation

d x
d t
= −V ′ (x) + Lα (t) , (1)

where α is the stability index of the Lévy distribution, with 0< α < 2. The main tools to inves-
tigate the barrier crossing problem for Lévy flights in these above-mentioned papers are the
first passage times and residence times. Concerning these time characteristics, there are a lot
of numerical results and some analytical approximations [3,32,35]. However, exact analytical
results for barrier crossing problems in metastable systems in the presence of Lévy noise are
lacking. Obtaining exact analytical results remains an open problem. This paper aims to an-
swer this question by investigating the barrier crossing process in a system with a metastable
state driven by Lévy noise. Starting from the fractional Fokker-Planck equation corresponding
to Eq. (1), we investigate the barrier crossing event, by focusing on the nonlinear relaxation
time (NLRT). Specifically, we look at the average time spent by the particle into the potential
well (see Fig. 1). This time is, in other words, the mean residence time in the metastable state,
which characterizes its stability.

Here, we address the following open questions: (i) the exact results of the NLRT for a par-
ticle moving in an arbitrary smooth potential profile with a sink and in the presence of Lévy
noise with arbitrary index α; (ii) a closed expression in quadrature of the NLRT for Lévy flights
with the index α = 1 (Cauchy noise) in cubic metastable potential; (iii) the enhancement of
stability of metastable states, analytically derived, due to Lévy noise.

2 The model

The anomalous diffusion in the form of Lévy flights, for a particle moving in a potential profile
V (x), is described by the following Fokker-Planck equation with fractional space derivative

∂ P
∂ t
=
∂

∂ x

�

V ′ (x) P
�

+ Dα
∂ αP
∂ |x |α

, (2)

where P (x , t|x0, 0) is the transition probability density, and Dα is the noise intensity parameter,
in the sense that the size of a cloud of particles undergoing Lévy motion increases with time
as (Dα t)1/α. Equation (2) can be easily obtained directly from Eq. (1) [6].
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The NLRT τN LR for a diffusion in a potential profile with a sink, see Fig. 1, is defined as

τN LR (x0) =

∫ ∞

0

Pr (t, x0) d t, (3)

where

Pr (t, x0) =

∫ b

a
P (x , t|x0, 0) d x (4)

represents the probability to find a particle in the interval (a, b) at the time t, if it starts from
some internal point x0. Substituting Eq. (4) into Eq. (3) and changing the order of integration,
we arrive at

τN LR (x0) =

∫ b

a
Z (x , x0) d x , (5)

where

Z (x , x0) =

∫ ∞

0

P (x , t|x0, 0) d t. (6)

Integrating Eq. (2) with respect to t from 0 to∞ and taking into account the initial condition
P (x , 0|x0, 0) = δ (x − x0) and the asymptotic condition P (x ,∞|x0, 0) = 0 (for a potential
with a sink), we obtain the following equation for the function Z (x , x0)

d
d x

�

V ′ (x)Y
�

+ Dα
dαZ

d |x |α
= −δ (x − x0) . (7)

To solve Eq. (7) it is better to consider the Fourier transform of the function Z (x , x0), i.e.,

eZ (k, x0) =

∫ ∞

−∞
Z (x , x0) eikx d x . (8)

For a smooth potential profiles V (x), after Fourier transform, Eq. (7) can be written in the
differential form

ik V ′
�

−i
d

dk

�

eZ + Dα |k|
α
eZ = eikx0 . (9)

It is convenient to introduce a new function G (k, x0), namely, the derivative of the function
eZ (k, x0) with respect to x0

G (k, x0) =
∂

∂ x0

eZ (k, x0) . (10)

Differentiating both parts of Eq. (9) with respect to x0 we find

V ′
�

−i
d

dk

�

G − iDα |k|
α−1 sgn k G = eikx0 , (11)

where sgn x is the sign function.
Substituting Z (x , x0) from the backward Fourier transformation into Eq. (5) and changing

the order of integration, we have

τN LR (x0) =
1

2π

∫ ∞

−∞

eZ (k, x0)
e−ika − e−ikb

ik
dk. (12)

