
SciPost Physics Submission

Mechanically-driven Stem Cell Separation in Tissues caused by
Proliferating Daughter Cells

Johannes C. Krämer1, Edouard Hannezo2, Gerhard Gompper1, and Jens Elgeti1⋆

1 Theoretical Physics of Living Matter, Institute of Biological Information Processing and
Institute for Advanced Simulations, Forschungszentrum Jülich, 52425 Jülich, Germany,

2Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
⋆ j.elgeti@fz-juelich.de

February 2, 2024

Abstract1

The homeostasis of epithelial tissue relies on a balance between the self-renewal of stem2

cell populations, cellular differentiation, and loss. Although this balance needs to be3

tightly regulated to avoid pathologies, such as tumor growth, the regulatory mecha-4

nisms, both cell-intrinsic and collective, which ensure tissue steady-state are still poorly5

understood. Here, we develop a computational model that incorporates basic assump-6

tions of stem cell renewal into distinct populations and mechanical interactions between7

cells. We find that the model generates unexpected dynamic features: stem cells repel8

each other in the bulk tissue and are thus found rather isolated, as in a number of in9

vivo contexts. By mapping the system onto a gas of passive Brownian particles with ef-10

fective repulsive interactions, that arise from the generated flows of differentiated cells,11

we show that we can quantitatively describe such stem cell distribution in tissues. The12

interaction potential between a pair of stem cells decays exponentially with a character-13

istic length that spans several cell sizes, corresponding to the volume of cells generated14

per stem cell division. Our findings may help understanding the dynamics of normal and15

cancerous epithelial tissues.16

1 Introduction17

Tissue renewal through cell division to balance the constant loss of cells is a hallmark of life18

in multicellular organisms. It is widely accepted that for most tissue types, stem cells (SC)19

play a key role in this complex process [1,2]. Stem cells have the potential to proliferate and20

self renew over long timescales, continuously generating various types of differentiated cells21

required for physiological tissue function. Such tissue maintenance via small populations of22

stem cells requires fine-tuned fate choices to ensure not only a constant and well-defined ratio23

of cellular types, but also stable tissue size and overall cellular numbers.24

Equally important, however, is a homogeneous positioning of stem cells across the tissue,25

such that lost cells can quickly be replenished. If all stem cells were to segregate from progeny,26

tissue function and maintenance could be compromised. Indeed, in a lattice model without27

mechanical interactions, proliferating and non-proliferating cells have been shown to require28

reversible differentiation in a manner dependent on relative local cell numbers to avoid non-29

homeostatic behavior, such as phase separation of cell types [3]. Other types of fate control that30

have been recently explored theoretically and experimentally are an effective fate determinant31

field of a diffusible chemical. It is homogeneously supplied but consumed by stem cells, thus,32

providing a biochemical negative-feedback mechanism for stem cell density, which can also33

reproduce homogeneous distribution of stem cells within the tissue [4].34
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In recent years, mechanical forces have been shown to be crucial regulators for tissue35

growth and homeostasis. A key concept is the homeostatic pressure, which is the pressure at36

which cellular division and apoptosis are balanced, under the generic assumption that these37

processes depend on mechanical forces. Based on this concept, competition between different38

tissues [5], tissue fluidization [6], negative bulk homeostatic pressure [7], interface dynamics39

during competition [8–10], and the evolution of tissue [11] could be explained. However,40

these studies always considered situations without the possibility of conversion between cel-41

lular types and change in self-renewal potential, which is by definition key to understand stem42

cell dynamics in tissues. This raises the question of whether purely mechanical interactions,43

which must occur in any confluent tissue with cell renewal and loss, could be a factor in the44

regulation of stem cell dynamics and positioning.45

Here, we study the interaction and distribution of stem cells in self-renewing tissues in46

the presence of mechanical interactions only. As a minimal hierarchical scheme of tissues47

with stem and differentiated cells (Fig. 1a), we take a classical model [12], where stem cells48

(SC) asymmetrically divide into a stem and a transient amplifying (TA) cell. The TA cells49

can undergo a number NTA of symmetric divisions before terminally differentiating into non-50

proliferative cells (TD). Although this is an oversimplified picture [13], we show that it already51

gives rise to complex dynamics and provides a computational framework which can be readily52

generalized to more realistic stochastic models of cell differentiation. For instance effects of53

the stem cell environment, the so called niche, on fate decisions [14,15] or self-controlled fate54

decisions such as in "open niche" [16], where all cells have the same differentiation potential.55

Implementing the renewal scheme into the two particle growth model [17] (sec. 2 and App. B),56

we find that the resulting tissue is characterized by well separated SCs surrounded by a small57

cloud of TA cells in a sea of TD cells in two (see Fig. 1b), and three dimensions (see sec. 6). The58

cause of the homogeneous distribution of stem cells in the tissue on larger distances lies in the59

of outflux of cells from the stem cells, and short-range mechanical interactions. Surprisingly,60

we find that this repulsion and distribution of SC in the tissue can be effectively described by61

a simple thermodynamic picture with SCs behaving like soft repulsive colloids in a thermal62

bath. The length scale of the soft repulsive potential is set by the volume of cells generated63

per stem cell division.64

In section 3, we first discuss the dynamics of single stem cells to determine the length65

scale of the interaction, and to study how the cloud of their progeny around them impacts66

their movements. Subsequently, in section 4, we study the dynamics of SC pairs. From their67

distance distribution function, we infer the amplitude of the effective repulsive potential that68

is mediated by the outward flow of differentiated cells that they each produce. In section 5,69

we show that the distribution of stem cells in a bulk tissue can be described by this effective70

pair interaction. In three dimensions, we find that the repulsive interaction of stem cells is71

also preserved (see sec. 6). Last, we demonstrate independence of the homeostatic pressure72

controlled division mechanism, by replacing it with a stochastic one, in section7. This shows73

that our results are primarily driven by mechanical interactions and proliferation generated74

outflow of cells.75

2 Simulation model76

Each cell in the simulation model consists of two particles, which interact via a repulsive force77

to model growth. When the particle distance reaches a size threshold, a cell divides and two78

new particles are placed at random at very short distance next to the old ones. Particles of79

different cells interact via an attractive and a repulsive force, to model adhesion and volume80

exclusion, respectively. The length RPP , up to which inter-cellular interactions are present,81
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(a) (b)

