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Abstract

Dense Hopfield networks with p-body interactions are known for their feature to prototype
transition and adversarial robustness. However, theoretical studies have been mostly
concerned with their storage capacity. We derive the phase diagram of pattern retrieval in
the teacher-student setting of p-body networks, finding ferromagnetic phases reminiscent
of the prototype and feature learning regimes. On the Nishimori line, we find the critical
amount of data necessary for pattern retrieval, and we show that the corresponding
ferromagnetic transition coincides with the paramagnetic to spin-glass transition of
p-body networks with random memories. Outside of the Nishimori line, we find that
the student can tolerate extensive noise when it has a larger p than the teacher. We
derive a formula for the adversarial robustness of such a student at zero temperature,
corroborating the positive correlation between number of parameters and robustness
in large neural networks. Our model also clarifies why the prototype phase of p-body
networks is adversarially robust.

Copyright attribution to authors.
This work is a submission to SciPost Physics.
License information to appear upon publication.
Publication information to appear upon publication.

Received Date
Accepted Date
Published Date

1

Contents2

1 Introduction 23

2 Overview of Gardner’s results 34

3 Teacher-student setting 55

4 Results and Discussion 86

4.1 Transition to the ordered phases: universality 87

4.2 Phase diagram on the Nishimori line 108

4.3 Inference temperature vs dataset noise 139

4.4 Interaction order and noise tolerance 1310

4.5 Robustness against adversarial attacks 1711

5 Conclusion 1912

1

mailto:robin.theriault@sns.it


SciPost Physics Submission

References 2013

A Gardner’s Hamiltonian vs Krotov’s Hamiltonian 2514

B Direct model cumulant expansions 2715

C Teacher-student replicated partition function 3016

D Teacher-student free entropy 3217

E Direct model RSB ansatz 4018

F Monte-Carlo simulations for various system sizes 4119

20

21

1 Introduction22

Hopfield networks are artificial neural networks that model associative memory [1]. In the23

Hopfield model, examples σ ∈ {−1, 1}N of memories ξµ ∈ {−1, 1}N , µ = 1, . . . , M , are24

retrieved by sampling the Gibbs distribution of a 2-body Hamiltonian H
�

σ|ξ
�

at a given25

temperature T [2]. Hopfield networks can be trained in a biologically plausible way using26

Hebb’s rule [1,3], which leads to H
�

σ|ξ
�

= − 1
N

∑M
µ=1

�
∑N

i=1 ξ
µ

i
σi

�2
. However, they can only27

store up to M ∼ O (N) i.i.d. random memories in the limit of large N [1, 4, 5]. One way to28

find this scaling is to study the phase diagram of H
�

σ|ξ
�

as a function of the temperature T29

and load α =
M
N [5], where the so-called ferromagnetic phase, which extends up to α ≈ 0.14,30

corresponds to accurate retrieval.31

Since Hopfield’s seminal work, several generalizations have been investigated in relation32

to their critical storage capacity and retrieval capabilities. For example, parallel retrieval33

has been studied in relation to pattern sparsity [6–10] or hierarchical interactions [11–15],34

and non-universality has been shown with respect to more general pattern entries and unit35

priors [16–22]. Efforts to overcome the O (N) limitation of the capacity led to the development36

of a novel class of modern Hopfield networks [23–25], which are sometimes called dense due to37

their faculty to store much more memories than the original Hopfield model [26]. These neural38

networks surpass O (N) storage capacity by using higher-order interactions instead of the39

original 2-body couplings [27–32]. In particular, Gardner [30] calculated the replica-symmetric40

(RS) phase diagram of the Hamiltonian H
�

σ|ξ
�

= −
∑N

i1<...<ip=1 Ji1...ip
σi1 ...σip

with p-body41

interactions Ji1...ip
=

p!
Np−1

∑M
µ=1 ξ

µ

i1
...ξµ

ip
conditioned on i.i.d. random memories ξµ ∈ {−1, 1}N ,42

finding a M =O
�

Np−1
�

storage capacity. These calculations were later extended to include43

the effects of one-step replica symmetry breaking (1RSB) [33].44

Although they draw a rather detailed picture of the retrieval of individual i.i.d. random45

memories, these results are not the end of the story. First of all, there is still significant46

uncertainty on the location of the paramagnetic to spin-glass phase transition because of47

numerical instability. Second of all, dense Hopfield networks have been rapidly gaining a48

renewed attention for reasons other than their storage capacity since Krotov’s recent paper [26],49

where they were used as a trainable machine learning architecture. For instance, they have50

been related to transformers [23,34] and diffusion models [35,36], and they were found to be51

significantly more explainable and adversarially robust than feedforward neural networks with52
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ReLU activation functions [26,37].53