After differentiation of both sides of Eq. (12) with respect to x0, in accordance with Eq. (10),
we find

τ′N LR (x0) =
1

2π

∫ ∞

−∞
G (k, x0)

e−ika − e−ikb

ik
dk. (13)
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One can easily check that, after replacing k with −k, Eq. (11) coincides with the equation
for the complex conjugate function G∗ (k, x0), i.e. G (−k, x0) = G∗ (k, x0). As a result, Eq. (13)
can be rearranged into a simpler form

τ′N LR (x0) =

∫ ∞

0

Re

�

G (k, x0)
e−ika − e−ikb

πik

�

dk, (14)

where Re {...} denotes the real part of the expression.
If a sink of the potential profile V (x) is located at the point x =∞ we have

lim
x0→∞

τN LR (x0) = 0. (15)

After integrating Eq. (14) with respect to x0 and taking into account the condition (15), we
find

τN LR (x0) =

∫ ∞

x0

Re

�∫ ∞

0

G (k, z)
e−ikb − e−ika

πik
dk

�

dz. (16)

Thus, it is sufficient to solve Eq. (11) only in the region k > 0, obtaining

V ′
�

−i
d

dk

�

G − iDαkα−1G = eikx0 . (17)

Equations (16) and (17), which are among the main results of the paper, give the exact
relations useful to calculate the NLRT of the symmetric Lévy flights with arbitrary index α in
a smooth potential profile with a sink at x =∞.

3 Results

Metastable state and noise enhanced stability Now, we focus on a particle moving in a
metastable cubic potential profile (see Fig. 1)

V(x)

x
ba c

x0

Figure 1: Cubic potential V (x) with metastable state, archetype model for any
metastable state. a and b are the interval boundaries, x0 is the initial condition,
c is a potential parameter.

V (x) = −
x3

3
+ c2 x , (18)
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and driven by a Cauchy-stable noise with Lévy index α= 1. Using Eq. (18) and placing α= 1
in Eq. (11), we get

d2G
dk2

+
�

c2 − iD1 sgn k
�

G = eikx0 , (19)

which for k > 0 becomes
d2G
dk2

+
�

c2 − iD1

�

G = eikx0 . (20)

The general solution of Eq. (20) is the sum of the general solution of the homogeneous
equation and its particular solution. Under the condition of its limitation, not divergent for
arbitrary k, it takes the form

G (k, x0) = C e−λk +
eikx0

c2 − x2
0 − iD1

, (21)

where C is an unknown complex constant and λ is one of the complex roots

z = ±
Æ

iD1 − c2,

having a positive real part, λ= λ1 + iλ2, where

λ1 =
�

c4 + D2
1

�1/4
sin
�

1
2

arctan
�

D1

c2

��

,

λ2 =
�

c4 + D2
1

�1/4
cos
�

1
2

arctan
�

D1

c2

��

. (22)

To find the unknown constant C we use the continuity conditions for the function G (k, x0)
and its first derivative at the point k = 0

lim
k→0+

G (k, x0) = lim
k→0−

G (k, x0) ,

lim
k→0+

dG (k, x0)
dk

= lim
k→0−

dG (k, x0)
dk

. (23)

For k < 0, Eq. (19) transforms into

d2G
dk2

+
�

c2 + iD1

�

G = eikx0 , (24)

and its solution under the condition of its limitation reads

G (k, x0) = C∗eλ
∗k +

eikx0

c2 − x2
0 + iD1

. (25)

Using Eqs. (21), (25) and conditions (23) we get

C +
1

c2 − x2
0 − iD1

= C∗ +
1

c2 − x2
0 + iD1

−λC +
i x0

c2 − x2
0 − iD1

= λ∗C∗ +
i x0

c2 − x2
0 + iD1

. (26)

The final expression for the constant C , obtained from the system (26), reads

C = −
D1 (x0 +λ2 + iλ1)

λ1[
�

c2 − x2
0

�2
+ D2

1 ]
. (27)
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Substituting Eqs. (21) and (27) into Eq. (16) and calculating the internal integral we arrive
at

