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Abstract

We construct a family of one-dimensional (1D) quantum lattice models based on G-
graded unitary fusion category CG. This family realize an interpolation between the
anyon-chain models and edge models of 2D symmetry-protected topological states, and
can be thought of as edge models of 2D symmetry-enriched topological states. The mod-
els display a set of unconventional global symmetries that are characterized by the input
category CG. While spontaneous symmetry breaking is also possible, our numerical ev-
idence shows that the category symmetry constrains the models to the extent that the
low-energy physics has a large likelihood to be gapless.
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1 Introduction31

It is hard to overstate the importance of symmetry in physics. Over the past decade, the role32

of symmetry has been extensively studied in topological states of matter, such as symmetry-33

protected topological (SPT) phases [1–3] and symmetry-enriched topological (SET) phases34

[4]. A lot of novel quantum states and phenomena are discovered by studying the interplay35

between symmetry and topology in quantum many-body systems.36

The study of topological phases of matter in turn has advanced our understanding of sym-37

metry. One of such advances is on ’t Hooft anomaly of symmetry [5, 6]. ’t Hooft anomaly38

is invariant under renormalization group flows, so it becomes a powerful tool to constrain39

the low-energy physics of a system. An anomalous system cannot admit a symmetric gapped40

non-degenerate ground state, but has to break symmetry spontaneously, or be gapless, or be41

topologically ordered (in two and higher dimensions) [7]. It is now understood that an anoma-42

lous system can be thought of as the boundary of an SPT bulk. In fact, for a given symmetry,43

’t Hooft anomalies are in one-to-one correspondence to SPT phases in one higher dimension.44

Because of the tremendous progress in the study of SPT phases in recent years, many new45

types of ’t Hooft anomalies are discovered. One of the important instances is the famous Lieb-46

Shultz-Mattis theorem and its generalizations [8–10], which are actually consequences of ’t47

Hooft anomalies involving lattice translation [11].48

Recently people are interested in generalizing the concept of symmetry itself. Ordinary49

symmetries in quantum many-body systems are characterized by operators that act on the50

whole spatial manifold and form a group mathematically. One kind of generalized symmetries51

are p-form symmetries, which act on submanifolds of spatial co-dimension p [12, 13]. For52

example, closed string operators associated with moving Abelian anyons in the 2D toric-code53

model are 1-form symmetries [14]. Another kind of generalized symmetries are non-invertible54

symmetries, whose corresponding operators form an algebra that does not admit a definition of55

inverse (i.e., beyond group). Non-invertible symmetries of a 1D system are naturally described56

by a fusion category [15–19]. In high dimensions, invertible and/or non-invertible symmetries57

of various co-dimensions collectively are characterized by higher fusion category, which itself58

is a subject still under development [20–26]. In this work, we will refer to all these generalized59

symmetries as category symmetries.60
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In fact, ’t Hooft anomalies of ordinary finite symmetries can be well described within the61

language of category. For example, consider a 1D quantum system with a finite unitary sym-62

metry group G. The ’t Hooft anomalies are described by a 3-cocycle ν3 : G×G×G→ U(1) [2].63

The doublet (G,ν3) forms a special fusion category, in which all simple objects are invertible.64

With this connection in mind, it is then not hard to understand that general category sym-65

metries are also invariant under renormalization group flow and provide strong constraints66

on the low-energy physics of a theory [27]. Similar to conventional group-like symmetries,67

it is also possible to define anomaly-free and anomalous category symmetries [19,27,28]. In68

most of our discussions and statements, we implicitly assume that the category symmetries69

are anomalous, which are our main interests.70

In this work, we pursue the idea of constraining low-energy physics with category symme-71

try in the particular context of building 1D quantum lattice models. A previous example of72

such lattice models is the Fibonacci anyon-chain model [29–31]. It describes a 1D array of in-73

teracting Fibonacci anyons, and has a generalized symmetry described by the Fibonacci fusion74

category. It turns out that the model is pinned at the tri-critical Ising conformal field theory75

(CFT) at low energy by the Fibonacci category symmetry. Classical counterparts of anyon-76

chain models are studied in Refs. [32, 33] and a recent on duality of category symmetry and77

extension to module category is given in Ref. [34] using the framework of the tensor-network78

states. Another family of such 1D lattice models are the effective edge theory of 2D SPT lattice79

models, e.g., those in Refs. [35–38]. These models respect a non-onsite symmetry group G80

with a nontrivial 3-cocycle ν3, or equivalently, a category symmetry C = (G,ν3). It is found81

that the low-energy physics of these models in a very large parameter space are gapless CFTs82

(spontaneous symmetry breaking is another possibility).83

We construct a family of 1D quantum lattice models based on a general G-graded uni-84

tary fusion category (UFC) CG . A fusion category equipped with a G-grading structure has a85

decomposition CG =
⊕

g∈G Cg, with G being a finite group (see Sec. 2.1). In our model, CG86

serves both as the input data and as the characterization of symmetries. We start by building a87

1D lattice Hilbert space out of CG , which in general does not have a tensor-product structure.88

The language of fusion category allows us to naturally associate every object in CG with an89

operator, which we will use as symmetry operator. Then, we design a minimal Hamiltonian90

that commutes with these symmetry operators. It turns out that our model unifies the anyon91

chain model [29] and edge model of 2D bosonic SPTs [37]. When G is trivial, it reduces to the92

anyon chains; when C0 is trivial (“0” denotes the identity of G), i.e., CG = (G,ν3), it reduces to93

the SPT edge model (our model is slightly more general than Ref. [37] by having more param-94

eters). Therefore, our model provides an interpolation between the anyon-chain model and95

the SPT edge model. For general CG , we find that our model can be thought of as a boundary96

theory of 2D SET models (under an appropriate boundary condition) [39,40].97

We have numerically studied the low-energy physics of a few examples of our model. As98

mentioned above, we are mainly interested in anomalous category symmetries. A sufficient99

condition for a category to be anomalous is that it contains objects with non-integer quan-100

tum dimensions [27], and most of our examples satisfy this condition. In the example of101

CG = (Z2,ν3) with ν3 being the nontrivial 3-cocycle, the phase diagram shows an extended102

quantum critical region in the parameter space which are characterized by Luttinger liquids103

(Fig. 4). When CG is the Ising fusion category (Sec. 3.3), we find that the low-energy physics is104

characterized by the critical Ising CFT at certain choices of parameters (this example is iden-105

tical to that in Ref. [38]). For the Z3 Tambara-Yamagami category (Sec. 3.4), we find the106

low-energy physics is described by the critical 3-state Potts CFT. While more numerical effort107

is needed for investigating the whole phase diagram of the latter examples, our current results108

have already demonstrated that anomalous category symmetry CG constrains the model to the109

extent that the low-energy physics has a large likelihood to sit at quantum criticality. We note110
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that Ref. [41] has constructed a class of exactly solvable models with fusion category symme-111

try. The fusion category symmetry of these models is non-anomalous, so the models admit a112

symmetric gapped non-degenerate ground state.113

The rest of the paper is outlined as follows. In Sec. 2, we build up the model. After114

introducing some basic knowledge of G-graded UFC in Sec. 2.1, we construct the Hilbert space115

in Sec. 2.2, write out explicit expressions of the symmetry operators in Sec. 2.3, and construct116

a minimal symmetric Hamiltonian in Sec. 2.4. We then present a few examples of our model117

in Sec. 3, including the two limiting cases (G being trivial and C0 being trivial), Ising fusion118

category, Tambara-Yamagami category, etc. We also present some numerical results in Sec. 3.5.119

We discuss the issue of the gauge choice of F symbol and its consequence to the model in120

Sec. 4.1, and the relation of our model to the boundary of SET models in Sec. 4.2. In Sec. 5,121

we make a summary and discuss a few future directions. Appendices include some technical122

details.123

2 Model124

In this section, we describe the model. We begin with some basics of G-graded unitary fusion125

category, which describes the input data of the model. The Hilbert space is constructed out of126

fusion spaces of a G-graded UFC, which, in general, does not admit a tensor product structure.127

Then, we write down a series of generalized symmetries and construct a general minimal128

Hamiltonian that respects these symmetries. The generalized symmetries are characterized by129

the input category CG too.130

2.1 Basics of G-graded fusion category131

The input data of our model is a G-graded unitary fusion category CG [42, 43], where G is132

a finite group. A category CG contains a finite list of simple objects,1 denoted as a, b, c,133

etc. Composite objects are written as a formal sum of simple objects
∑

a naa, with na a non-134

negative integer. Simple objects follow a set of fusion rules a × b =
∑

c Nab
c c, where the135

integer Nab
c ≥ 0 is called fusion multiplicity. In general, fusion rules are not commutative,136

i.e. a × b 6= b × a. There exists a special object 1, called the identity or vacuum, satisfying137

1× a = a×1 = a for any a. Every simple object comes with a quantum dimension da, which138

satisfies dadb =
∑

c N c
ab

dc . D =
q

∑

a d2
a is called the total quantum dimension. Every fusion139

channel c in a×b with N c
ab
6= 0 is associated with a vector space Vab

c of dimension N c
ab

, called140

the fusion space. The basis state |ab; c,µ〉 ∈ Vab
c can be graphically represented as141

|ab; c,µ〉 =

a b

c

µ . (1)

An important quantity of CG is the F symbol, which is an isomorphism Fabc
d

:
⊕

e V
ab
e ⊗V

ec
d
→
⊕

f V
a f
d
⊗Vbc

f
.142

With the basis vectors, it is given by143

a b c

d

µ

ν
e =

∑

fαβ

�

Fabc
d

� fαβ

eµν

a b c

d

α

β
f (2)

1If a fusion category is braided, simple objects correspond to anyons in two-dimensional topological order. In
our model, a braiding structure in CG is not required.
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Since we can perform basis transforms in Vbc
c , the F symbols depend choices of basis. In144

addition, they also satisfy consistency conditions, known as the pentagon equations [42].145

Throughout the paper, we assume that CG is multiplicity-free, i.e., N c
ab
= 0 or 1, for simplicity.146

Accordingly, the index µ in (1) is not needed.147

The above properties are true for any unitary fusion category. The G-grading structure148

means that CG has the following decomposition149

CG =
⊕

g∈G

Cg (3)

with 1 ∈ C0.2 If a ∈ Cg, we will often denote it as ag. The grading structure is respected by150

fusion, ag × bh =
∑

cgh
N c

ab
cgh. Given a set of F symbols Fagbhck , we can modify it to obtain a151

new G-graded fusion category C̃G as follows152

F̃agbhck = Fagbhckν3(g, h, k) (4)

where ν3(g, h, k) is a 3-cocycle of G. If we define Dg =
Ç
∑

a∈Cg
d2

a , then Dg = D0 for all g.153

Then, D = D0

p

|G|.154

Such G-graded fusion categories naturally appear in the study of SET phases. For more155

details of unitary fusion categories, readers may consult Ref. [16, 42, 43]. For our purpose156

of constructing models, we will need the set of simple objects {a}, fusion rules described by157