One such aspect of dense Hopfield networks that is still poorly understood is their per-54

formance as generative models for unsupervised learning, where they are trained over some55

given dataset to reproduce its probability distribution. As far as we are aware, this problem has56

not yet been studied theoretically for p-body models with p ≥ 3. However, it was studied for57

the original 2-body Hopfield network by using the teacher-student setting [38] first described58

in [16,17,39]. In the teacher-student setting, which is also called inverse problem in opposition59

to the direct problem of random pattern retrieval, a student model H
�

ξ|σ
�

is trained with M60

teacher examples σa ∼ H
�

σa|ξ∗
�

conditioned on the planted pattern ξ∗. In other words, the61

student tries to infer the pattern ξ∗ of the teacher using a structured set of examples σa.62

At finite load α =
M
N , two regimes of pattern retrieval were found: example retrieval63

(eR) and signal retrieval (sR). In the eR phase, the student tries to reconstruct ξ∗ by directly64

retrieving the examples σa, which is a good strategy provided that they are strongly correlated65

with ξ∗. In the sR phase, on the other hand, retrieval is done by extracting subtle cues from66

weakly correlated examples. The two types of examples used in these two retrieval strategies67

are respectively called prototypes and features of ξ∗ [26]. Interestingly, a prototype regime68

and a feature regime were also observed by Krotov in dense Hopfield networks trained to69

classify real data [26], where it was found that the prototype regime is significantly more70

adversarially robust than the feature regime. In other words, the prototype regime is more71

resistant than the feature regime to small data perturbations that are specifically designed to72

cause incorrect classification [40,41]. This prototype approach is arguably a big step toward73

designing adversarially robust neural networks, a long-standing problem that still lacks a fully74

satisfying solution [42–44].75

In this work, we study the performance of p-body Hopfield networks in the teacher-student76

setting, revealing a prototype regime and a feature regime as in the 2-body model. In Section77

2, we review Gardner’s main results in studying p-body Hopfield models. In Section 3, we78

compute the phase diagram of these p-body models in the teacher-student setting. In Section79

4.1, we discuss the transition to the retrieval phase in the inverse problem and compare it80

against the transition to the spin-glass phase in the direct problem. Despite their different81

nature, we show that these two transitions are equivalent on the Nishimori line where the82

teacher and the student have the same p and T [45–48]. In Section 4.2, we discuss the phase83

diagram on the Nishimori line in more details. In Section 4.3 and Section 4.4, we discuss the84

phase diagram outside of the Nishimori line. First of all, we investigate the effect of using an85

inference temperature different from the dataset noise. Second of all, we reveal that using86

a larger p for the student than the teacher gives the student an extensive tolerance against87

both teacher noise and pattern interference. Finally, in Section 4.5, we derive a closed-form88

expression that measures the adversarial robustness of the student at zero temperature and89

explain what our results reveal about the nature of adversarial attacks.90

2 Overview of Gardner’s results91

Consider the p-body Hamiltonian92

H
�

σ|ξ
�

= −
N
∑

i1<...<ip=1

Ji1...ip
σi1 ...σip

= −
p!

Np−1

N
∑

i1<...<ip=1

M
∑

µ=1

ξ
µ

i1
...ξµ

ip
σi1 ...σip

(1)

conditioned on a set of M =
αNp−1

p! quenched memories ξµ ∈ {−1, 1}N , µ = 1, . . . , M , sampled93

i.i.d. from the Rademacher distribution
1
2

�

δ
�

ξ
µ

i
− 1

�

+ δ
�

ξ
µ

i
+ 1

��

. In the direct model,94
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patterns σ are in turn sampled from the equilibrium Gibbs distribution P(σ|ξ) = Z−1e−βH[σ|ξ],95

where β ≥ 0 is the inverse temperature and Z =
∑

σ e−βH[σ|ξ] is the system’s partition function.96

The so-called direct problem studied by Gardner [30] consists of quantifying the performance97

of this model as a method of memory retrieval. In that context, the overlap
1
N

∑

i ξ
µ

i
σi is a98

good measure of retrieval accuracy, and its expected value can be derived from the quenched99

free entropy f =
1
N 〈logZ〉ξ in the thermodynamic limit N →∞. At finite p, Gardner used100

the (non-rigorous) replica trick [49] to evaluate the RS approximation of f (see also Appendix101