Figure 1: Stem cell (SC) division and differentiation scheme leads to well-
separated SC arrangement. (a) Schematic illustration of growth, division, and dif-
ferentiation implemented in the two-particle growth model. SCs grow by an active
growth force F (G) and divide when the two particles of a cell are separated by a
threshold distance Rc t . A SC divides always asymmetrically in one SC daughter and
one TA daughter cell. TA cells still grow, but their maximal number of divisions are
limited. They always divide symmetrically, and in the final step both daughters are
TD cells. TA and TD cells are removed with the same, finite apoptosis rate ka. (b) In
bulk simulations, SCs are distributed all over the tissue, and rarely at close distance.
Each SC is surrounded by a halo of TA and TD cells. The main mass is made up by
non-growing TD cells. The same color scheme as in Fig. 1a is applied with finer gra-
dation for TA cells, which can divide up to five times. The simulation was performed
in a squared two-dimensional box with box length 100 RPP . After equilibration, the
average cell density is ρ ∼ 1.58/RPP , and the snapshot was taken after 25 genera-
tions.

defines the length scale of our model and depicts the cell size. TA and TD cell removal is82

modeled in a stochastic process with fixed rate ka, which defines the timescale of the model.83

Note that the division rate kd is not fixed and will follow from the other model parameters.84

Random and dissipative forces are included by dissipative particle thermostat. Together with85

a self-consistent velocity Verlet integrator for the Langevin equations, this enables efficient cal-86

culations, correctly accounting for the overdamped dynamics required for tissue simulations,87

as discussed in detail in App. D.3. Cells follow a classical differentiation model [12], see88

Fig. 1a, and have all identical interaction parameters. Solely stem cells do not die (ka = 0),89

and TD cells do not actively grow (G = 0) to prevent divisions. All simulations in this work90

are initialized with SCs only. More details on the model can be found in App. B and previous91

works [7,8,10,11,17].92

3 Isolated stem cell93

To understand the separation of stem cells in bulk tissue, we begin our analysis by studying94

the dynamics of a single SC and its offspring. We start with an isolated stem cell and shortly95

thereafter find it surrounded by a cloud of progeny that maintains a certain size throughout96

the simulation time. (see Fig. 2a).97

Assuming equal division rates kd for SC and TA cells and neglecting TA cell loss on average98
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Figure 2: Interaction parameter determination. (a) Snapshot of isolated SC and
(b) two interacting SCs. (c) Cell number generated in each SC division cycle, i. e. sum
of TA cell and latest TD cells, for the upper limit Np = 2NTA+1 (open circles, dotted
line) and measured from simulation by averaging over time 〈Np〉 (filled circles, solid
line) as function of NTA. The latter is used to determine the characteristic progeny
distance Lp, which is used on the right y-axis label. (d) Cell density of TA (solid
line) and all daughter cells (dashed line) around SC, where Lp derived from average
measured progeny number Np is marked by dotted line, for NTA = 6. (e) pair corre-
lation g(∆r) as function of SC distance ∆r for a pair of SCs. NTA is coded in color.
Fit shows interaction via repulsive potential and obtained interaction strength βV0 is
shown in (f) as a function of NTA. Multiple independent long simulation runs of these
systems for each NTA are used to determine the interaction parameters. Simulations
are initialized from a single SC (a, c, d) and two SCs in contact (b, e, f) and averages
are taken in steady state, i. e. after reasonably long time after initialization.

2NTA growing cells are present at a time , with NTA the maximum allowed number of TA cell99

division cycles. Further, 2NTA TD cells are produced in each cycle. Thus, each stem cell100
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division can produce at most 2NTA+1 progeny. However, due to the stochastic loss rate ka of TA101

and TD cells in our model (which can occur either due to apoptosis in monolayers, or out-of-102

plane delamination in multilayered tissues such as the epidermis) we arrive at a lower effective103

number 〈Np〉< 2NTA+1(see Fig. 2c). On average, the stem cell is thus surrounded by a circular104

arrangement of its offspring, with a characteristic length Lp =
Æ

〈Np〉/ρπ, where ρ denotes105

the cell density (see Fig. 2d). Note that kd is not fixed in our simulation model, but controlled106

by pressure. [5,7,18] An increase of TA cell generations can thus decreases the proliferation107

rate and effective cell number further (see App.C Fig. 7).108

However, the average hides an important aspect of the dynamics. While in some instances109

the SC is indeed in the center of the cell mass, it is also often found at the boundary due to110

the stochastic nature of the orientation of asymmetric divisions. When the SC is located at the111

boundary, the divisions of the TA cells result in an effective propulsion of the SC and persistent112

directed motion (App. D Fig. 8).113

Correspondingly, the mean squared displacement (MSD) of the stem cell shows a regime114

of active motion up to about the lifetime of one generation, and a regime of activity enhanced115

long-term diffusion thereafter (see Fig. 4a and App. D Fig. 9). In analogy to active Brownian116

particles (ABPs) or Run’n’Tumble particles, the MSD of stem cells can be described in terms of117

a translation diffusion coefficient Dt , a characteristic rotational time τR, which confirms decor-118

relation of the SC motion after about one cell generation, and a propulsion velocity v0 (see119