{N c
ab
}, explicit expressions of F symbols, and the G-grading structure.158

2.2 Hilbert space159

The Hilbert space H of our model is defined on a 1D lattice of length L, shown in Fig. 1. It has160

the following structure161

H =
⊕

{αi}
Hfusion
{αi}

, (5)

where αi ∈ G is a “domain” variable in the ith unit cell, and Hfusion
{αi}

is the fusion space of162

objects {ai} with ai ∈ CG . The set {ai} is determined by the domain configuration {αi} as163

follows: each {αi} defines a series of “domain walls” labeled by gi = α−1
i−1
αi (vertical lines164

in Fig. 1a), and an object ai ∈ Cgi
is then picked out and put on the ith domain wall. We165

pre-select a particular object ag ∈ Cg for every g, such that ai is determined by gi via ai = agi
.166

Let A = {ag|∀g ∈ G} be the collection of selected objects. Then, the triplet (G,CG,A) defines167

the Hilbert space H.168

Let {xi} be the possible fusion channels of {ai}. The space Hfusion
{αi}

is spanned by fusion169

states of {ai}, pictorially described by Fig. 1b. To avoid ambiguity, we take xi ∈ Cαi
. This170

corresponds to the choice that the empty region below the horizontal line in Fig. 1a is viewed171

as the identity domain, i.e., αempty = 1. Accordingly, xi is the domain wall between αempty and172

αi . Combining domain variables {αi} and fusion channels {xi}, we denote the basis vectors173

of H as |{αi , xi}〉. In most part of the paper, we assume periodic boundary conditions.174

A few remarks are in order. First, in general, H does not have a tensor-product structure.175

In the special case that C0 = {1}, Hfusion
{αi}

is one-dimensional. This makes H a tensor-product176

vector space, H =⊗i V
G
i

, where VG
i
= span{|αi〉|αi ∈ G}. Second, we have selected a subset177

A ⊂ CG when building up the Hilbert space. Physically, we view objects in Cg as different178

topological defects that can live on a g domain wall. Those defects in A are selected by hand179

2We use either 0 or 1 to denote the identity of G depending on the context.
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(a)
ai−1 ai ai+1 ai+2

αi−1 αi αi+1

xi−2 xi−1 xi xi+1 xi+2

(b)
ai−1 ai ai+1 ai+2

xi−2 xi−1 xi xi+1 xi+2

Figure 1: (a) Lattice of our 1D model. Blue regions are viewed as domains, and lines
are viewed as domain walls. Each unit cell contains two dynamical variables αi and
xi (empty circle), and a slaved variable ai (black dot). The “domain” variable αi is
an element of a finite group G. The empty region below the horizontal line is viewed
as the domain associated with the identity of G. A given configuration {αi} fixes
the “domain wall” variables {ai}. Each ai is a pre-selected object in Cα−1

i−1
αi
⊂ CG ,

where CG is a G-graded fusion category. The second dynamical variable xi ∈ Cαi
is a

fusion channel of xi−1× ai . Every valid configuration {αi , xi} gives a quantum state
|{αi , xi}〉, which all together form a basis of the lattice model. (b) The domain wall
lines form a fusion tree of the objects {ai}.

in the current construction. Alternatively, one may allow ai to vary in Cgi
and add a term in180

the Hamiltonian to select the particular defect ag ∈ A energetically (see a discussion around181

Eq. (71) in Sec. 4.2). However, this will make the Hilbert space larger and less friendly for182

numerical calculations. Third, if CG has nontrivial fusion multiplicities, one needs to include183

another variable µi = 1, . . . , N xi
xi−1ai

at the vertex associated with fusing xi−1 and ai into xi .184

It is neglected in our construction as we always assume that CG is multiplicity-free.185

2.3 Category symmetry186

An advantage of using the fusion category language to build up the Hilbert space is that it helps187

to naturally define a set of operators which will serve as symmetry operators in our model. An188

interesting feature is that these operators follow the fusion algebra of CG [Eq. (7)], which in189

general is not group-multiplication-like. Such kind of symmetries are called different names190

in the literature, e.g., algebraic symmetry, categorical symmetry or non-invertible symmetry.191

We will simply call them category symmetry, as opposed to the usual group symmetry. Even if192

in the special case that C0 = {1} and the fusion algebra associated with CG reduces to group193

multiplication of G, we will see that the symmetry group G carries a ’t Hooft anomaly in general194

due to nontrivial F symbols. It implies that our model is not featureless in general, but has to195

either break symmetries or be gapless.196

For each simple object yh ∈ CG , we can write down a symmetry operator U(yh). Under197

the action of U(yh), the domain variable αi is mapped hαi , simultaneously for every i. This198

leaves the domain wall gi = α−1
i−1
αi unchanged, so does the defect ai on it. The action on the199
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ai−1 ai ai+1 ai+2

αi−2 αi−1 αi αi+1 αi+2

xi−2 xi−1 xi xi+1 xi+2
yh

=
∑

{x ′
i
}

L
∏

i=1

�

F yh,xi ,ai+1

x ′
i+1

�† x ′
i

xi+1

ai−1 ai ai+1 ai+2

hαi−2 hαi−1 hαi hαi+1 hαi+2

x ′
i−2

x ′
i−1

x ′
i

x ′
i+1

x ′
i+2

Figure 2: Graphical representation of U(yh). The equation is obtained by fusing a
uniform h domain onto {αi}, and a yh line into {xi}.

fusion channels is associated with the matrix element200

〈{hαi , x ′i }|U(yh)|{αi , xi}〉 =
L
∏

i=1

�

(F yh,xi ,ai+1

x ′
i+1

)†
�x ′

i

xi+1

, (6)

where xi ∈ Cαi
and x ′

i
∈ Chαi

. The matrix element 〈{α′
i
, x ′

i
}|U(yh)|{αi , xi}〉 = 0, if α′

i
6= hαi .201

The operator U(yh) has a graphical representation, shown in Fig. 2: it is represented by fusing202

a uniform h domain and its yh domain wall with respect to the vacuum into the state |{αi , xi}〉.203

We show in Appendix A that the fusion process indeed gives Eq. (6).204

The symmetry operators satisfy the algebraic relation205

U(xg)U(yh) =
∑

zk

N zk
xg yh

U(zk) (7)

This relation follows directly from that fusion processes are associative and the fusion rule is206

given by xg × yh =
∑

zk
N zk

xg yh
zk. One can also use Eq. (6) to explicitly check this algebra.207

As studied in many previous works, this kind of algebraic symmetries can help (although not208

guarantee) a lattice model to sit at quantum criticality. We will demonstrate this when we209

discuss examples in Sec. 3.210

2.4 Hamiltonian211

With the set of symmetries U(yh) in hand, we would like to write down a “minimal” Hamilto-212

nian that respects these symmetries. We will consider a Hamiltonian of the form213

H = −
∑

i

Hi (8)

and require Hi to be an operator that acts only on the (i − 1)th, ith and (i + 1)th unit cells.214

To define Hi , it is convenient to work in an alternative basis. The alternative basis is related215

to the original basis through an F move as follows:216

αi−1 αi αi+1

xi−1 xi xi+1

ai ai+1

=
∑

zi

�

F xi−1ai ai+1
xi+1

�zi

xi

αi−1

αi

αi+1

xi−1

zi

xi+1

ai ai+1

, (9)

7
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where zi runs over all outcomes in the fusion product ai ×ai+1. The term Hi in the new basis217

is given by218

α′
i+1

α′
i

α′
i−1

x ′
i+1

z′
i

x ′
i−1

a′
i+1

a′
i

Hi αi−1

αi

αi+1

xi−1

zi

xi+1

ai ai+1

= w zi

α−1
i
α′

i

δ
α′

i−1
αi−1
δ
α′

i+1
αi+1
δ

x ′
i−1

xi−1
δ

x ′
i+1

xi+1
δ

z′
i

zi
, (10)

where δa′
a = 1 if a = a′, and δa′

a = 0 otherwise. That is, Hi only flips the domain variable αi219

to α′
i
, with the transition amplitude denoted as w zi

α−1
i
α′

i

. We assume the transition amplitude220

only depends on the domain shift hi = α−1
i
α′

i
and the fusion channel zi . One may consider221

a more complicated transition amplitude. However, we find that the current choice is already222

enough to produce interesting results. Hermiticity requires that w z
h−1 = (w

z
h
)∗.223

Using the transformation (9), the nonzero matrix elements of Hi in the original basis are224

given by225

αi+1α′
i

αi−1

xi+1x ′
i

xi−1

a′
i+1

a′
i

Hi αi−1 αi αi+1

xi−1 xi xi+1

ai ai+1

=
∑

zi

w zi

α−1
i
α′

i

�

�

F
xi−1a′

i
a′

i+1
xi+1

�†
�x ′

i

zi

�

F xi−1ai ai+1
xi+1

�zi

xi
, (11)

where the sum runs over those zi ’s that are simultaneously in ai × ai+1 and a′
i
× a′

i+1
. Note226

that F symbols can be zero for certain choices of zi due to incompatible fusion. Our model is227

a natural generalization of the anyon fusion chain model first proposed in Ref. [29].228

The Hamiltonian H is symmetric under the category symmetry U(yh) in (6). An easy way229

to see this is through Eq. (10). In that expression, Hi is independent of xi−1 and xi and230

diagonal in the variable zi . Meanwhile, U(yh) corresponds to flipping all αi and fusing a yg231

string, which does not change zi and only flips xi−1 and xi+1. It is clear that the action of Hi232

and U(yh) commute. For a more explicit derivation, readers are referred to Appendix A.233

We remark that F symbols depend on gauge choices. Since Eq. (11) explicitly depends234

on F , our model has an explicit dependence on the gauge choice. Below we mainly focus on235

examples with gauge-inequivalent F symbols. We discuss some implications of gauge choices236

of F in Sec. 4.1.237

3 Examples238

The model defined in Eqs. (8) and (11) provides an “interpolation” of the anyon-chain model239

[29] and the SPT edge model [37]. The latter two are special cases of our model. More240

generally, our model can be thought of as an edge model of 2D SET phases (see Sec. 4.2).241

Below we discuss how it is related to anyon chains and SPT edge models, and explore a few242

interesting examples with numerical calculations.243

3.1 Anyon chain244

When G is trivial, CG = C0. Then, our model reduces to the well-known anyon chain model.245

In this case, there is no domain variable, i.e., αi = 0. On domain walls, every ai is set to be a246

8
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simple object a ∈ C0. The Hamiltonian (11) then reads247

〈xi−1x ′i xi |Hi |xi−1xi xi+1〉 =
∑

z

w z
�
�

F xi−1aa
xi+1

�†�x ′
i

z

�

F xi−1aa
xi+1

�z

xi
, (12)

where the site dependence of zi is dropped since all ai ’s are identical. The coefficient w z ≡ w z
0248

is the energy of the fusion channel z of two neighboring a’s. This is exactly the anyon-chain249

Hamiltonian that has been widely studied, e.g., in Refs. [29–31]. The simplest example is the250

golden chain model, with C0 being the fusion category of Fibonacci anyons. It was found the251

the category symmetries {U(y)} enforce the anyon-chain model to sit at quantum criticality252

[29,44] or to break symmetry spontaneously.253

3.2 Edge model of bosonic SPTs254

Another limit of our model is C0 = {1}. In this case, CG is equivalent to the doublet (G,ν3),255

where ν3 = ν3(g, h, k) ∈ H3(G, U(1)) is a 3-cocycle. There is only one simple object in each256

Cg, and the fusion algebra of CG reduces to group multiplication of G. We use the group257

element g to denote the simple object in Cg. It has dg = 1. The F symbol is determined by258

