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Abstract

Quantum sensors can show unprecedented sensitivities, provided they are controlled in
a very specific, optimal way. Here, we consider a spin sensor of time-varying fields in
the presence of dephasing noise, and we show that the problem of finding the optimal
pulsed control field can be mapped to the determination of the ground state of a spin
chain. We find an approximate but analytic solution of this problem, which provides a
lower bound for the sensor sensitivity, and a pulsed control very close to optimal, which
we further use as initial guess for realizing a fast simulated annealing algorithm. We
experimentally demonstrate the sensitivity improvement for a spin-qubit magnetometer
based on a nitrogen-vacancy center in diamond.
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1 Introduction19

Quantum systems are notoriously sensitive to external influences. This sensitivity is a core el-20

ement in the development of quantum technologies, as is the case of quantum sensing, which21

takes advantage of quantum coherence to detect weak or nanoscale signals. Quantum sensing22

devices can in principle attain precision, accuracy, and repeatability reaching fundamental lim-23

its [1,2]. However, the extreme sensitivity to external perturbations also causes the quantum24

sensor to couple with detrimental noise sources that induce decoherence, therefore limiting25

the interaction time with the target signal.26

Here, we introduce a method to find optimal control protocols [3] for ac quantum sensing27

in the presence of dephasing noise. Such optimization problem is in general a complex classical28

problem. Our method, that draws an analogy between pulsed dynamical decoupling (DD)29

protocols [4–8] and spin glass systems [9], maximizes the phase acquired by the quantum30

sensor due to the target ac field while minimizing the noise detrimental effect. The optimal31

control fields yield an improved sensitivity with respect to commonly used protocols, as we32

experimentally demonstrate using a spin-qubit magnetometer based on a Nitrogen-Vacancy33

(NV) center in diamond [10–14].34

More in detail, we find that the problem of optimizing the control protocol for our quantum35

sensor is homologous to that of finding the ground state of a classical Ising spin Hamiltonian,36

as depicted in Fig. 1. The control π-pulse times correspond to the locations in the chain of the37

domain walls. The couplings between the model spins, which encode the noise autocorrela-38

tion, are of both signs, and this is customary in optimization problems. The antiferromagnetic39

couplings capture the frustration between the different terms in the Hamiltonian, which then40

prima facie is that of a spin-glass model—which does not mean that there is a spin-glass phase41

at low temperature (see later).42

The study of optimization problems in statistical physics is a large field of research in43

disordered systems, with far-reaching connections to the physics of spin glasses [15, 16] and44

other frustrated, classical and quantum models [17–23]. Optimization problems in quantum45

control can show some degree of frustration, with terms that compete in a similar way in46

which ferromagnetic and anti-ferromagnetic bonds compete in spin glasses [24]. We find,47

however, that in the specific case of the optimal control of a qubit sensor, by trading the Ising48

Z2 spins for the continuous spins of a spherical model (SM) [25,26] one gets rid of frustration49
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Figure 1: (a) A single spin sensor is used to detect an AC target magnetic field b(t ).
(b) An optimal control field applied to the spin sensor increases its coherence, hence
improving its sensitivity. (c) The difficult problem of finding an optimal control se-
quence can be mapped into a problem of finding the ground state of a virtual spin
chain.

altogether, and the model shows little signs of competing equilibria at low temperature, typical50

of replica-symmetry-broken phases [9,27]. Since the ground state of the spherical model can51

be found analytically if the spectra of the signal and of the noise are known, we obtain from52

this both a lower bound for the sensitivity 1, and a quasi-optimal controlled pulsed field. This53

quasi-optimal sequence can then be fed to a simulated annealing (SA) algorithm [28–31],54

in order to find the optimal one with little computational effort. Such annealed sequences55

show, in agreement with the experiments, very good sensitivities (only about 20% worse than56

the bound). Our method is thus superior to standard DD protocols as Carr-Purcell (CP), or57

minimal generalizations of the latter to colored signals, as we discuss in detail. Finally, to58

show the unparalleled performance of the algorithm, which can open the door to real-time59

optimization in sensing, we run it on a Raspberry Pi microcomputer, where it takes milliseconds60

to find the optimal solutions.61

2 Optimized dynamical decoupling for sensing62

We consider a single spin-qubit sensor of time-varying magnetic fields, in the presence of de-63

phasing noise. This quantum sensing task can be described as a compromise between spin64

phase accumulation due to the external target field to be measured b(t ) ≡ bh(t ), and refo-65

cusing of the non-Markovian noise, obtained via dynamical decoupling (DD) protocols [4–8].66

Above, b is the magnetic field strength to be detected, and h(t ) a known, dimensionless func-67

tion specifying its time dependence.68

As in Hahn’s echo [32–34], a DD sequence is implemented by applying sets of n π-pulses69

that act as time reversal for the phase acquired by the qubit during its free evolution, and70

can be described by a modulation function y : [0, T] ∋ t 7→ {−1, 1} (see Fig. 1b). The DD71

sequence is embedded within a Ramsey interferometer, hence the qubit coherence is mapped72

onto the probability of the qubit to populate the excited state |1〉:73

P(T, b) = Tr[ρ|1〉〈1|] =
1

2

�

1+ e−χ(T) cosϕ(T, b)
�

. (1)

1The lower bound is not related to the Cramér-Rao bound, since the latter is used to define the sensitivity itself
[see Supplementary Information].
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Here, ϕ is the phase acquired by the qubit during the sensing time T :74