App. D.1). The fitted values for τR are about one half to one apoptosis times and correspond120

to the decorrelation of directed motion. For the propulsion velocity we find a maximum for121

NTA = 6, indicating an optimal population size for sped-up motion.122

We quantify the active outbursts of SC motion by the displacement distribution of the123

stem cell, i. e. the probability that the SC undergoes a given displacement within a fraction124

of a generation (here 0.2/ka see App. D Fig. 11a). Heavy tails in the distribution display the125

persistent motion during outburst. When a stem cell is displaced from the center of mass of126

the cell population the heaviness of the tail increases strongly (see App. D Fig. 11b).127

4 Stem cell interaction128

In order to derive an effective pair interaction, we initialize the simulation with two stem
cells in a large periodic box. Each stem cell generates its own progeny populations, which
form an aggregate via which stem cells effectively repel each other (see Fig. 2b). Loss of cells
in the region between stem cells can lead to two separate cell populations, both behaving
as described in the previous section. In simulations with periodic boundary conditions, they
eventually collide again and SC rejection can be observed yet again. We quantify the stem cell
repulsion by measuring the pair correlation function

g(r) =

*

NSC
∑

m,n̸=m

ΘH (r − rmn(t i))ΘH (rmn(t i)− (r +δr))/Ω(r)

+

in an annulus ranging from r to r +δr, where ΘH(x) is the Heaviside function and rmn(t i) =129

|r m(t i)− r n(t i)| the stem cell pair distance, measured applying minimum image convention.130

The average combines data from different times and independent runs to improve statistics and131

the sum runs over pairs of SC. In order to normalize g(r), and to take into account the radial132

bin size, we divide by a geometrical scaling constant Ω(r) = L2
X Y /[4(NSC −1)((r+δr)2− r2)].133

The probability to find two SCs at short distances is strongly reduced, and reaches a plateau134

at larger distances, where the cell clouds are out of contact again (see Fig. 2e).135

Next we utilize an analogy to thermal equilibrium to derive an effective repulsive pair136

potential V (r) = V0 exp
�

−r/Lrep

	

of very soft colloids. The repulsion length Lrep is set to the137
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characteristic length Lp of progeny around the SC. In equilibrium, the pair correlation function138

follows from Boltzmann statistics139

G(r) = G0 exp
�

−βV0 exp
�

−r/Lp

		

, (1)

with β = 1/kB Te f f and effective temperature Te f f . The prefactor G0 is obtained from the140

normalization condition
∫

G(x)d x = 1. We determine the effective potential strength βV0141

by fitting G(r) to g(r) and find good agreement of this simple model with our data. Results142

are shown in Figure 2e+2f. The decrease of βV0 with NTA corresponds to a softening of the143

potential, which could be due to an increasingly asymmetric distribution of TA cells.144

5 Confluent tissue maintained by stem cells145

We perform tissue simulations for different NTA, and vary the number of stem cells NSC in146

the simulation such that the average total cell density is approximately the same for different147

simulations. We compare these tissue simulation with Brownian dynamics (BD) simulations148

of thermal colloid particles interacting via the proposed effective repulsion. The interaction149

parameters, obtained in section 4, are used without further adaptions. Snapshots for the150

mechanical model and the thermal colloid model are shown in Figure 3a and 3b, respectively.151

Clearly, SCs are well separated, and homogeneously distributed over the system. To quan-152

tify this separation, we measure again the pair correlation function for both systems (see153

Fig. 3c). The pair correlation function reveals a strong depletion of stem cells from the vicinity154

of another on length scales set by the amount of progenitors they generate. Interestingly, we155

find that the colloid system (dotted lines) reproduces well the results from the tissue simu-156

lations (solid lines) even in confluent tissues. Note that this requires a rather soft colloidal157

interaction on length scales much larger than the (stem) cell size.158

We further quantify the stem cell separation with a cluster analysis. We consider that SCs159

which are found at a distance smaller than d belong to the same cluster, and calculate the160

cluster size distribution function N (n) = p(n) · n, where p(n) is the probability of a cluster161

of n SCs, and average cluster size 〈n〉. If we take the distance threshold d equal to the cells162

interaction range Rpp, as commonly done for cluster analysis, we identify close to no clusters163

at all (N (n = 2) = 0.024 and N (n = 3) = 0.00014, for NTA = 5). By choosing a larger cutoff164

d = 2Lp on the basis of their progeny, we find some small clusters, but still not any large165

clusters (see Fig. 3d and App. E Fig. 14), a feature indicative of SC separation, which is also166

reproduced in the colloidal systems.167

To obtain more insight in the structural dynamics of both systems, we additionally calculate
the MSD of SC, and the intermediate scattering function

S(q, t) =

® NSC
∑

m=1

NSC
∑

n=1

eiq r m(t)e−iq r n(0)

¸

,

where 〈·〉 denotes a time average and we calculate the over S(q, t) with wave vector q = |q |168

