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Abstract

We construct a family of one-dimensional (1D) quantum lattice models based on G-
graded unitary fusion category CG. This family realize an interpolation between the
anyon-chain models and edge models of 2D symmetry-protected topological states, and
can be thought of as edge models of 2D symmetry-enriched topological states. The mod-
els display a set of unconventional global symmetries that are characterized by the input
category CG. While spontaneous symmetry breaking is also possible, our numerical ev-
idence shows that the category symmetry constrains the models to the extent that the
low-energy physics has a large likelihood to be gapless.
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1 Introduction31

It is hard to overstate the importance of symmetry in physics. Over the past decade, the role32

of symmetry has been extensively studied in topological states of matter, such as symmetry-33

protected topological (SPT) phases [1–3] and symmetry-enriched topological (SET) phases34

[4]. A lot of novel quantum states and phenomena are discovered by studying the interplay35

between symmetry and topology in quantum many-body systems.36

The study of topological phases of matter in turn has advanced our understanding of sym-37

metry. One of such advances is on ’t Hooft anomaly of symmetry [5, 6]. ’t Hooft anomaly38

is invariant under renormalization group flows, so it becomes a powerful tool to constrain39

the low-energy physics of a system. An anomalous system cannot admit a symmetric gapped40

non-degenerate ground state, but has to break symmetry spontaneously, or be gapless, or be41

topologically ordered (in two and higher dimensions) [7]. It is now understood that an anoma-42

lous system can be thought of as the boundary of an SPT bulk. In fact, for a given symmetry,43

’t Hooft anomalies are in one-to-one correspondence to SPT phases in one higher dimension.44

Because of the tremendous progress in the study of SPT phases in recent years, many new45

types of ’t Hooft anomalies are discovered. One of the important instances is the famous Lieb-46

Shultz-Mattis theorem and its generalizations [8–10], which are actually consequences of ’t47

Hooft anomalies involving lattice translation [11].48

Recently people are interested in generalizing the concept of symmetry itself. Ordinary49

symmetries in quantum many-body systems are characterized by operators that act on the50

whole spatial manifold and form a group mathematically. One kind of generalized symmetries51

are p-form symmetries, which act on submanifolds of spatial co-dimension p [12, 13]. For52

example, string operators associated with moving Abelian anyons in the 2D toric-code model53

are 1-form symmetries [14]. Another kind of generalized symmetries are non-invertible sym-54

metries, whose corresponding operators form an algebra that does not admit a definition of55

inverse (i.e., beyond group). Non-invertible symmetries of a 1D system are naturally described56

by a fusion category [15–19]. In high dimensions, invertible and/or non-invertible symmetries57

of various co-dimensions collectively are characterized by higher fusion category, which itself58

is a subject still under development [20–26]. In this work, we will refer to all these generalized59

symmetries as category symmetries.60
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In fact, ’t Hooft anomalies of ordinary finite symmetries can be well described within the61

language of category. For example, consider a 1D quantum system with a finite unitary sym-62

metry group G. The ’t Hooft anomalies are described by a 3-cocycle ν3 : G×G×G→ U(1) [2].63

The doublet (G,ν3) forms a special fusion category, in which all simple objects are invertible.64

With this connection in mind, it is then not hard to understand that general category symme-65

tries are also invariant under renormalization group flow and provide strong constraints on the66

low-energy physics of a theory [27]. Similar to conventional group-like symmetries, it is also67

possible to define anomaly-free and anomalous category symmetries [19, 27]. In most of our68

discussions and statements, we implicitly assume that the category symmetries are anomalous,69

which are our main interests.70

In this work, we pursue the idea of constraining low-energy physics with category symme-71

try in the particular context of building 1D quantum lattice models. A previous example of72

such lattice models is the Fibonacci anyon-chain model [28–30]. It describes a 1D array of in-73

teracting Fibonacci anyons, and has a generalized symmetry described by the Fibonacci fusion74

category. It turns out that the model is pinned at the tri-critical Ising conformal field theory75

(CFT) at low energy by the Fibonacci category symmetry. Classical counterparts of anyon-76

chain models are studied in Refs. [31, 32] and a recent on duality of category symmetry and77

extension to module category is given in Ref. [33] using the framework of the tensor-network78

states. Another family of such 1D lattice models are the effective edge theory of 2D SPT lattice79

models, e.g., those in Refs. [34–37]. These models respect a non-onsite symmetry group G80

with a nontrivial 3-cocycle ν3, or equivalently, a category symmetry C = (G,ν3). It is found81

that the low-energy physics of these models in a very large parameter space are gapless CFTs82

(spontaneous symmetry breaking is another possibility).83

We construct a family of 1D quantum lattice models based on a general G-graded uni-84

tary fusion category (UFC) CG . A fusion category equipped with a G-grading structure has a85

decomposition CG =
⊕

g∈G Cg, with G being a finite group (see Sec. 2.1). In our model, CG86

serves both as the input data and as the characterization of symmetries. We start by building a87

1D lattice Hilbert space out of CG , which in general does not have a tensor-product structure.88

The language of fusion category allows us to naturally associate every object in CG with an89

operator, which we will use as symmetry operator. Then, we design a minimal Hamiltonian90

that commutes with these symmetry operators. It turns out that our model unifies the anyon91

chain model [28] and edge model of 2D bosonic SPTs [36]. When G is trivial, it reduces to the92

anyon chains; when C0 is trivial (“0” denotes the identity of G), i.e., CG = (G,ν3), it reduces to93

the SPT edge model (our model is slightly more general than Ref. [36] by having more param-94

eters). Therefore, our model provides an interpolation between the anyon-chain model and95

the SPT edge model. For general CG , we find that our model can be thought of as a boundary96

theory of 2D SET models (under an appropriate boundary condition) [38,39].97

We have numerically studied the low-energy physics of a few examples of our model. As98

mentioned above, we are mainly interested in anomalous category symmetries. A sufficient99

condition for a category to be anomalous is that it contains objects with non-integer quan-100

tum dimensions [27], and most of our examples satisfy this condition. In the example of101

CG = (Z2,ν3) with ν3 being the nontrivial 3-cocycle, the phase diagram shows an extended102

quantum critical region in the parameter space which are characterized by Luttinger liquids103

(Fig. 3). When CG is the Ising fusion category (Sec. 3.3), we find that the low-energy physics is104

characterized by the critical Ising CFT at certain choices of parameters (this example is iden-105

tical to that in Ref. [37]). For the Z3 Tambara-Yamagami category (Sec. 3.4), we find the106

low-energy physics is described by the critical 3-state Potts CFT. While more numerical effort107

is needed for investigating the whole phase diagram of the latter examples, our current results108

have already demonstrated that anomalous category symmetry CG constrains the model to the109

extent that the low-energy physics has a large likelihood to sit at quantum criticality.110
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The rest of the paper is outlined as follows. In Sec. 2, we build up the model. After111

introducing some basic knowledge of G-graded UFC in Sec. 2.1, we construct the Hilbert space112

in Sec. 2.2, write out explicit expressions of the symmetry operators in Sec. 2.3, and construct113

a minimal symmetric Hamiltonian in Sec. 2.4. We then present a few examples of our model114

in Sec. 3, including the two limiting cases (G being trivial and C0 being trivial), Ising fusion115

category, Tambara-Yamagami category, etc. We also present some numerical results in Sec. 3.5.116

We discuss the issue of the gauge choice of F symbol and its consequence to the model in117

Sec. 4.1, and the relation of our model to the boundary of SET models in Sec. 4.2. In Sec. 5,118

we make a summary and discuss a few future directions. Appendices include some technical119

details.120

2 Model121

In this section, we describe the model. We begin with some basics of G-graded unitary fusion122

category, which describes the input data of the model. The Hilbert space is constructed out of123

fusion spaces of a G-graded UFC, which, in general, does not admit a tensor product structure.124

Then, we write down a series of generalized symmetries and construct a general minimal125

Hamiltonian that respects these symmetries. The generalized symmetries are characterized by126

the input category CG too.127

2.1 Basics of G-graded fusion category128

The input data of our model is a G-graded unitary fusion category CG [40, 41], where G is129

a finite group. A category CG contains a finite list of simple objects,1 denoted as a, b, c,130

etc. Composite objects are written as a formal sum of simple objects
∑

a naa, with na a non-131

negative integer. Simple objects follow a set of fusion rules a × b =
∑

c Nab
c c, where the132

integer Nab
c ≥ 0 is called fusion multiplicity. In general, fusion rules are not commutative,133

i.e. a × b 6= b × a. There exists a special object 1, called the identity or vacuum, satisfying134

1× a = a×1 = a for any a. Every simple object comes with a quantum dimension da, which135

satisfies dadb =
∑

c N c
ab

dc . D =
q

∑

a d2
a is called the total quantum dimension. Every fusion136

channel c in a×b with N c
ab
6= 0 is associated with a vector space Vab

c of dimension N c
ab

, called137

the fusion space. The basis state |ab; c,µ〉 ∈ Vab
c can be graphically represented as138

|ab; c,µ〉 =

a b

c

µ . (1)

An important quantity of CG is the F symbol, which is an isomorphism Fabc
d

:
⊕

e V
ab
e ⊗V

ec
d
→
⊕

f V
a f
d
⊗Vbc

f
.139

With the basis vectors, it is given by140

a b c

d

µ

ν
e =

∑

fαβ

�

Fabc
d

� fαβ

eµν

a b c

d

α

β
f (2)

Since we can perform basis transforms in Vbc
c , the F symbols depend choices of basis. In141

addition, they also satisfy consistency conditions, known as the pentagon equations [40].142

1If a fusion category is braided, simple objects correspond to anyons in two-dimensional topological order. In
our model, a braiding structure in CG is not required.
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(a)
ai−1 ai ai+1 ai+2

αi−1 αi αi+1

xi−2 xi−1 xi xi+1 xi+2

(b)
ai−1 ai ai+1 ai+2

xi−2 xi−1 xi xi+1 xi+2

Figure 1: (a) Lattice of our 1D model. Blue regions are viewed as domains, and lines
are viewed as domain walls. Each unit cell contains two dynamical variables αi and
xi (empty circle), and a slaved variable ai (black dot). The “domain” variable αi is
an element of a finite group G. The empty region below the horizontal line is viewed
as the domain associated with the identity of G. A given configuration {αi} fixes
the “domain wall” variables {ai}. Each ai is a pre-selected object in Cα−1

i−1
αi
⊂ CG ,

where CG is a G-graded fusion category. The second dynamical variable xi ∈ Cαi
is a

fusion channel of xi−1× ai . Every valid configuration {αi , xi} gives a quantum state
|{αi , xi}〉, which all together form a basis of the lattice model. (b) The domain wall
lines form a fusion tree of the objects {ai}.