ϕ(T, b) = bγ

∫ T

0

dt h(t ) y(t ), (2)

with γ the coupling to the field (e.g., the electronic gyromagnetic ratio of the spin sensor).75

The noise-induced decoherence function76

χ(T) ≡
1

π

∫

dω

ω2
S(ω)|Y(T,ω)|2 (3)

is the convolution between the noise spectral density (NSD) S(ω) and the filter function77

Y(T,ω) = iω
∫ T

0 dt e−iωt y(t ). Note that we neglect the effect of the target field on the78

noise source [35] and we assume the noise to be a stationary Gaussian process.79

Dynamical decoupling is a very versatile control technique, with a virtually infinite space of80

degrees of freedom spanned by all the possible distributions of π pulses, even at finite sensing81

time T . One of the most common DD sequences is the Carr-Purcell (CP) sequence [33, 34],82

formed by a set of equidistant pulses. Non-equidistant sequences have been proposed and83

experimentally tested, e.g. in Refs. [7,36–40]. Each of these sequences has internal degrees of84

freedom, that can be tuned to increase the sensing capabilities for specific target fields. Another85

example is what we call the “generalized Carr-Purcell” (gCP) protocol, in which π pulses are86

applied when the signal b(t ) changes sign, i.e. in correspondence to its zeros. All these DD87

sequences are already optimal for specific target fields that do not overlap significantly with the88

noise. However, as the complexity of the target field increases, it increases also the difficulty to89

find a pulse sequence that successfully filters out the noise components, while still maintaining90

the sensitivity to the target field.91

A possible approach is to use an optimization algorithm, to find a π-pulse sequence that92

optimizes a desired figure of merit, for example the sensitivity, i.e. the smallest detectable sig-93

nal. This concept was proposed and demonstrated experimentally for an NV center used as94

a quantum magnetometer [41]. Despite the achieved improvements, the computational com-95

plexity of the above optimization problem limited its applicability. Indeed, the optimization96

cost function, the sensitivity η, defined as [1,42]97

η =
eχ(T)

|ϕ(T)/b|

p

T , (4)

(see also the Supplementary Information for a derivation) is a compromise between noise98

cancellation and target ac field encoding, and it is hard to optimize.99

In our approach, instead, we recast the cost function η as the Hamiltonian of a classical100

Ising spin system. In this way, the continuous optimization problem for the minimization of101

the sensitivity of a NV-center magnetometer is re-interpreted as a discrete energy minimization102

problem. Specifically, we define the new cost function to be the (dimensionless) logarithmic103

sensitivity104

ε = log
�

ηγ
p

T
�

= χ(T)− log

�

�

�

�

ϕ(T)

Tγb

�

�

�

�

, (5)

and we show in Sec. 3 that upon time discretization ε becomes an Ising Hamiltonian, albeit105

with sign-alternating, long-range interactions and a peculiar logarithmic field-spin coupling.106

Before doing that, however, we show how the problem can be tackled in continuous time, and107

by means of a reasonable approximation.108
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3 A variational approach109

Our task is to find the optimal function y(t ) which minimizes the sensitivity η, Eq. (4), or110

the logarithmic sensitivity ε, Eq. (5). First of all, we anticipate why simple choices for y(t )111

do not yield good results for generic sensing tasks. Looking at Eqs. (2)–(4), one understands112

that the minimum detectable signal η is determined by a competition of the signal, through113

ϕ, and the noise, through χ . Commonly used DD protocols, as CP sequences, focus only on114

the properties of the signal, trying to amplify it irrespective of the noise (or assuming the zero-115

to-low-frequency noise). So, either using a CP sequence to amplify one frequency the signal is116

composed of, or taking y(t )∝ h(t ) to mimic as close possible the signal (the strategy dubbed117

gCP above), fail when the noise and the signal share common frequencies. Nevertheless, with118

the procedure outlined below, we show how it is possible to “orthogonalize” the DD sequence119

wrt. the noise to minimize the overlap χ , while keeping it “parallel” to the signal to maximize120

ϕ. In passing, we obtain useful analytical results that allow us to assess the performance of121

our method.122

Let us rewrite ε as [see Eqs. (2),(3) and (5)]123

ε[y] =
1

2

∫

[0,T]2
dtdt ′ y(t )J(t , t ′)y(t ′)− log

�

�

�

�

�

1

T

∫ T

0

dt h(t )y(t )

�

�

�

�

�

, (6)

with124

J(t , t ′) =
2

π

∫

dω cos(ω(t ′ − t ))S(ω). (7)

J(t , t ′) is the noise autocorrelation function, which depends only on the difference t − t ′ by125

stationarity of the noise. Notice also that J is a positive operator even though J(t ′, t ) can take126

up any values in R. Then, in order to find y(t ) that minimizes ε, we start by imposing the127

constraint y(t )2 = 1 for all t via a continuous set of Lagrange multipliers, i.e. via a function128

λ(t ):129

F[y,λ] = ε[y] +
1

2

∫ T

0

dt λ(t )
�

y(t )2 − 1
�

. (8)

We need to find the stationary point of F[y] w.r.t. y(t ) and λ(t ). Formally, the saddle point130

equations are131

δF

δy(t )
=

∫ T

0

dt ′
�

J(t , t ′) + λ(t )δ(t − t ′)
�

y(t ′)−
h(t )
∫ T

0 dt h(t ′)y(t ′)
= 0 , (9)

δF

δλ(t )
= y2(t )− 1 = 0 . (10)

