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Abstract

The barrier-crossing event for superdiffusion characterized by symmetric Lévy flights
is analyzed. Starting from the fractional Fokker-Planck equation, we derive an integro-
differential equation along with the necessary conditions to calculate the mean residence
time of a particle within a fixed interval. We consider an arbitrary smooth potential
profile, particularly metastable, with a sink and Lévy noise characterized by both an
arbitrary index α and arbitrary noise intensity parameter. For the specific case of Lévy
flights with an index α = 1 and a cubic metastable potential, a closed expression for
the mean residence time is obtained in quadratures. The analytical results reveal an
enhancement of the mean residence time in the metastable state due to the influence of
Lévy noise.
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1 Introduction

Anomalous diffusion, which is a deviation from normal Gaussian diffusion, has one of the
manifestations in Lévy flights. These are stochastic processes characterized by the occurrence
of extremely long jumps, obeying the Lévy stable distribution. Lévy flights, characterized by
a scale invariance property, are extensively observed in physics, chemistry, biology, ecological
and financial systems, see [1–5] and references therein. Furthermore, using the Markovian
property of Lévy flights, the generalized Kolmogorov equation can be derived from the Lévy
noise-driven Langevin equation [6].

Metastability, as well as the transition process between metastable states, is a ubiquitous
phenomenon in nature affecting different fields of natural sciences and advancing in its un-
derstanding is a key challenge in complex systems [7–28]. Experimental [24, 29–32] and
theoretical [27,33–36] results show that long-lived metastable states, even if observed in dif-
ferent areas of physics, were not fully explained. Furthermore, several studies have shown
that the average escape time from a metastable state exhibits nonmonotonic behavior, peak-
ing at a certain noise intensity, in systems governed by Gaussian diffusion, see [7–15] and
references therein. This resonancelike behavior, which contrasts with the monotonic predic-
tions of Kramers’ theory [37], is known as the noise-enhanced stability (NES) phenomenon.

In this context, noise can actually enhance the stability of metastable states, leading to an
average lifetime that exceeds the deterministic decay time. This raises an important question:
what happens when a Brownian particle in a barrier-crossing process is replaced by a particle
undergoing Lévy flights?

Recently, the first passage time properties of Lévy flights for random search strategies have
been investigated [38–40]. Furthermore, noise-induced escape from a metastable state in the
presence of Lévy noise governs a plethora of transition phenomena in complex systems, of
physical, chemical and biological nature, ranging from the motion of molecules to climate
signals, see [3, 20, 21, 23, 41–45] and references therein. The main focus in these papers is
to understand how the barrier crossing in different potential profiles V (x), is modified by the
presence of the Lévy-stable noise Lα(t)with index α. This is achieved by particle displacement
analysis, which obeys the following Langevin equation

d x
d t
= −V ′ (x) + Lα (t) , (1)

where α is the stability index of the Lévy distribution, with 0 < α < 2. The main tools to
investigate the barrier crossing problem for Lévy flights in these above-mentioned papers are
the first passage times and residence times.

The problem of escape from metastable states driven by Lévy noise has garnered significant
theoretical interest over the past two decades, with extensive research conducted through both
numerical simulations and analytical approximations [3,41,44,46–55]. In particular, rigorous
mathematical results, in asymptotics, on the dominant scaling of the escape time of an over-
damped Lévy-driven particle in a confined potential and in the weak noise regime have been
obtained in Refs. [50,51]. The backbone of the rigorous proof for deriving the asymptotic be-
havior of the escape time lies in decomposing the driving Lévy process into two components:
one dominated by large jumps and the other by small jumps. The main result found by the au-
thors was that the escape time from the attraction domains by Lévy jumps is always faster than
that induced by Gaussian noise [50,51]. The asymptotics of the escape rate was also studied
mathematically in Ref. [46], in the context of paleo-climatic modelling. There, the authors
found that the statistics of noise-induced jumping between metastable states in a potential is
different for α-stable noise from the usual Gaussian noise case. Furthermore, the stationary
probability distribution deviates from the Gibbs distribution, and the waiting time for jumping
depends in some cases more on the width than on the height of the barrier. In Refs. [3,41,48],
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the barrier crossing process by a particle executing Lévy flights for three different types of po-
tentials, namely bistable, metastable, and truncated harmonic potential, has been numerically
investigated. Among the main results, the authors discovered a power-law dependence of the
mean escape time on the noise intensity parameter over a wide range of values. Furthermore,
for Cauchy noise, α = 1, the authors develop the kinetic theory of the escape over the barrier
in a bistable potential within the stationary flux approximation, assuming that the probability
current across the barrier is constant. This is equivalent to requiring that the barrier is high
in comparison to the noise intensity parameter. The authors found analytically the expression
for the mean escape time.