ν3, (Fg,h,k
ghk
)hk
gh
= ν3(g, h, k). This kind of G-graded fusion category appears in the study of259

symmetry defects in 2D bosonic SPT phases with symmetry group G [2]. Below we will see260

that our model can be viewed as an effective edge model for 2D bosonic SPT phases.261

Since all simple objects in CG have quantum dimension 1, the Hilbert space has a tensor-262

product structure, H =⊗i V
G
i

, where VG
i
= span{|αi〉|αi ∈ G}. Given a domain configura-263

tion, {ai} and {xi} are uniquely determined, with ai = α−1
i−1
αi and xi = αi . Then, our model264

reduces to265

〈αi−1α
′
iαi+1|Hi |αi−1αiαi+1〉 = w zi

hi

ν3(αi−1,α−1
i−1
αi ,α

−1
i
αi+1)

ν3(αi−1,α−1
i−1
α′

i
, (α′

i
)−1αi+1)

. (13)

where zi = α−1
i−1
αi+1 and hi = α−1

i
α′

i
. If we take w z

h
= 1 for every h and z, the model reduces266

to the SPT domain-wall model of Ref. [37], which was derived by considering a domain wall of267

two 2D SPT models and projecting out the bulk degrees of freedom.3 It was shown numerically268

there that for various choices of G and ν3, the low-energy spectrum is gapless and described269

by a conformal field theory with an integer central charge (i.e., a Luttinger liquid). For more270

general w z
h

, we will also give numerical evidence in Sec. 3.5 that the model is gapless and271

quantum critical in an extended region of the parameter space, by considering the example272

G = Z2 (see Fig. 4).273

The model carries a ’t Hooft anomaly of the symmetry group G. For CG = (G,ν3), the274

symmetry operator U(yg) ≡ U(g) in (6) becomes275

〈gα1, ..., gαL|U(g)|α1, ...,αL〉 =
L
∏

i=1

ν∗3(g,αi ,α
−1
i αi+1). (14)

The symmetry algebra (7) reduces to the multiplication of group elements in G. While the276

Hilbert space has a tensor-product structure, this particular realization {U(g)} of symmetry277

group G is not onsite, making it to carry a ’t Hooft anomaly. The anomaly can be extracted278

through the procedure proposed in Ref. [45], which we find is precisely the 3-cocycle ν3.279

According to bulk-boundary correspondence, this model cannot be realized on a 1D lattice if we280

3To make an exact match, the 3-cocycle νab in Eq. (40) of Ref. [37] is related to our 3-cocycle by
νab(α1,α2,α3) = ν∗3(α

−1
3 ,α−1

2 ,α−1
1 ). One also needs to convert the homogeneous cocycle in Ref. [37] to inho-

mogeneous cocycle and set the parameter g ∗ = 1 there.

9
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insist G to be realized in an onsite way (when ν3 is a nontrivial cocycle). Onsite realizations can281

only be achieved at the edge of a 2D SPT bulk characterized by the 3-cocycle ν3 ∈H3(G,U(1))282

(Sec. 4.2 gives an explicit discussion of the edge viewpoint). Therefore, our 1D model mimics283

the edge of a 2D bosonic SPT bulk by sacrificing the onsiteness of the symmetry operators.284

As is known, such a 1D system cannot be featureless (i.e., gapped and symmetric with a non-285

degenerate ground state). While we cannot rule out spontaneous symmetry breaking, the ’t286

Hooft anomaly does increase the likelihood of being gapless.287

3.2.1 G = Z2288

After the above general remarks, we now take a close look at the Z2 case. Taking Z2 = {0, 1}289

with an additive group multiplication, we have four real parameters in the Hamiltonian (13):290

w0
0 , w1

0 , w0
1 and w1

1 . The cohomology group H3(Z2, U(1)) = Z2, so there are two inequivalent291

classes of ν3. An explicit expression of ν3 is given by292

ν3(a, b, c) = (−1)kabc, (15)

where a, b, c = 0, 1 are group elements of Z2. When k = 0, ν3 is trivial. When k = 1, ν3 is293

nontrivial.294

Let us take αi = ±1 to represent Z2 and rewrite the Hamiltonian (13) with Pauli matrices.295

Let s x
i

, s y
i

and s z
i

be the Pauli matrices. It is straightforward to show that, for the trivial ν3,296

H0
i =

w0
0 − w1

0

2
s z
i−1s z

i+1 +
1

2

�

w0
1 (1+ s z

i−1s z
i+1) + w1

1 (1− s z
i−1s z

i+1)
�

s x
i , (16)

and for the nontrivial ν3,297

H1
i =

w0
0 − w1

0

2
s z
i−1s z

i+1 +
1

2

�

w0
1 (s

z
i−1 + s z

i+1) + w1
1 (1− s z

i−1s z
i+1)

�

s x
i , (17)

where a constant term (w0
0 + w1

0 )/2 has been omitted in both H0
i

and H1
i
. The symmetry298

operator for the nontrivial Z2 group element can be written as299

U0 =
∏

i

s x
i , U1 = eiπ

∑

i(1−s z
i

s z
i+1
)/4
∏

i

s x
i (18)

for the two models, respectively. Note that the term
∑

i(1− s z
i

s z
i+1
) is always a multiple of 4300

under periodic boundary conditions. Also note that the two models are identical when w0
1 = 0.301

When w0
0 = w1

0 , the model H1 = −
∑

i H1
i

is exactly the Ising domain wall model in Ref. [37]302

derived from the interface between 2D SPT bulks.303

Let us introduce the following re-parametrization,304

J = w1
0 − w0

0 , ∆ =
Ç

(w0
1 )

2 + (w1
1 )

2, w0
1 =∆ cosθ , w1

1 =∆ sinθ (19)

Then, the two Hamiltonians Ha = −
∑

i Ha
i

(a = 0, 1) can be written as305

H0 =
J

2

∑

i

s z
i−1s z

i+1 −
∆

2

∑

i

�

cosθ (1+ s z
i−1s z

i+1) + sinθ (1− s z
i−1s z

i+1)
�

s x
i , (20)

and306

H1 =
J

2

∑

i

s z
i−1s z

i+1 −
∆

2

∑

i

�

cosθ (s z
i−1 + s z

i+1) + sinθ (1− s z
i−1s z

i+1)
�

s x
i . (21)

10
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r

θ

π

2

π

1−1

Figure 3: Phase diagram of H0. Red lines correspond to a Luttinger liquid with
the Luttinger liquid parameter K ∈ (1/2,∞). Red dots correspond to a Luttinger
liquid with K = 1/2 and blue dots correspond to a quadratic energy-momentum
dispersion (and K =∞). Empty regions are magnetically ordered. The phase di-
agram is symmetric under the reflection θ → −θ . The curves on the two sides are
|r | =

p
1+ sin 2θ (0 ≤ θ ≤ π/2) and |r | =

p
1− sin 2θ (π/2 ≤ θ ≤ π) with

|r | ≥ 1.

We define the dimensionless parameter r = J/∆. The phase diagrams of H0 and H1 will be307

plotted in the (r,θ ) plane.308

The model H0 can be mapped to the usual XYZ model by the Kramers-Wannier duality:309

s z
i−1

s z
i
= µx

i
and s x

i
= µz

i
µz

i+1
. With the mapping, we have310

H0 = −
∑

i

(Jxµ
x
i µ

x
i+1 + Jyµ

y
i
µ

y
i+1
+ Jzµ

z
i µ

z
i+1) (22)

where311

Jx = −
J

2
, Jy =

∆(sinθ − cosθ )
2

, Jz =
∆(sinθ + cosθ )

2
. (23)

The phase diagram of XYZ model is known [46]. It is gapless if and only if the condition312

|Jx | = |Jy | ≥ |Jz| or its cyclic permutation is satisfied; otherwise, it is gapped with magnetic313

ordering. The gapless condition leads to the phase diagram in Fig. 3. Let us take the θ = 0314

critical line for example. It reduces to the XXZ model. When |r | > 1, the model is in a magnet-315

ically ordered phase, i.e, a spontaneous symmetry breaking phase. When |r | < 1, the model316

is a Luttinger liquid, with the Luttinger liquid parameter K ∈ (1
2 ,∞). At the transition point317

r = −1, the model is equivalent to the SO(3)-symmetric anti-ferromagnetic Heisenberg chain,318

whose low-energy physics is a Luttinger liquid with K = 1/2, or equivalently, the SU(2)1 con-319

formal field theory. At the transition point r = 1, the Luttinger liquid parameter K →∞ and320

the low-energy spectrum has a quadratic dispersion in momentum. Other critical lines in the321

phase diagram are similar.322

11
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−2 −1 0 1 2
r

0

1
4π

1
2π

θ

0.0

0.2

0.4

0.6

0.8

1.0

Luttinger
Liquid

SSB

SSB

Figure 4: Color plot of central charge c extracted from entanglement entropy of the
ground state of H1, calculated by DMRG with system size up to L = 80. The dashed
lines are conjectured phase boundaries which we cannot determine precisely due
to finite size effects. Both the θ = 0 and θ = π/2 lines are equivalent to the XXZ
model, but are mirror reflection of each other. The red dots are Luttinger liquids with
Luttinger liquid parameter K = 1/2 (equivalent to SU(2)1 CFT) and the blue dots
are gapless states with quadratic dispersion. The phase diagram is symmetric under
θ →−θ and θ → θ +π. “SSB” stands for spontaneous symmetry breaking.

To study the phase diagram of H1, we first perform a unitary transformation H1→ SH1S†323

with S =
∏

j eiπs z
j
s z

j+1
/8+i(π−2θ )s z

j
/4. After the transformation, the new Hamiltonian reads324

H1 =
J

2

∑

i

s z
i−1s z

i+1 +
∆

2

∑

i

(cos 2θ s x
i + sin 2θ s y

i
+ s z

i−1s x
i s z

i+1) (24)

Accordingly, the phase diagram is symmetric under the shifting θ → θ +π. In addition, under325

the transformation S′ =
∏

i s x
i

, the Hamiltonian H1(θ ) → H1(−θ ). Therefore, it is enough326

to study the phase diagram for θ ∈ [0,π/2].327

We are not able to solve H1 analytically. We have performed a density matrix renormal-328

ization group (DMRG) study and computed the entanglement entropy of the ground state.329

The extracted central charge c in the (r,θ ) plane are shown in Fig. 4. We briefly describe the330

phase diagram mapped out from the value of c (additional numerical results are presented331

in Sec. 3.5). The key feature is that there exists an extended region of gapless phase in the332

phase diagram. The gapless states are Luttinger liquids with a varying Luttinger liquid pa-333

rameter K . In comparison, the gapless region in the phase diagram of H0 has a co-dimension334

1. That means, there is one symmetric relevant direction under renormalization group flow335

for the gapless region of H0, while there is none symmetric relevant direction for the gapless336

region of H1. This distinction is a consequence of the anomalous Z2 symmetry of H1. All337

other regions break the Z2 symmetry spontaneously, in agreement with the expectation that338

no symmetric and gapped phase is supported by an anomalous Z2 symmetry. Comments on339

a few special lines are in order. (1) On the θ = π/2 line (i.e. w0
1 = 0), H1 is equal to H0,340

so it is equivalent to the XXZ model. It is a Luttinger liquid when |r | < 1. (2) On the r axis341

(θ = 0), H1 is also equivalent to the XXZ model, but it is the mirror image of the θ = π/2 line342