Throughout the paper, we assume that CG is multiplicity-free, i.e., N c
ab
= 0 or 1, for simplicity.143

Accordingly, the index µ in (1) is not needed.144

The above properties are true for any unitary fusion category. The G-grading structure145

means that CG has the following decomposition146

CG =
⊕

g∈G

Cg (3)

with 1 ∈ C0.2 If a ∈ Cg, we will often denote it as ag. The grading structure is respected by147

fusion, ag × bh =
∑

cgh
N c

ab
cgh. Given a set of F symbols Fagbhck , we can modify it to obtain a148

new G-graded fusion category C̃G as follows149

F̃agbhck = Fagbhckν3(g, h, k) (4)

where ν3(g, h, k) is a 3-cocycle of G. If we define Dg =
Ç
∑

a∈Cg
d2

a , then Dg = D0 for all g.150

Then, D = D0

p

|G|.151

Such G-graded fusion categories naturally appear in the study of SET phases. For more152

details of unitary fusion categories, readers may consult Ref. [16, 40, 41]. For our purpose153

of constructing models, we will need the set of simple objects {a}, fusion rules described by154

{N c
ab
}, explicit expressions of F symbols, and the G-grading structure.155

2We use either 0 or 1 to denote the identity of G depending on the context.
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2.2 Hilbert space156

The Hilbert space H of our model is defined on a 1D lattice of length L, shown in Fig. 1. It has157

the following structure158

H =
⊕

{αi}
Hfusion
{αi}

, (5)

where αi ∈ G is a “domain” variable in the ith unit cell, and Hfusion
{αi}

is the fusion space of159

objects {ai} with ai ∈ CG . The set {ai} is determined by the domain configuration {αi} as160

follows: each {αi} defines a series of “domain walls” labeled by gi = α−1
i−1
αi (vertical lines161

in Fig. 1a), and an object ai ∈ Cgi
is then picked out and put on the ith domain wall. We162

pre-select a particular object ag ∈ Cg for every g, such that ai is determined by gi via ai = agi
.163

Let A = {ag|∀g ∈ G} be the collection of selected objects. Then, the triplet (G,CG,A) defines164

the Hilbert space H.165

Let {xi} be the possible fusion channels of {ai}. The space Hfusion
{αi}

is spanned by fusion166

states of {ai}, pictorially described by Fig. 1b. To avoid ambiguity, we take xi ∈ Cαi
. This167

corresponds to the choice that the empty region below the horizontal line in Fig. 1a is viewed168

as the identity domain, i.e., αempty = 1. Accordingly, xi is the domain wall between αempty and169

αi . Combining domain variables {αi} and fusion channels {xi}, we denote the basis vectors170

of H as |{αi , xi}〉. In most part of the paper, we assume periodic boundary conditions.171

A few remarks are in order. First, in general, H does not have a tensor-product structure.172

In the special case that C0 = {1}, Hfusion
{αi}

is one-dimensional. This makes H a tensor-product173

vector space, H =⊗i V
G
i

, where VG
i
= span{|αi〉|αi ∈ G}. Second, we have selected a subset174

A ⊂ CG when building up the Hilbert space. Physically, we view objects in Cg as different175

topological defects that can live on a g domain wall. Those defects in A are selected by hand176

in the current construction. Alternatively, one may allow ai to vary in Cgi
and add a term in177

the Hamiltonian to select the particular defect ag ∈ A energetically (see a discussion around178

Eq. (68) in Sec. 4.2). However, this will make the Hilbert space larger and less friendly for179

numerical calculations. Third, if CG has nontrivial fusion multiplicities, one needs to include180

another variable µi = 1, . . . , N xi
xi−1ai

at the vertex associated with fusing xi−1 and ai into xi .181

It is neglected in our construction as we always assume that CG is multiplicity-free.182

2.3 Category symmetry183

An advantage of using the fusion category language to build up the Hilbert space is that it helps184

to naturally define a set of operators which will serve as symmetry operators in our model. An185

interesting feature is that these operators follow the fusion algebra of CG [Eq. (7)], which in186

general is not group-multiplication-like. Such kind of symmetries are called different names187

in the literature, e.g., algebraic symmetry, categorical symmetry or non-invertible symmetry.188

We will simply call them category symmetry, as opposed to the usual group symmetry. Even if189

in the special case that C0 = {1} and the fusion algebra associated with CG reduces to group190

multiplication of G, we will see that the symmetry group G carries a ’t Hooft anomaly in general191

due to nontrivial F symbols. It implies that our model is not featureless in general, but has to192

either break symmetries or be gapless.193

For each simple object yh ∈ CG , we can write down a symmetry operator U(yh). Under194

the action of U(yh), the domain variable αi is mapped hαi , simultaneously for every i. This195

leaves the domain wall gi = α−1
i−1
αi unchanged, so does the defect ai on it. The action on the196

fusion channels is associated with the matrix element197

〈{hαi , x ′i }|U(yh)|{αi , xi}〉 =
L
∏

i=1

�

(F yh,xi ,ai+1

x ′
i+1

)†
�x ′

i

xi+1

, (6)
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ai−1 ai ai+1 ai+2

αi−2 αi−1 αi αi+1 αi+2

xi−2 xi−1 xi xi+1 xi+2
yh

=
∑

{x ′
i
}

L
∏

i=1

�

F yh,xi ,ai+1

x ′
i+1

�† x ′
i

xi+1

ai−1 ai ai+1 ai+2

hαi−2 hαi−1 hαi hαi+1 hαi+2

x ′
i−2

x ′
i−1

x ′
i

x ′
i+1

x ′
i+2

Figure 2: Graphical representation of U(yh). The equation is obtained by fusing a
uniform h domain onto {αi}, and a yh line into {xi}.

where xi ∈ Cαi
and x ′

i
∈ Chαi

. The matrix element 〈{α′
i
, x ′

i
}|U(yh)|{αi , xi}〉 = 0, if α′

i
6= hαi .198

The operator U(yh) has a graphical representation, shown in Fig. 2: it is represented by fusing199

a uniform h domain and its yh domain wall with respect to the vacuum into the state |{αi , xi}〉.200

We show in Appendix A that the fusion process indeed gives Eq. (6).201

The symmetry operators satisfy the algebraic relation202

U(xg)U(yh) =
∑

zk

N zk
xg yh

U(zk) (7)

This relation follows directly from that fusion processes are associative and the fusion rule is203

given by xg × yh =
∑

zk
N zk

xg yh
zk. One can also use Eq. (6) to explicitly check this algebra.204

As studied in many previous works, this kind of algebraic symmetries can help (although not205

guarantee) a lattice model to sit at quantum criticality. We will demonstrate this when we206

discuss examples in Sec. 3.207

2.4 Hamiltonian208

With the set of symmetries U(yh) in hand, we would like to write down a “minimal” Hamilto-209

nian that respects these symmetries. We will consider a Hamiltonian of the form210

H = −
∑

i

Hi (8)

and require Hi to be an operator that acts only on the (i − 1)th, ith and (i + 1)th unit cells.211

To define Hi , it is convenient to work in an alternative basis. The alternative basis is related212

to the original basis through an F move as follows:213

αi−1 αi αi+1

xi−1 xi xi+1

ai ai+1

=
∑

zi

�

F xi−1ai ai+1
xi+1

�zi

xi

αi−1

αi

αi+1

xi−1

zi

xi+1

ai ai+1

, (9)

7
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where zi runs over all outcomes in the fusion product ai ×ai+1. The term Hi in the new basis214

is given by215

α′
i+1

α′
i

α′
i−1

x ′
i+1

z′
i

x ′
i−1

a′
i+1

a′
i

Hi αi−1

αi

αi+1

xi−1

zi

xi+1

ai ai+1

= w zi

α−1
i
α′

i

δ
α′

i−1
αi−1
δ
α′

i+1
αi+1
δ

x ′
i−1

xi−1
δ

x ′
i+1

xi+1
δ

z′
i

zi
, (10)

where δa′
a = 1 if a = a′, and δa′

a = 0 otherwise. That is, Hi only flips the domain variable αi216

to α′
i
, with the transition amplitude denoted as w zi

α−1
i
α′

i

. We assume the transition amplitude217

only depends on the domain shift hi = α−1
i
α′

i
and the fusion channel zi . One may consider218

a more complicated transition amplitude. However, we find that the current choice is already219

enough to produce interesting results. Hermiticity requires that w z
h−1 = (w

z
h
)∗.220

Using the transformation (9), the nonzero matrix elements of Hi in the original basis are221

given by222

αi+1α′
i

αi−1

xi+1x ′
i

xi−1

a′
i+1

a′
i

Hi αi−1 αi αi+1

xi−1 xi xi+1

ai ai+1

=
∑

zi

w zi

α−1
i
α′

i

�

�

F
xi−1a′

i
a′

i+1
xi+1

�†
�x ′

i

zi

�

F xi−1ai ai+1
xi+1

�zi

xi
, (11)

where the sum runs over those zi ’s that are simultaneously in ai × ai+1 and a′
i
× a′

i+1
. Note223

that F symbols can be zero for certain choices of zi due to incompatible fusion. Our model is224

a natural generalization of the anyon fusion chain model first proposed in Ref. [28].225

The Hamiltonian H is symmetric under the category symmetry U(yh) in (6). An easy way226

to see this is through Eq. (10). In that expression, Hi is independent of xi−1 and xi and227

diagonal in the variable zi . Meanwhile, U(yh) corresponds to flipping all αi and fusing a yg228

string, which does not change zi and only flips xi−1 and xi+1. It is clear that the action of Hi229

and U(yh) commute. For a more explicit derivation, readers are referred to Appendix A.230

We remark that F symbols depend on gauge choices. Since Eq. (11) explicitly depends231

on F , our model has an explicit dependence on the gauge choice. Below we mainly focus on232

examples with gauge-inequivalent F symbols. We discuss some implications of gauge choices233

of F in Sec. 4.1.234

3 Examples235

The model defined in Eqs. (8) and (11) provides an “interpolation” of the anyon-chain model236

[28] and the SPT edge model [36]. The latter two are special cases of our model. More237

generally, our model can be thought of as an edge model of 2D SET phases (see Sec. 4.2).238

Below we discuss how it is related to anyon chains and SPT edge models, and explore a few239

other interesting examples supported by some numerical calculations.240

3.1 Anyon chain241

When G is trivial such that CG = C0, our model reduces to the well-known anyon chain model.242

In this case, there is no domain variable, i.e., αi = 0. On domain walls, every ai is set to be a243

8
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simple object a ∈ C0. The Hamiltonian (11) then reads244

〈xi−1x ′i xi |Hi |xi−1xi xi+1〉 =
∑

z

w z
�
�

F xi−1aa
xi+1

�†�x ′
i

z

�

F xi−1aa
xi+1

�z

xi
, (12)

where the site dependence of zi is dropped since all ai ’s are identical. The coefficient w z ≡ w z
0245

is the energy of the fusion channel z of two neighboring a’s. This is exactly the anyon-chain246

Hamiltonian that has been widely studied, e.g., in Refs. [28–30]. The simplest example is the247

golden chain model, with C0 being the fusion category of Fibonacci anyons. It was found the248

the category symmetries {U(y)} enforce the anyon-chain model to sit at quantum criticality249

[28,42] or to break symmetry spontaneously.250

3.2 Edge model of bosonic SPTs251

Another limit of our model is C0 = {1}. In this case, CG is equivalent to the doublet (G,ν3),252

where ν3 = ν3(g, h, k) ∈ H3(G, U(1)) is a 3-cocycle. There is only one simple object in each253