One can see that the extreme w.r.t. λ simply gives the constraint. The formal solution of the132

above equations is133

y(t ) =
1

D

∫ T

0

dt ′
�

1

J +λ

�

t ,t ′
h(t ′), (11)

where λ stands for the diagonal operator λ(t )δ(t − t ′), and134

D =

∫ T

0

dt h(t ) y(t ) =
1

D

∫ T

0

dtdt ′ h(t )
�

1

J +λ

�

t ,t ′
h(t ′), (12)

=⇒ D =

�
∫ T

0

dtdt ′ h(t )
�

1

J +λ

�

t ,t ′
h(t ′)

�1/2

. (13)
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The quantity D can be interpreted as a self-consistent normalization for y(t ). By plugging135

Eq. (11) in Eq. (8), one can express the cost function at the saddle as136

F =
1

2

∫

[0,T]2
dtdt ′ y(t ) J(t , t ′) y(t ′)− log

�

�

�

�

�

1

T

∫ T

0

dt h(t )y(t )

�

�

�

�

�

+
1

2

∫ T

0

dt λ(t )
�

y(t )2 − 1
�

=
1

2D2

∫

[0,T]2
dtdt ′ h(t )
�

1

J +λ

�

t ,t ′
h(t ′)− log

�

�

�

�

�

1

DT

∫ T

0

dtdt ′ h(t )
�

1

J +λ

�

t ,t ′
h(t ′)

�

�

�

�

�

−
1

2

∫ T

0

dt λ(t )

=
1

2
− log

�

�

�

�

D

T

�

�

�

�

−
1

2

∫ T

0

dt λ(t ). (14)

The last expression is a function of λ(t ) only and one can, in principle, find the saddle point137

of it and substitute it in Eq. (11) to obtain the optimum DD sequence.138

Short of solving exactly the model in Eq. (8), we can get good results to guide the experi-139

ment by simplifying the space in which we are searching for the minimum. We can do this in140

two ways: either we keep y(t ) defined on R (i.e. we keep the time continuum) and we give141

more structure to λ(t ), or we discretize time and enforce the constraint y(t )2 = 1 exactly142

(therefore getting rid of λ). These two approaches will be implemented in the following.143

3.1 Spherical approximation144

In order to make progress, we substitute for the moment the constraint y(t )2 = 1, for all t ,145

with the constraint146

1

T

∫ T

0

dt y2(t ) = 1. (15)

This is equivalent to finding the stationary point of F[y,λ], Eq. (8), in the subspace in which147

λ(t ) ≡ λ. We call the resulting approximation spherical model (SM) 2, taking inspiration from148

the physics of spin glasses [25,26].149

Spherical models are often good mean field models of spin glasses and of their dynam-150

ics [25,26,43], and this case will prove to be of similar nature despite the unusual logarithmic151

field coupling term. By setting λ(t )→ λ we have the function of the single parameter152

εSM(λ) =
1

2
−

T

2
λ−

1

2
log

�

�

�

�

�

1

T2

∫ T

0

dtdt ′ h(t )
�

1

J +λ

�

t ,t ′
h(t ′)

�

�

�

�

�

(16)

where J + λ is the operator with integral kernel J(t ′, t ) + λδ(t ′ − t ), as above. Minimizing153

w.r.t. λ ∈ R, one finds a theoretical lower bound on the sensitivity: η > ηSM = eεSM/γ
p

T .154

This is a lower bound for the sensitivity because the minimum of εSM corresponds to a y(t )155

over a larger space of functions (Eq. (15) is weaker than constraint y(t )2 = 1), as shown156

schematically in Fig. 2. In principle the bound is not sharp, however it provides a quick and157

accurate measure of the goodness of our results. Moreover, we have found by experience that158

it is in practice pretty close to being sharp and that it can hardly be improved analytically by159

adding more freedom to the function λ(t ) beyond the constant λ(t ) = λ. For example the160

test function λ(t ) = λ1χ[0,T/2](t ) + λ2χ[T/2,T](t ) (χ[a,b] is the characteristic function of the161

interval [a, b]), giving a two-parameters space (λ1,λ2) for minimization, gives at most a few162

percent increase on the bound on η. We therefore use it as if it were sharp.163

2The name “spherical” comes from the fact that, after having discretized time in N different, equally spaced
values ti = i∆t , the constraint in Eq. (15) puts the variable y(t ) on a N-dimensional sphere, where N = T/∆t .
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Figure 2: (a) Sketch of the spherical model. The N-dimensional, hyper-spherical sur-
face (in blue) strictly contains the hypercube {+1,−1}N (black dots), each point of
which encodes the configuration of classical spins in the Ising model. Therefore, the
solution of the spherical model (red square) is, in general, not a point on the hyper-
cube, but it can be projected (arrow) onto the latter, giving a good value for the sen-
sitivity. (b) Comparison between solutions for 200 spins (T = 32 µs,∆t = 0.16 µs).
The continuous spins si ∈ R (blue line) can be converted into Ising spins si = ±1,
necessary for the π-pulses, by using the sign function (orange line): this step cor-
responds to the projection (arrow) in panel (a). The sensitivity can be improved
further with a few iterations of SA to get a close-by sequence (dashed black line). In
this example, the trichromatic target signal and the noise are equal to the ones used
in the experiment (see text).