12
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under r →−r . To see that, one may use the Kramers-Wannier duality to map (24) to the XYZ343

model and find that one of the three parameters Jx , Jy , Jz differs by a minus sign compared344

to θ = π/2. (3) For = 0 and θ ∈ [π/4,π/2], it was numerically studied in Ref. [37]. I was345

found to be a Luttinger liquid, with the Luttinger liquid parameter K varying from 1 to 1/2 as346

θ decreases.347

3.3 Ising fusion category348

The simplest example beyond the above two limits is that G = Z2 and CG = CIsing the Ising349

fusion category. The Ising fusion category contains three simple objects, 1, ψ and σ. The350

nontrivial fusion rules are σ ×σ = 1+ψ, ψ×ψ = 1 and ψ×σ = σ. Quantum dimensions351

are d1 = dψ = 1 and dσ =
p

2. Let G = Z2 = {0, 1} with group multiplication being addition352

modulo 2. The Ising category CIsing has the following Z2 grading structure353

C0 = {1,ψ}, C1 = {σ}. (25)

Under certain gauge choice, the nontrivial F symbols are given by [42]354

(Fψσψσ )σσ = (F
σψσ

ψ
)σσ = −1,

Fσσσσ =
κ
p

2

�

1 1
1 −1

�

, (26)

where κ = ±1 is the Frobenius-Shur indicator distinguishing two variants of Ising fusion cat-355

egory. All other F symbols are equal to 1. The two Ising fusion categories with κ = ±1 can356

be understood as differing by a nontrivial 3-cocycle in H3(Z2, U(1)) = Z2. With CIsing as the357

input, we find that our model coincides with that of Ref. [38]. This model can be properly358

interpreted as the edge model of 2+1D Z2 × Z
f
2 topological superconductors (fermionic SPT359

phases).360

Let us discuss some details of the model for CIsing. First, we pick the slaved domain-wall361

variables to be ag=0 = 1 and ag=1 = σ.4 While both {αi} and {xi} are dynamical variables,362

the fusion-channel variables {xi} are enough to uniquely label a state. Therefore, we take the363

short-hand notation364

|xi−1xi xi+1〉 ≡ αi−1 αi αi+1

xi−1 xi xi+1

ai ai+1

. (27)

With the F symbols in (26), the Hamiltonian in (11) reads365

Hi |µµµ〉 = w1

0 |µµµ〉+ w1

1 |µσµ〉
Hi |µµσ〉 = wσ

0 |µµσ〉+ wσ
1 |µσσ〉

Hi |µσν〉 = wµ×ν
0 |µσν〉+ δµνw1

1 |µµµ〉

Hi |σµµ〉 = wσ
0 |σµµ〉+ wσ

1 |σσµ〉
Hi |µσσ〉 = wσ

0 |µσσ〉+ wσ
1 |µµσ〉

Hi |σµσ〉 =
∑

ν

1

2

�

w1

0 + (2δµν − 1)wψ

0

�

|σνσ〉+
κw1

1
p

2
|σσσ〉

Hi |σσµ〉 = wσ
0 |σσµ〉+ wσ

1 |σµµ〉

Hi |σσσ〉 = w1

0 |σσσ〉+
κw1

1
p

2
(|σ1σ〉+ |σψσ〉) (28)

4A different choice is ag=0 =ψ and ag=1 = σ.
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where µ,ν = 1 or ψ. There are five real parameters in this model, w1

0 , wψ

0 , wσ
0 , w1

1 and366

wσ
1 (only three of them are important, while the other two set the zero energy and energy367

unit, respectively). When w1

0 = wψ

0 = wσ
0 = 0, our model reduces exactly to the model of368

Ref. [38].369

Let us simplify the model by assuming w1

0 = wψ

0 ≡ w0. We further perform an energy370

shift H → H + w0Î and a rescaling H → H/∆, with ∆ =
q

(w1

1 )
2 + (wσ

1 )
2. Let371

r =
wσ

0 − w0

∆
, w1

1 =∆ cosθ , wσ
1 =∆ sinθ (29)

Then, the Hamiltonian reads372

Hi |µµµ〉 = cosθ |µσµ〉
Hi |µµσ〉 = r |µµσ〉+ sinθ |µσσ〉
Hi |µσν〉 = δµν cosθ |µµµ〉
Hi |σµµ〉 = r |σµµ〉+ sinθ |σσµ〉
Hi |µσσ〉 = r |µσσ〉+ sinθ |µµσ〉

Hi |σµσ〉 =
κ cosθ
p

2
|σσσ〉

Hi |σσµ〉 = r |σσµ〉+ sinθ |σµµ〉

Hi |σσσ〉 =
κ cosθ
p

2
(|σ1σ〉+ |σψσ〉) (30)

There are two continuous parameters r and θ . We will leave the complete phase diagram for373

future study. At the special point r = 0 and θ =
π

4 , we show numerically in Sec. 3.5 that the374

ground state is the Ising CFT, in agreement with Ref. [38].375

Let us discuss the category symmetry in this example. The symmetry operator (6) for376

yh = σ reads377

〈x ′1, ..., x ′L|U(σ)|x1, ..., xL〉 =
L
∏

i=1

(Fσ,xi ,ai+1

x ′
i+1

)
x ′

i
xi+1

. (31)

Since we take ag=0 = 1, a valid state is always of the form378

| . . .σσµkµkµkσσσσµk+1µk+1µk+1σσ . . . 〉 (32)

i.e., with segments of σ’s separated by segments of µ’s. The length of each segment can vary.379

Due to periodic boundary conditions, the number ofσ segments is always equal to the number380

of µ segments. Under the action of U(σ), the state in (32) will be mapped to381

| . . .µ′k−1µ
′
k−1 σσσµ

′
kµ
′
kµ
′
kµ
′
kσσσµ

′
k+1µ

′
k+1 . . . 〉 (33)

With the F symbols in (26), the symmetry operator (31) can be simplified to382

〈{µ′k}|U(σ)|{µk}〉 =
�

κ
p

2

�n n
∏

k=1

(−1)(µk+µk−1)µ′k (34)

where µk = 0, 1 corresponds to 1 and ψ respectively, and n is the number of σ (or µ) seg-383

ments. Furthermore, one can explicitly check that384

U(σ)2 = U(1) +U(ψ) (35)
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which is consistent with the fusion rule σ × σ = 1 + ψ. Under U(ψ), the state |{µk}〉 is385

mapped to |{µ̄k}〉, with µ̄k = 1 − µk . We note that the U(σ) operator is related to U11 in386

Ref. [38] by U11 = U(σ)/
p

2. The factor 1/
p

2 is important to make U11 a unitary operator if387

one restricts to the U(ψ) symmetric subspace (the restriction is necessary when one gauges the388

U(ψ) symmetry, which is indeed done in Ref. [38]). Note that U(σ) is not unitary, justifying389

that it is a symmetry beyond the description of group.390

3.4 Tambara-Yamagami category391

Tambara-Yamagami category CTY is a family of Z2-graded fusion categories [47]. It is param-392

eterized by a triplet (A,χ ,κ), where A is an Abelian group, χ is a symmetric non-degenerate393

bicharacter χ : A× A→ U(1), and κ = ±1. The simple objects of CTY include the elements of394

A and an object σ of quantum dimension
p

|A|, where |A| is the order of A. The Z2-grading395

structure is given by396

C0 = {a|a ∈ A}, C1 = {σ} (36)

Fusion rules of simple objects in C0 are given by the group multiplication of A. Other fusion397

rules are a ×σ = σ × a = σ for any a ∈ A, and σ ×σ =
∑

a∈A a. The nontrivial F symbols398

are given by399

�

Faσb
σ

�σ

σ
=
�

Fσaσ
b

�σ

σ
= χ(a, b)

�

Fσσσσ

�b
a =

κ
p

|A|
χ∗(a, b). (37)

where κ is the Frobenius-Shur indicator of σ. If we take A = ZN = {1, e, e2, . . . , eN−1} with400

eN = 1, the bicharacter χ can be explicitly written as401

χ(em, en) = e
i2πqmn

N . (38)

The integer q is coprime with N such that χ is non-degenerate. For A = Z2 and q = 1, we see402

that CTY becomes CIsing.403

To construct the model out of CTY, we take the domain wall variables to be ag=0 = 1 and404

ag=1 = σ. Using the same short-hand notation as Eq. (27), the Hamiltonian is given by405

Hi |µµµ〉 = w1

0 |µµµ〉+ w1

1 |µσµ〉
Hi |µµσ〉 = wσ

0 |µµσ〉+ wσ
1 |µσσ〉

Hi |µσν〉 = w µ̄×ν
0 |µσν〉+ δµνw1

1 |µµµ〉

Hi |σµµ〉 = wσ
0 |σµµ〉+ wσ

1 |σσµ〉
Hi |µσσ〉 = wσ

0 |µσσ〉+ wσ
1 |µµσ〉

Hi |σµσ〉 =
∑

ν,z∈A

χ(z, µ̄× ν)
|A|

w z
0 |σνσ〉+

κw1

1
p

|A|
|σσσ〉

Hi |σσµ〉 = wσ
0 |σσµ〉+ wσ

1 |σµµ〉

Hi |σσσ〉 = w1

0 |σσσ〉+
κw1

1
p

|A|

∑

µ∈A

|σµσ〉 (39)

where µ,ν ∈ A, and µ̄ is the dual of µ satisfying µ× µ̄ = 1.406

The bicharacter χ appears only in the sixth line of Eq. (39). To make a simplification, we407

take w x
0 = w0 for all x ∈ A. Then,

∑

z∈A χ(z, µ̄ × ν)w z
0 /|A| = δµ,νw0, which simplifies the408
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sixth line, and the model becomes independent of χ . In addition, we will make an energy shift409

H → H + w0Î and further rescale the Hamiltonian H → H/∆, with ∆ =
q

(w1

1 )
2 + (wσ

1 )
2.410

With the same parameterization as (29), the shifted and rescaled Hamiltonian reads411

Hi |µµµ〉 = cosθ |µσµ〉
Hi |µµσ〉 = r |µµσ〉+ sinθ |µσσ〉
Hi |µσν〉 = δµν cosθ |µµµ〉
Hi |σµµ〉 = r |σµµ〉+ sinθ |σσµ〉
Hi |µσσ〉 = r |µσσ〉+ sinθ |µµσ〉

Hi |σµσ〉 =
κ cosθ
p

|A|
|σσσ〉

Hi |σσµ〉 = r |σσµ〉+ sinθ |σµµ〉

Hi |σσσ〉 =
κ cosθ
p

|A|

∑

µ∈A

|σµσ〉 (40)

For A = Z2, it reduces to Eq. (30) of the Ising fusion category.412

3.5 Numerical results413

In this section, we present some numerical results on the models introduced in Sec. 3.2.1, 3.3414

and 3.4. We compute the energy spectrum by exact diagonalization (ED) and entanglement415

entropy of the ground state obtained by density matrix renormalization group (DMRG) [48].416