Cg, and the fusion algebra of CG reduces to group multiplication of G. We use the group254

element g to denote the simple object in Cg. It has dg = 1. The F symbol is determined by255

ν3, (Fg,h,k
ghk
)hk
gh
= ν3(g, h, k). This kind of G-graded fusion category appears in the study of256

symmetry defects in 2D bosonic SPT phases with symmetry group G [2]. Below we will see257

that our model can be viewed as an effective edge model for 2D bosonic SPT phases.258

Since all simple objects in CG have quantum dimension 1, the Hilbert space has a tensor-259

product structure, H =⊗i V
G
i

, where VG
i
= span{|αi〉|αi ∈ G}. Given a domain configura-260

tion, {ai} and {xi} are uniquely determined, with ai = α−1
i−1
αi and xi = αi . Then, our model261

reduces to262

〈αi−1α
′
iαi+1|Hi |αi−1αiαi+1〉 = w zi

hi

ν3(αi−1,α−1
i−1
αi ,α

−1
i
αi+1)

ν3(αi−1,α−1
i−1
α′

i
, (α′

i
)−1αi+1)

. (13)

where zi = α−1
i−1
αi+1 and hi = α−1

i
α′

i
. If we take w z

h
= 1 for every h and z, the model reduces263

to the SPT domain-wall model of Ref. [36], which was derived by considering a domain wall of264

two 2D SPT models and projecting out the bulk degrees of freedom.3 It was shown numerically265

there that for various choices of G and ν3, the low-energy spectrum is gapless and described266

by a conformal field theory with an integer central charge (i.e., a Luttinger liquid). For more267

general w z
h

, we will also give numerical evidence in Sec. 3.5 that the model is gapless and268

quantum critical in an extended region of the parameter space, by considering the example269

G = Z2 (see Fig. 3).270

The model likes to sit at quantum criticality because it carries a ’t Hooft anomaly of G. For271

CG = (G,ν3), the symmetry operator U(yg) ≡ U(g) in (6) becomes272

〈gα1, ..., gαL|U(g)|α1, ...,αL〉 =
L
∏

i=1

ν∗3(g,αi ,α
−1
i αi+1). (14)

While the Hilbert space has a tensor-product structure, this particular realization {U(g)} of273

symmetry group G is not onsite, making it to carry a ’t Hooft anomaly. The anomaly can be274

explicitly extracted through the procedure proposed in Ref. [43]. It turns out to be precisely275

the 3-cocycle ν3. According to bulk-boundary correspondence, this model cannot be realized276

on a 1D lattice, if we insist G to be realized in an onsite way. Instead, onsite realization can277

3To make an exact match, the 3-cocycle νab in Eq. (40) of Ref. [36] is related to our 3-cocycle by
νab(α1,α2,α3) = ν∗3(α

−1
3 ,α−1

2 ,α−1
1 ). One also needs to convert the homogeneous cocycle in Ref. [36] to inho-

mogeneous cocycle and set the parameter g ∗ = 1 there.
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only be achieved at the edge of a 2D SPT bulk characterized by the 3-cocycle ν3 ∈H3(G,U(1))278

(Sec. 4.2 gives an explicit discussion of the edge viewpoint). Therefore, our 1D model mimics279

the edge of a 2D bosonic SPT bulk by sacrificing the onsiteness of the symmetry operators.280

As widely known, such a 1D system cannot be featureless (i.e., gapped and symmetric with281

a non-degenerate ground state). While we cannot rule out spontaneous symmetry breaking,282

the ’t Hooft anomaly does increase the likelihood of being gapless.283

3.2.1 G = Z2284

After the above general remarks, we now take a close look at the Z2 case. Taking Z2 = {0, 1}285

with an additive group multiplication, we have four real parameters in the Hamiltonian (13):286

w0
0 , w1

0 , w0
1 and w1

1 . The cohomology group H3(Z2, U(1)) = Z2, so there are two inequivalent287

classes of ν3. An explicit expression of ν3 is given by288

ν3(a, b, c) = (−1)kabc, (15)

where a, b, c = 0, 1 are group elements of Z2. When k = 0, ν3 is trivial. When k = 1, ν3 is289

nontrivial.290

Let us take αi = ±1 to represent Z2 and rewrite the Hamiltonian (13) with Pauli matrices.291

Let s x
i

, s y
i

and s z
i

be the Pauli matrices. It is straightforward to show that, for the trivial ν3,292

H0
i =

w0
0 − w1

0

2
s z
i−1s z

i+1 +
1

2

�

w0
1 (1+ s z

i−1s z
i+1) + w1

1 (1− s z
i−1s z

i+1)
�

s x
i , (16)

and for the nontrivial ν3,293

H1
i =

w0
0 − w1

0

2
s z
i−1s z

i+1 +
1

2

�

w0
1 (s

z
i−1 + s z

i+1) + w1
1 (1− s z

i−1s z
i+1)

�

s x
i , (17)

where a constant term (w0
0 + w1

0 )/2 has been omitted in both H0
i

and H1
i
. The symmetry294

operator for the nontrivial Z2 group element can be written as295

U0 =
∏

i

s x
i , U1 = eiπ

∑

i(1−s z
i

s z
i+1
)/4
∏

i

s x
i (18)

for the two models, respectively. Note that the term
∑

i(1− s z
i

s z
i+1
) is always a multiple of 4296

under periodic boundary condition. Also note that the two models are identical when w0
1 = 0.297

When w0
0 − w1

0 = 0, the model H1 = −
∑

i H1
i

is exactly the Ising domain wall model in298

Ref. [36] derived from the interface between 2D SPT bulks.299

The model H0 = −
∑

i H0
i

can be mapped to the usual XYZ model by the Kramers-Wannier300

duality: s z
i−1

s z
i
= µx

i
and s x

i
= µz

i
µz

i+1
. With the mapping, we have301

H0 = −
∑

i

(Jxµ
x
i µ

x
i+1 + Jyµ

y
i
µ

y
i+1
+ Jzµ

z
i µ

z
i+1)

Jx =
w0

0 − w1
0

2
, Jy =

w1
1 − w0

1

2
, Jz =

w1
1 + w0

1

2
. (19)

The phase diagram of XYZ model is known. In particular, when w0
1 = 0, we have Jy = Jz and302

the model reduces to the XXZ model. The XXZ model exhibits three phases, with Jx/|Jz| = ±1303

being the transition points [44]: (1) ferromagnetic phase when Jx/|Jz| > 1, (2) Luttinger304

liquid phase when −1 < Jx/|Jz| < 1, and (3) anti-ferromagnetic phase when Jx/|Jz| < −1.305

At the transition point Jx/|Jz| = 1, the system is gapless with a quadratic spectrum. Soon as306

Jx/|Jz| smaller than 1, it becomes a Luttinger liquid with the Luttinger parameter K →∞. As307
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Figure 3: Color plot of central charge c extracted from entanglement entropy of the
ground state of H1, calculated by DMRG with system size up to L = 80. The dashed
lines are conjectured phase boundaries which we cannot determine precisely due
to finite size effects. Both the θ = 0 and θ = π/2 lines are equivalent to the XXZ
model, but are mirror reflection of each other. The red dots are Luttinger liquids with
Luttinger liquid parameter K = 1/2 (equivalent to SU(2)1 CFT) and the blue dots
are gapless states with quadratic dispersion. The phase diagram is symmetric under
θ →−θ and θ → θ +π. “SSB” stands for spontaneous symmetry breaking.

Jx/|Jz| decreases, K decreases until it approaches 1/2 at Jx/|Jz| = −1, at which the Luttinger308

liquid is equivalent to SU(2)1 conformal field theory.309

To study the phase diagram of H1 = −
∑

i H1
i
, we first write it in a different form by per-310

forming a unitary transformation. Consider the unitary operator S =
∏

j eiπs z
j
s z

j+1
/8+i(π−2θ )s z

j
/4

311

and apply the transformation H1
i
→ SH1

i
S†, where θ is defined via the following reparametriza-312

tion,313

J = w1
0 − w0

0 , ∆ =
Ç

(w0
1 )

2 + (w1
1 )

2, w0
1 =∆ cosθ , w1

1 =∆ sinθ (20)

After the transformation, the new Hamiltonian reads314

H1
i = −

J

2
s z
i−1s z

i+1 −
∆

2
(cos 2θ s x

i + sin 2θ s y
i
+ s z

i−1s x
i s z

i+1) (21)

Accordingly, the phase diagram is symmetric under the shifting θ → θ +π. In addition, under315

the transformation S′ =
∏

i s x
i

, the Hamiltonian H1(θ ) → H1(−θ ). Therefore, it is enough316

to study the phase diagram for θ ∈ [0,π/2].317

We have performed a density matrix renormalization group (DMRG) study of the model318

H1 = −
∑

i H1
i
. We have computed the entanglement entropy of the ground state and ex-319

tracted the central charge c in the (r,θ ) plane with r = J/∆. The results are shown in Fig. 3.320

We briefly describe the phase diagram mapped out from the value of c (additional numerical321

results are presented in Sec. 3.5 in comparison to other models). A key feature is that there322

exists an extended region of gapless phase in the phase diagram. The gapless states are Lut-323

tinger liquids with a varying Luttinger liquid parameter K . Also, other regions break the Z2324

11
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symmetry spontaneously, in agreement with the expectation that no symmetric and gapped325

phase is supported by an anomalous Z2 symmetry. Comments on a few special lines are in326

order. (1) On the θ = π/2 line (i.e. w0
1 = 0), H1 is equal to H0, so it is equivalent to the XXZ327

model. It is a Luttinger liquid when |r | < 1. (2) On the r axis (θ = 0), H1 is also equivalent328

to the XXZ model, but it is the mirror image of the θ = π/2 line under r → −r . To see that,329

one may use the Kramers-Wannier duality to map (21) to the XYZ model and find that one of330

the three parameters Jx , Jy , Jz differs by a minus sign compared to θ = π/2. (3) For J = 0331

and θ ∈ [π/4,π/2], it was numerically studied in Ref. [36] that it is a Luttinger liquid, with332

the Luttinger liquid parameter K varying from 1 to 1/2 as θ decreases.333

There are interesting features in the phase diagram. For example, on the phase boundary334

between the Luttinger liquid and ferromagnetic (or anti-ferromagnetic) phases, the Luttinger335

liquid parameter varies continuously. This indicates that the spin waves in the symmetry-336

breaking phases has intriguing properties near the phase boundary. [44] In addition, it is also337

interesting to study the phase diagram with other groups, e.g., G = Z3.338

3.3 Ising fusion category339

The simplest example beyond the above two limits is that G = Z2 and CG = CIsing the Ising340

fusion category. The Ising fusion category contains three simple objects, 1, ψ and σ. The341

nontrivial fusion rules are σ ×σ = 1+ψ, ψ×ψ = 1 and ψ×σ = σ. Quantum dimensions342

are d1 = dψ = 1 and dσ =
p

2. Let G = Z2 = {0, 1} with group multiplication being addition343

modulo 2. The Ising category CIsing has the following Z2 grading structure344

C0 = {1,ψ}, C1 = {σ}. (22)