Recently, in Ref. [44], the authors analyzed non-Gaussian escape rates, in particular Lévy
flights, using a path integral framework and considering a weak-noise regime. The typical
path is obtained by minimizing a stochastic action. The authors found that non-Gaussian
noise always leads to more efficient escapes and can enhances escape rates by many orders of
magnitude compared with thermal noise due to escape paths dominated by large jumps. The
framework proposed in [44] allows to recover rigorous mathematical results on the dominant
scaling of the escape rate for non-Gaussian noise in weak-noise regime [50,51].

However, despite its importance, exact analytical results for barrier crossing problems in
metastable systems in the presence of Lévy noise remain elusive, making it an ongoing chal-
lenge in the field. This paper aims to answer this question by studying the barrier crossing
process in a system with a metastable state driven by Lévy noise without any approximation
and in particular for any value of noise intensity parameter and arbitrary index α. Starting
from the fractional Fokker-Planck equation corresponding to Eq. (1), we investigate the bar-
rier crossing event by focusing on the mean residence time (MRT). Specifically, we analyze
the average time a particle spends in the metastable state of the potential profile (see Fig. 1),
which indicates its stability.

Here, we address the following open questions: (i) the exact results of the MRT of a particle
moving in an arbitrary smooth potential profile with a sink, under the influence of Lévy noise
with arbitrary index α and noise intensity parameter; (ii) a closed expression in quadratures
for the MRT in the case of Lévy flights with index α= 1 (Cauchy noise) in a cubic metastable
potential; and (iii) the analytically derived enhancement of the stability of metastable states
due to Lévy noise.

2 The model

The anomalous diffusion in the form of Lévy flights, for a particle moving in a potential profile
V (x), is described by the following fractional Fokker-Planck equation

∂ P
∂ t
=
∂

∂ x

�

V ′ (x) P
�

+ Dα
∂ αP
∂ |x |α

, (2)

where P (x , t|x0, 0) is the transition probability density, and Dα is the noise intensity param-
eter, in the sense that the size of a cloud of particles undergoing Lévy motion increases with
time as (Dα t)1/α. Here ∂ α/∂ |x |α is the Riesz fractional space derivative [4,56].

Equation (2) can be derived from different theoretical approaches [56–60], and in par-
ticular can be easily obtained directly from Eq. (1) [6]. Specifically, in this last paper, by
exploiting the properties of random variables with infinitely divisible distributions [2, 4, 6],
the characteristic functional of non-Gaussian white noise was obtained. Then, by applying
a functional approach to decouple the correlation between stochastic functionals, the general
Kolmogorov’s equation for nonlinear systems driven by a non-Gaussian white noise source was
derived. From this general equation we can obtain the fractional Fokker-Planck equation (2)
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for a Lévy-stable noise source Lα(t).
According to the definition, if the random process x(t) initially starts from the value x0 at

t = 0, the residence time T (x0) in the given interval (L1, L2) for the infinite observation time
reads [43])

T (x0) =

∫ ∞

0

1(L1,L2) (x(t)) d t, (3)

where

1(L1,L2)(y) =

�

1, y ∈ [L1, L2],
0, otherwise.