Our main interests are the gapless states described by conformal field theory (CFT). Accord-417

ing to CFT, the low-lying energies of a system of finite size L in periodic boundary conditions418

take the form [49]419

E = E1L+
2πv

L

�

−
c

12
+ h + h̄

�

, (41)

where the velocity v is an overall scale factor and c is the central charge of the CFT. The scaling420

dimensions h + h̄ take the form h = h0 + n, h̄ = h̄0 + n̄, with n and n̄ non-negative integers,421

and h0 and h̄0 are the holomorphic and antiholomorphic conformal weights of the primary422

fields in the given CFT. We will compare the ED spectrum to Eq. (41). Instead of using (41),423

we compute the central charge c from the entanglement entropy S of the many-body ground424

state. Under periodic boundary conditions, it is given by [50]425

S(x ) =
c

3
ln
�

L

π
sin

�πx

L

�
�

+ a, (42)

where L is the system size, x is the length of the subsystem used to calculate the entanglement426

entropy, and a is a non-universal constant. For computation of S(x ), we use DMRG to access427

larger system sizes. We use the ITensor package for DMRG calculations. [51]428

Below we present the results for the Z2 SPT edge models H0 (16) and H1 (17), Ising fusion429

category model (30), and Tambara-Yamagami category model (40) with A = Z3. We remark430

that the Ising category model is the same as Tambara-Yamagami model with A = Z2. Also, the431

Z2 edge models H0 and H1 are equivalent to the Tambara-Yamagami models with A = Z1, for432

κ = 1 and κ = −1 respectively. Therefore, we put the numerical results together and make433

a comparison. We will leave a complete study of the phase diagrams for future study. In this434

work, we mainly focus on435

w z
g = 1, ∀z, g (43)
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Figure 5: Entanglement entropy S of different models: (a) Z2 edge model
H0 with system size L = 60, 80, 100, 120, 140; (b) Ising category model with
L = 100, 120, 140, 160; and (c) TY category model with L = 30, 40, 50, 60. All
results are obtained with periodic boundary conditions and subsystem size x = L/2.
For both Ising category and Z3 Tambara-Yamagami category models, the parameters
κ = 1, r = 0 and θ = π/4. For the Z2 edge model H0, parameters are set at
ω0

0 −ω
1
0 = 2 and ω0

1 =ω
1
1 = 1.

i.e., r = 0 and θ = π/4 in (24), (30), and (40). These values are chosen without any priori436

knowledge, but only because of simplicity. It turns out that all models with κ = 1 are CFTs437

at parameters in (43), while the cases with κ = −1 are less conclusive. We remark that the438

gapless state at the parameters (43) for the κ = 1 Ising and Z3 Tambara-Yamagami models439

is not an isolated point in the parameter space. Our preliminary calculations show that there440

exists an extended nearby gapless region, similar to Fig. 4, which we will present elsewhere441

after a more careful numerical investigation.442

3.5.1 κ = 1443

Let us first consider the models with κ = 1 and the parameters in (43). With the ground state444

from DMRG calculations, we obtain the entanglement entropy S and fit the results according445

to Eq. (42), as shown in Figs. 5. For the Ising and Tambara-Yamagami category models, we446

find c ≈ 1/2 and c ≈ 4/5, respectively. This indicates that, with the parameters (43), the two447

models belong to the critical Ising and critical 3-state Potts universality classes, respectively.448

This is verified by computing the low-energy ED spectra, which fit well with the CFT prediction449

Eq. (41) (see Fig. 6). (Another c = 4/5 CFT is the tetra-critical Ising theory, but its low-energy450

spectrum does not fit into our ED spectrum.)451

The model H0 in (16) can be solved exactly by mapping to XYZ model. Nevertheless, we452

did some numerical calculations for verification. It is gapped for the parameters in (43), so453

instead we set w0
0 − w1

0 = 2 and w0
1 = w1

1 = 1 (it is equivalent to r = −
p

2 and θ = π/4454

in the Tambara-Yamagami Hamiltonian (40) with A = Z1). With this setting, the low-energy455

physics is described by double copies of the Ising CFT, see Fig. 6. It is equivalent to a free456

massless complex fermion after a Z2 orbifolding [52], which is a K = 1 Luttinger liquid. This457

agrees with the analytic results [46].458

3.5.2 κ = −1459

For κ = −1, all models display a much stronger finite-size effect than the case of κ = 1. So far,460

we have only done a relatively complete search of gapless regions for the Z2 edge model H1.461

The phase diagram mapped out from the central charge is shown in Fig. 4 (see discussions462

in Sec. 3.2.1). In all the gapless regions, we find the central charge c = 1, i.e., a Luttinger463

liquid. At the parameters r = 0 and θ = π/4, the numerical results of entanglement entropy464
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Figure 6: Finite-size energy spectra of (a) Z2 edge model H0 at L = 16, (b) Ising
category model L = 14 and (c) Z3 TY category model at L = 12, corresponding
to double Ising CFT, Ising CFT and critical 3-state Potts CFT, respectively. Dots are
numerical results and bars are analytic predictions [49]. Parameters are same as in
Fig. 5 and energies are properly shifted and rescaled. All dots in (a) and (b) are
non-degenerate. Black and red dots in (b) correspond to the eigenvalue +1 and −1
of U(ψ), respectively. Every red dot in (c) is doubly degenerate, corresponding to
the eigenvalue U(e) = e±i2π/3 respectively, with e being the generator of Z3.

2.5 3.0 3.5

log[sin(xπL)Lπ ]

1.6

1.7

1.8

1.9

2.0

S
[x

]

(a) c = 0.9983

0 π
4

π
2

3π
4

π

k

0.0

0.5

1.0

1.5

2.0

E

(b)

Figure 7: (a) Entanglement entropy S(x ) at L = 40, 60, 80, 100, 120 and (b) energy
spectrum for H1 at L = 16. Parameters are r = 0 and θ = π/4.

are shown Fig. 7(a). The ED spectrum at L = 16 is also shown in Fig. 7(b), but not much465

information can be extracted due to strong finite size effect.466

For Ising category and Z3 Tambara-Yamagami category, we find that models are gapped at467

r = 0 and θ = π/4, as we observe S decreases to a constant as L increases (not shown here).468

We have searched for gapless spectra at other values of parameters and found some evidence.469

Nevertheless, it is not conclusive yet. We leave a careful numerical investigation for the future.470

3.6 SU(2)k theory471

Another family of Z2-graded category is associated with anyons from SU(2)k theory. We de-472

note the category as CSU(2)k . The objects in CSU(2)k are closely related to the ordinary SU(2)473

spins, which can be labeled by s = 0,
1
2 , 1, ...,

k
2 , with k being a positive integer. There are474

k + 1 objects in total. The fusion rule between s and s ′ is given by475

s × s ′ =
min(s+s ′,k−s−s ′)

∑

s ′′=|s−s ′|

s ′′, (44)
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where the summation is incremented by 1, similar to addition of ordinary angular momenta.476

One can see that integer spins are closed under fusion. By taking C0 = {0, 1, ...} and C1 = {
1
2 ,

3
2 , ...},477

we have the following decomposition478

CSU(2)k = C0 ⊕ C1. (45)

This gives the Z2-grading structure of CSU(2)k : C0 is closed under fusion, two objects from C1479

fuse into objects in C0, and fusing an object from C0 and an object from C1 gives objects in480

C1. To build our model (11), we need the F symbols in CSU(2)k . The F symbols are known481

explicitly [53] (see also, e.g., Ref. [30]), but we will not list them here. It is interesting to482

perform a detailed numerical study of this family of models in the future.483

We give a brief further discussion on the k = 3 case. It is closely related to the fa-484

mous Fibonacci anyon. In this case, CSU(2)3 = {0, 1} ⊕ {1
2 ,

3
2}. The quantum dimensions are485

d0 = d 3
2
= 1 and d1 = d 1

2
=
p

5+1
2 . The object s = 1 corresponds the Fibonacci anyon. There-486

fore, C0 = {0, 1} is the usual Fibonacci category, and CSU(2)3 is a Z2 extension of C0. (There487

are two kinds of Z2 extensions of the Fibonacci category, whose F symbols differ by the non-488

trivial 3-cocycle in H2(Z2, U(1)), see Eq. (4).) It is interesting to study the low-energy physics489

of our model (11) based on CSU(2)3 , and compare it to the golden chain model [29] whose490

low-energy physics is captured by the tricritical Ising conformal field theory.491

3.7 CG from groups492

From group extensions, one can define many G-graded unitary fusion categories. Consider493

the short exact sequence494

1→ N → CG → G→ 1 (46)

where N and G are two finite groups, and CG is called an extension of G by N. The group N495

is a normal subgroup of CG and G is isomorphic to the quotient group CG/N. Let C0 ≡ N, and496

Cg ≡ gN to be the coset in CG associated with g ∈ G. Then, CG has the following decomposition497

CG =
⊕

g∈G

gN =
⊕

g∈G

Cg (47)

Taking a 3-cocycle ν3 ∈ Z3(CG, U(1)), we can then regard the doublet (CG,ν3) as a G-graded498

fusion category. Without causing confusion, we will sometimes simply call CG the G-graded499

fusion category, although it is only a group in this subsection.500

Given N and G, the extended group CG is not unique. Let a, b, ... be elements of N, and501

g, h, ... be elements of G. Then, group elements in CG can be labeled by ag, with a running502

through elements in N and g running through elements in G.5 To specify the multiplication503

law of CG , we need two pieces of data: (i) a group homomorphism ρ : G → Out(N), where504

Out(N) is the outer automorphism group of N, and (ii) a torsor µ in H2
ρ(G, Z(N)), where Z(N)505

is the center of N. Let g ∈ G and ρg ≡ ρ(g) ∈ Out(N). Then, ρg(a) describes the action of g506

on a ∈ N. The torsor µ is a function µ : G ×G → Z(N), which satisfies the twisted 2-cocycle507

conditions associated with ρ. Given ρ and µ, group multiplication in CG can be defined by508

ag × bh = [a ·ρg(b) ·µ(g, h)]gh, (48)

where “·” denotes group multiplication in N. It is clear that the group multiplication respects509

the G-grading structure.510

5This notation has a different meaning from ag elsewhere in this paper. In this subsection, a ∈ N and g ∈ G
are independent. In other parts of the paper, a ∈ CG and g denotes the grading property of a.
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A cocycle ν3 in Z3(CG,U(1)) can also be parameterized by a set of data associated with N511

and G. Based on the Lyndon-Hochschild-Serre spectral sequence, it was shown in Ref. [54] that512

ν3 valued at general ag, bh, ck can be fully determined by ν3 at special elements of CG . Specif-513

ically, ν3(ag, bk, ck) is determined by ν3(a, b, c), ν3(a, b, 1g), ν3(a, 1g, 1h) and ν3(1g, 1h, 1k),514

with a, b, c ∈ N and g, h, k ∈ G (note that a ≡ a1). We refer the readers to Ref. [54] for515

the general parameterization. Here, we only consider the special case that both ρ and µ are516

trivial. In this case, CG = N ×G, and the 3-cocycle ν3 is simply the product of the four special517

pieces518

ν3(ag, bh, ck) = ν3(a, b, c)ν3(a, b, 1k)ν3(a, 1h, 1k)ν3(1g, 1h, 1k) (49)

This expression can be well understood from the Künneth formula519

H3(N ×G, U(1)) =H3(N, U(1))⊕H1(G,H2(N,U(1)))

⊕H2(G,H2(N, U(1))⊕H3(G, U(1)) (50)