Under certain gauge choice, the nontrivial F symbols are given by [40]345

(Fψσψσ )σσ = (F
σψσ

ψ
)σσ = −1,

Fσσσσ =
κ
p

2

�

1 1
1 −1

�

, (23)

where κ = ±1 is the Frobenius-Shur indicator distinguishing two variants of Ising fusion cat-346

egory. All other F symbols are equal to 1. The two Ising fusion categories with κ = ±1 can347

be understood as differing by a nontrivial 3-cocycle in H3(Z2, U(1)) = Z2. With CIsing as the348

input, we find that our model coincides with that of Ref. [37]. This model can be properly349

interpreted as the edge model of 2+1D Z2 × Z
f
2 topological superconductors (fermionic SPT350

phases).351

Let us discuss some details of the model for CIsing. First, we pick the slaved domain-wall352

variables to be ag=0 = 1 and ag=1 = σ.4 While both {αi} and {xi} are dynamical variables,353

the fusion-channel variables {xi} are enough to uniquely label a state. Therefore, we take the354

short-hand notation355

|xi−1xi xi+1〉 ≡ αi−1 αi αi+1

xi−1 xi xi+1

ai ai+1

. (24)

4A different choice is ag=0 =ψ and ag=1 = σ.
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With the F symbols in (23), the Hamiltonian in (11) reads356

Hi |µµµ〉 = w1

0 |µµµ〉+ w1

1 |µσµ〉
Hi |µµσ〉 = wσ

0 |µµσ〉+ wσ
1 |µσσ〉

Hi |µσν〉 = wµ×ν
0 |µσν〉+ δµνw1

1 |µµµ〉

Hi |σµµ〉 = wσ
0 |σµµ〉+ wσ

1 |σσµ〉
Hi |µσσ〉 = wσ

0 |µσσ〉+ wσ
1 |µµσ〉

Hi |σµσ〉 =
∑

ν

1

2

�

w1

0 + (2δµν − 1)wψ

0

�

|σνσ〉+
κw1

1
p

2
|σσσ〉

Hi |σσµ〉 = wσ
0 |σσµ〉+ wσ

1 |σµµ〉

Hi |σσσ〉 = w1

0 |σσσ〉+
κw1

1
p

2
(|σ1σ〉+ |σψσ〉) (25)

where µ,ν = 1 or ψ. There are five real parameters in this model, w1

0 , wψ

0 , wσ
0 , w1

1 and357

wσ
1 (only three of them are important, while the other two set the zero energy and energy358

unit, respectively). When w1

0 = wψ

0 = wσ
0 = 0, our model reduces exactly to the model of359

Ref. [37].360

Let us simplify the model by assuming w1

0 = wψ

0 ≡ w0. We further perform an energy361

shift H → H + w0Î and a rescaling H → H/∆, with ∆ =
q

(w1

1 )
2 + (wσ

1 )
2. Let362

r =
wσ

0 − w0

∆
, w1

1 =∆ cosθ , wσ
1 =∆ sinθ (26)

Then, the Hamiltonian reads363

Hi |µµµ〉 = cosθ |µσµ〉
Hi |µµσ〉 = r |µµσ〉+ sinθ |µσσ〉
Hi |µσν〉 = δµν cosθ |µµµ〉
Hi |σµµ〉 = r |σµµ〉+ sinθ |σσµ〉
Hi |µσσ〉 = r |µσσ〉+ sinθ |µµσ〉

Hi |σµσ〉 =
κ cosθ
p

2
|σσσ〉

Hi |σσµ〉 = r |σσµ〉+ sinθ |σµµ〉

Hi |σσσ〉 =
κ cosθ
p

2
(|σ1σ〉+ |σψσ〉) (27)

There are two continuous parameters r and θ . We will leave the complete phase diagram for364

future study. At the special point r = 0 and θ =
π

4 , we show numerically in Sec. 3.5 that the365

ground state is the Ising CFT, in agreement with Ref. [37].366

Let us discuss the category symmetry in this example. The symmetry operator (6) for367

yh = σ reads368

〈x ′1, ..., x ′L|U(σ)|x1, ..., xL〉 =
L
∏

i=1

(Fσ,xi ,ai+1

x ′
i+1

)
x ′

i
xi+1

. (28)

Since we take ag=0 = 1, a valid state is always of the form369

| . . .σσµkµkµkσσσσµk+1µk+1µk+1σσ . . . 〉 (29)
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i.e., with segments of σ’s separated by segments of µ’s. The length of each segment can vary.370

Due to periodic boundary conditions, the number ofσ segments is always equal to the number371

of µ segments. Under the action of U(σ), the state in (29) will be mapped to372

| . . .µ′k−1µ
′
k−1 σσσµ

′
kµ
′
kµ
′
kµ
′
kσσσµ

′
k+1µ

′
k+1 . . . 〉 (30)

With the F symbols in (23), the symmetry operator (28) can be simplified to373

〈{µ′k}|U(σ)|{µk}〉 =
�

κ
p

2

�n n
∏

k=1

(−1)(µk+µk−1)µ′k (31)

where µk = 0, 1 corresponds to 1 and ψ respectively, and n is the number of σ (or µ) seg-374

ments. Furthermore, one can explicitly check that375

U(σ)2 = U(1) +U(ψ) (32)

which is consistent with the fusion rule σ × σ = 1 + ψ. Under U(ψ), the state |{µk}〉 is376

mapped to |{µ̄k}〉, with µ̄k = 1 − µk . We note that the U(σ) operator is related to U11 in377

Ref. [37] by U11 = U(σ)/
p

2. The factor 1/
p

2 is important to make U11 a unitary operator if378

one restricts to the U(ψ) symmetric subspace (the restriction is necessary when one gauges the379

U(ψ) symmetry, which is indeed done in Ref. [37]). Note that U(σ) is not unitary, justifying380

that it is a symmetry beyond the description of group.381

3.4 Tambara-Yamagami category382

Tambara-Yamagami category CTY is a family of Z2-graded fusion categories [45]. It is param-383

eterized by a triplet (A,χ ,κ), where A is an Abelian group, χ is a symmetric non-degenerate384

bicharacter χ : A× A→ U(1), and κ = ±1. The simple objects of CTY include the elements of385

A and an object σ of quantum dimension
p

|A|, where |A| is the order of A. The Z2-grading386

structure is given by387

C0 = {a|a ∈ A}, C1 = {σ} (33)

Fusion rules of simple objects in C0 are given by the group multiplication of A. Other fusion388

rules are a ×σ = σ × a = σ for any a ∈ A, and σ ×σ =
∑

a∈A a. The nontrivial F symbols389

are given by390

�

Faσb
σ

�σ

σ
=
�

Fσaσ
b

�σ

σ
= χ(a, b)

�

Fσσσσ

�b
a =

κ
p

|A|
χ∗(a, b). (34)

where κ is the Frobenius-Shur indicator of σ. If we take A = ZN = {1, e, e2, . . . , eN−1} with391

eN = 1, the bicharacter χ can be explicitly written as392

χ(em, en) = e
i2πqmn

N . (35)

The integer q is coprime with N such that χ is non-degenerate. For A = Z2 and q = 1, we see393

that CTY becomes CIsing.394
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To construct the model out of CTY, we take the domain wall variables to be ag=0 = 1 and395

ag=1 = σ. Using the same short-hand notation as Eq. (24), the Hamiltonian is given by396

Hi |µµµ〉 = w1

0 |µµµ〉+ w1

1 |µσµ〉
Hi |µµσ〉 = wσ

0 |µµσ〉+ wσ
1 |µσσ〉

Hi |µσν〉 = w µ̄×ν
0 |µσν〉+ δµνw1

1 |µµµ〉

Hi |σµµ〉 = wσ
0 |σµµ〉+ wσ

1 |σσµ〉
Hi |µσσ〉 = wσ

0 |µσσ〉+ wσ
1 |µµσ〉

Hi |σµσ〉 =
∑

ν,z∈A

χ(z, µ̄× ν)
|A|

w z
0 |σνσ〉+

κw1

1
p

|A|
|σσσ〉

Hi |σσµ〉 = wσ
0 |σσµ〉+ wσ

1 |σµµ〉

Hi |σσσ〉 = w1

0 |σσσ〉+
κw1

1
p

|A|

∑

µ∈A

|σµσ〉 (36)

where µ,ν ∈ A, and µ̄ is the dual of µ satisfying µ× µ̄ = 1.397

The bicharacter χ appears only in the sixth line of Eq. (36). To make a simplification, we398

take w x
0 = w0 for all x ∈ A. Then,

∑

z∈A χ(z, µ̄ × ν)w z
0 /|A| = δµ,νw0, which simplifies the399

sixth line, and the model becomes independent of χ . In addition, we will make an energy shift400

H → H + w0Î and further rescale the Hamiltonian H → H/∆, with ∆ =
q

(w1

1 )
2 + (wσ

1 )
2.401

With the same parameterization as (26), the shifted and rescaled Hamiltonian reads402

Hi |µµµ〉 = cosθ |µσµ〉
Hi |µµσ〉 = r |µµσ〉+ sinθ |µσσ〉
Hi |µσν〉 = δµν cosθ |µµµ〉
Hi |σµµ〉 = r |σµµ〉+ sinθ |σσµ〉
Hi |µσσ〉 = r |µσσ〉+ sinθ |µµσ〉

Hi |σµσ〉 =
κ cosθ
p

|A|
|σσσ〉

Hi |σσµ〉 = r |σσµ〉+ sinθ |σµµ〉

Hi |σσσ〉 =
κ cosθ
p

|A|

∑

µ∈A

|σµσ〉 (37)

For A = Z2, it reduces to Eq. (27) of the Ising fusion category.403

3.5 Numerical results404

In this section, we present some numerical results on the models introduced in Sec. 3.2.1, 3.3405

and 3.4. We compute the energy spectrum by exact diagonalization (ED) and entanglement406

entropy of the ground state obtained by density matrix renormalization group (DMRG) [46].407

We are interested in the cases that the models are gapless, which can be described by408

conformal field theory (CFT). In this case, the low-lying energies of a system of finite size L409

take the form [47]410

E = E1L+
2πv

L

�

−
c

12
+ h + h̄

�

, (38)

where the velocity v is an overall scale factor and c is the central charge of the CFT. The scaling411

dimensions h + h̄ take the form h = h0 + n, h̄ = h̄0 + n̄, with n and n̄ non-negative integers,412
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and h0 and h̄0 are the holomorphic and antiholomorphic conformal weights of the primary413

fields in the given CFT. We will compare the ED spectrum to Eq. (38). Instead of using (38),414

the central charge c is usually computed from the entanglement entropy S of the many-body415

ground state. Under periodic boundary conditions, it is given by [48]416

S(x ) =
c

3
ln
�

L

π
sin

�πx

L

�
�

+ a, (39)

where L is the system size, x is the length of the subsystem used to calculate the entanglement417

entropy, and a is a non-universal constant. For computation of S(x ), we use DMRG to access418

larger system sizes. We use the ITensor package for DMRG calculations. [49]419

Below we present the results for the Z2 SPT edge models H0 (16) and H1 (17), Ising fusion420

category model (27), and Tambara-Yamagami category model (37) with A = Z3. We remark421

that the Ising category model is the same as Tambara-Yamagami model with A = Z2. Also, the422