τN LR (x0) =
D1

π

∫ ∞

x0

�

A
z +λ2

λ1
+ B
�

dz

(z2 − c2)2 + D2
1

+
D1

π

∫ ∞

x0

ln
�

�

�

z − a
z − b

�

�

�

dz

(z2 − c2)2 + D2
1

+

∫ b

x0

�

z2 − c2
�

dz

(z2 − c2)2 + D2
1

, (28)

where

A = arctan
λ2 + b
λ1
− arctan

λ2 + a
λ1

,

B =
1
2

ln
λ2

1 + (b+λ2)
2

λ2
1 + (a+λ2)

2 . (29)

The exact quadrature formula of Eq. (28) is the other main result of the paper. For unsta-
ble initial conditions of the particle just beyond the potential barrier and within the interval
c < x0 < b, the normalized mean residence time in the metastable state 〈τN LR(x0)〉/τd(x0) as
a function of the noise intensity parameter D1 has a nonmonotonic behaviour with a maximum
(see curves in Figs. 2 and 3). This is the noise enhanced stability (NES) phenomenon, already
investigated with Gaussian noise sources [7–20].

0.5
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N

L
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〉/

τ d

x0 = 3. b = 4 c = 1

-1

0
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τd
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4
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(b) 〈τNLR(x0)〉________

Figure 2: The results of analytical calculations according to Eq. (28) are shown. (a)
Normalized NLRT 〈τN LR(x0)〉/τd(x0) for a metastable cubic potential as a function
of the noise intensity parameter D1 for different positions a of the left boundary
ranging from 0 to −6 with steps 0.2. (b) Density plot of 〈τN LR(x0)〉/τd(x0) versus a
and D1. The white dotted line marks the position of the NES maxima. The parameter
values are: x0 = 3.0, b = 4, c = 1.

τd(x0) is the dynamical time obtained by setting Dα = 0 in Eq. (28)

τd =

∫ b

x0

dz
z2 − c2

. (30)
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For x0 < c < b the integral in Eq. (30) diverges, which means the impossibility for a particle
to cross the potential barrier, located at the point x = c, in the absence of driving noise. For
c < x0 < b we obtain the finite dynamical time

τd(x0) =
1
2c

ln
(b− c) (x0 + c)
(b+ c) (x0 − c)

. (31)

The normalized NLRT <τN LR(x0)>/τd(x0) for a metastable cubic potential as a function of
the noise intensity parameter D1 for different positions a of the left boundary and a fixed
value of the right boundary b = 4 in a semilog plot is shown in Fig. 2. The different values of
a range from 0 to −6 with steps 0.2. A nonmonotonic behavior of the normalized NRLT with
a maximum as a function of the noise intensity is observed for all values of a analyzed, that is
the particle is temporarily trapped in the metastable state.
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0.25

0.30

0.35

0.40

0.45

〈τ
N

L
R
(x
0)
〉

x0 = 3. a = -4 c = 1
7

3

0.2

0.25

0.3

0.35

0.4

0.01 0.05
 

5 10

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

D1

b

(a)

(b)
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Figure 3: The results of analytical calculations according to Eq. (28) are shown. (a)
NLRT 〈τN LR(x0)〉 for a metastable cubic potential as a function of the noise intensity
parameter D1 for different positions b of the right boundary ranging from 3 to 7 with
steps 0.2. (b) Density plot of 〈τN LR(x0)〉 versus b and D1. The white dotted line
marks the position of the NES maxima. The parameter values are: x0 = 3.0, a = −4,
c = 1.

In Fig. 2b a density plot of <τN LR(x0)>/τd(x0) versus a and D1 is shown. The white
dotted line marks the position of the NES maxima.