The four pieces in (49) have a one-to-one correspondence to elements in the cohomology520

groups on the right hand side of (50). The parameterization of ν3 with general ρ and µ is521

more complicated but follows a similar structure.522

With (CG,ν3), we can construct a lattice model following Sec. 2. For simplicity, we assume523

that ρ and µ are trivial. The domain degrees of freedom αi take values in G, and domain walls524

ai and xi take values in a proper coset Cg = gN. To build up the model, we need to manually525

pick up a fixed element b̄ ∈ N for every g ∈ G, which together select a representative b̄g from526

each coset Cg. Then, on the ith domain wall, it lives an object ai = b̄α−1
i−1
αi
≡ (b̄i)α−1

i−1
αi

(we use527

b̄i to denote the b̄ ∈ N that lives on the ith domain wall). The fusion channel xi ∈ Cαi
and let528

us denote xi ≡ (di)αi
, with di ∈ N. With fusion rules, we have xi = xi−1ai and di = di−1 b̄i .529

Two features of the Hilbert space deserve to be mentioned. (1) Given {αi} and {ai}, there are530

only |N| possible {xi}:531

xi = (di)αi
, with di = d0

i
∏

j=1

b̄ j (51)

where d0 runs though elements in N. Hence, states in the Hilbert space can be labeled as532

|{αi}, d0〉. We will give a further discussion on d0 below. (2) The periodic boundary condition533

requires that534

L
∏

i=1

b̄i = 1 (52)

It follows from dL+1 = d1
∏

i b̄i and dL+1 = d1.535

The symmetry operator U(yh), defined in Eq.(6), is given by536

〈{hαi , x ′i }|U(yh)|{αi , xi}〉 =
L
∏

i=1

ν∗3(yh, (di)αi
, b̄α−1

i
αi+1
),

=
L
∏

i=1

ν∗3(y, di , b̄i)ν
∗
3(y, di , 1α−1

i
αi+1
)

× ν∗3(y, 1αi
, 1α−1

i
αi+1
)ν∗3(1h, 1αi

, 1α−1
i
αi+1
) (53)

where we have inserted Eq. (49) into the second equality. Note that the action of yh gives537

x ′
i
= yh × xi = [y · di]α′

i
. The Hamiltonian can be written down following Sec. 2.4.538
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Let us compare this example to that in Sec. 3.2. First, while both examples realize the sym-539

metry (CG,ν3), the allocation of degrees of freedom from N and G on the lattice are different.540

In the example of Sec. 3.2, αi can fluctuate freely in CG . In the current example, αi fluctu-541

ates only within G, while elements from N which live on the domain walls are constrained.542

Accordingly, to realize the same symmetry (CG,ν3), the current example could have a smaller543

Hilbert space as long as one properly divides CG into N and G. This is useful for numerical544

investigations. Second, the degree of freedom d0, absent in the example of Sec. 3.2, is a global545

degree of freedom. It enters every di and cannot be changed by any local operators. This546

makes the ground states of local Hamiltonian to be |N|-fold degenerate. For simplicity, let us547

consider the case G = 1, i.e., with no {αi} degrees of freedom. In this case, the whole Hilbert548

space is |N| dimensional, and the Hamiltonian is proportional to the identity matrix. Since549

the |N|-fold degenerate ground-state space transforms non-trivially under N, the group N is550

actually “spontaneously broken”. To make the “symmetry breaking” claim more explicit, let551

us allow {b̄i} to fluctuate (see a more general discussion around Eq. (71)). Let us denote the552

states in the enlarged Hilbert space as |{bi}, d0〉, with the “¯" removed to indicate that they553

can fluctuate. Note that {bi} are subject to the constraint (52). The state |{bi}, d0〉 can be554

equivalently labeled as |{di}〉, with di = d−1
i−1

bi . In the notation |{di}〉, each di can fluctuate555

freely in N. With this preparation, the selection of b̄i corresponds to adding the action556

H ′ = −∆
∑

i

δd−1
i−1

di ,b̄i
(54)

and taking the limit ∆→∞. The interaction H ′ describes a kind of “ferromagnetic” interac-557

tion between di and di−1, and it is symmetric under N. In particular, if b̄i = 1, the interaction558

becomes −δdi−1,di
. It is now obvious that the ground state of H ′ spontaneously breaks the559

symmetry group N.560

4 Discussions561

4.1 Gauge choice of F and 1D SPT states562

In category theory, F symbol is not a gauge invariant quantity. Given CG , one can take different563

gauge choices for F . Since the Hamiltonian (11) explicitly depends the F symbol, we expect564

the ground states to be dependent on the gauge choices of F too. In fact, gauge-equivalent F565

symbols can lead to inequivalent CG-symmetric ground states. Loosely speaking, these distinct566

ground states can be thought of differing by 1D SPT states of CG category symmetry.567

To demonstrate this point, we consider the special example CG = (G,ν3), with ν3 being a568

trivial 3-cocycle. Recall from Sec. 3.2 that the F symbol is determined by ν3, and our model569

can be thought of as an effective edge model of a 2D SPT bulk. When ν3 is a trivial 3-cocycle,570

it can be written as571

ν3(g, h, k) =
c2(h, k)c2(g, hk)

c2(gh, k)c2(g, h)
(55)

where c2 is an arbitrary 2-cochain, i.e., a function c2 : G ×G → U(1). Inserting (55) into the572

expression (14) of U(g), we have573

U(g)|α1,α2 . . . ,αL〉 =
∏

i

c2(gαi ,α
−1
i
αi+1)

c2(αi ,α
−1
i
αi+1)

|gα1, gα2, . . . , gαL〉 (56)
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If we take a local unitary transformation to the new basis574

|α1, . . . ,αL〉〉 =
∏

i

c2(αi ,α
−1
i αi+1)|α1, . . . ,αL〉, (57)

the symmetry U(g) acts in the conventional onsite fashion575

U(g)|α1,α2 . . . ,αL〉〉 = |gα1, gα2, . . . , gαL〉〉 (58)

This onsite form can be achieved because ν3 is a trivial 3-cocycle, or equivalently because the576

corresponding 2D SPT bulk is trivial. In the new basis, the Hamiltonian (13) of our model is577

given by578

〈〈αi−1,α′i ,αi+1|Hi |αi−1,αi ,αi+1〉〉 = w zi

hi

c2(α−1
i−1
αi ,α

−1
i
αi+1)

c2(α−1
i−1
α′

i
,α′−1

i
αi+1)

(59)

It is straightforward to see that the Hamiltonian is symmetric under the onsite symmetry (58).579

So far, c2 is an arbitrary 2-cochain. If we take w zi

hi
= 1 and c2 to be a 2-cocycle, i.e.,580

c2(h, k)c2(g, hk) = c2(gh, k)c2(g, h), the Hamiltonian (59) can be rewritten as581

〈〈αi−1,α′i ,αi+1|Hi |αi−1,αi ,αi+1〉〉 =
c2(α−1

i−1
αi ,α

−1
i
α′

i
)

c2(α−1
i
α′

i
,α′−1

i
αi+1)

(60)

It is precisely the fixed-point group-cohomology model of 1D SPT states proposed in Ref. [2].582

It is known that inequivalent 2-cocycles c2 give rise to topologically distinct gapped SPT states583

of symmetry group G. Therefore, we see that for the trivial ν3, different gauge choices (i.e.,584

different c2) give rises to topologically distinct SPT phases. We remark that, in general, c2 is585

not a 2-cocycle as we do not require our model to sit at a fixed point. Our model may also586

break symmetry spontaneously.587

If ν3 is a non-trivial 3-cocycle, we cannot write ν3 into the form (55). However, we can still588

take different gauge choices by shifting ν3(g, h, k)→ ν3(g, h, k)
c2(h,k)c2(g,hk)
c2(gh,k)c2(g,h) . A nontrivial ν3589

means the symmetry group G carries ’t Hooft anomaly. The ground state cannot be simultane-590

ously non-degenerate, gapped and symmetric. Let us assume a gapless and symmetric ground591

state, and discuss a potential implication from different gauge choices of ν3. From the above592

discussion on the trivial ν3 case, we speculate that different gauge choices of non-trivial ν3593

correspond to the gapless state to be stacked with different 1D SPT states of the same group G.594

Since SPT states are gapped, stacking them will not modify the gapless spectrum dramatically.595

However, topological properties of the gapless system might be modified. We do not know the596

precise meaning of topological properties of a gapless system yet. It would be interesting to597

explore this question in the future. We note that it might have a close relation to gapless SPT598

phases discussed in Refs. [55,56].599

For a general category CG , it is also possible to study “generalized SPT” phases under600

appropriate definitions. A reasonable definition is that an SPT state is a gapped, symmetric601

and non-degenerate ground state of a Hamiltonian that respects the category symmetry CG .602

However, SPT state may not always exists. For example, as just discussed, if CG = (G,ν3)603

and ν3 is a nontrivial 3-cocycle, it cannot support systems with a gapped symmetric unique604

ground state. If a category symmetry does not support (trivial or nontrivial) SPT phases, it605

is called anomalous, generalizing the concept of ’t Hooft anomaly of group-like symmetries.606

Criteria on whether a category symmetry is anomalous have been studied in Ref. [27]. For607

non-anomalous category symmetry, we expect that different gauge choices of F correspond608

to different CG-symmetric SPT phases. For anomalous category symmetries, implications of609

different gauge choices of F is subtler, as the meaning of “stacking” shall be elaborated before610

we generalize the case of groups. All these are interesting questions to explore in the future.611
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4.2 Relation to boundary of 2+1D topological phases612

Our model with symmetry (6) and Hamiltonian (8) can be viewed as a boundary theory of613

2+1D topological phases. More precisely, in this subsection, we show that it can be viewed614

as a boundary theory of 2+1D symmetry enriched string-net model (SESN) defined on a disk615

geometry under certain choice of boundary conditions.616

Let us start with a brief review of the SESN model. It is defined on a trivalent lattice with617

the orientated links. The input data is a G-graded unitary fusion category CG . There are two618

types of degrees of freedom on the lattice. On each oriented link, there lives a |CG|-component619

“spin". Each component of the spin is a simple object a ∈ CG , which is also called a string620

type. On each plaquette, there lives a |G|-component “spin", with each component being a621

group element g ∈ G, as see Fig. 8. The basis vectors of the Hilbert space can be denoted as622

|{al , gp}〉, with l runs over the links and p runs over the plaquettes. The Hamiltonian is623

H = −
∑

v

Av −
∑

l

Pl −
∑

p

Bp (61)

where the sum runs over the vertices (v), the links (l), and plaquettes (p). All Av , Pl and624

Bp are projector operators, with eigenvalues being 0 and 1. The term Av = δabc when acts625

on basis vectors, where a, b and c are the three strings meeting at vertex v , δabc = 1 if626

a, b, c satisfy the fusion rules of CG and δabc = 0 otherwise (again, we assume CG is fusion627

multiplicity free). Assuming the string type on link l is ag ∈ CG , the term Pl = δg,g−1
p gq

,628

where gp and gq are the plaquette spins on left and right of the link l, respectively (under an629

appropriate orientation convention). The term Bp is defined as630

Bp =
1

D2

∑

s∈CG

ds Bs
pŨgs

p (62)

where ds is the quantum dimension of s and D =
q

∑

s d2
s is the total quantum dimension.631

The notation gs is used to denote s ∈ Cgs
. The term Ũgs

p flips the plaquette spin in the following632

way633

Ũgs
p |gp〉 = |gpgs 〉 (63)

where irrelevant spins are omitted in the notation |gp〉. The Bs
p can be understood as creating634

a string s inside the plaquette p and fusing it into the boundary strings of the plaquette, so635

the matrix element of Bs
p is a product of F symbols. A nice property of the SESN model is that636

all the projectors Av , Pl and Bp commute with each other, making the model exactly solvable.637