One can define for any DD sequence the dimensionless quantity ηSM/η < 1. We will see164

in the next section how different approximate solutions give different values of this quantity.165

Moreover, we will see how the solution of the SM, although not per se a DD sequence, can166

function as a starting point for finding an optimal DD sequence.167

3.2 Time discretization and Simulated Annealing168

Let us focus now on the second method: time discretization. We discretize the sensing time T169

into small time intervals∆t , to obtain a sequence of times ti = i∆t with i ∈ 1, ..., N = T/∆t .170

The interval∆t is the smallest time we allow the π-pulses of the DD sequence to be separated171

by. Apart from the physical limit given by the experimental apparatus, which sets a minimal172

∆t , one does not expect to need in the optimal solution π-pulses separated by much less173

than the minimum period of h(t ), if it exists (the spectrum of h(t ) can extend up to infinite174

frequency). The modulation function at each of these times is y(ti) = ±1, which dictates the175

sign of the phase acquired by the spin qubit during the time interval [ti − ∆t ,ti]. We can176

therefore write the modulation function as177

y(t ) =
N=T/∆t
∑

i=1

siχ[(i−1)∆t ,i∆t ](t ), (17)

where si = ±1, and as before χ[a,b] is the characteristic function of an interval [a, b]. Writing178

the modulation function in this way allows us to recast Eqs. (2) and (3) respectively as179

ϕ(T) = Tγb
N
∑

i=1

hi si , (18)

χ(T) =
1

2

N
∑

i, j=1

Ji j si s j (19)

where180

hi =
1

T

∫ i∆t

(i−1)∆t

dt h(t ) (20)

7
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represents the interaction with a normalized target ac field, and181

Ji j ≡
4

π

∫

dω
[1− cos(ω∆t )]

ω2
cos(ω( j − i)∆t )S(ω) (21)

represents the interaction with the detrimental noise. We can now express the new cost func-182

tion as183

ε =
1

2

N
∑

i, j=1

Ji j si s j − log

�

�

�

�

�

N
∑

i=1

hi si

�

�

�

�

�

: (22)

this closely resembles the Hamiltonian of the Ising spin glass problem for a set of N spins si .184

The ground state for this Hamiltonian can be used to obtain a modulation function, therefore185

a DD sequence, that minimizes the sensitivity η.186

At first sight, minimizing ε in Eq. (22) on the hypercube {si} ∈ {−1, 1}N seems a difficult187

problem, since the couplings Ji j can be of both signs. Therefore, one is tempted to use a188

simulated annealing (SA) minimization algorithm [28–30] to find the minimum of the energy189

ε. However, the performance of SA is strongly affected by the starting configuration both in190

the final value and, at least as importantly, in the time to reach it. With this in mind we turn191

to the SM solved in the previous section but with our discretized time, in terms of which the192

spherical constraint reads
∑N

i=1 y2
i
= N. In the discretized form, the solution of the SM is (see193

Eq. (11))194

y j =
1

D

N
∑

k=1

ei
2π j
N k

p
N

h̃k

J̃k +λ
. (23)

Above, we introduced the Fourier transform of the signal term h̃k =
1
p

N

∑

j e−i
2πk

N j h j , and of195

the noise term J̃k =
1
p

N

∑

j e−i
2πk

N j Ji,i− j : indeed, since λ(t ) is constant and Ji j depends only196

on the difference i− j , the matrix J+λ is diagonal in Fourier space 3. The value of λ is chosen197

to enforce the spherical constraint, and D =
�∑

k′ |h̃k′ |2/(J̃k′ +λ)
�1/2

, see Eq. (12). One can198

notice that in Fourier space the optimal solution is aligned with the field, and orthogonal to199

the noise.200

An example solution is shown in Fig. 2. The values of yi do not form a sequence of ±1,201

but the solution is reasonably close to the minimum of the original functional Eq. (22) over202

the hypercube {−1, 1}N . We can now use the solution in Eq. (23) as a starting point to find203

the optimal sequence si ∈ {−1, 1}. To do so, we first define si = sign(yi) ∈ {−1, 1} and then204

run few steps of SA moving only the domain walls, i.e. flipping only spins which are on a sign205

change: si = −si+1. The π-pulse sequence is, as before, the sequence of times where the spins206

change sign (the position of the domain walls in the spin chain).207

We test our procedure on an ensemble of test cases constructed as follows. The signal is a208

superposition of monochromatic waves h(t ) =
∑Nfreq

n=1 An cos(ωn t +φn): we fix Nfreq = 7 and209

extract uniformly random frequencies in the interval [0, 1] MHz, uniformly random phases210

φn , and uniformly random amplitudes An s.t.
∑Nfreq

n=1 An = 1. The noise spectrum is instead a211

gaussian centered at 0.4316 MHz, and with standard deviation 0.016 MHz: thus, it is close212

to (but a little bit stronger w.r.t.) the experimentally relevant situation discussed in the next213

session.214

First, we use the generalized Carr-Purcell (gCP) protocol introduced above. This procedure215

is simple but not very effective: on average, it returns between 2/3 and 1/3 of the maximum216

inverse sensitivity, monotonically decreasing with the time of the sampling (see Fig. 3a). The217

3Strictly speaking, the noise term is represented by a Toeplitz matrix Ji j , which is diagonalized by the discrete
Fourier transform only in the limit N → ∞. However, already at finite N plane waves constitute a reasonable
approximation for the eigenvectors [44]. For numerical purposes, any diagonalization routine will suffice.