(see Fig. 4b).169

The MSD of SCs in tissues shows the same superdiffusive behaviour as found for an iso-170

lated SC in free space (see Fig. 4a). However, the displacement is reduced in confluent tissue171

due to the increased cell density. We find, that this affects mainly the translational diffusion172

coefficient and propulsion velocity, while the reorientation remains in the same order of mag-173

nitude as for isolated SC (see App.D Fig. 10). The thermal colloid system on the other hand174

shows normal diffusion, as should be. Because the Boltzmann description does not provide175

any timescales, we use the short-term diffusive limit of colloids and SCs in tissues to fix the176
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Figure 3: SC separation in bulk tissue is explained by equilibrium model with
simple repulsive interaction. (a) Snapshot of the tissue simulation for NTA = 7 and
(b) respective thermal colloid simulation. The characteristic progeny length scale
is displayed by circles. (c) The SC and particle pair correlation functions, measured
from simulations of the two-particle growth model (solid lines) and thermal colloids,
interacting with the assumed repulsive interaction (dotted lines), are shown for color
coded NTA. (d) Cluster size distribution function for SCs in tissues (dots, dashed line)
and thermal colloids (cross, dotted line) for color coded NTA. Distance threshold for
clustering is set to d = 2Lp, much larger than the cell size, in order to see any cluster-
ing at all. The number of SCs was chosen such that the cell density in all simulations
is∼ 1.58 cells/RPP , and the number of thermal colloids equals the number of SCs. In-
teraction parameters of colloids were extracted from single and two SC simulations.
Note the astonishing agreement between both systems. Simulations are initialized
with fixed number of SCs or thermal colloids at regularly spaced distances and aver-
ages are taken in steady state, i. e. after reasonably long time after initialization.

timescale. The short-term diffusion coefficient can also be calculated from the relaxation of177

the intermediate scattering function as De f f = − log{S(q, t)/S(q, 0)}/(q2 t) in the short time178

limit. After aligning the time scale of the thermal colloid system, we find that this effective179

diffusion is approximately the same for both systems (see App. E Fig. 15). For large q, De f f is180

constant, while for small q, finite-size effects of the simulation area come into play.181

For zero time lag (S(q,∆t = 0)), we find a plateau, corresponding to the autocorrelation182

term (n= m). With a finite time lag, the scattering function starts to decay with q (see Fig. 4b183

for∆t = 0.02ka). For tissues and colloids, we show the relaxation of small and large structures184

in Fig. 4c and Fig. 4d, respectively. Because we match the timescale of both systems for the185

short-term diffusion, we find that small structures relax at similar times. Still, SCs in tissue186
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Figure 4: Dynamics of SC and BD simulations. (a) Mean squared displacement
(MSD) for isolated SC (green) and SCs in tissue (blue), both with NTA = 4, and re-
spective thermal colloid system (yellow). In the tissue model, we find superdiffusive
SCs. Their displacement gets reduced with increased cell density in confluent tissues.
Time scale of thermal colloid system was aligned with the short term diffusion of SC
in tissues. (b) Dynamic structure factor (DSF) as function of wavevector for t = 0
and t = 0.07ka. Relaxation of the DSF as function of time for (c) small structures
(q = 3.08/RPP or λq = 2.03RPP , i. e. twice the cell diameter) and (d) large structures
(q = 0.69/RPP or λq = 9.11RPP , i. e. comparable to "weakly" interacting stem cells).
Small structures relax at comparable timescale, whereas large structures relax faster
in the tissue model due to the superdiffusive behavior of stem cells. Simulations are
initialized with fixed number of SCs or thermal colloids at regularly spaced distances
and averages are taken in steady state, i. e. after reasonably long time after initial-
ization.

show faster relaxation compared to the BD system. For larger structures (small q), the SCs187

in tissue relax significantly faster compared to the thermal colloids due to their superdiffusive188

motion. The enhanced relaxation with increased structure size holds for all q as can be seen189

from the half life relaxation time (see App. E Fig. 15).190

6 Stem cell repulsion in three dimensions191

Many biological tissues are not restricted to two dimensions, but extend to the third dimension,192

which is especially the case in cancer, where cells grow out of plane and form spheroidal193

tumors. We show that the effect of repulsion by progeny is not limited to two dimensions and194

can also be found in tissue simulations in three dimensions (see Fig. 5). Qualitatively, the195

pair correlation function shows the same repulsion of SC at a distance corresponding to the196

volume of their progenitors. Note that here the geometric normalization of the pair correlation197
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function is the volume of a sphere instead of the area of a circle around the stem cell.
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Figure 5: Stem Cell repulsion qualitatively remains in three dimensions. (a) Pair
correlation function for stem cells in three dimensions shows reduced probability to
find SCs at short distances, and plateau at longer distances. (b) Snapshot for a three
dimensional tissue with NTA = 10 after 50 generations. All simulations are performed
with 27 SCs in a cubic box with box length 30 RPP .

198

7 Independence of homeostatic pressure controlled divisions199

Stem cells interacting effectively via their (growing) progeny is a robust effect in tissues with200

mechanical cell-cell interactions. We show this by replacing the division after reaching a size201

threshold, which introduces a feedback on the homeostatic pressure, by stochastic divisions202

with fixed rate kd . This rate is set to the measured division rate in the size threshold division203

model for an exemplary tissue with NTA = 6. Details on the implementation can be found in204

Appendix F.205

The distribution of TA cells around the SC remains almost unchanged (see Fig. 6a), thus,206

also the SC pair correlation function of both models remains the same (see Fig.6b). The SC207

dynamics, measured by the MSD, remains unchanged as well (see App. F Fig. 17). Thus, the208

mechanical cell-cell interactions in the model and outflux of cells from the SC are generating209

an effective SC repulsion, but not the feedback of growth and division on pressure in the tissue.210
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Figure 6: Relevance of homeostatic pressure growth control. (a) Snapshot for
deterministic TA cell differentiation (NTA = 6) in the model with stochastic division
mechanism. (b) Pair correlation function for simulation model with division after
reaching a size threshold (red) and stochastic divisions (blue).
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8 Discussion and conclusion211