(4)

Averaging Eq. (3), we find the mean residence time in the interval (L1, L2)

τMRT = 〈T (x0)〉=
∫ ∞

0

d t

∫ L2

L1

P ( x , t| x0, 0) d x . (5)

The MRT is equivalent to the nonlinear relaxation time for diffusion in a potential profile
with a sink (see Fig. 1), which was first defined in [61]. Subsequently, it was explored in
arbitrary potential profiles and expressed in quadrature for Markovian processes in [62–66].
Changing the order of integration in Eq. (5), we arrive at

τMRT (x0) =

∫ L2

L1

Z (x , x0) d x , (6)

where

Z (x , x0) =

∫ ∞

0

P (x , t|x0, 0) d t. (7)

Integrating Eq. (2) with respect to t from 0 to∞ and taking into account the initial condi-
tion P (x , 0|x0, 0) = δ (x − x0) and the asymptotic condition P (x ,∞|x0, 0) = 0 (for a potential
with a sink), we obtain the following integro-differential equation for the function Z (x , x0)

d
d x

�

V ′ (x)Y
�

+ Dα
dαZ

d |x |α
= −δ (x − x0) . (8)

To solve Eq. (8) it is better to consider the Fourier transform of the function Z (x , x0), i.e.,

eZ (k, x0) =

∫ ∞

−∞
Z (x , x0) eikx d x . (9)

For a smooth potential profiles V (x), after Fourier transform, Eq. (8) can be written in the
differential form

ik V ′
�

−i
d

dk

�

eZ + Dα |k|
α
eZ = eikx0 . (10)

It is convenient to introduce a new function G (k, x0), namely, the derivative of the function
eZ (k, x0) with respect to x0

G (k, x0) =
∂

∂ x0

eZ (k, x0) . (11)

Differentiating both parts of Eq. (10) with respect to x0 we find

V ′
�

−i
d

dk

�

G − iDα |k|
α−1 sgn k G = eikx0 , (12)

where sgn x is the sign function.
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Substituting Z (x , x0) from the backward Fourier transformation into Eq. (6) and changing
the order of integration, we have

τMRT (x0) =
1

2π

∫ ∞

−∞

eZ (k, x0)
e−ikL1 − e−ikL2

ik
dk. (13)

After differentiation of both sides of Eq. (13) with respect to x0, in accordance with Eq. (11),
we find

τ′MRT (x0) =
1

2π

∫ ∞

−∞
G (k, x0)

e−ikL1 − e−ikL2

ik
dk. (14)

One can easily check that, after replacing k with −k, Eq. (12) coincides with the equation
for the complex conjugate function G∗ (k, x0), i.e. G (−k, x0) = G∗ (k, x0). As a result, Eq. (14)
can be rearranged into a simpler form

τ′MRT (x0) =

∫ ∞

0

Re

�

G (k, x0)
e−ikL1 − e−ikL2

πik

�

dk, (15)

where Re {...} denotes the real part of the expression.
If a sink of the potential profile V (x) is located at the point x =∞ we have

lim
x0→∞

τMRT (x0) = 0. (16)

After integrating Eq. (15) with respect to x0 and taking into account the condition (16), we
find

τMRT (x0) =

∫ ∞

x0

Re

�∫ ∞

0

G (k, z)
e−ikL2 − e−ikL1

πik
dk

�

dz. (17)

Thus, it is sufficient to solve Eq. (12) only in the region k > 0, obtaining

V ′
�

−i
d

dk

�

G − iDαkα−1G = eikx0 . (18)

Equations (17) and (18), which are among the main results of the paper, give the exact
relations useful to calculate the MRT of the symmetric Lévy flights with arbitrary index α and
noise intensity parameter Dα in a smooth potential profile with a sink at x =∞.

3 Results

Metastable state and noise enhanced stability Now, we focus on a particle moving in a
metastable cubic potential profile (see Fig. 1)

V (x) = −
x3

3
+m2 x , (19)

and driven by a Cauchy-stable noise with Lévy index α = 1. Here x = m = xmax corresponds
to the unstable equilibrium state, and x = −m= xmin to the metastable state, with m> 0 any
positive real number. Using Eq. (19) and placing α= 1 in Eq. (12), we get

d2G
dk2

+
�

m2 − iD1 sgn k
�

G = eikx0 , (20)

which for k > 0 becomes
d2G
dk2

+
�

m2 − iD1

�

G = eikx0 . (21)
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Figure 1: Cubic potential V (x)with metastable state at x = −m, archetype model for
any metastable state. L1 and L2 are the interval boundaries, x0 is the initial position
of the particle, xm = m is a potential parameter.