B) in terms of a variational principle of the form102

f = lim
N→∞

1

N
〈logZ〉ξ = lim

N→∞,L→0

�

∂

∂ L

�

1

N
log




ZL�

ξ

��

= Extr
m,k,q ,k,r

f (m, k,q , r ),

whose solution is103

q =

∫

R

dx
1
p

2π
exp

�

−
1

2
x2
�

tanh2 �β
�p
αr x + k

��

m =

∫

R

dx
1
p

2π
exp

�

−
1

2
x2
�

tanh
�

β
�p
αr x + k

��

r = pq p−1

k = pmp−1,

and the order parameters m and q are to be interpreted as expected overlaps. To be more104

precise, m can be shown to be the expected overlap of a retrieval attemptσ against one memory105

in the thermodynamic limit, i.e. m = limN→∞

¬ 1
N

∑

i ξ
µ

i
σi

¶

ξ,σ
. Similarly, q is the expected106

overlap between two retrieval attempts σ1 and σ2, i.e. q = limN→∞

¬ 1
N

∑

i σ
1
i
σ2

i

¶

ξ,σ
or107

equivalently q = limN→∞

¬ 1
N

∑

i 〈σi〉2σ
¶

ξ
. Intuitively, q measures the tendency of the system108

to stay frozen in specific configurations rather than visiting all possible values of σ.109

The resulting RS phase diagram (see Fig. 1) can be derived from the value of the order110

parameters as a function of three hyperparameters: the interaction order p, temperature111

T = 1/β and load α =
Mp!
Np−1 . There are four different phases:112

• In the Paramagnetic phase (P), the overlaps m and q both vanish. The network does not113

retrieve any specific pattern: sampled configurations are completely random.114

• In the Spin-Glass phase (SG), m vanishes but q > 0. In other terms, the network does not115

retrieve individual stored memories but rather converges to spurious patterns depending116

on all the memories in a non-trivial way.117

• In the signal Retrieval phases (lR and gR), m ̸= 0 and q > 0, which means that the118

network is able to retrieve the stored memories. lR and gR are respectively locally119

stable and globally stable. In other words, local retrieval lR is only attainable from120

initial conditions in a limited neighborhood of a memory ξµ, while global retrieval gR is121

accessible from any initial conditions given enough time. These two phases are said to122

be ferromagnetic.123

Gardner also calculated the exact p →∞ phase diagram without making any assumptions124

about replica symmetry [30]. The resulting paramagnetic to spin-glass (P-SG) phase transition125

line, given by β2α = 2 log2, coincides with the boundary of the region where the total126

entropy of the paramagnetic phase becomes negative. Therefore, the total entropy of the127

system is always positive, as expected. Conversely, the finite p phase diagrams obtained under128
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Figure 1: RS phase diagrams of the direct models with p = 3 on the left and p = 10
on the right. Accurate pattern retrieval is not possible in the paramagnetic phase (P)
or in the spin-glass phase (SG), but it is possible in the local retrieval phase (lR) and
in the global retrieval phase (gR). The ferromagnetic fixed point corresponding to
accurate pattern retrieval is globally stable in the gR phase, but locally stable in the
lR phase. The phase diagrams are inexact below the white dashed line where the
total entropy of the paramagnetic phase becomes negative.

the RS approximation have a limited scope because RSB must be taken into account in the129

β2α > 2 log 2 region where the RS approximation of the total entropy becomes negative [30,50].130