In this work, we have studied the dynamics of stem cells in self-renewing tissues driven by212

mechanical interactions. Due to the constant outward flow of progeny generated by stem213

cells, we find that SCs effectively repel each other and spontaneously organize into dispersed214

structures with a corona of their progeny. This provides an updated and more biophysical215

view of the classical concept of proliferating units in tissues, in which size and shape of self-216

renewing domains are flexible, but still organized by stem cells which are robustly present217

within each unit [19].218

Interestingly, we find that the interaction between stem cells can be largely described in219

a simplified fashion with help of an effective equilibrium approach. The assumption purely220

repulsive interaction and determination of the interaction length from the spatial requirements221

for the progeny produced by each stem cell division allows us to characterize SCs like very soft222

colloids, which interact via this effective repulsive interaction – much larger than the cell size.223

Further, we have shown that this simplified model reproduces the structural results of the224

two-particle growth model in confluent tissues. The pair correlation function of the thermal225

colloids is remarkably similar to that of actively growing cells. The dynamics however are226

different. We show evidence of an active and persistent self-propulsion force acting on SCs227

due to the surrounding growing cells. We systematically characterize these, in particular in228

terms of the statistics and active nature of their persistent random walks. As a result of this229

proliferation-driven movements, the confluent tissue shows faster relaxation characteristics230

on long time and length scales. The only detectable difference between the actively growing231

tissue and the thermal colloid system was found in the dynamic structure factor. It shows a232

speedup of large structure relaxations in the tissue model due to its active nature, and thus233

confirms that the active system can be mapped surprisingly well to an thermal equilibrium234

system.235

The derivation of an effective interaction using nearest neighbor distribution functions and236

mapping it on particle systems may lack sensitivity to certain characteristics of the interaction,237

especially with increasing density [20, 21]. However, they are still able to capture the main238

influences of the interaction. Further, replacing the passive Brownian particle system by an239

active one, is very likely to fail as the continuously decrease of activity enhanced motion cannot240

be derived from first principles of infinitely diluted systems [22].241

Small populations of SCs dispersed within the tissue were also shown to be particularly242

susceptible to tumor formation in mouse epidermis [23] as well as to have large contribution243

upon wound healing [24], which could also be investigated via our simulation framework.244

Furthermore, spermatogenic stem cells are also found to be well separated in the planar basal245

layer in mouse testis, and show a striking similarity to the stem cell arrangement found in our246

simulations [25]. Other models of the formation of epithelial protrusions and location of stem247

cells on the tips of these have been studied previously using a particle-based model [26]. By248

adding substrate deformability and cell type dependent adhesion forces, the model displayed249

a stable stratified epithelium with stem cells located at protrusions. It will be interesting to250

combine these models.251

The homogeneous distribution of stem cells arising from our purely mechanical feedback252

model may complement previous studies [3, 4], in which this was achieved with help of a253

reversible differentiation scheme or biochemical feedback mechanisms based on diffusible sig-254

nals. However, in reality, a combination of several of these mechanisms will likely be relevant,255

also depending on the tissue type. In particular, stochastic cell fate models may be of great256
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interest in the future and could facilitate the description of the plasticity of cells during tissue257

repair [27, 28]. Also, there exists evidence that more than one SC type maintains some tis-258

sues [29,30] or that cell fates are reversible processes [3,31], which could be readily integrated259

in our simulation framework. In the presence of local niches, it has also been shown that the260

ratio of proliferation to random cell movements determines the effective number of stem cells261

via a mechanism of stochastic competition for space, although this has not been modeled via262

explicit mechanical simulations [32, 33]. Until now, the vanishing apoptosis rate of SCs and263

restriction to only asymmetric SC divisions in our model are limiting factors. Allowing for264

SC apoptosis, or other processes which reduce the SC number, requires symmetric duplica-265

tion to balance the SC loss to retain their unique identity in the lineage architecture [34].266

Furthermore, it would be interesting to see if a purely mechanical model is able to capture267

the alternation from a quiescent long-lived SC to produce rapidly dividing short-lived progeny268

during wound repair [35–37].269

In this work, we find surprising motility of cells emerging from the interaction of cells270

with each other. While epithelial cells are generally not motile, motility occurs after epithelial-271

mesenchymal transformation (EMT) [38], or in some cell lines, in particular MDCK. Active cell272

migration has been the subject of related work [39–41] and recent findings show that active273

cell migration does play a role in tissue renewal [42], thus, displaying a promising extension274

of our work in future studies.275

Finally, our results might contribute to a better understanding of the growth and dynamics276

of cancer. In the cancer stem cell (CSC) hypothesis, it is assumed that malignant tissue follows277

the same underlying stem cell dynamics. Therapies, which target fast growing tissue, fail,278

since the stem cells evade. A better understanding of the dynamics of CSCs could improve279

their detection and the design of therapies. Our results would suggest, that CSCs are isolated280

and well spread throughout the tumor. To further tackle these questions, it will be necessary281

to combine our model, with models of cellular competition [5, 7–9, 11], and taking the cell282

cycle explicitly into account might be essential [43,44]283

Acknowledgements284

Funding information JE and JK gratefully acknowledge financial support from the Initiative285

and Networking Fund (IVF) via the grant number ERC-RA-004. Simulations were performed286

with computing resources granted by RWTH Aachen University under project ’rwth0475’.287

Data accessibility Source code, simulation data, and analysis scripts will be made publicly288

available on zenodo.org (10.5281/zenodo.8410957) after acceptance of the manuscript.289

A Supplementary animations of tissue simulations290

Supplementary animations of tissue simulations can be found next to the source code, simu-291

lation data, and analysis scripts on zenodo.org (10.5281/zenodo.8410957). Uploaded anima-292

tions are:293

• S1 Video Confluent tissue. Animation of confluent tissue shown in Fig. 1b.294

• S2 Video Isolated stem cell. Animation of isolated SC performing random walk with295

long persistent segments (see Fig. 2a and sec. D).296
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• S3 Video Stem cell interaction. Animation of two SCs interacting with each other via297

their progeny (see Fig. 2b).298

• S4 Video Interaction in Tissue and BD simulations. Animation of confluent tissue and299

thermal colloids (see Fig. 3a and Fig. 3b).300

B Simulation model301

The described SC model is implemented in the two-particle growth (2PG) model of Refs. [7,17]302

and has been adapted in Refs. [9–11].303

Each cell is described by two particles, which repel each other via an active growth force304