The general solution of Eq. (21) is the sum of the general solution of the homogeneous
equation and its particular solution. Under the condition of its limitation, not divergent for
arbitrary k, it takes the form

G (k, x0) = C e−λk +
eikx0

m2 − x2
0 − iD1

, (22)

where C is an unknown complex constant and λ is one of the complex roots

z = ±
Æ

iD1 −m2,

having a positive real part, λ= λ1 + iλ2, where

λ1 =
�

m4 + D2
1

�1/4
sin
�

1
2

arctan
�

D1

m2

��

,

λ2 =
�

m4 + D2
1

�1/4
cos
�

1
2

arctan
�

D1

m2

��

. (23)

To find the unknown constant C we use the continuity conditions for the function G (k, x0)
and its first derivative at the point k = 0

lim
k→0+

G (k, x0) = lim
k→0−

G (k, x0) ,

lim
k→0+

dG (k, x0)
dk

= lim
k→0−

dG (k, x0)
dk

. (24)

For k < 0, Eq. (20) transforms into

d2G
dk2

+
�

m2 + iD1

�

G = eikx0 , (25)

and its solution under the condition of its limitation reads

G (k, x0) = C∗eλ
∗k +

eikx0

m2 − x2
0 + iD1

. (26)
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Using Eqs. (22), (26) and conditions (24) we get

C +
1

m2 − x2
0 − iD1

= C∗ +
1

m2 − x2
0 + iD1

−λC +
i x0

m2 − x2
0 − iD1

= λ∗C∗ +
i x0

m2 − x2
0 + iD1

. (27)

The final expression for the constant C , obtained from the system (27), reads

C = −
D1 (x0 +λ2 + iλ1)

λ1[
�

m2 − x2
0

�2
+ D2

1 ]
. (28)

Substituting Eqs. (22) and (28) into Eq. (17) and calculating the internal integral we arrive
at

τMRT (x0) =
D1

π

∫ ∞

x0

�

A
�

z +λ2

λ1

�

+ B
�

dz

(z2 −m2)2 + D2
1

+
D1

π

∫ ∞

x0

ln

�

�

�

�

z − L1

z − L2

�

�

�

�

dz

(z2 −m2)2 + D2
1

+

∫ L2

x0

�

z2 −m2
�

dz

(z2 −m2)2 + D2
1

, (29)

where

A = arctan
λ2 + L2

λ1
− arctan

λ2 + L1

λ1
,

B =
1
2

ln
λ2

1 + (L2 +λ2)
2

λ2
1 + (L1 +λ2)

2 . (30)

The exact quadrature formula of Eq. (29) is the other main result of the paper.
By setting Dα = 0 in Eq. (29), the dynamical time τd(x0) is then obtained

τd =

∫ L2

x0

dz
z2 −m2

. (31)

For x0 < m < L2, that is unstable initial conditions within the basin of attraction, the
integral in Eq. (31) diverges, which means the impossibility for a particle to cross the potential
barrier, located at the point x = m, in the absence of driving noise. For m< x0 < L2 we obtain
the finite dynamical time

τd(x0) =
1

2m
ln
(L2 −m) (x0 +m)
(L2 +m) (x0 −m)

. (32)

For unstable initial conditions of the particle beyond the potential barrier (at x = +m) and
within the interval+m< x0 < L2, the normalized MRT in the metastable stateτMRT (x0)/τd(x0)
as a function of the noise intensity parameter D1 has a nonmonotonic behaviour with a maxi-
mum (see curves in Figs. 2 and 3)1. This is the noise enhanced stability (NES) phenomenon,
already investigated with Gaussian noise sources [7–15,17,19,20,27,28].

1The MRT in the metastable state τMRT (x0) as a function of the noise intensity parameter D1, with fixed L2,
has the same nonmonotonic behaviour with a maximum but with different scaling in the vertical axis of Fig. 2. In
Fig. 3 the MRT τMRT (x0) versus D1, with fixed L1, is shown.