Although these phase diagrams were recently extended by including the effects of 1RSB [33],131

there is still significant uncertainty on the location of the large-p P-SG transition because of132

numerical instability issues. In fact, the finite-p transition evaluated in [33] does not seem to133

get closer to the exact p →∞ transition as p gets larger.134

3 Teacher-student setting135

On our end, we study a dense Hopfield network with Hamiltonian (1) as a generative model136

for unsupervised learning. In that context, the memories ξ are model parameters that have to137

be trained in such a way that the examples of a given dataset {σa}Ma=1 result as typical network138

configurations.139

In particular, we study a controlled teacher-student setting in which the examples are140

sampled from the probability distribution P
�

σa|ξ∗
�

of a so-called teacher dense Hopfield141

network conditioned on a single planted pattern ξ∗ ∈ {−1, 1}N whose entries are quenched142

Rademacher random variables. A student dense Hopfield network, also known as the inverse143

model, then samples its own student pattern ξ from the posterior distribution144

P
�

ξ|σ
�

=
P(ξ)

∏M
a=1 P

�

σa|ξ
�

P(σ)
=

P(ξ)

P(σ)

M
∏

a=1

Z−1 exp
�

−βH[σa|ξ]
�

,

where P
�

σa|ξ
�

is the Gibbs distribution of the direct model with a single memory ξ, and P
�

ξ
�

145

is the prior on ξ that is chosen to be uniform. Since the direct model has only a single pattern,146

Z does not depend on ξ (see Appendix C), and the posterior simplifies to147

P
�

ξ|σ
�

= Z−1(σ)exp
�

−βH[ξ|σ]
�

.
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In sum, the student posterior distribution is that of a dense Hopfield network where ξ plays the148

role of the sampled pattern and the examples σ act like the M quenched memories. Our task,149

called the inverse problem, consists of quantifying the student’s capability to infer the teacher150

pattern, which we will also call the signal. Like Gardner, we calculate a free entropy of the151

form f =
1
N 〈logZ〉σ in the thermodynamic limit N →∞. This time, however, the average152

〈·〉σ is over a structured set of examples σ. In fact, we recall that, unlike the i.i.d. memories153

studied by Gardner, the examples σa are sampled from the teacher distribution P
�

σa|ξ∗
�

.154

In general, the student does not have access to the teacher generative model. In our155

controlled teacher-student setting, the student knows that the correct model for P
�

σa|ξ
�

is a156

dense Hopfield network. Nevertheless, it does not necessarily have access to the interaction157

order p∗ and inverse temperature β∗ used by the teacher. Therefore, we denote the student158

hyperparameters by p and β and emphasize that they are not necessarily equal to p∗ and β∗.159

As previously stated, we calculate the free entropy160

f =
1

N
〈logZ〉σ = 2−N

∑

ξ∗

∑

σ

[Z∗]−M exp

 

β∗
p∗!

Np∗−1

M
∑

a=1

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗

σa
i1

...σa
ip

!

× log
∑

ξ

exp

 

β
p!

Np−1

M
∑

a=1

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

!

(2)

in the thermodynamic limit N →∞. We then draw phase diagrams of the inverse problem as161

a function of p∗, T ∗ = 1/β∗, p, T = 1/β and α.162

We first consider the case where p∗ = p and the only possible mismatch between the teacher163

and student networks is in the inverse temperature, i.e. β∗ ̸= β . At low T ∗, the student’s task is164

easy. In fact, below the critical temperature Tcrit of the direct problem with one pattern (see Fig.165

1), the teacher produces examples σa that cluster around ξ∗. Therefore, the student can infer166

ξ∗ by aligning its pattern ξ with the examples σa. This retrieval strategy works even when167

using a very small amount of examples (see [38]). Since the size of our dataset is extensive, the168

retrieval accuracy is maximum in the thermodynamic limit. We call this region the (accurate)169

example Retrieval phase (eR).170

Conversely, when T ∗ is above Tcrit, the examples in the training set are very noisy and171

we do not observe a finite overlap between σa and ξ∗. In this regime, we find that the RS172

approximation of the free entropy can be computed (see Appendix D) in terms of the variational173

principle174

f = Extr
m,k,q ,r,q∗,r ∗

�

β∗βα [q∗]p −
1

2
β2αq p +βmp −β∗βαr ∗q∗ (3)