F (G)i j =
G
�

ri j − r0

�2 r̂ i j (2)

with unit vector r̂ i j , distance ri j between the two particles, a constant r0, and growth strength305

G. For non-growing cells, like TD cells, the growth strength is set to zero, GT D = 0, and for306

the sake of simplicity SC and TA cells have the same growth force, GSC = GTA.307

To prevent overlap of cells, particles of different cells interact via a soft repulsive volume-308

exclusion force309

F (V )ik = f0

�

R5
PP

r5
ik

− 1

�

r̂ i j , for rik < RPP (3)

with exclusion strength f0 and interaction length RPP , which sets the length scale of our sim-310

ulations. Further, cells in contact interact via an attractive adhesion force of the form311

F (V )ik = − f1 r̂ ik, for rik < RPP (4)

with adhesion strength f1.312

We employ a dissipative particle dynamics-type thermostat [45], with an effective temper-313

ature T , to account for energy dissipation314

F (D)i j = γ ·
�

1−
dr
r t

�2

·
�

v i j · r i j

�

(5)

and random fluctuations315

F (R)i j = σξ · r̂ i j (6)

where γ and σ are related to fulfill the fluctuation-dissipation theorem [46]. Also, background316

dissipation is taken into account as317

FB
i = −γbv i . (7)

A self-consistent velocity-Verlet algorithm [47] is implemented to integrate the equations318

of motion, and all simulations were performed with periodic boundary conditions.319

Cell division is performed, when the two particles of one cell are separated by a critical320

threshold Rc t . A new particle is randomly placed near each original particle in a distance Rd ,321

and the two new particle pairs form the two daughter cells. Differentiation is implemented at322

the time of division as described above, and the number of divisions of TA cells is tracked by323

an internal variable. No mechanism is implemented to prevent (non-growing) TD cells from324

separating. However, we observe only a marginal number of TD cell divisions in simulations325

of isolated SCs and SC pairs in free space, and none for confluent tissues. The TD cell size in326

confluent tissues is always far below the division threshold (see Fig.16), but slightly increases327
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Table 1: Simulation parameters of the standard tissue.

Parameter Symbol Value

Time step ∆t 0.001
Pair potential interaction range RPP 1
Cell expansion constant r0 1
Division distance threshold Rc t 0.8
New cell particle initial distance Rd 10−5

Growth-force strength G 50
Mass m 1
Intra-cell dissipation coefficient γc 100
Inter-cell dissipation coefficient γt 50
Background dissipation coefficient γc 0.1
Apoptosis rate ka 0.01
Noise intensity kB T 0.1
Repulsive cell-cell potential coefficient f0 2.39566
Attractive cell-cell potential coefficient f1 3.0

with distance, which is found more pronounced for TD cells generated by SCs in free space328

(data not shown).329

TA and TD cells are stochastically removed from the simulation with a finite apoptosis rate330

ka. For simplicity, the same rate is chosen for different cell types. Time is measured in terms331

of the inverse apoptosis rate, and referred to as "generation".332

The standard parameter set for our simulations are given in Tab. 1. However, not all of333

these simulation parameters, have a direct conversion to physical units. As discussed in [17]334

one has to chose well defined measurable quantities, such as apoptosis rate and range of the335

pair potential as rescaling units for inverse time and particle diameter, to allow for conversion336

to physical units and comparison with experiments.337

As the number of stem cells in our simulation is fixed by only allowing for asymmetric338

divisions and no apoptosis, we initialize all simulations with the required number of stem339

cells, placed at regular distances within the unit box with periodic boundary conditions.340

C Division rate of isolated SC341

Assuming equal division rates kd for all types of proliferating cells, we can derive an average342

cell number from number balance for each cell type343

nSC = 〈nSC〉= const.

〈ni〉= 2i−1
�

kd

kd + ka

�i

nSC

〈nT D〉=
�

2kd

kd + ka

�NTA kd

ka
nSC ,

(8)

where i denotes the TA cell cycle. kd is obtained from fitting these equations to the cell numbers344

obtained from simulations of isolated SCs. With increasing NTA, the division rate decreases (see345

Fig. 7).346
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Figure 7: Division rate kd as function of NTA for proliferating cells in isolated SC
simulations.

D Stem cell motion347

Here, we give some additional insight in the SC motion of isolated SCs and SCs in tissues,348

which are also discussed in the main text.349

An exemplary single stem cell snapshot for NTA = 4 is shown, where the SC trajectory over350

ten generations illustrates the motion of the SC, and accompanied The full trajectory of the SC351

and center of mass of the respective single stem cell simulation along both directions of the352

simulation plane (see Fig. 8).353

(a)

0 200 400 600 800 1000
t ⋅ ka

−100

0

100

200

r {
x,
y}
/R

PP

325 350 375
−50

0

SC
CoM
̂ex
̂ey

(b)

Figure 8: (a) Snapshot of cell population generated by a single SC with trajectory
of SC over the ten cell generations (red line). (b) Trajectory of isolated SC (solid
line) and center of mass (CoM) of cell population (dotted line) along êx (red) and
êy (blue). Inset shows time close-up to highlight how the center of mass follows
the stem cell motion. Both, SC and CoM trajectory perform a random walk with
surprisingly long persistent segments, a reminiscent of Run’n’Tumble-like motion.
Simulation with NTA = 4 is shown.