The SESN model has an onsite G symmetry638

Ug =
∏

p

Ug
p , Ug

p |gp〉 = |ggp〉 (64)

The SESN model realizes a topological order which mathematically is the Drinfeld center639

Z(C0). Since it is G symmetric, it is an SET state of the Z(C0) topological order. Readers640

are referred to Refs. [39,40] for more details.641

Now we consider the 2D SESN model on a disk geometry. In Fig. 8, the orange region642

represents the string-net bulk while the blue region represents the boundary. We will see that643

our 1D model lives in the subspace of the 2D SESN model after projecting the bulk into its644

ground state. To match the notation of our 1D model (Fig. 1), we have labeled the corre-645

sponding αi , ai , and xi in the blue region in Fig. 8: the plaquette spins αi ∈ G correspond to646

the domain variables in the 1D model, and the link spins ai ∈ CG and xi ∈ CG correspond to647
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ai−1
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Figure 8: Trivalent lattice of 2D symmetry-enriched string-net model. The blue re-
gion corresponds to the boundary of the model.

the domain wall variables. For convenience, we will call {αi , ai , xi} the boundary spins below.648

Let us consider the following Hamiltonian649

Hdisk = −
∑

v∈all

Av −
∑

l∈all

Pl −
∑

p∈bulk

Bp (65)

where p runs only over the orange “bulk plaquette” in Fig. 8. The projectors Av , Pl and Bp are650

the same as above. There is an ambiguity on Pl for the outermost links of the disk. To fix this651

ambiguity, we assume that the empty region outside the disk is a big plaquette on which lives652

a “ghost” spin gempty. We set the “ghost” spin gempty = 1 as a choice of boundary conditions.653

This choice corresponds the convention that the empty region below the horizontal line in654

Fig. 1a is taken to be the identity domain. Under this convention, all Pl can be defined in the655

same way. All terms in (65) commute.656

We would like to find the ground-state subspace of Hdisk. We will see that it is highly657

degenerate, and the degeneracy comes from the states of boundary spins. First of all, we note658

that, in the ground-state subspace, the requirements Av = Pl = 1 on the boundary spins (in659

the blue region) are exactly those we impose when building up the Hilbert space of our 1D660

model (Sec. 2.2). For the convenience of later discussions, we define a subspace HAv=Pl=1 in661

which Av = Pl = 1 are fulfilled for all v ’s and l ’s. The ground-state space HGS ⊂ HAv=Pl=1.662

To find HGS, we note that all terms in Hdisk does not change the boundary spins {αi , ai , xi}.663

Then, we can diagonalize Hdisk in the subspace with fixed {αi , ai , xi}. We claim that, for a664

fixed set {αi , ai , xi} that satisfies the requirements Av = Pl = 1, the ground-state subspace is665

one-dimensional. That is, the ground-state subspace666

HGS =
⊕

{αi ,ai ,xi}
HGS
{αi ,ai ,xi}

(66)

where each space HGS
{αi ,ai ,xi}

is one-dimensional.667

We need to showHGS
{αi ,ai ,xi}

is one-dimensional for given {αi , ai , xi} that statisfy Av = Pl = 1.668

To simplify the calculation, we make use of the fact that the SESN bulk ground state is a fixed-669

point wave function, such that topological quantities, specifically ground-state degeneracy for670

our purpose, are invariant if we add or remove vertices, links or plaquettes in the bulk (orange671

region in Fig. 8). For detailed discussions about this property, readers may consult Ref. [57]672
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Figure 9: (a) Lattice with only one bulk plaquette. (b) and (c) States in HAv=Pl=1
after proper F moves. The dashed lines wL and zL correspond to the trivial string.

(strictly speaking, only the original string-net model was discussed there, but we believe it673

can be straightforwardly generalized to the SESN model). With this property, we choose a674

simple graph, shown in Fig. 9(a), which contains only one bulk plaquette. On this lattice,675

besides the boundary spins {αi , ai , xi}, the only bulk degrees of freedom are the link spins676

{yi} and a central plaquette spin gp . A general basis state is labeled as |{αi , ai , xi , yi , gp}〉. In677

following discussion, we will restrict ourselves in the subspace HAv=Pl=1. In this subspace, the678

Hamiltonian Hdisk effectively contains only one Bp term associated with the central plaquette.679

To proceed, we perform “basis transformations” for HAv=Pl=1. More precisely, we will680

perform a transformation within the space681

H{αi ,gp} = span
�

|{αi , ai , xi , yi , gp}〉|ai , xi , yi ∈ CG, Av = Pl = 1,∀ v, l
	

, (67)

where {αi} and gp are fixed, and682

HAv=Pl=1 =
⊕

{αi ,gp}
H{αi ,gp}. (68)

Because of the constraint Av = 1 for all v ’s, the states in H{αi ,gp} can be viewed of as fusion683

states of objects {ai , xi , yi}. In this view, we can then perform F moves which transform684

H{αi ,gp} into a different basis. Such transformation is not a standard basis transformation on685

lattice, as the underlying lattice structure is modified. However, it works well for our purpose of686

counting dimensions of the constrained Hilbert space H{αi ,gp}. First, we perform F moves and687

turn Fig. 9(a) into Fig. 9(b). Basis vectors in Fig. 9(b) are denoted as |αi , ai , xi , wi , yL, gp〉,688

subject to Av = Pl = 1. An important feature is that the total fusion channel wL of {ai}689

(dashed line in Fig. 9(b)) must be 1. To see that, we recall a basic diagrammatic relation in690

fusion category theory [42]:691

=

c

c′

ba δc,c′ (69)

The perimeter of the central plaquette is a special case of this relation with c′ = 1 and c = wL.692

Hence, wL = 1. Then, the yL string decouples from the rest strings.693

Now we make two claims for states in Fig. 9(b): (i) {wi} are completely fixed by {αi , ai , xi}694

due to constraints Av = Pl = 1 and thereby are redundant and (ii) the remaining degeneracy695

due to gp and yL is completely lifted by the Bp term associated with the central plaquette in696

Hdisk. Under these two claims, we then immediately have HGS
{αi ,ai ,xi}

is one-dimensional.697
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The first claim can be shown by performing additional F moves into Fig. 9(c). Note that698

these F moves do not touch on {wi}. Accordingly, if {wi} are fully fixed by other spins in699

Fig. 9(c), so are they in Fig. 9(b). Indeed, in the basis of Fig. 9(c), we have wi = zi for every700

i. This is obtained by repeatedly applying the relation (69) to Fig. 9(c).701

Given the first claim, we then have all valid states in HAv=Pl=1 with fixed {αi , ai , xi} form702

the following space703

H{αi ,ai ,xi} = span
�

|yL, gp〉|yL ∈ CG, gp = αLgyL

	

(70)

where the condition gp = αLgyL
follows from the constraint Pl = 1. We note that H{αi ,ai ,xi}704

is always |CG|-dimensional. The action of Hdisk = −Bp is closed in H{αi ,ai ,xi}. To prove the705

second claim, we need to calculate the ground state degeneracy inside H{αi ,ai ,xi}. We recall706

that Bp is a projector, i.e., B2
p = Bp . Hence, the ground states have Bp eigenvalue 1 and the707

excited states have Bp eigenvalue 0. Then, the ground state degeneracy is given by Tr(Bp).708

We show in Appendix B that Tr(Bp) = 1 in H{αi ,ai ,xi} for arbitrary {αi , ai , xi}, i.e., HGS
{αi ,ai ,xi}

709

is one-dimensional.710

To summarize, we have shown that the ground-state space HGS of Hdisk in (65) is of the711

form (66), with HGS
{αi ,ai ,xi}

being one-dimensional. That is, HGS is fully described by the bound-712

ary spins {αi , ai , xi} subject to the constraints Av = Pl = 1 for all relevant vertices and links.713

To exactly match our 1D model, we introduce additional interaction between the boundary714

spins715

H ′ = H1D −∆
∑

la

K la
(71)

where H1D is the 1D Hamiltonian in Sec. 2.4, and∆ is a large positive number. The sum in the716

second piece runs over all links la that {ai} lives. When acting on basis states, the operator717

K la
= δ(ai , āα−1

i−1
αi
) , where āg is the selected object from Cg discussed in Sec. 2.2 (we have718

added a bar in the notation to distinguish it from ai on links). In the limit ∆ → ∞, this719

boundary theory matches exactly to our 1D model.720

In the above discussions, we have focused on the Hilbert space and Hamiltonian, and have721

not touched on symmetry. The SESN model has an onsite G group symmetry, while the 1D722

model is not symmetric under onsite G, instead is symmetric under CG . To understand this, let723

us apply Ug of (63) onto HGS. Let |{αi , ai , xi}〉 be the state in HGS
{αi ,ai ,xi}

. Due to the constraints724

Pl = 1 and the boundary condition gempty = 1, we have xi ∈ Cαi
and ai ∈ Cα−1

i−1
αi

. Then,725

Ug|{αi , ai , xi}〉 ∼ |gαi , ai , x ′
i
〉 with x ′

i
∈ Cgαi

. On the one hand, since x ′
i
/∈ Cαi

, the ground-726

state |{αi , ai , xi}〉 transforms nontrivially under G, making it broken in some sense. On the727

other hand, the choice of {x ′
i
} is not unique. To fix this ambiguity, we think of Ug =

∏

p Ug
p728

as a union of all plaquettes and take a string s ∈ Cg as its termination on the boundary. This729

termination means that, after applying Ug, we further fuse s onto {xi} from outside. Let us730

denote the string fusion operator as Bs
0, such that the combination sends |{αi , ai , xi}〉 to the731

state Bs
0Ug|{αi , ai , xi}〉. One may notice that it is similar to the Bp operator in the Hamiltonian,732

except that Ug has a left group action and Bs
0 fuses the s string from outside of the plaquette in733

comparison to “right action” and “fusion from inside” for Bp in the Hamiltonian. The collection734

{Bs
0Ugs } with s running over all simple objects in CG are exactly the category symmetries735

discussed in Sec. 2.3.736

Finally, we remark that while we have taken the limit ∆→∞ in (71), one may also set737

∆ = 0 and allow {ai} to fluctuate more freely, such that different boundary theories result.738

In addition, we only consider the case that bulk is in the ground state. If the bulk contains739

a topological defect, including both anyon excitations and G symmetry defects, there must740

be a corresponding anti-defect on the boundary. (Note that it is enough to consider only one741
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topological defect in the bulk. Multiple defects can always be fused into one.) This will make742

at least one of the constraints Av = Pl = 1 to be violated at the boundary, corresponding to743

insertion of twisted boundary conditions associated with the category symmetry CG in the 1D744

systems.745

5 Summary and outlook746

In summary, we have constructed a 1D quantum lattice model that explicitly displays category747

symmetry CG . The model can be viewed as an interpolation between the anyon chain model748

and edge model of 2D bosonic SPTs, and as an edge model of 2D bosonic SETs. Our numerical749

results show that the category symmetry constrains the model to the extent that it has a large750

likelihood to be quantum critical. Hence, this model, with different input categories and tuning751

parameters, is a good source for studying gapless phases. It is clear that more numerical effort752

is desired.753

We discus a few possible future directions.754

1. One may generalize our model to G-graded super or spin unitary fusion category (we755

notice that a related work is done in Ref. [58]). Super fusion category describes defects756

in fermionic systems, and spin fusion category is the corresponding category after gaug-757

ing fermion parity. [59,60] Our model can be readily generalized to spin fusion category,758

which has no difference to the usual unitary fusion category except that it has a special759

simple object, the fermion ψ. To make a connection to fermionic SPT/SET edges, one760

needs to find a way to ungauge the fermion parity, or equivalently gauge the dual sym-761

metry U(ψ). This gauging procedure has been worked out in Ref. [38] in the example of762