Z2 edge models H0 and H1 are equivalent to the Tambara-Yamagami models with A = Z1, for423

κ = 1 and κ = −1 respectively. Therefore, we put the numerical results together and make424

a comparison. We will leave a complete study of the phase diagrams for future study. In this425

work, we mainly focus on426

w z
g = 1, ∀z, g (40)

i.e., r = 0 and θ = π/4 in (21), (27), and (37). These values are chosen without any priori427

knowledge, but only because of simplicity. It turns out that all models with κ = 1 are CFTs428

at parameters in (40), while the cases with κ = −1 are less conclusive. We remark that the429

gapless state at the parameters (40) for the κ = 1 Ising and Z3 Tambara-Yamagami models430

is not an isolated point in the parameter space. Our preliminary calculations show that there431

exists an extended nearby gapless region, similar to Fig. 3, which we will present elsewhere432

after a more careful numerical investigation.433

3.5.1 κ = 1434

Let us first consider the models with κ = 1 and the parameters in (40). With the ground state435

from DMRG calculations, we obtain the entanglement entropy S and fit the results according436

to Eq. (39), as shown in Figs. 4. For the Ising and Tambara-Yamagami category models, we437

find c ≈ 1/2 and c ≈ 4/5, respectively. This indicates that, with the parameters (40), the two438

models belong to the critical Ising and critical 3-state Potts universality classes, respectively.439

This is verified by computing the low-energy ED spectra, which fit well with the CFT prediction440

Eq. (38) (see Fig. 5).441

The model H0 in (16) can be solved exactly by mapping to XYZ model. Nevertheless, we442

did some numerical calculations for verification. It is gapped for the parameters in (40), so443

instead we set w0
0 − w1

0 = 2 and w0
1 = w1

1 = 1 (it is equivalent to r = −
p

2 and θ = π/4444

in the Tambara-Yamagami Hamiltonian (37) with A = Z1). With this setting, the low-energy445

physics is described by double copies of the Ising CFT, see Fig. 5. It is equivalent to a free446

massless complex fermion after a Z2 orbifolding [50], which is a K = 1 Luttinger liquid. This447

agrees with the analytic results [44].448

3.5.2 κ = −1449

For κ = −1, all models display a much stronger finite-size effect than the case of κ = 1. So far,450

we have only done a relatively complete search of gapless regions for the Z2 edge model H1.451

The phase diagram mapped out from the central charge is shown in Fig. 3 (see discussions452

in Sec. 3.2.1). In all the gapless regions, we find the central charge c = 1, i.e., a Luttinger453

liquid. At the parameters r = 0 and θ = π/4, the numerical results of entanglement entropy454
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Figure 4: Entanglement entropy S of different models: (a) Z2 edge model
H0 with system size L = 60, 80, 100, 120, 140; (b) Ising category model with
L = 100, 120, 140, 160; and (c) TY category model with L = 30, 40, 50, 60. All
results are obtained with periodic boundary conditions and subsystem size x = L/2.
For both Ising category and Z3 Tambara-Yamagami category models, the parameters
κ = 1, r = 0 and θ = π/4. For the Z2 edge model H0, parameters are set at
ω0
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Figure 5: Finite-size energy spectra of (a) Z2 edge model H0 at L = 16, (b) Ising
category model L = 14 and (c) Z3 TY category model at L = 12, corresponding
to double Ising CFT, Ising CFT and critical 3-state Potts CFT, respectively. Dots are
numerical results and bars are analytic predictions [47]. Parameters are same as in
Fig. 4 and energies are properly shifted and rescaled. All dots in (a) and (b) are
non-degenerate. Black and red dots in (b) correspond to the eigenvalue +1 and −1
of U(ψ), respectively. Every red dot in (c) is doubly degenerate, corresponding to
the eigenvalue U(e) = e±i2π/3 respectively, with e being the generator of Z3.

are shown Fig. 6(a). The ED spectrum at L = 16 is also shown in Fig. 6(b), but not much455

information can be extracted due to strong finite size effect.456

For Ising category and Z3 Tambara-Yamagami category, we find that models are gapped at457

r = 0 and θ = π/4, as we observe S decreases to a constant as L increases (not shown here).458

We have searched for gapless spectra at other values of parameters and found some evidence.459

Nevertheless, it is not conclusive yet. We leave a careful numerical investigation for the future.460

3.6 SU(2)k theory461

Another family of Z2-graded category is associated with anyons from SU(2)k theory. We de-462

note the category as CSU(2)k . The objects in CSU(2)k are closely related to the ordinary SU(2)463

spins, which can be labeled by s = 0,
1
2 , 1, ...,

k
2 , with k being a positive integer. There are464
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Figure 6: (a) Entanglement entropy S(x ) at L = 40, 60, 80, 100, 120 and (b) energy
spectrum for H1 at L = 16. Parameters are r = 0 and θ = π/4.

k + 1 objects in total. The fusion rule between s and s ′ is given by465

s × s ′ =
min(s+s ′,k−s−s ′)

∑

s ′′=|s−s ′|

s ′′, (41)

where the summation is incremented by 1, similar to addition of ordinary angular momenta.466

One can see that integer spins are closed under fusion. By taking C0 = {0, 1, ...} and C1 = {
1
2 ,

3
2 , ...},467

we have the following decomposition468

CSU(2)k = C0 ⊕ C1. (42)

This gives the Z2-grading structure of CSU(2)k : C0 is closed under fusion, two objects from C1469

fuse into objects in C0, and fusing an object from C0 and an object from C1 gives objects in470

C1. To build our model (11), we need the F symbols in CSU(2)k . The F symbols are known471

explicitly [51] (see also, e.g., Ref. [29]), but we will not list them here. It is interesting to472

perform a detailed numerical study of this family of models in the future.473

We give a brief further discussion on the k = 3 case. It is closely related to the fa-474

mous Fibonacci anyon. In this case, CSU(2)3 = {0, 1} ⊕ {1
2 ,

3
2}. The quantum dimensions are475

d0 = d 3
2
= 1 and d1 = d 1

2
=
p

5+1
2 . The object s = 1 corresponds the Fibonacci anyon. There-476

fore, C0 = {0, 1} is the usual Fibonacci category, and CSU(2)3 is a Z2 extension of C0. (There477

are two kinds of Z2 extensions of the Fibonacci category, whose F symbols differ by the non-478

trivial 3-cocycle in H2(Z2, U(1)), see Eq. (4).) It is interesting to study the low-energy physics479

of our model (11) based on CSU(2)3 , and compare it to the golden chain model [28] whose480

low-energy physics is captured by the tricritical Ising conformal field theory.481

3.7 CG from groups482

From group extensions, one can define many G-graded unitary fusion categories. Consider483

the short exact sequence484

1→ N → CG → G→ 1 (43)

where N and G are two finite groups, and CG is called an extension of G by N. The group N485

is a normal subgroup of CG and G is isomorphic to the quotient group CG/N. Let C0 ≡ N, and486
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Cg ≡ gN to be the coset in CG associated with g ∈ G. Then, CG has the following decomposition487

CG =
⊕

g∈G

gN =
⊕

g∈G

Cg (44)

Taking a 3-cocycle ν3 ∈ Z3(CG, U(1)), we can then regard the doublet (CG,ν3) as a G-graded488

fusion category. Without causing confusion, we will sometimes simply call CG the G-graded489

fusion category, although it is only a group in this subsection.490

Given N and G, the extended group CG is not unique. Let a, b, ... be elements of N, and491

g, h, ... be elements of G. Then, group elements in CG can be labeled by ag, with a running492

through elements in N and g running through elements in G.5 To specify the multiplication493

law of CG , we need two pieces of data: (i) a group homomorphism ρ : G → Out(N), where494

Out(N) is the outer automorphism group of N, and (ii) a torsor µ in H2
ρ(G, Z(N)), where Z(N)495

is the center of N. Let g ∈ G and ρg ≡ ρ(g) ∈ Out(N). Then, ρg(a) describes the action of g496

on a ∈ N. The torsor µ is a function µ : G ×G → Z(N), which satisfies the twisted 2-cocycle497

conditions associated with ρ. Given ρ and µ, group multiplication in CG can be defined by498

ag × bh = [a ·ρg(b) ·µ(g, h)]gh, (45)

where “·” denotes group multiplication in N. It is clear that the group multiplication respects499

the G-grading structure.500

A cocycle ν3 in Z3(CG,U(1)) can also be parameterized by a set of data associated with N501

and G. Based on the Lyndon-Hochschild-Serre spectral sequence, it was shown in Ref. [52] that502

ν3 valued at general ag, bh, ck can be fully determined by ν3 at special elements of CG . Specif-503

ically, ν3(ag, bk, ck) is determined by ν3(a, b, c), ν3(a, b, 1g), ν3(a, 1g, 1h) and ν3(1g, 1h, 1k),504

with a, b, c ∈ N and g, h, k ∈ G (note that a ≡ a1). We refer the readers to Ref. [52] for505

the general parameterization. Here, we only consider the special case that both ρ and µ are506

trivial. In this case, CG = N ×G, and the 3-cocycle ν3 is simply the product of the four special507

pieces508

ν3(ag, bh, ck) = ν3(a, b, c)ν3(a, b, 1k)ν3(a, 1h, 1k)ν3(1g, 1h, 1k) (46)

This expression can be well understood from the Künneth formula509

H3(N ×G, U(1)) =H3(N, U(1))⊕H1(G,H2(N,U(1)))

⊕H2(G,H2(N, U(1))⊕H3(G, U(1)) (47)

The four pieces in (46) have a one-to-one correspondence to elements in the cohomology510

groups on the right hand side of (47). The parameterization of ν3 with general ρ and µ is511

more complicated but follows a similar structure.512

With (CG,ν3), we can construct a lattice model following Sec. 2. For simplicity, we assume513

that ρ and µ are trivial. The domain degrees of freedom αi take values in G, and domain walls514

ai and xi take values in a proper coset Cg = gN. To build up the model, we need to manually515

pick up a fixed element b̄ ∈ N for every g ∈ G, which together select a representative b̄g from516

each coset Cg. Then, on the ith domain wall, it lives an object ai = b̄α−1
i−1
αi
≡ (b̄i)α−1

i−1
αi

(we use517

b̄i to denote the b̄ ∈ N that lives on the ith domain wall). The fusion channel xi ∈ Cαi
and let518

us denote xi ≡ (di)αi
, with di ∈ N. With fusion rules, we have xi = xi−1ai and di = di−1 b̄i .519

Two features of the Hilbert space deserve to be mentioned. (1) Given {αi} and {ai}, there are520

only |N| possible {xi}:521

xi = (di)αi
, with di = d0

i
∏

j=1

b̄ j (48)