D.1 Mean squared displacement of isolated stem cells and stem cells in tissues354

For active Brownian particles (ABPs) in two-dimensions the mean squared displacement MSD355

is given as [48,49]356

MSD = 4 Dt∆t +
v2

0τ
2
R

2

�

2∆t
τR
+ e−2∆t/τR − 1
�

, (9)

with translational diffusion coefficient Dt , characteristic time scale for rotational diffusion τR,357

and propulsion velocity v0. In the short-time limit d t ≪ τR the effective diffusion is given by358
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MSDd t≪τR
≈ 4Dt d t. For long-time diffusion the effective diffusion is enhanced and the MSD359

found to be MSD ≈ (4Dt+v2
0τR) d t, again linear in time. Between these two regimes, ballistic360

motion is observed, and non-linear terms enters the MSD, MSD ≈ 4Dt d t + v2
0 d t2.361

In the tissue simulations, the stem cells are not ABPs, but move actively due to propulsion362

by progeny. However, we can quantify the dynamics of the stem cell motion in terms of Dt , τR,363

and v0 to gain a deeper understanding. Also different models of self-propelling particles, like364

ABPs and Run’n’Tumble particles have been shown to be equivalent on larger scales [50, 51],365

so that we can describe them using the same theory, without making strong assumptions on366

the underlying propulsion mechanisms.367
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Figure 9: (a) Mean squared displacement for isolated SCs with different NTA (color
coded) and fit of ABP model (red dotted lines). (b) Translational diffusion coefficient
Dt , (c) characteristic rotational diffusion time τR, and (d) propulsion velocity v0
obtained from fit function in (a).

From the MSDs for simulations of SCs with varying number of TA cell cycles NTA (see368

Fig. 9), one can see that the displacement does vary little with a change of NTA. In particular the369

short-time diffusion decreases with NTA, which could be due to blocking of cell motion at higher370

density. This resembles the decrease of the translational diffusion coefficient Dt with NTA. The371

long-time diffusion first increases with NTA, but then starts to decrease again. Possibly, in372

increasing number of TA cells around the stem cell initially increases the propulsion force on373

the stem cell, but saturates at higher number of progeny, which form a more dense halo around374

the stem cell for more TA cell cycles. The non-monotonic fit parameter for the self propulsion375

velocity, with maximum at NTA = 6, and increasing characteristic rotational diffusion time τR376

show, that the decrease in propulsion velocity does cause the effective decrease of the long-377

time diffusion with NTA > 6. The characteristic rotational diffusion time τR is found to be in378

the range from half to more than one apoptosis time, which corresponds to a loss of orientation379

after times larger than one cell generation.380

In tissues, we still can apply the MSD theory to fit to the SC displacement (see Fig. 10). With381

increasing cell density, controlled by an increase in SC numbers, we find that the translational382
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Figure 10: (a) Mean squared displacement for SCs in tissue with different cell den-
sity (color coded) controlled by the stem cell number, with NTA = 6. (b) Transla-
tional diffusion coefficient Dt , (c) characteristic rotational diffusion time τR, and (d)
propulsion velocity v0 obtained from fit function in (a).

diffusion coefficient Dt and propulsion velocity v0 decrease, and the SC motion freezes out.383

The rotational diffusion time is not as strongly effected by the cell density, and approximately384

half the value compared to the case of an isolated SC, since it is mainly affected by the apoptosis385

rate.386

D.2 Displacement distribution387

To quantify the persistent motion further, we calculate the displacement distribution function388

and find heavy tails. The heaviness of the tails increases, when the SC is located further away389

from the center of mass in the boundary region of the cell population (see Fig. 11).390

D.3 Overdamped dynamics391

The applied self-consistent velocity Verlet integration of the Langevin equations allows for large392

integration time steps and therefore provides significant faster computations [52]. Effectively,393

using a finite mass and velocity Verlet integration corresponds to using a higher order integra-394

tor with a physically interpretable control parameter, the mass of cells. However, care has to be395

taken to reproduce overdamped dynamics, which is achieved by setting mass and friction coef-396

ficients such that the viscous relaxation time is much shorter than all other relevant timescales,397

i. e. that viscous drag dominates over inertia even at short timescales. Because inertial effects398

scale with the mass of the particles, correct reproduction of overdamped dynamics can be ver-399

ified by showing independence of the results on mass. As an example, we measured the self400

propulsion of a single stem cell over two orders of magnitude in mass (see Fig. 12). The results401

are virtually indistinguishable, confirming correct reproduction of overdamped dynamics .402
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Figure 11: (a) Displacement distribution for an isolated stem cell with different NTA
(green color gradient) over normalized displacement. Red dotted line displays nor-
mal displacement (Gaussian). Heavy tails emerge from long consistent segments of
random walk. (b) Displacement distribution as in (a) for isolated SC with NTA = 5,
where color gradient (grey) encodes SC-to-CoM distance. With increasing distance
heaviness of tails increases. All displacements are calculated for a time step of
∆t ka = 0.2 generations, combining data of multiple long simulation runs.
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Figure 12: (a) Mean squared displacement for isolated SCs for simulations with dif-
ferent cell masses m (purple color gradient). All simulations are performed with
NTA = 6.
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E Additional results for simulations of stem cells in tissues403

E.1 Cell densities in confluent tissues404

In confluent tissue simulations, we chose the SC number and NTA such that an uninterrupted405

tissue evolves. Still, the TD cell density around SCs remains very similar to the case of iso-406

lated SCs. The TD cells are located closer to the SCs and form a more dense conglomerate.407

Exemplary cell densities for NTA = 6 are shown in Fig. 13a.408

The total cell density of tissues with different NTA is controlled by the number of SCs in409

the simulation, and chosen such that they are all very similar (see Fig. 13b).
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Figure 13: (a) Cell density of TA (solid line) and all (dashed line) cells around the
SC for simulations of an isolated SC (blue) and SCs in tissue (green). In tissue,
distance is measured to the closest SC. (b) Average cell density of tissue simulations
as function of NSC , the fixed number of SC, NTA obtained from average cell number
over box area.