7



SciPost Physics Submission

The normalized MRT τMRT (x0)/τd(x0) for a metastable cubic potential as a function of
the noise intensity parameter D1 for different positions L1 of the left boundary and a fixed
value of the right boundary L2 = 4 in a semilog plot is shown in Fig. 2. The different values
of L1 range from 0 to −6 with steps 0.2. A nonmonotonic behavior of the normalized MRT
with a maximum as a function of the noise intensity parameter is observed for all values of L1
analyzed, that is the particle is temporarily trapped in the metastable state.

Furthermore, we perform the numerical integration of the Langevin equation (1) with
the cubic potential profile of Eq. (19) for different position L1 and fixed L2 (see Fig. 2b),
and different position L2 and fixed L1 (see Fig. 3b), across a wide range of noise intensity
parameters D1. The MRT is obtained by numerically integrating Eq. (1) over 2 × 106 time
steps of width d t = 10−3 and averaging over 5× 106 independent numerical repetitions. The
algorithm used for the Lévy noise source is that proposed by Weron for the implementation of
the Chambers method, see Ref. [43] 2.

From these simulations we obtain the detailed dependence of the MRT on both the noise
intensity parameter D1 and the parameters L1 or L2. The agreement between the theoretical
exact results of Eq. (29) and the numerical simulations of Eq. (1) is excellent.

For large noise intensity parameter, we have a power law behavior of the MRT as a function
of the noise intensity parameter τMRT (x0)∼ D−1

1 (see panels (a) and (b) of Figs. 2 and 3).
In Fig. 2c a density plot of τMRT (x0)/τd(x0) versus L1 and D1 is shown. The white dotted

line marks the position of the NES maxima.
The maxima and all curves increase as the value of the left boundary L1 decreases. This

gives rise to an increasing size of the basin of attraction of the metastable state [20,21], respon-
sible for the increase in the normalized MRT. Furthermore, in the limit D1→ 0 there are three
different asymptotic values of the normalized MRT, the value of which increases with the size
of the basin of attraction when L1 varies from 0 to −6 (see the next section and Appendix A,
paragraph 1). We note that in the limit D1→ 0, and for unstable initial position of the particle,
there is a divergent behavior of τMRT (x0) with a Gaussian noise source [7–13, 15]. For Lévy
flights, however, τMRT (x0) exhibits a finite, nonmonotonic behavior as a function of the noise
intensity parameter D1, with finite asymptotic values in the limit D1→ 0. Due to the heavy tails
of the distribution, a particle spends a finite amount of time in the metastable area even in the
limit D1 → 0. For very large noise intensity parameter, in the limit D1 →∞, the normalized
MRT follows a power-law behavior as a function of the noise intensity parameter [3,4].

In Fig. 3, the MRT τMRT (x0) versus D1 in a semilog plot for different positions L2 of the
right boundary at a fixed value of the left boundary L1 = −4 is shown. The different values of
L2 range from 3 to 7 with steps 0.2. Again, a full nonmonotonic behavior of τMRT (x0) versus
D1 for all values of L2 investigated is observed, with different asymptotic values of the MRT for
D1→ 0. Panel (b) of Fig.3 shows the results obtained using the same parameter values, with
numerical simulations of Eq. (1). The agreement with the theoretical exact results of Eq. (29)
is excellent. In Fig. 3c a density plot of τMRT (x0) versus L2 and D1 is shown. The white dotted
line marks the position of the NES maxima.

Asymptotic behaviors The asymptotic behaviors shown in Figs. 2 and 3 reproduce the asymp-
totic expressions of Eq. (29) in the limits D1 → 0 and D1 →∞. In particular, for D1 → 0 we
have (see Appendix A, paragraph 1)

τMRT (x0)≃ C1

�

m
x0 −m

+
1
2

ln
x0 −m
x0 +m

�

+τd(x0) , (33)