5This notation has a different meaning from ag elsewhere in this paper. In this subsection, a ∈ N and g ∈ G
are independent. In other parts of the paper, a ∈ CG and g denotes the grading property of a.
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where d0 runs though elements in N. Hence, states in the Hilbert space can be labeled as522

|{αi}, d0〉. We will give a further discussion on d0 below. (2) The periodic boundary condition523

requires that524

L
∏

i=1

b̄i = 1 (49)

It follows from dL+1 = d1
∏

i b̄i and dL+1 = d1.525

The symmetry operator U(yh), defined in Eq.(6), is given by526

〈{hαi , x ′i }|U(yh)|{αi , xi}〉 =
L
∏

i=1

ν∗3(yh, (di)αi
, b̄α−1

i
αi+1
),

=
L
∏

i=1

ν∗3(y, di , b̄i)ν
∗
3(y,di , 1α−1

i
αi+1
)

× ν∗3(y, 1αi
, 1α−1

i
αi+1
)ν∗3(1h, 1αi

, 1α−1
i
αi+1
) (50)

where we have inserted Eq. (46) into the second equality. Note that the action of yh gives527

x ′
i
= yh × xi = [y · di]α′

i
. The Hamiltonian can be written down following Sec. 2.4.528

Let us compare this example to that in Sec. 3.2. First, while both examples realize the sym-529

metry (CG,ν3), the allocation of degrees of freedom from N and G on the lattice are different.530

In the example of Sec. 3.2, αi can fluctuate freely in CG . In the current example, αi fluctu-531

ates only within G, while elements from N which live on the domain walls are constrained.532

Accordingly, to realize the same symmetry (CG,ν3), the current example could have a smaller533

Hilbert space as long as one properly divides CG into N and G. This is useful for numerical534

investigations. Second, the degree of freedom d0, absent in the example of Sec. 3.2, is a global535

degree of freedom. It enters every di and cannot be changed by any local operators. This536

makes the ground states of local Hamiltonian to be |N|-fold degenerate. For simplicity, let us537

consider the case G = 1, i.e., with no {αi} degrees of freedom. In this case, the whole Hilbert538

space is |N| dimensional, and the Hamiltonian is proportional to the identity matrix. Since539

the |N|-fold degenerate ground-state space transforms non-trivially under N, the group N is540

actually “spontaneously broken”. To make the “symmetry breaking” claim more explicit, let541

us allow {b̄i} to fluctuate (see a more general discussion around Eq. (68)). Let us denote the542

states in the enlarged Hilbert space as |{bi}, d0〉, with the “¯" removed to indicate that they543

can fluctuate. Note that {bi} are subject to the constraint (49). The state |{bi},d0〉 can be544

equivalently labeled as |{di}〉, with di = d−1
i−1

bi . In the notation |{di}〉, each di can fluctuate545

freely in N. With this preparation, the selection of b̄i corresponds to adding the action546

H ′ = −∆
∑

i

δd−1
i−1

di ,b̄i
(51)

and taking the limit ∆→∞. The interaction H ′ describes a kind of “ferromagnetic” interac-547

tion between di and di−1, and it is symmetric under N. In particular, if b̄i = 1, the interaction548

becomes −δdi−1,di
. It is now obvious that the ground state of H ′ spontaneously breaks the549

symmetry group N.550

4 Discussions551

4.1 Gauge choice of F and 1D SPT states552

In category theory, F symbol is not a gauge invariant quantity. Given CG , one can take different553

gauge choices for F . Since the Hamiltonian (11) explicitly depends the F symbol, we expect554
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the ground states to be dependent on the gauge choices of F too. In fact, gauge-equivalent F555

symbols can lead to inequivalent CG-symmetric ground states. Loosely speaking, these distinct556

ground states can be thought of differing by 1D SPT states of CG category symmetry.557

To demonstrate this point, we consider the special example CG = (G,ν3), with ν3 being a558

trivial 3-cocycle. Recall from Sec. 3.2 that the F symbol is determined by ν3, and our model559

can be thought of as an effective edge model of a 2D SPT bulk. When ν3 is a trivial 3-cocycle,560

it can be written as561

ν3(g, h, k) =
c2(h, k)c2(g, hk)

c2(gh, k)c2(g, h)
(52)

where c2 is an arbitrary 2-cochain, i.e., a function c2 : G ×G → U(1). Inserting (52) into the562

expression (14) of U(g), we have563

U(g)|α1,α2 . . . ,αL〉 =
∏

i

c2(gαi ,α
−1
i
αi+1)

c2(αi ,α
−1
i
αi+1)

|gα1, gα2, . . . , gαL〉 (53)

If we take a local unitary transformation to the new basis564

|α1, . . . ,αL〉〉 =
∏

i

c2(αi ,α
−1
i αi+1)|α1, . . . ,αL〉, (54)

the symmetry U(g) acts in the conventional onsite fashion565

U(g)|α1,α2 . . . ,αL〉〉 = |gα1, gα2, . . . , gαL〉〉 (55)

This onsite form can be achieved because ν3 is a trivial 3-cocycle, or equivalently because the566

corresponding 2D SPT bulk is trivial. In the new basis, the Hamiltonian (13) of our model is567

given by568

〈〈αi−1,α′i ,αi+1|Hi |αi−1,αi ,αi+1〉〉 = w zi

hi

c2(α−1
i−1
αi ,α

−1
i
αi+1)

c2(α−1
i−1
α′

i
,α′−1

i
αi+1)

(56)

It is straightforward to see that the Hamiltonian is symmetric under the onsite symmetry (55).569

So far, c2 is an arbitrary 2-cochain. If we take w zi

hi
= 1 and c2 to be a 2-cocycle, i.e.,570

c2(h, k)c2(g, hk) = c2(gh, k)c2(g, h), the Hamiltonian (56) can be rewritten as571

〈〈αi−1,α′i ,αi+1|Hi |αi−1,αi ,αi+1〉〉 =
c2(α−1

i−1
αi ,α

−1
i
α′

i
)

c2(α−1
i
α′

i
,α′−1

i
αi+1)

(57)

It is precisely the fixed-point group-cohomology model of 1D SPT states proposed in Ref. [2].572

It is known that inequivalent 2-cocycles c2 give rise to topologically distinct gapped SPT states573

of symmetry group G. Therefore, we see that for the trivial ν3, different gauge choices (i.e.,574

different c2) give rises to topologically distinct SPT phases. We remark that, in general, c2 is575

not a 2-cocycle as we do not require our model to sit at a fixed point. Our model may also576

break symmetry spontaneously.577

If ν3 is a non-trivial 3-cocycle, we cannot write ν3 into the form (52). However, we can still578

take different gauge choices by shifting ν3(g, h, k)→ ν3(g, h, k)
c2(h,k)c2(g,hk)
c2(gh,k)c2(g,h) . A nontrivial ν3579

means the symmetry group G carries ’t Hooft anomaly. The ground state cannot be simultane-580

ously non-degenerate, gapped and symmetric. Let us assume a gapless and symmetric ground581

state, and discuss a potential implication from different gauge choices of ν3. From the above582

discussion on the trivial ν3 case, we speculate that different gauge choices of non-trivial ν3583
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correspond to the gapless state to be stacked with different 1D SPT states of the same group G.584

Since SPT states are gapped, stacking them will not modify the gapless spectrum dramatically.585

However, topological properties of the gapless system might be modified. We do not know the586

precise meaning of topological properties of a gapless system yet. It would be interesting to587

explore this question in the future. We note that it might have a close relation to gapless SPT588

phases discussed in Refs. [53,54].589

For a general category CG , it is also possible to study “generalized SPT” phases under590

appropriate definitions. A reasonable definition is that an SPT state is a gapped, symmetric591

and non-degenerate ground state of a Hamiltonian that respects the category symmetry CG .592

However, SPT state may not always exists. For example, as just discussed, if CG = (G,ν3)593

and ν3 is a nontrivial 3-cocycle, it cannot support systems with a gapped symmetric unique594

ground state. If a category symmetry does not support (trivial or nontrivial) SPT phases, it595

is called anomalous, generalizing the concept of ’t Hooft anomaly of group-like symmetries.596

Criteria on whether a category symmetry is anomalous have been studied in Ref. [27]. For597

non-anomalous category symmetry, we expect that different gauge choices of F correspond598

to different CG-symmetric SPT phases. For anomalous category symmetries, implications of599

different gauge choices of F is subtler, as the meaning of “stacking” shall be elaborated before600

we generalize the case of groups. All these are interesting questions to explore in the future.601

4.2 Relation to boundary of 2+1D topological phases602

Our model with symmetry (6) and Hamiltonian (8) can be viewed as a boundary theory of603

2+1D topological phases. More precisely, in this subsection, we show that it can be viewed604

as a boundary theory of 2+1D symmetry enriched string-net model (SESN) defined on a disk605

geometry under certain choice of boundary conditions.606

Let us start with a brief review of the SESN model. It is defined on a trivalent lattice with607

the orientated links. The input data is a G-graded unitary fusion category CG . There are two608

types of degrees of freedom on the lattice. On each oriented link, there lives a |CG|-component609

“spin". Each component of the spin is a simple object a ∈ CG , which is also called a string610

type. On each plaquette, there lives a |G|-component “spin", with each component being a611

group element g ∈ G, as see Fig. 7. The basis vectors of the Hilbert space can be denoted as612

|{al , gp}〉, with l runs over the links and p runs over the plaquettes. The Hamiltonian is613

H = −
∑

v

Av −
∑

l

Pl −
∑

p

Bp (58)

where the sum runs over the vertices (v), the links (l), and plaquettes (p). All Av , Pl and614

Bp are projector operators, with eigenvalues being 0 and 1. The term Av = δabc when acts615

on basis vectors, where a, b and c are the three strings meeting at vertex v , δabc = 1 if616

a, b, c satisfy the fusion rules of CG and δabc = 0 otherwise (again, we assume CG is fusion617

multiplicity free). Assuming the string type on link l is ag ∈ CG , the term Pl = δg,g−1
p gq

,618

where gp and gq are the plaquette spins on left and right of the link l, respectively (under an619

appropriate orientation convention). The term Bp is defined as620

Bp =
1

D2

∑

s∈CG

ds Bs
pŨgs

p (59)

where ds is the quantum dimension of s and D =
q

∑

s d2
s is the total quantum dimension.621

The notation gs is used to denote s ∈ Cgs
. The term Ũgs

p flips the plaquette spin in the following622

way623

Ũgs
p |gp〉 = |gpgs 〉 (60)
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where irrelevant spins are omitted in the notation |gp〉. The Bs
p can be understood as creating624

a string s inside the plaquette p and fusing it into the boundary strings of the plaquette, so625

the matrix element of Bs
p is a product of F symbols. A nice property of the SESN model is that626

all the projectors Av , Pl and Bp commute with each other, making the model exactly solvable.627

The SESN model has an onsite G symmetry628

Ug =
∏

p

Ug
p , Ug

p |gp〉 = |ggp〉 (61)

The SESN model realizes a topological order which mathematically is the Drinfeld center629