The maxima and all curves increase as the value of the left limit a decreases. This gives
rise to an increasing size of the basin of attraction of the metastable state [12,13], responsible
for the increase in the normalized NRLT. Furthermore, in the limit D1 → 0 there are three
different asymptotic values of the normalized NRLT, the value of which increases with the size
of the basin of attraction when a varies from 0 to −6. We note that, in the limit D1 → 0 and
for unstable initial conditions of the particle, there is a divergent behavior of τN LR(x0) [7–
20], with a Gaussian noise source. For Lévy flights, instead, we obtain for τN LR(x0) a finite
nonmonotonic behavior as a function of the noise intensity parameter D1. Because of heavy
tails, a particle spends a finite time in the metastability area even in the limit D1→ 0. For very
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large noise intensity, in the limit D1→∞, the normalized NRLT has a power law behavior as
a function of the noise intensity [3,4].

In Fig. 3, the NRLT <τN LR(x0)> versus D1 in a semilog plot for different positions b of the
right boundary at a fixed value of the left boundary a = −4 is shown. The different values of
b range from 3 to 7 with steps 0.2. A nonmonotonic behavior of <τN LR(x0)> versus D1 for
all values of b investigated is observed. In Fig. 3b a density plot of <τN LR(x0)> versus b and
D1 is shown. The white dotted line marks the position of the NES maxima.

Asymptotic behaviors The asymptotic behaviors shown in Figs. 2 and 3 reproduce the asymp-
totic expressions of Eq. (28) in the limits D1 → 0 and D1 →∞. In particular, for D1 → 0 we
have (see Appendix A, paragraph 1)

τN LR (x0)≃ C1

�

c
x0 − c

+
1
2

ln
x0 − c
x0 + c

�

+τd(x0) , (32)

where

C1 ≃







1, a < −c,
1/2, a = −c,
0, a > −c,

(33)

giving rise to three different asymptotic values of the NLRT for D1 → 0 in the case of fixed b
(see Fig. 2) and different asymptotic values depending on the different values of b in the case
of fixed a (see Fig. 3). And for D1→∞ (see Appendix A, paragraph 2) we have

τN LR (x0)∼
1
D1

, (34)

that is a power law behavior of the NLRT as a function of the noise intensity (see Figs. 2 and 3).

4 Conclusions

We obtain the general equations useful to calculate the NLRT for superdiffusion in the form of
symmetric Lévy flights, for an arbitrary Lévy index α and an arbitrary smooth potential profile
with a sink. For a Cauchy driven noise (α= 1) we find the closed expression in quadratures of
the NLRT as a function of the noise intensity parameter, the initial position, and the parameters
of the potential. The interplay between trapping in the metastable state, at small noise intensi-
ties, and long jumps of Lévy flights produces a finite nonmonotonic enhancement of the mean
residence time in the metastable state. Our general equations provide a useful tool to describe
different dynamical behaviors in complex systems, characterized by anomalous diffusion and
non-exponential relaxation phenomena, such as spatial extended systems [36].
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A Investigation of the NRLT in the limits D1 → 0 and D1→∞

To investigate the NLRT in the asymptotic limits D1 → 0 and D1 → ∞, we start from the
expressions of the parameters λ1 and λ2 of Eq. (22)

λ1 =
�

c4 + D2
1

�1/4
sin
�

1
2

arctan
�

D1

c2

��

,

(35)

λ2 =
�

c4 + D2
1

�1/4
cos
�

1
2

arctan
�

D1

c2

��

,

and, using trigonometry formulas, we rewrite Eq. (35) in a simpler form

λ1 =
c
p

2

√

√

√

√

√

√

√

1+
D2

1

c4
− 1 ,

λ2 =
c
p

2

√

√

√

√

√

√

√

1+
D2

1

c4
+ 1 . (36)

1. Asymptotics for D1→ 0
For small values of D1, we can use the approximate expansion:

p
1+ x ≃ 1+ x/2− x2/8,

where x = D2
1/a

4≪ 1. As a result, we obtain

λ1 ≃
D1

2c

�

1−
D2

1

8c4

�

, λ2 ≃ c

�

1+
D2

1

8c4

�

. (37)