2In particular see the Refs. [74] and [75] of Ref. [43]
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Figure 2: The results of analytical calculations, panels (a) and (c), according to
Eq. (29), and numerical integration, panel (b), of the Langevin equation (1) for
Cauchy noise, α = 1. (a) Normalized MRT τMRT (x0)/τd , from Eq. (29), for a
metastable cubic potential as a function of the noise intensity parameter D1 for dif-
ferent positions L1 of the left boundary ranging from 0 to −6 with steps 0.2. (b)
Numerical simulations of the Eq. (1) for the same quantity τMRT/τd versus the noise
intensity parameter D1. (c) Density plot of τMRT (x0)/τd(x0) versus L1 and D1 from
Eq. (29). The white dotted line marks the position of the NES maxima. The param-
eter values are: x0 = 3.0, L2 = 4, m= 1.
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Figure 3: The results of analytical calculations, panels (a) and (c), according to
Eq. (29), and numerical integration, panel (b), of the Langevin equation (1) for
Cauchy noise, α = 1. (a) MRT τMRT (x0), from Eq. (29), for a metastable cubic
potential as a function of the noise intensity parameter D1 for different positions L2
of the right boundary ranging from 3 to 7 with steps 0.2. (b) Numerical simulations
of the Eq. (1) for the same quantity τMRT versus the noise intensity parameter D1.
(c) Density plot of τMRT (x0) versus L2 and D1 from Eq. (29). The white dotted line
marks the position of the NES maxima. The parameter values are: x0 = 3.0, L1 = −4,
m= 1.
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where

C1 ≃







1, L1 < −m,
1/2, L1 = −m,
0, L1 > −m,

(34)

and x = −m is the position of a potential well (see Fig. 1), giving rise to three different
asymptotic values of the MRT for D1 → 0 in the case of fixed L2 (see Fig. 2) and different
asymptotic values depending on the different values of L2 in the case of fixed L1 (see Fig. 3).
For D1→∞ (see Appendix A, paragraph 2) we have

τMRT (x0)∼
1
D1

, (35)

that is a power law behavior of the MRT as a function of the noise intensity parameter (see
Figs. 2 and 3).

4 Conclusions

We obtain the general equations useful to calculate the MRT for superdiffusion in the form of
symmetric Lévy flights, for an arbitrary Lévy index α and an arbitrary smooth potential profile
with a sink. For a Cauchy-driven noise (α = 1) we find the closed expression in quadratures
of the MRT as a function of the noise intensity parameter, the initial position, and the param-
eters of the potential. The interplay between trapping in the metastable state, at small noise
intensities, and long jumps of Lévy flights produces a finite nonmonotonic enhancement of
the mean residence time in the metastable state. Our general equations serve as a valuable
tool for describing diverse dynamical behaviors in complex systems, particularly those charac-
terized by anomalous diffusion and non-exponential relaxation phenomena, such as spatially
extended systems [45].
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A Investigation of the MRT in the limits D1 → 0 and D1→∞

To investigate the MRT in the asymptotic limits D1 → 0 and D1 → ∞, we start from the
expressions of the parameters λ1 and λ2 of Eq. (22)

λ1 =
�

m4 + D2
1

�1/4
sin
�

1
2

arctan
�

D1

m2

��

,

(36)

λ2 =
�

m4 + D2
1

�1/4
cos
�

1
2

arctan
�

D1

m2

��

,

and, using trigonometry formulas, we rewrite Eq. (36) in a simpler form

λ1 =
m
p

2

√

√

√

√

√

√

√

1+
D2

1

m4
− 1 ,

λ2 =
m
p

2

√

√

√

√

√

√

√

1+
D2

1

m4
+ 1 . (37)

1. Asymptotics for D1→ 0
For small values of D1, we can use the approximate expansion:

p
1+ x ≃ 1+ x/2− x2/8,

where x = D2
1/L

4
1 ≪ 1. As a result, we obtain

λ1 ≃
D1

2m

�

1−
D2

1

8m4

�

, λ2 ≃ m

�

1+
D2

1

8m4

�

. (38)

First of all, it is better to write the expression for A in another form. Using the well-known
relation

arctan
1
x
=
π

2
− arccot

1
x
=
π

2
− arctan x ,

we can rewrite the expressions (29) for A and B in the following form

A= arctan
λ1

λ2 + L1
− arctan

λ1

λ2 + L2
+π · 1 (−λ2 − L1) ,

B =
1
2

ln
λ2

1 + (L2 +λ2)
2

λ2
1 + (L1 +λ2)

2 , (39)

where 1(x) is the step function.
Substituting Eq. (38) into Eq. (39) for A and B we have

A≃







π+ D1(L2 − L1)/ [2m(m+ L1)(m+ L2)] , L1 < −m,
π/2− D1(3m+ L2)/

�

4m2(m+ L2)
�

, L1 = −m,
D1(L2 − L1)/ [2m(m+ L1)(m+ L2)] , L1 > −m.