Z(C0). Since it is G symmetric, it is an SET state of the Z(C0) topological order. Readers630

are referred to Refs. [38,39] for more details.631

Now we consider the 2D SESN model on a disk geometry. In Fig. 7, the orange region632

represents the string-net bulk while the blue region represents the boundary. We will see that633

our 1D model lives in the subspace of the 2D SESN model after projecting the bulk into its634

ground state. To match the notation of our 1D model (Fig. 1), we have labeled the corre-635

sponding αi , ai , and xi in the blue region in Fig. 7: the plaquette spins αi ∈ G correspond to636

the domain variables in the 1D model, and the link spins ai ∈ CG and xi ∈ CG correspond to637

the domain wall variables. For convenience, we will call {αi , ai , xi} the boundary spins below.638

Let us consider the following Hamiltonian639

Hdisk = −
∑

v∈all

Av −
∑

l∈all

Pl −
∑

p∈bulk

Bp (62)

where p runs only over the orange “bulk plaquette” in Fig. 7. The projectors Av , Pl and Bp are640

the same as above. There is an ambiguity on Pl for the outermost links of the disk. To fix this641

ambiguity, we assume that the empty region outside the disk is a big plaquette on which lives642

a “ghost” spin gempty. We set the “ghost” spin gempty = 1 as a choice of boundary conditions.643

This choice corresponds the convention that the empty region below the horizontal line in644

Fig. 1a is taken to be the identity domain. Under this convention, all Pl can be defined in the645

same way. All terms in (62) commute.646

We would like to find the ground-state subspace of Hdisk. We will see that it is highly647

degenerate, and the degeneracy comes from the states of boundary spins. First of all, we note648

that, in the ground-state subspace, the requirements Av = Pl = 1 on the boundary spins (in649

the blue region) are exactly those we impose when building up the Hilbert space of our 1D650

model (Sec. 2.2). For the convenience of later discussions, we define a subspace HAv=Pl=1 in651

which Av = Pl = 1 are fulfilled for all v ’s and l ’s. The ground-state space HGS ⊂ HAv=Pl=1.652

To find HGS, we note that all terms in Hdisk does not change the boundary spins {αi , ai , xi}.653

Then, we can diagonalize Hdisk in the subspace with fixed {αi , ai , xi}. We claim that, for a654

fixed set {αi , ai , xi} that satisfies the requirements Av = Pl = 1, the ground-state subspace is655

one-dimensional. That is, the ground-state subspace656

HGS =
⊕

{αi ,ai ,xi}
HGS
{αi ,ai ,xi}

(63)

where each space HGS
{αi ,ai ,xi}

is one-dimensional.657

We need to showHGS
{αi ,ai ,xi}

is one-dimensional for given {αi , ai , xi} that statisfy Av = Pl = 1.658

To simplify the calculation, we make use of the fact that the SESN bulk ground state is a fixed-659

point wave function, such that topological quantities, specifically ground-state degeneracy for660

our purpose, are invariant if we add or remove vertices, links or plaquettes in the bulk (orange661

region in Fig. 7). For detailed discussions about this property, readers may consult Ref. [55]662

(strictly speaking, only the original string-net model was discussed there, but we believe it663
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Figure 7: Trivalent lattice of 2D symmetry-enriched string-net model. The blue re-
gion corresponds to the boundary of the model.
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Figure 8: (a) Lattice with only one bulk plaquette. (b) and (c) States in HAv=Pl=1
after proper F moves. The dashed lines wL and zL correspond to the trivial string.
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can be straightforwardly generalized to the SESN model). With this property, we choose a664

simple graph, shown in Fig. 8(a), which contains only one bulk plaquette. On this lattice,665

besides the boundary spins {αi , ai , xi}, the only bulk degrees of freedom are the link spins666

{yi} and a central plaquette spin gp . A general basis state is labeled as |{αi , ai , xi , yi , gp}〉. In667

following discussion, we will restrict ourselves in the subspace HAv=Pl=1. In this subspace, the668

Hamiltonian Hdisk effectively contains only one Bp term associated with the central plaquette.669

To proceed, we perform “basis transformations” for HAv=Pl=1. More precisely, we will670

perform a transformation within the space671

H{αi ,gp} = span
�

|{αi , ai , xi , yi , gp}〉|ai , xi , yi ∈ CG, Av = Pl = 1,∀ v, l
	

, (64)

where {αi} and gp are fixed, and672

HAv=Pl=1 =
⊕

{αi ,gp}
H{αi ,gp}. (65)

Because of the constraint Av = 1 for all v ’s, the states in H{αi ,gp} can be viewed of as fusion673

states of objects {ai , xi , yi}. In this view, we can then perform F moves which transform674

H{αi ,gp} into a different basis. Such transformation is not a standard basis transformation on675

lattice, as the underlying lattice structure is modified. However, it works well for our purpose of676

counting dimensions of the constrained Hilbert space H{αi ,gp}. First, we perform F moves and677

turn Fig. 8(a) into Fig. 8(b). Basis vectors in Fig. 8(b) are denoted as |αi , ai , xi , wi , yL, gp〉,678

subject to Av = Pl = 1. An important feature is that the total fusion channel wL of {ai}679

(dashed line in Fig. 8(b)) must be 1. To see that, we recall a basic diagrammatic relation in680

fusion category theory [40]:681

=

c

c′

ba δc,c′ (66)

The perimeter of the central plaquette is a special case of this relation with c′ = 1 and c = wL.682

Hence, wL = 1. Then, the yL string decouples from the rest strings.683

Now we make two claims for states in Fig. 8(b): (i) {wi} are completely fixed by {αi , ai , xi}684

due to constraints Av = Pl = 1 and thereby are redundant and (ii) the remaining degeneracy685

due to gp and yL is completely lifted by the Bp term associated with the central plaquette in686

Hdisk. Under these two claims, we then immediately have HGS
{αi ,ai ,xi}

is one-dimensional.687

The first claim can be shown by performing additional F moves into Fig. 8(c). Note that688

these F moves do not touch on {wi}. Accordingly, if {wi} are fully fixed by other spins in689

Fig. 8(c), so are they in Fig. 8(b). Indeed, in the basis of Fig. 8(c), we have wi = zi for every690

i. This is obtained by repeatedly applying the relation (66) to Fig. 8(c).691

Given the first claim, we then have all valid states in HAv=Pl=1 with fixed {αi , ai , xi} form692

the following space693

H{αi ,ai ,xi} = span
�

|yL, gp〉|yL ∈ CG, gp = αLgyL

	

(67)

where the condition gp = αLgyL
follows from the constraint Pl = 1. We note that H{αi ,ai ,xi}694

is always |CG|-dimensional. The action of Hdisk = −Bp is closed in H{αi ,ai ,xi}. To prove the695

second claim, we need to calculate the ground state degeneracy inside H{αi ,ai ,xi}. We recall696

that Bp is a projector, i.e., B2
p = Bp . Hence, the ground states have Bp eigenvalue 1 and the697

excited states have Bp eigenvalue 0. Then, the ground state degeneracy is given by Tr(Bp).698
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We show in Appendix B that Tr(Bp) = 1 in H{αi ,ai ,xi} for arbitrary {αi , ai , xi}, i.e., HGS
{αi ,ai ,xi}

699

is one-dimensional.700

To summarize, we have shown that the ground-state space HGS of Hdisk in (62) is of the701

form (63), with HGS
{αi ,ai ,xi}

being one-dimensional. That is, HGS is fully described by the bound-702

ary spins {αi , ai , xi} subject to the constraints Av = Pl = 1 for all relevant vertices and links.703

To exactly match our 1D model, we introduce additional interaction between the boundary704

spins705

H ′ = H1D −∆
∑

la

K la
(68)

where H1D is the 1D Hamiltonian in Sec. 2.4, and∆ is a large positive number. The sum in the706

second piece runs over all links la that {ai} lives. When acting on basis states, the operator707

K la
= δ(ai , āα−1

i−1
αi
) , where āg is the selected object from Cg discussed in Sec. 2.2 (we have708

added a bar in the notation to distinguish it from ai on links). In the limit ∆ → ∞, this709

boundary theory matches exactly to our 1D model.710

In the above discussions, we have focused on the Hilbert space and Hamiltonian, and have711

not touched on symmetry. The SESN model has an onsite G group symmetry, while the 1D712

model is not symmetric under onsite G, instead is symmetric under CG . To understand this, let713

us apply Ug of (60) onto HGS. Let |{αi , ai , xi}〉 be the state in HGS
{αi ,ai ,xi}

. Due to the constraints714

Pl = 1 and the boundary condition gempty = 1, we have xi ∈ Cαi
and ai ∈ Cα−1

i−1
αi

. Then,715

Ug|{αi , ai , xi}〉 ∼ |gαi , ai , x ′
i
〉 with x ′

i
∈ Cgαi

. On the one hand, since x ′
i
/∈ Cαi

, the ground-716

state |{αi , ai , xi}〉 transforms nontrivially under G, making it broken in some sense. On the717

other hand, the choice of {x ′
i
} is not unique. To fix this ambiguity, we think of Ug =

∏

p Ug
p718

as a union of all plaquettes and take a string s ∈ Cg as its termination on the boundary. This719

termination means that, after applying Ug, we further fuse s onto {xi} from outside. Let us720

denote the string fusion operator as Bs
0, such that the combination sends |{αi , ai , xi}〉 to the721

state Bs
0Ug|{αi , ai , xi}〉. One may notice that it is similar to the Bp operator in the Hamiltonian,722

except that Ug has a left group action and Bs
0 fuses the s string from outside of the plaquette in723

comparison to “right action” and “fusion from inside” for Bp in the Hamiltonian. The collection724

{Bs
0Ugs } with s running over all simple objects in CG are exactly the category symmetries725

discussed in Sec. 2.3.726

Finally, we remark that while we have taken the limit ∆→∞ in (68), one may also set727

∆ = 0 and allow {ai} to fluctuate more freely, such that different boundary theories result.728

In addition, we only consider the case that bulk is in the ground state. If the bulk contains729

a topological defect, including both anyon excitations and G symmetry defects, there must730

be a corresponding anti-defect on the boundary. (Note that it is enough to consider only one731

topological defect in the bulk. Multiple defects can always be fused into one.) This will make732

at least one of the constraints Av = Pl = 1 to be violated at the boundary, corresponding to733

insertion of twisted boundary conditions associated with the category symmetry CG in the 1D734

systems.735

5 Summary and outlook736

In summary, we have constructed a 1D quantum lattice model that explicitly displays category737

symmetry CG . The model can be viewed as an interpolation between the anyon chain model738

and edge model of 2D bosonic SPTs, and as an edge model of 2D bosonic SETs. Our numerical739

results show that the category symmetry constrains the model to the extent that it has a large740

likelihood to be quantum critical. Hence, this model, with different input categories and tuning741
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parameters, is a good source for studying gapless phases. It is clear that more numerical effort742

is desired.743

We discus a few possible future directions.744

1. One may generalize our model to G-graded super or spin unitary fusion category (we745

notice that a related work is done in Ref. [56]). Super fusion category describes defects746

in fermionic systems, and spin fusion category is the corresponding category after gaug-747

ing fermion parity. [57,58] Our model can be readily generalized to spin fusion category,748

which has no difference to the usual unitary fusion category except that it has a special749

simple object, the fermion ψ. To make a connection to fermionic SPT/SET edges, one750

needs to find a way to ungauge the fermion parity, or equivalently gauge the dual sym-751

metry U(ψ). This gauging procedure has been worked out in Ref. [37] in the example752

of Ising fusion category (the simplest spin fusion category). It is interesting to work out753

the general case and understand the connection to fermionic SPT/SET edges.754

2. Another generalization is to make the variable xi valued in a module category M over755

a fusion category C [16]. It is known that a general way to terminate the string-net756

model at the boundary is to use module category [59]. The recent study on duality of757

category symmetry in Ref. [33] precisely uses this language. The essence of having a758