410

E.2 Cluster analysis411

To quantify the clustering of SCs in tissues, we calculate the cluster size distribution function412

is given by413

N (n) = 1
NSC

n p(n) (10)

and represents the fraction of SCs belonging to a cluster of size n, where p(n) is the number414

of clusters of size n. The distribution is normalized such that
∑NS C

i=1 = 1. The average cluster415

size is given as416

〈n〉=
∑

n np(n)
∑

n p(n)
(11)

Cells in a distance less than the characteristic TA cell distance estimated from cell numbers417

belong to the same cluster. Results are shown in Fig. 14.418

E.3 Effective diffusion coefficient and relaxation419

The timescale for the thermal colloid simulation in the main text was adjusted by matching420

the short term diffusion obtained from the MSD of SCs in the tissue simulations. Here, we421

calculate the effective diffusion coefficient De f f from the intermediate structure factor. For422

the relaxation of structures it holds423

S(q,∆t)
S(q, 0)

= e−De f f (q) ∆t q2∆t , (12)
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Figure 14: (a) Same as Fig. 3d (b) Average cluster size as function of NTA remains
clearly below two SC.

which yields424

De f f (q) = log
§

S(q,∆t)
S(q, 0)

ª

/(q2∆t). (13)

Now, we can measure the effective diffusion for short time lags (here: 0.02ka) and see that425

both models show the same short term diffusivity, as should be (see Fig. 15a).426

The relaxation of structures is obtained from the half-life relaxation time of S(q, t)/S(q, 0).427

We find that this time decreases with q, which means that smaller structures relax faster. Fur-428

ther, in the tissue model structures relax faster than in the thermal colloid system and the429

relaxation speeds up with structure size (see Fig. 15b).
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Figure 15: (a) Effective diffusion coefficient De f f measured from structure factor
relaxation for ∆t = 0.2ka. (b) Relaxation half life time as function of q.

430

F Stochastic division rate model431

The observed separation of stem cell in tissues is a generic effect arising from short range432

mechanical interactions between pairs of cells. To highlight this, we replace the size-threshold433

division (STD) mechanism by a stochastic division with fixed rate k̃d (SDR). This turns off the434

homeostatic pressure control on divisions. We determine the simulation parameter k̃d for the435

SDR model from measurements of kd in the STD model. Only the case of tissues with NTA = 5436

is examined.437

To implement, that cells do not divide at too small size and cause computational flaws, we438

replace the growth force by a damped harmonic oscillator439

FGharm.
i, j = −kx − γk ẋ , (14)
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where k = 100 is the spring constant, and γk = 20 the damping coefficient, chosen in a way440

to realize critical damping with relaxation time faster than the average division time. The441

deflection x =
�

|r i − r j| − Rrest

�

ê i j is given by the difference between cell size and rest length442

Rrest . We set the rest length of proliferating cells, i.e. SC and TA cells, to RSC ,TA
rest = Rc t = 0.8RPP443

and for TD cells to RT D
rest = 0.1RPP .444

Despite the fact that we tune the oscillator such that cells grow quickly to a adequate445

size, some cells divide at very small size and cause computational chaos. To prevent this,446

we introduce a minimum division size, much smaller than the division size threshold used447

previously. With Rmin = 0.15RPP we can ensure stable behavior of the computational model448

after division.449
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Figure 16: (a) Complementary cumulative distribution function (cCDF) for apopto-
sis (blue), division events including prevented divisions due to small size (orange),
and performed divisions (green). Black dotted line highlights longest time for a pre-
vented division event. Black dashed lines display median of each cCDF. (b) Cellsize
distribution for proliferating (SC and TA cells, solid line) and TD cells (dotted lines)
in the stochastic division model (blue) and for size threshold divisions (red).

Figure 16a displays the complementary cumulative distribution function (cCDF) of apopto-450

sis, division, and non-permitted division events, i.e. division events at too small cell size. Only451

a small fraction of events at very short times is permitted and thus, we sufficiently removed452

the size-threshold division mechanism. Further, the cell size distribution (see Fig. 16b) shows,453

that TD cells in both models match each other well, and for growing cells, we find that the454

hard division size threshold changes to a blurred tail. The stochastic division model has equal455

number of TA cells, both in total and for each generation, and did produce only slightly more456

TD cells. However, cell numbers fluctuate more, which can be to the detriment of stable tissue457

homeostasis.458

When comparing both models, we find that SCs are still surrounded by their TA cell cloud.459

In the stochastic division model the TA cell arrangement around the stem cells looks more460

fringed compared to the deterministic model but no large differences can be found in the461

measured TA cell distribution (see Fig. 17a, 17b). Still, for both models, the pair correlation462

function agree very well (see Fig. 17c) and the activity of SC in the tissue remains almost463

unchanged (see Fig. 17d).464

We conclude that the results discussed in the main text are not a consequence of homeo-465

static pressure growth control, but result from the constant cell outflux generated by the SC.466

Yet, the pressure feedback on divisions is beneficial to balance cell numbers in the tissue to467

ensure homeostasis.468
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Figure 17: (a) Snapshot for stochastic division model, (b) TA and TD cell distribution
around nearest neighbor SC in tissue, (c) pair correlation function, and (d) Mean
squared displacement for the respective models. For comparison, stochastic division
model is shown by blue lines together with results for model with size threshold
division for NTA = 5.
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