(40)

B ≃
�

ln [(m+ L2)/ |m+ L1|] , L1 ̸= −m,
ln [2m (m+ L2)/D1] , L1 = −m.

(41)

As seen from Eq. (40), the value A does not go to zero in the limit D1→ 0 in the case L1 ≤ −m.

12
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Substitution of Eqs. (40) and (41) into Eq. (29) gives in the limit D1→ 0

τMRT (x0)≃
2mC1

π

∫ ∞

x0

dz

(z −m)2 (z +m)
+τd(x0) , (42)

where

C1 ≃







π, L1 < −m,
π/2, L1 = −m,
0, L1 > −m

(43)

and τd(x0) is the dynamical time.
The integral in Eq. (42) can be calculated in the analytical form. As a result, we obtain in

the limit D1→ 0

τMRT (x0)≃ C1

�

m
x0 −m

+
1
2

ln
x0 −m
x0 +m

�

+
1

2m
ln
(L2 −m) (x0 +m)
(L2 +m) (x0 −m)

. (44)

This gives rise to three different asymptotic values of the MRT for D1→ 0 in the case of fixed
L2 (see Fig. 2)and different asymptotic values depending on the different values of L2 in the
case of fixed L1 (see Fig. 3).

2. Asymptotics for D1→∞
Now we consider the case of very large D1. From Eq. (37) we easily find

λ1 ≃

√

√D1

2
, λ2 ≃

√

√D1

2
. (45)

Substituting Eq. (45) into Eqs. (30) we obtain the following approximate expressions for the
constants A and B

A= B ≃
L2 − L1
p

2D1

. (46)

Substitution of Eqs. (45) and (46) into Eq. (29) gives

τMRT (x0)≃
L2 − L1

π

∫ ∞

x0

(z +
p

2D1) dz

(z2 −m2)2 + D2
1

(47)

+
D1

π

∫ ∞

x0

ln

�

�

�

�

z − L1

z − L2

�

�

�

�

dz

(z2 −m2)2 + D2
1

+

∫ L2

x0

�

z2 −m2
�

dz

(z2 −m2)2 + D2
1

.

The first integral in Eq. (47) can be calculated analytically and for the large D1 gives

L2 − L1

π

∫ ∞

x0

(z +
p

2D1) dz

(z2 −m2)2 + D2
1

≃
3 (L2 − L1)

4D1
. (48)

The second integral in Eq. (47) can be estimated for large D1 using the mean value theorem
for a definite integral, namely

D1

π

∫ ∞

x0

ln

�

�

�

�

z − L1

z − L2

�

�

�

�

dz

(z2 −m2)2 + D2
1

≃

D1

π
ln

�p

D1 − L1
p

D1 − L2

�∫ ∞

x0

dz

(z2 −m2)2 + D2
1

≃ (49)

(L2 − L1)
p

D1

π

∫ ∞

x0

dz

(z2 −m2)2 + D2
1

≃
(L2 − L1)

p
2

4D1
∼

1
D1

.
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The last integral in Eq. (47), due to the finite limits, can be easily estimated
∫ L2

x0

�

z2 −m2
�

dz

(z2 −m2)2 + D2
1

≃
1

D2
1

�

L3
2 − x3

0

3
−m2(L2 − x0)

�

∼
1

D2
1

. (50)

Taking into account Eqs. (48), (50), and (50), we find finally for large D1

τMRT (x0)∼
1
D1

, (51)

that is a power-law behavior in agreement with previous investigations (e.g., Ref. [3]) and
numerical simulations shown in Figs. 2 and 3.
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