G-grading structure in the input data CG of our model is to enable a partial ungauging759

of the category symmetry. We expect that generalization to module category may help760

to ungauge general category symmetry in our model, which is essentially the duality761

discussed in Ref. [33].762

3. CG serves both as the input data and as the category that characterizes the symmetries of763

our model. However, CG may not be the maximal category symmetry of the model. [60]764

For example, in the case that CG = CIsing as input, the maximal category symmetry is765

CIsing × CIsing when the low-energy physics is a critical Ising CFT. More generally, one766

may expect a larger category symmetry Z(CG) (the Drinfeld center of CG) in the gapless767

state of the model [19]. Accordingly, in our construction, we have not made a full use768

of category symmetry in terms of constraining the low-energy physics. It is interesting769

to study how to construct the models with larger category symmetry.770

4. It is also interesting to extend this construction to higher dimensions. In this perspective,771

one needs to make use of higher fusion categories [20–22].772
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A Symmetry and Hamiltonian780

In this appendix, we give a derivation of the explicit expression (6) of the symmetry U(yh).781

We also explicitly show that the Hamiltonian (8) is invariant under U(yh).782
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A.1 Derivation of Eq. (6)783

The graphical representation of U(yh) is shown in Fig. 2. Under the action of U(yh), the784

domain variables αi are simultaneously mapped to hαi . Since α−1
i
αi+1 is unchanged, the do-785

main wall defect ai keeps invariant under U(yh). Meanwhile, the variables xi will be mapped786

to other variables x ′
i

787

U(yh) : |{αi , xi}〉 → |{hαi , x ′i }〉. (69)

In general, U(yh)|{αi , xi}〉 is a linear superposition of |{hαi , x ′
i
〉}. Below we show that the788

matrix element 〈{hαi , x ′
i
}|U(yh)|{αi , xi}〉 is given by (6). The derivation is divided into four789

steps, as follows. Note that this derivation is equivalent to that for the usual anyon-chain790

models [28].791

1. Add a trivial line connecting yh and xi+1 as in (70) and perform an F move which would792

give an amplitude
�

(F yhxi+1xi+1
yh

)†
�x ′

i+1

1
=

√

√ dx ′
i+1

dyh
dxi+1

δyhxi+1x ′
i+1

. Here, δyhxi+1x ′
i+1
= N

x ′
i+1

yhxi+1
= 0793

or 1. Summation over x ′
i+1

is not shown.794

√

√

√

dx ′
i+1

dyh dxi+1

ai−1 ai ai+1 ai+2

xi−2 xi−1 xi xi+1 xi+2

yh

ai−1 ai ai+1 ai+2

xi−2 xi−1 xi x ′
i+1

xi+2

yh (70)

2. Perform a F move associated with the three defects yh, xi , ai+1, with x ′
i+1

viewed as the795

total fusion channel, as in (71). We call this procedure “sliding yh across ai+1”. It gives796

an amplitude
�

(F yh,xi ,ai+1

x ′
i+1

)†
�x ′

i

xi+1

.797

ai−1 ai ai+1 ai+2

xi−2 xi−1 xi x ′
i+1

xi+2

yh

(F
yh,xi ,ai+1
x ′
i+1

)
†x ′

i
xi+1

ai−1 ai ai+1 ai+2

xi−2 xi−1 x ′
i

x ′
i+1

xi+2

yh (71)

3. Continue the second step, and keep sliding yh across the rest a j , as in (72). This gives798

the amplitude
�

∏

j 6=i,i+1

(F
yh,x j ,a j+1

x ′
j+1

)
†x ′

j
x j+1

�

(F yh,xi+1,ai+2

x ′′
i+2

)
†x ′

i+1
xi+2

.799

ai−1 ai ai+1 ai+2

xi−2 xi−1 x ′
i

x ′
i+1

xi+2

yh

�

∏

j 6=i,i+1

(F
yh,x j ,a j+1

x ′
j+1

)
†x ′

j
x j+1

�

×(F
yh,xi+1,ai+2
x ′′
i+2

)
†x ′

i+1
xi+2

ai−1 ai ai+1 ai+2

x ′
i−2

x ′
i−1

x ′
i

xi+1 x ′
i+2

x ′′
i+1

x ′
i+1

yh

(72)

4. Shrink the “bubble" as in (73) which gives a coefficient

√

√dxi+1dyh
dx ′

i+1

and imposes the con-800

28



SciPost Physics Submission

dition x ′
i+1
= x ′′

i+1
.801

ai−1 ai ai+1 ai+2

x ′
i−2

x ′
i−1

x ′
i

xi+1 x ′
i+2

x ′′
i+1

x ′
i+1

yh

√

√

√

√

dxi+1dyh
dx ′

i+1

δ
x ′
i+1

x ′′
i+1

ai−1 ai ai+1 ai+2

x ′
i−2

x ′
i−1

x ′
i

x ′
i+1

x ′
i+2

(73)

Combining all the steps and multiplying all the amplitudes, we obtain Eq. (6).802

A.2 Hamiltonian is symmetric under U(yh)803

Now we show that the Hamiltonian (8) is symmetric under U(yh) (6). Specifically, we show804

HiU(yh) = U(yh)Hi when acting on any state. The graphical representation of U(yh) in Fig. 2805

has the advantage of being basis independent. We will make use of this and mainly work in806

the basis (9). We will act Hi and U(yh) on an arbitrary state in different orders, and compare807

the final sates, which turn to be the same.808

On the one hand,809

U(yh)Hi αi−1 αi αi+1

xi−1 xi xi+1

ai ai+1

=
∑

zi

�

F xi−1ai ai+1
xi+1

�zi

xi
U(yh)Hi αi−1

αi

αi+1

xi−1

zi

xi+1

ai ai+1

=
∑

α′
i

∑

zi

w zi

α−1
i
α′

i

�

F xi−1ai ai+1
xi+1

�zi

xi
U(yh) αi−1

α′
i
αi+1

xi−1

zi

xi+1

a′
i

a′
i+1

=
∑

α′
i

∑

zi

∑

{x ′
j
| j 6=i}

w zi

α−1
i
α′

i

�

F xi−1ai ai+1
xi+1

�zi

xi
U
{x ′

i
}

{xi},yh,zi
hαi−1

hα′
i
hαi+1

x ′
i−1

zi

x ′
i+1

a′
i

a′
i+1

(74)

where we have used the basis transformation (9) in the first line, and the definition (10) of Hi810

in th second line. The coefficient in the last line is811

U
{x ′

i
}

{xi},yh,zi
=
�

F yh,xi−1,zi

x ′
i+1

�†x ′
i−1

xi+1

∏

j 6=i,i+1

�

F
yh,x j ,a j+1

x ′
j+1

�†x ′
j

x j+1

. (75)
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which is obtained in the same way as Appendix A.1. On the other hand,812

HiU(yh) αi−1 αi αi+1

xi−1 xi xi+1

ai ai+1

=
∑

zi

�

F xi−1ai ai+1
xi+1

�zi

xi
HiU(yh) αi−1

αi

αi+1

xi−1

zi

xi+1

ai ai+1

=
∑

zi

∑

{x ′
j
| j 6=i}

�

F xi−1ai ai+1
xi+1

�zi

xi
U
{x ′

i
}

{xi},yh,zi
Hi hαi−1

hαi

hαi+1

x ′
i−1

zi

x ′
i+1

ai ai+1

=
∑

α′
i

∑

zi

∑

{x ′
j
| j 6=i}

�

F xi−1ai ai+1
xi+1

�zi

xi
U
{x ′

i
}

{xi},yh,zi
w zi

α−1
i
α′

i

hαi−1

hα′
i
hαi+1

x ′
i−1

zi

x ′
i+1

(76)

where we have used (hαi)−1(hαi+1) = α−1
i
αi+1. Comparing (74) and (76), we see the final813

expressions are exactly the same. As the initial state and i are arbitrary, we have proven814

HU(yh) = U(yh)H for any yh.815

B Proof of Tr(Bp) = 1 in H{αi ,ai ,x i}816

In this appendix, we show that Tr(Bp) = 1 in the space H{αi ,ai ,xi} with given {αi , ai , xi}. We817

will represent a state |Ψ〉 in H{αi ,ai ,xi} graphically as818

|Ψ〉 = αLgp

yL

(77)

where yL can be any simple object in CG , gp = αLgyL
, and other spins on the lattice (Fig. 8(b))819

are omitted as Bp does not act on them. Since gp is fixed by yL and αL, the dimension of820

H{αi ,ai ,xi} is |CG|. The term Bp is defined as Bp =
1

D2

∑

s∈CG
ds Bs

pŨgs
p , where D =

q

∑

s d2
s and821

Bs
pŨgs

p αLgp

yL

= Bs
p αLgpgs

yL

= αLgpgs

yL

s =
∑

y ′L

N
y ′L
yL,s αLgpgs

y ′L
(78)

In the last equation, we have fused yL and s strings, with N
y ′L
yL,s = 0, 1 being the fusion co-822

efficient. Note that individual action of Ũgs
p or Bs

p goes out of the space H{αi ,ai ,xi}. We have823

omitted arrows of the strings for simplicity, which can be easily restored.824
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We calculate Tr(Bp) as follows:825

Tr(Bp) =
∑

yL∈CG

αL gp

yL

Bp αLgp

yL

=
∑

yL∈CG

∑

s∈CG

ds

D2 αL gp

yL

Bs
pŨgs

p αLgp

yL

=
∑

yL∈CG

∑

s∈CG

∑

y ′L∈CG

ds

D2
N

y ′L
yL,s αL gp

yL

αLgpgs

y ′L

=
∑

yL∈CG

∑

s∈CG

∑

y ′L∈CG

ds

D2
N

y ′L
yL,sδyL,y ′L

δgs ,1

=
∑

yL∈CG

∑

s∈C0

ds

D2
N yL

yL,s =
∑

yL∈CG

d2
yL

D2
= 1 (79)

In the third line, we have inserted Eq. (78). In the last line, we have used da = dā, N c
ab
= N b̄

ac̄826

and dadb =
∑

c dc N c
ab

for any a, b, c ∈ CG , such that
∑

s ds N yL
yL,s =

∑

s ds̄ N s̄
yL,yL

= d2
yL

. Note827

that if N yL
yL,s 6= 0, we must have s ∈ C0 due to the G-grading structure in CG .828
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