8
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decay is caused by the fact that the gCP sequences do not take into account the dephasing218

noise. Hence, as time increases the accumulation of noise by the sensor weakens its sensitivity.219

Second, we use the solution of the SM, viz. si = sign(yi), as DD sequence: this gives a better220

solution, due to the fact that the sequence attempts to partially filter out the noise, but it is221

still not optimal. The best results, however, are obtained by running a fixed number of steps222

of SA starting from either a random DD sequence (SA, more on this below), from the gCP223

DD sequence (gCP+SA), or from the sign(SM) DD sequence (sign(SM)+SA). All these three224

cases perform the best because the SA algorithm is able to find a good local minima of the225

optimization landscape. As it is seen in Fig. 3a, the sign(SM)+SA sequence gives the overall226

best result, with a solution close to the upper bound given by the SM itself (before projecting227

on the hypercube). It is important to stress that, although the ratio ηSM/η for sign(SM)+SA is228

close to be constant as a function of time, eventually the sensor will not be able to detect any229

signals due to decoherence beyond dephasing (not considered in our model), e.g. T is limited230

by the spin-lattice relaxation time T1 ≃ 1 ms for NV spin sensors at room temperature.231

For what concerns the decay of sensitivity for some control fields, our understanding is the232

following: The gCP case performs the worst because it knows nothing about the noise, and as233

time increases the gCP solution results in accumulation of noise by the sensor. The situation is234

better for the sign(SM) case, that encompasses some effect of the noise. The SA cases perform235

the best because, of course, they represent good local minima of the optimization landscape,236

that are found by the numerical sampling procedure.237

Finally, let us give more details regarding the unbiased SA optimization, called SA above,238

that starts at infinite temperature from a uniformly random sequence of si = ±1. In this case,239

to reduce the number of π pulses it is necessary to introduce by hand a ferromagnetic coupling240

term in the Hamiltonian:241

ε→ ε− K
N−1
∑

i=1

si si+1, (24)

with K > 0 to be tuned. One can see in Fig. 3b that the best sensitivity is however still obtained242

with the combination of the SM solution and SA optimization. Additionally, from Fig. 3b one243

can also understand that the optimal solution represents the best trade-off between number244

of π pulses (which the experimenter would like to maintain low) and sensitivity.245

To conclude, we stress that our optimization procedure is very fast, if compared to stan-246

dard, general-purpose routines. In particular, we were able to run our codes on a Raspberry247

Pi microcomputer, where the single instance takes ∼ 0.5 s for the unbiased SA algorithm, and248

∼ 0.02 s for the solution of the SM and subsequent annealing (using N = 500 spins). Taking249

in consideration that few instances of the sign(SM)+SA protocol are sufficient to obtain a good250

result, while the optimization over the parameter K requires hundreds, if not thousands, of251

separate SA runs, the gain provided by our method becomes apparent. This fact also opens252

the door to the miniaturization of the control electronics, in view of possible technological253

applications of quantum sensing.254

4 Experiment255

While our method is general and applicable to any spin-qubit sensor, we exemplify it through256

experiments with a single NV center in bulk diamond with naturally abundant 13C nuclear257

spins, at room temperature. The ground state electron spin of the NV center can be initialized258

and measured by exploiting spin-dependent fluorescence, and can be coherently manipulated259

by microwaves [14]. We consider the two ground-state spin levels, mS = 0 and mS = +1,260

to form the computational basis of the qubit sensor {|0〉, |1〉} (see Supplementary Informa-261

tion). The main source of noise for the NV spin qubit derives from the collective effect of 13C262
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Figure 3: (a) Comparison of performances, over a broad ensemble of parameters,
for the DD sequences discussed in the main text: generalized Carr-Purcell (gCP),
spherical model projected with the sign function onto the hypercube (sign(SM)),
simulated annealing (SA), and SA optimization starting from gCP and sign(SM). One
can see that the best results are obtained for the SA optimization guided by the SM
solution. The data refer to the ensemble of random test signals described in the
main text: the dots are the average values, and the shaded area represents the 20–
80 percentile of the distribution of results. The discretization interval is ∆t = 0.1
µs. (b) Single instance of a random signal, corresponding to T = 100 µs. We show
the average sensitivity and the number of π pulses (the error bars correspond to
one standard deviation over the ensemble of annealing realizations) of the solutions
coming from the unbiased SA, i.e. starting from infinite temperature (purple to green
circles), and from the SA guided by the SM solution (red square). The unbiased SA
needs a ferromagnetic term∝K , see Eq. (24), with K to be optimized over, in order
to keep under control the number of π pulses. From this plot, one learns that first,
the optimal solution represents also the best trade-off between number of π pulses
and sensitivity, and second, that the SA optimization guided from the SM performs
better, and with less fluctuations. Here, each unbiased SA procedure uses 105 Monte
Carlo steps and a power-law temperature ramp, while only 103 steps are needed for
the SA from the SM solution.
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impurities randomly oriented in the diamond lattice.263

In the presence of a relatively high bias field (≳ 150 G), the collective effect of the nuclear264

spin bath on the NV spin is effectively described as a classical stochastic field, with gaus-265

sian noise spectral density (NSD) centered at the 13C Larmor frequency νL [45, 46]. We pre-266

liminarily characterize the NSD of the NV spin sensor as in Ref. [46]. The direct coupling267

between the target field and the nuclear spins is negligible due to the small nuclear mag-268

netic moment [35], and the indirect coupling via the NV electronic spin is also negligible269

due to the presence of the strong bias field [46]. Therefore, the NV spin dynamics is well270

described by Eq. (1). For the experiments we present throughout this article we used a bias271

magnetic field of 403.2(2)G, for which the NSD is S(ω) = S0+A exp(−(ω−ωL)2/(2σ2)), with272