Ising fusion category (the simplest spin fusion category). It is interesting to work out the763

general case and understand the connection to fermionic SPT/SET edges. (Note added.764

During the publication process of our work, we noticed a few recent works [61, 62] on765

1+1 systems with fermionic categorical symmetries.)766

2. Another generalization is to make the variable xi valued in a module category M over767

a fusion category C [16]. It is known that a general way to terminate the string-net768

model at the boundary is to use module category [63]. The recent study on duality of769

category symmetry in Ref. [34] precisely uses this language. The essence of having a770

G-grading structure in the input data CG of our model is to enable a partial ungauging771

of the category symmetry. We expect that generalization to module category may help772

to ungauge general category symmetry in our model, which is essentially the duality773

discussed in Ref. [34].774

3. CG serves both as the input data and as the category that characterizes the symmetries of775

our model. In principle, one may make use of the Drinfeld center Z(CG), which describes776

all the anyons in the SET bulk after gauging G. For example, in the case that CG = CIsing777

as input, the gauged SET bulk is characterized by CIsing × CIsing. In our construction,778

we only make use of CIsing to constrain the low-energy physics, while CIsing has not be779

explicitly used. It is interesting to study how to construct models with the larger category780

symmetry Z(CG) manifested.781

4. It is also interesting to extend this construction to higher dimensions. In this perspective,782

one needs to make use of higher fusion categories [20–22].783
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A Symmetry and Hamiltonian792

In this appendix, we give a derivation of the explicit expression (6) of the symmetry U(yh).793

We also explicitly show that the Hamiltonian (8) is invariant under U(yh).794

A.1 Derivation of Eq. (6)795

The graphical representation of U(yh) is shown in Fig. 2. Under the action of U(yh), the796

domain variables αi are simultaneously mapped to hαi . Since α−1
i
αi+1 is unchanged, the do-797

main wall defect ai keeps invariant under U(yh). Meanwhile, the variables xi will be mapped798

to other variables x ′
i

799

U(yh) : |{αi , xi}〉 → |{hαi , x ′i }〉. (72)

In general, U(yh)|{αi , xi}〉 is a linear superposition of |{hαi , x ′
i
〉}. Below we show that the800

matrix element 〈{hαi , x ′
i
}|U(yh)|{αi , xi}〉 is given by (6). The derivation is divided into four801

steps, as follows. Note that this derivation is equivalent to that for the usual anyon-chain802

models [29].803

1. Add a trivial line connecting yh and xi+1 as in (73) and perform an F move which would804

give an amplitude
�

(F yhxi+1xi+1
yh

)†
�x ′

i+1

1
=

√

√ dx ′
i+1

dyh
dxi+1

δyhxi+1x ′
i+1

. Here, δyhxi+1x ′
i+1
= N

x ′
i+1

yhxi+1
= 0805

or 1. Summation over x ′
i+1

is not shown.806

√

√

√

dx ′
i+1

dyh dxi+1

ai−1 ai ai+1 ai+2

xi−2 xi−1 xi xi+1 xi+2

yh

ai−1 ai ai+1 ai+2

xi−2 xi−1 xi x ′
i+1

xi+2

yh (73)

2. Perform a F move associated with the three defects yh, xi , ai+1, with x ′
i+1

viewed as the807

total fusion channel, as in (74). We call this procedure “sliding yh across ai+1”. It gives808

an amplitude
�

(F yh,xi ,ai+1

x ′
i+1

)†
�x ′

i

xi+1

.809

ai−1 ai ai+1 ai+2

xi−2 xi−1 xi x ′
i+1

xi+2

yh

(F
yh,xi ,ai+1
x ′
i+1

)
†x ′

i
xi+1

ai−1 ai ai+1 ai+2

xi−2 xi−1 x ′
i

x ′
i+1

xi+2

yh (74)
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3. Continue the second step, and keep sliding yh across the rest a j , as in (75). This gives810

the amplitude
�

∏

j 6=i,i+1

(F
yh,x j ,a j+1

x ′
j+1

)
†x ′

j
x j+1

�

(F yh,xi+1,ai+2

x ′′
i+2

)
†x ′

i+1
xi+2

.811

ai−1 ai ai+1 ai+2

xi−2 xi−1 x ′
i

x ′
i+1

xi+2

yh

�

∏

j 6=i,i+1

(F
yh,x j ,a j+1

x ′
j+1

)
†x ′

j
x j+1

�

×(F
yh,xi+1,ai+2
x ′′
i+2

)
†x ′

i+1
xi+2

ai−1 ai ai+1 ai+2

x ′
i−2

x ′
i−1

x ′
i

xi+1 x ′
i+2

x ′′
i+1

x ′
i+1

yh

(75)

4. Shrink the “bubble" as in (76) which gives a coefficient

√

√dxi+1dyh
dx ′

i+1

and imposes the con-812

dition x ′
i+1
= x ′′

i+1
.813

ai−1 ai ai+1 ai+2

x ′
i−2

x ′
i−1

x ′
i

xi+1 x ′
i+2

x ′′
i+1

x ′
i+1

yh

√

√

√

√

dxi+1dyh
dx ′

i+1

δ
x ′
i+1

x ′′
i+1

ai−1 ai ai+1 ai+2

x ′
i−2

x ′
i−1

x ′
i

x ′
i+1

x ′
i+2

(76)

Combining all the steps and multiplying all the amplitudes, we obtain Eq. (6).814

A.2 Hamiltonian is symmetric under U(yh)815

Now we show that the Hamiltonian (8) is symmetric under U(yh) (6). Specifically, we show816

HiU(yh) = U(yh)Hi when acting on any state. The graphical representation of U(yh) in Fig. 2817

has the advantage of being basis independent. We will make use of this and mainly work in818

the basis (9). We will act Hi and U(yh) on an arbitrary state in different orders, and compare819

the final sates, which turn to be the same.820

On the one hand,821

U(yh)Hi αi−1 αi αi+1

xi−1 xi xi+1

ai ai+1

=
∑

zi

�

F xi−1ai ai+1
xi+1

�zi

xi
U(yh)Hi αi−1

αi

αi+1

xi−1

zi

xi+1

ai ai+1

=
∑

α′
i

∑

zi

w zi

α−1
i
α′

i

�

F xi−1ai ai+1
xi+1

�zi

xi
U(yh) αi−1

α′
i
αi+1

xi−1

zi

xi+1

a′
i

a′
i+1

=
∑

α′
i

∑

zi

∑

{x ′
j
| j 6=i}

w zi

α−1
i
α′

i

�

F xi−1ai ai+1
xi+1

�zi

xi
U
{x ′

i
}

{xi},yh,zi
hαi−1

hα′
i
hαi+1

x ′
i−1

zi

x ′
i+1

a′
i

a′
i+1

(77)

where we have used the basis transformation (9) in the first line, and the definition (10) of Hi822

in th second line. The coefficient in the last line is823

U
{x ′

i
}

{xi},yh,zi
=
�

F yh,xi−1,zi

x ′
i+1

�†x ′
i−1

xi+1

∏

j 6=i,i+1

�

F
yh,x j ,a j+1

x ′
j+1

�†x ′
j

x j+1

. (78)
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which is obtained in the same way as Appendix A.1. On the other hand,824

HiU(yh) αi−1 αi αi+1

xi−1 xi xi+1

ai ai+1

=
∑

zi

�

F xi−1ai ai+1
xi+1

�zi

xi
HiU(yh) αi−1

αi

αi+1

xi−1

zi

xi+1

ai ai+1

=
∑

zi

∑

{x ′
j
| j 6=i}

�

F xi−1ai ai+1
xi+1

�zi

xi
U
{x ′

i
}

{xi},yh,zi
Hi hαi−1

hαi

hαi+1

x ′
i−1

zi

x ′
i+1

ai ai+1

=
∑

α′
i

∑

zi

∑

{x ′
j
| j 6=i}

�

F xi−1ai ai+1
xi+1

�zi

xi
U
{x ′

i
}

{xi},yh,zi
w zi

α−1
i
α′

i

hαi−1

hα′
i
hαi+1

x ′
i−1

zi

x ′
i+1

(79)

where we have used (hαi)−1(hαi+1) = α−1
i
αi+1. Comparing (77) and (79), we see the final825

expressions are exactly the same. As the initial state and i are arbitrary, we have proven826

HU(yh) = U(yh)H for any yh.827

B Proof of Tr(Bp) = 1 in H{αi ,ai ,x i}828

In this appendix, we show that Tr(Bp) = 1 in the space H{αi ,ai ,xi} with given {αi , ai , xi}. We829

will represent a state |Ψ〉 in H{αi ,ai ,xi} graphically as830

|Ψ〉 = αLgp

yL

(80)

where yL can be any simple object in CG , gp = αLgyL
, and other spins on the lattice (Fig. 9(b))831

are omitted as Bp does not act on them. Since gp is fixed by yL and αL, the dimension of832

H{αi ,ai ,xi} is |CG|. The term Bp is defined as Bp =
1

D2

∑

s∈CG
ds Bs

pŨgs
p , where D =

q

∑

s d2
s and833

Bs
pŨgs

p αLgp

yL

= Bs
p αLgpgs

yL

= αLgpgs

yL

s =
∑

y ′L

N
y ′L
yL,s αLgpgs

y ′L
(81)

In the last equation, we have fused yL and s strings, with N
y ′L
yL,s = 0, 1 being the fusion co-834

efficient. Note that individual action of Ũgs
p or Bs

p goes out of the space H{αi ,ai ,xi}. We have835

omitted arrows of the strings for simplicity, which can be easily restored.836
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We calculate Tr(Bp) as follows:837

Tr(Bp) =
∑

yL∈CG

αL gp

yL

Bp αLgp

yL

=
∑

yL∈CG

∑

s∈CG

ds

D2 αL gp

yL

Bs
pŨgs

p αLgp

yL

=
∑

yL∈CG

∑

s∈CG

∑

y ′L∈CG

ds

D2
N

y ′L
yL,s αL gp

yL

αLgpgs

y ′L

=
∑

yL∈CG

∑

s∈CG

∑

y ′L∈CG

ds

D2
N

y ′L
yL,sδyL,y ′L

δgs ,1

=
∑

yL∈CG

∑

s∈C0

ds

D2
N yL

yL,s =
∑

yL∈CG

d2
yL

D2
= 1 (82)

In the third line, we have inserted Eq. (81). In the last line, we have used da = dā, N c
ab
= N b̄

ac̄838

and dadb =
∑

c dc N c
ab

for any a, b, c ∈ CG , such that
∑

s ds N yL
yL,s =

∑

s ds̄ N s̄
yL,yL

= d2
yL

. Note839

that if N yL
yL,s 6= 0, we must have s ∈ C0 due to the G-grading structure in CG .840
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