First of all, it is better to write the expression for A in another form. Using the well-known
relation

arctan
1
x
=
π

2
− arccot

1
x
=
π

2
− arctan x ,

we can rewrite the expressions (28) for A and B in the following form

A= arctan
λ1

λ2 + a
− arctan

λ1

λ2 + b
+π · 1 (−λ2 − a) ,

B =
1
2

ln
λ2

1 + (b+λ2)
2

λ2
1 + (a+λ2)

2 , (38)

where 1(x) is the step function.
Substituting Eq. (37) into Eq. (38) for A and B we have

A≃







π+ D1(b− a)/ [2c(c + a)(c + b)] , a < −c,
π/2− D1(3c + b)/

�

4c2(c + b)
�

, a = −c,
D1(b− a)/ [2c(c + a)(c + b)] , a > −c.

(39)
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B ≃
�

ln [(c + b)/ |c + a|] , a ̸= −c,
ln [2c (c + b)/D1] , a = −c.

(40)

As seen from Eq. (39), the value A does not go to zero in the limit D1→ 0 in the case a ≤ −c.
Substitution of Eqs. (39) and (40) into Eq. 28 gives in the limit D1→ 0

τN LR (x0)≃
2cC1

π

∫ ∞

x0

dz

(z − c)2 (z + c)
+τd(x0) , (41)

where

C1 ≃







π, a < −c,
π/2, a = −c,
0, a > −c

(42)

and τd(x0) is the dynamical time.
The integral in Eq. (41) can be calculated in the analytical form. As a result, we obtain in

the limit D1→ 0

τN LR (x0)≃ C1

�

c
x0 − c

+
1
2

ln
x0 − c
x0 + c

�

+
1
2c

ln
(b− c) (x0 + c)
(b+ c) (x0 − c)

. (43)

This gives rise to three different asymptotic values of the NLRT for D1 → 0 in the case of
fixed b (see Fig. 2) and different asymptotic values depending on the different values of b in
the case of fixed a (see Fig. 3).

2. Asymptotics for D1→∞
Now we consider the case of very large D1. From Eq. (36) we easily find

λ1 ≃

√

√D1

2
, λ2 ≃

√

√D1

2
. (44)

Substituting Eq. (44) into Eqs. (29) we obtain the following approximate expressions for the
constants A and B

A= B ≃
b− a
p

2D1

. (45)

Substitution of Eqs. (44) and (45) into Eq. (28) gives

τN LR (x0)≃
b− a
π

∫ ∞

x0

(z +
p

2D1) dz

(z2 − c2)2 + D2
1

(46)

+
D1

π

∫ ∞

x0

ln
�

�

�

z − a
z − b

�

�

�

dz

(z2 − c2)2 + D2
1

+

∫ b

x0

�

z2 − c2
�

dz

(z2 − c2)2 + D2
1

.

The first integral in Eq. (46) can be calculated in analytical form and for the large D1 gives

b− a
π

∫ ∞

x0

(z +
p

2D1) dz

(z2 − c2)2 + D2
1

≃
3 (b− a)

4D1
. (47)
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The second integral in Eq. (46) can be estimated for large D1 using the mean value theorem
for a definite integral, namely

D1

π

∫ ∞

x0

ln
�

�

�

z − a
z − b

�

�

�

dz

(z2 − c2)2 + D2
1

≃

D1

π
ln

�p

D1 − a
p

D1 − b

�∫ ∞

x0

dz

(z2 − c2)2 + D2
1

≃ (48)

(b− a)
p

D1

π

∫ ∞

x0

dz

(z2 − c2)2 + D2
1

≃
(b− a)

p
2

4D1
∼

1
D1

.

The last integral in Eq. (46), due to the finite limits, can be easily estimated

∫ b

x0

�

z2 − c2
�

dz

(z2 − c2)2 + D2
1

≃
1

D2
1

�

b3 − x3
0

3
− c2(b− x0)

�

∼
1

D2
1

. (49)

Taking into account Eqs. (47), (48), and (49), we find finally for large D1

τN LR (x0)∼
1
D1

, (50)

that is a power law behavior in agreement with previous investigations (see Refs. [2,3]).
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