S0 = 0.00119(9)MHz,ωL/2π ≡ νL = 0.4316(2)MHz, A = 0.52(4)MHz, andσ/2π = 0.0042(2).273

As a test case for our optimal control method versus standard control, we consider a three-274

chromatic target signal, with h(t ) =
∑+1

i=−1 Ai cos(2πνi t ), where νi = {0.1150, 0.2125, 0.1450}MHz275

are the frequency components, and Ai = {0.288, 0.335, 0.377} are the relative amplitudes,276

respectively for i = −1, 0,+1.277

In Fig. 4(a) we show the NV spin coherence P(nτ, b) under Carr-Purcell (CP)-type DD278

control, formed by n pulses with uniform interpulse spacing τ = T/n, as a function of τ. The279

value of b at the position of the NV defect inside the diamond is obtained from minimizing the280

squared residuals between experiment (gray bullets) and simulation (gray line), for which b281

is the only free parameter (see Supplementary Information for more details).282

The CP pulse sequence acts as a quasi-monochromatic filter centered at 1/τ, so that a single283

component of b(t ) can be sensed in each experimental realization. As a consequence, P(nτ, b)284

in Fig. 4(a) shows collapses occurring at τ ∼ 1/2νi . Notice that the collapse corresponding to285

the frequency component ν+1 (τ ≃ 3.448 µs) cannot be resolved from noise since the first har-286

monic of the filter function roughly coincides with the NSD peak (ν+1 ≃ νL/3) [Fig. 4(b)]. To287

detect the three components of the target signal and filter out the NSD, we need an optimized288

sequence. We thus apply the optimization algorithm detailed before to solve this experimental289

sensing problem.290

In order to confirm the theoretical prediction on how the optimized DD sequence can291

outperform the standard control in terms of sensitivity, we performed measurements of the292

sensitivity itself. Specifically we used three different CP sequences, each with time between293

pulses τ =
1

2νi
, for i = −1, 0,+1. Having a previous knowledge of the NSD allows us to294

predict the sensitivity of the the spin sensor using equations (3), (2), and (4), for any given295

DD sequence, and for any target AC signal b(t ). In Fig. 5a we show the estimated values296

for the inverse of the sensitivity as a function of the sensing time T = nτ. Since τ =
1

2νi
is297

fixed for each of the CP sequences, the variation of T corresponds to a variation of the number298

of pulses n. Notice how for τ =
1

2ν+1
, the inverse of the sensitivity rapidly goes to zero.299

The estimated inverse sensitivity for the optimized sequence sign(SM)+SA is also shown in300

Fig. 5a. The inverse sensitivity increases as a function of T , although we expect it to decrease301

at longer times due to decoherence. In particular we know that for NV spin qubits the spin-302

lattice relaxation time T1 ultimately limits the sensing time T . However, even at shorter times303

T < T1 the sensitivity could be limited by other experimental factors, the most probable one304

being π-pulse imperfections.305

In the experiment, we measure P(T, b) as a function of the field amplitude b at a fixed306

sensing time. An example of this kind of measurements is shown in Fig. 5b. From the analysis307

of the oscillation of P(nτ, b), we can directly fit the values of χ and ϕ/b (see Eqs. (1) and308

(2)), and therefore we can obtain the values of η using Eq. (4). The sensitivity measured309

experimentally shows an excellent agreement with the expected simulated values (see Fig 5a).310

See Supplementary Information for two additional test cases: one for a monochromatic target311

signal such that the fifth harmonic of the NSD coincides with the frequency of the target signal;312
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Figure 4: (a) Dynamics of the NV spin qubit under a DD sequence with n = 16
equidistant pulses (CP) for a trichromatic signal (see text). The NV spin coherence
is mapped onto the probability of the NV spin to be in the state |1〉), P(nτ, b). Gray
bullets: experimental data. Black dashed line: simulated spin coherence in the pres-
ence of noise, without any external target signals. Orange, red, and purple dashed
lines: simulated spin coherence in the presence of monochromatic target fields with
ω1, ω2, and ω3, respectively, with no noise. Gray solid line: simulated data com-
bining all of the above using Eq. (1). Residuals between gray experimental data and
gray solid line are shown in the bottom plot. (b) NSD given by the nuclear spin en-
vironment of the NV sensor (black line); fast Fourier transform (FFT) of the target
signal h(t ) (gray line). Vertical dotted lines: frequency components of the target
signal, and center of the NSD. Orange, purple, and red lines: filter function for a CP
sequence with T =

n
2νi

, for i = −1, 0, and +1, respectively. Blue line: filter function
of the optimized sequence. Inset: examples of time distribution of π pulses.
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Figure 5: (a) Experimental values of the inverse sensitivity for the optimized se-
quences (blue circles; for ∆t = 160 ns), and for the CP sequences (orange, red,
and purple triangles). The predicted values of 1/η are represented by dotted lines.
Black dashed line: theoretical upper bound of 1/η, obtained from the solution of the
spherical model in the continuum limit. Solid black line: predicted values of 1/η
for the gCP sequence. Inset: Ratio ηSM/η for the sign(SM)+SA and for the gCP se-
quences (blue and black, respectively). (b) P(T, b) as a function of the amplitude of
b, at T ≃ 152 µs. Same color code as in (a). Lines are a cosine fit (see text).

and one for a target signal with seven frequency components, all close to the NSD peak. These313

two cases confirm the results of the experiments shown in the main text.314

5 Conclusion315

We have shown that the problem of finding an optimal solution to quantum control a single316

spin system for quantum sensing can be solved by first finding the ground state of a solvable317

spherical model of classical spins, and then using this as a starting point for a simulated anneal-318

ing algorithm. In this way, the optimization algorithm is able to find a control sequence that319

shows a significant improvement to the sensitivity with respect to standard control sequences.320

In addition, from the spherical model we found a theoretical bound on the sensitivity. Although321

the spherical model can be mapped to a control sequence that gives relatively good results,322

using the simulated annealing algorithm is necessary to improve even further the sensitivity,323

approaching 80−85% of the bound. The fact that this result is consistent over the ensemble of324

cases studied numerically leads us to believe that an empirical bound for the sensitivity occurs325

at ≃ 1.2ηSM. Our experimental results confirm the theoretical predictions, hence validating326

our algorithm as an optimization protocol applicable to single spin sensors.327

The proposed algorithm can solve the problem of finding the optimal DD sequence of a328

given signal b(t ) in a few milliseconds on a Raspberry Pi, which opens the door to miniatur-329

ization of the control electronics, using for example low-power processors. Fast optimization330

would also enable the implementation of adaptive protocols for sensing and spectroscopy.331
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A Definition of the sensitivity340

In the main text, Eq. (4) introduced the sensitivity η as the minimum detectable signal for unit341

time in our experimental platform. To justify this statement, here we sketch a brief derivation342

using both a direct approach, and a more formal one through the Fisher information.343

First, let us define η as the signal strength yielding a signal-to-noise ratio SRN = 1 for a344

total experiment time of 1 s. Following Ref. [1], the SNR for N independent experiments can345

be defined as346

SNR=
δP(T, b)
σN

, (A.1)

where σN encompasses all the sources of error, and δP(T, b) is the spin population difference347

between the cases with and without target signal: δP(T, b) = P(T, b) − P(T, 0). Now, the348

error can be shown to be of the form σN ≈ C−1/
p

N, with a dimensionless constant C = O(1)349

depending on the experimental platform [1]. Also, using Eq. (1) of the main text, and assuming350

slope detection, one gets to351

δP(T, b) ≈ e−χ(T)
�

�

�

�

sin (ϕ(T, b))
∂ ϕ(T, b)

∂ b
b

�

�

�

�

= e−χ(T)|ϕ(T, b)|. (A.2)

Thus, imposing SNR≡ 1 one finds352

1 = e−χ(T)|ϕ(T, b)|
1

C
p

N
(A.3)

and finally, using that one performs N experiments in 1 s in total,353

η =
eχ(T)

|ϕ(T)/b|

p

T , (A.4)

with T being the time for a single experiment, and C set to unity. This is exactly Eq. (4) of the354

main text.355

As anticipated above, the sensitivity can be defined also through the Fisher information356

and the Cramér-Rao bound. Specifically, we define η to be the minimum signal that can be357

distinguished from 0 in a total time of 1 s. Assuming that our estimator of the magnetic field358

b is unbiased, from the Cramér-Rao bound it must be359

∆b ≥
1
p

FN

, (A.5)

where FN is the Fisher information associated with N measurements of the magnetic field360

strength b from an estimator x [41,47]:361

FN =
∑

x

1

pN(x |b)

�

∂ pN(x |b)
∂ b

�2

. (A.6)

In our case, since we detect the |±〉 states in a Ramsey interferometry experiment, it holds362

p(±|b) = Tr(ρ|±〉〈±|) with363

ρ =

�

1/2 e−χ(T)−iϕ(T,b)/2/2
e−χ(T)+iϕ(T,b)/2/2 1/2

�

, (A.7)
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and thus364

F =
8ϕ2(T, b)

b2

e−2χ(T) sin2ϕ(T, b)

1− e−2χ(T) cos2ϕ(T, b)
. (A.8)

Assuming slope detection, and for N repeated measurements,365

FN = N
8ϕ2(T, b)e−2χ(T)

b2
, (A.9)

since the Fisher information is additive for independent trials. At this point, recalling that366

the N experiments have to be done in a total time of 1 s, and using the Cramér-Rao bound367

Eq. (A.5), one easily gets to Eq. (A.4), that is Eq. (4) of the main text.368

B Details on the experimental platform369

The ground state of an NV center is a spin triplet S = 1, naturally suited for sensing magnetic370

fields via Zeeman effect. The NV electronic spin presents extremely long coherence times,371

of the order of milliseconds at room temperature [13], due to the protective environment372

provided by the diamond itself. The S = 1 electronic spin can be initialized into the mS = 0373

state by addressing the NV center with green light (532 nm). This is due to an excitation–374

decay process involving radiative (637 nm) and non-radiative decay routes, occurring with a375

probability that depends on the spin projection mS. This same mechanism implies that the376

red photoluminescence intensity of the mS = 0 state is higher than the one of mS = ±1,377

hence enabling to optically readout the state of the system. In addition, the internal structure378

of the NV center removes the degeneracy between the mS = ±1 states and the mS = 0379

state, imposing a zero-field-splitting of Dg ≃ 2.87 GHz. An external bias field, aligned with380

the spin quantization axis, removes the degeneracy between the mS = ±1 states, allowing381

to individually address the mS = 0↔ mS = +1 transition using on-resonance microwave382

radiation. By using microwave pulses with a appropriate duration, amplitude and phase, it383

is possible to apply any kind of gate to the single two level system. Therefore, the two level384

system formed by the mS = 0 (|0〉) and mS = +1 (|1〉) states fulfills the requirements to be385

used as a qubit based magnetometer.386

B.1 Characterization of the amplitude of the target signal387

The target signal is delivered via a signal radio-frequency (RF) generator connected to the388

same wire, placed close to the diamond, that delivers the MW control field. We can control389

the amplitude of the target field by changing the output amplitude of the RF generator. How-390

ever, the absolute value of the amplitude of the target field b has to be characterized in order391

to take into account the attenuation of the circuit, the emission efficacy of the wire (which de-392

pends on the RF frequency) and the distance between the wire and the NV defect. To achieve393

such characterization, as explained in the main text, we measure the spin dynamics for a CP394

sequence as a function of the sequence interpulse time, and we compare with the simulation395

to minimize the residuals using b as the only free parameter. By performing this measure-396

ments for different values of the RF generator output amplitude aRF, we can extract a relation397

between aRF (in [Vpp]) and the amplitude of the target magnetic field b (in [T]).398

C Additional test cases399

In order to reinforce our results, we repeated the analysis presented in the main text for two400

different target signals. A monochromatic target signal that coincides with one of the NSD401
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harmonics, and a 7-chromatic target signal that accentuates the difference between the gen-402

eralized CP and the optimal solution.403

C.1 Second test case: Monochromatic target signal404

If we want to detect a monochromatic target signal b(t ), in most cases a Carr-Purcell CP se-405

quence of equidistant pulses is the best way to increase the sensor’s response to that target406

signal and filter out the noise. This is due to the quasi-monochromatic filter function associ-407

ated with a CP sequence. Assuming that τ is the time between pulses, the filter function shows408

a peak centered at ω/2π =
1

2τ . However, the filter function is not exactly monochromatic, it409

shows harmonics at ω/2π =
1

2(2ℓ+1)τ , with ℓ ∈ {1, 2, ...}. Therefore, if the frequency associ-410

ated with b(t ) is close to ωL/(2ℓ+1), then a CP sequence will amplify the effect of both, the411

target signal and the noise, leading to not-optimal sensitivities.412

Here we used the optimization algorithm described in the main text in order to obtain413

optimal sequences for this problem. In particular, we explored the case of a monochromatic414

signal with frequency νmono = 39.29 kHz, which is close enough to νL/11 so that the 5-th415

harmonic of the CP sequence coincides with the noise components. We used the same NSD416

S(ω) as in the three-chromatic case. The experimental values of 1/η are obtained from the417

measurement of P(T, b) as a function of b. The results of P(T, b) for one value of the sensing418

time T are shown in Fig. 6(a). The predicted values of the inverse sensitivity, together with419

their experimental values are shown in Fig. 6(b). Similarly to the case detailed in the main420

text, the optimal sequences improve the sensitivity of the quantum sensor, resulting in some421

cases to an inverse sensitivity that is close to a twice the one from the CP sequence. In the422

monochromatic case explored here, the sensitivity gets worse when increasing the sensing423

time beyond 100 µs. Instead the optimal solutions are able to improve the sensitivity even424

for times T > 300 µs. For T ≃ 100 µs, and longer sensing times, the optimized sequences425

achieve higher values of 1/η than the maximum value achieved by a CP sequence.426

C.2 Third test case: 7-chromatic target signal427

We have explored the case of a target signal with 7 frequency components, as specified in Fig. 7428

(a-b). As in the main text, we used the optimization algorithm either to find the approximated429

spherical solution, or the solution using simulated annealing (SA) in order to minimize the430

sensitivity. The predicted values of the inverse sensitivity, together with their experimental431

values are shown in Fig. 7(c). Similarly to the previous test cases, the optimal sequences432

improve the sensitivity of our quantum sensor. In this case, the sensitivity obtained with the433

optimal solutions almost 1/2, and 1/3 with respect to the generalized CP (gCP) sequence for434

T = 80 µs, and T = 160 µs, respectively.435
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Figure 6: Results for the case of a monochromatic target signal. (a) Probability to
remain in the state |1〉 as a function of b, for fixed sensing times T for an optimal DD
sequence (blue), and for a CP sequence (orange). The values of the sensing time and
of the number of pulses for both sequences are shown as titles of the plots. A cosine
function is fitted (solid lines) to the experimental data (bullets with errorbars) in
order to obtain 1/η (see main text). (b) Inverse sensitivity as a function of the sensing
time T . Blue data corresponds to the optimized sequences obtained with simulated
annealing (SA). Orange data corresponds to the CP sequences with τ = 12.726 µs.
We found a good agreement between the predicted values (dotted lines) and the
experimental values (bullets with errorbars).

Figure 7: Results for the case of a target signal with seven frequency components.
(a) Table to indicate the amplitude, frequency and phase of each component of the
target signal h(t ) =

∑6
i=0 Ai cos(2πνi t + ci). (b) Fast Fourier transform (FFT) of

the target signal. (c) Inverse sensitivity for T = 80 µs and 160 µs. The predicted
values (squares) and the experimental values (bullets with errorbars) show that the
sequences obtained from the spherical solution (Sph.) or from the simulated anneal-
ing solution (SA) result in an improved sensitivity with respect to the generalized CP
(gCP) sequences.
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