+
1

2
β2αrq −

1

2
β2αr −βmk +

1

2
β2α+ log 2

+

∫

dx
1
p

2π
exp

§

−
1

2
x2
ª

¬

log
�

cosh
�

β
�p
αr x +β∗αr ∗ + kz

���
¶

z

�

,
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whose solution is the saddle-point equations175

q∗ =

∫

R

dx
1
p

2π
exp

�

−
1

2
x2
�

¬

tanh
�

β
�p
αr x +β∗αr ∗ + kz

��
¶

z

q =

∫

R

dx
1
p

2π
exp

�

−
1

2
x2
�

¬

tanh2 �β
�p
αr x +β∗αr ∗ + kz

��
¶

z

m =

∫

R

dx
1
p

2π
exp

�

−
1

2
x2
�

¬

z tanh
�

β
�p
αr x +β∗αr ∗ + kz

��
¶

z
(4)

r ∗ = p [q∗]p−1

r = pq p−1

k = pmp−1,

where z is a Rademacher random variable. As in the direct model described in Section 2,176

the order parameters m and q have a clear interpretation in terms of expected overlaps.177

m = limN→∞

¬ 1
N

∑

i ξiσ
a
i

¶

ξ∗,σ,ξ
is the expected overlap of a retrieval attempt with an ex-178

ample σa, and q = limN→∞

¬ 1
N

∑

i




ξi
�2
ξ

¶

ξ∗,σ
is the expected overlap between two retrieval179

attempts. Similarly, q∗ is the expected overlap between the teacher and student patterns, i.e.180

q∗ = limN→∞

¬ 1
N

∑

i ξ
∗
i
ξi

¶

ξ∗,σ,ξ
. Therefore, it is a good measure of inference performance.181

The free entropy (Eq. 3) is expected to be exact in absence of mismatch between the teacher182

and the student, i.e. β∗ = β . This condition is known as the Nishimori line [45–48]. Outside183

of the Nishimori region, RSB corrections are expected. Like in the direct problem, there are184

different phases characterized by the values of the order parameters:185

• In the Paramagnetic phase (P), the overlaps m, q∗ and q all vanish.186

• In the signal Retrieval phases (lR and gR), m = 0 but q∗ ≠ 0 and q > 0. lR and gR are187

respectively locally stable and globally stable. In other words, local retrieval lR is only188

attainable from initial conditions in a limited neighborhood of ξ∗, while global retrieval189

gR is accessible from any initial conditions given enough time. These two phases are190

also said to be ferromagnetic.191

• In the (inaccurate) example Retrieval phase (eR), m ̸= 0 and q > 0 but q∗ = 0.192

• In the Spin-Glass phase (SG), q > 0 but q∗ and m vanish.193

In sum, when T ∗ is above Tcrit, the student can only learn the teacher pattern in the signal194

retrieval phases. In all the other phases, the student pattern is uncorrelated with the signal,195

being either a random guess (P phase), aligned with a noisy example (inaccurate eR phase),196

or aligned with a spurious low energy state (SG phase).197

We also investigate the T ∗ > Tcrit regime in the presence of a mismatch between the198

interaction orders of the teacher and student networks, i.e. p∗ ̸= p. We focus on the case of199

p∗ = 2 and even p ≥ 3 to study the consequences of fitting the teacher of [38] using a student200

with higher order interactions. We find two different scaling regimes of the training set size M201

and inverse temperature β∗ that make retrieval possible (see Appendix D):202

• a large-noise scaling where β∗ ∼ O
�

N2/p−1
�

and M ∼ O
�

Np−1
�

, such that α =
Mp!
Np−1203

and λ =
[β∗]p/2

(p/2)! Np/2−1 are finite;204

• a finite-noise scaling where β∗ ∼ O (1) and M ∼ O
�

Np/2
�

, such that α =
M(p/2+1)!

Np/2 is205

finite.206

7
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In the large-noise scaling, we obtain saddle point equations similar to Eqs. (4) but with β∗207

replaced by λ (see Appendix D). Conversely, the finite noise scaling leads to208

q∗ =
¬

tanh (β [ηαr ∗ + kz])
¶

z

m =
¬

z tanh (β [ηαr ∗ + kz])
¶

z
(5)

r ∗ = p [q∗]p−1

k = pmp−1,

where η generally depends on β∗ and p in a non-trivial way, but we find that η =
2[β∗]2

(1−2β∗)2
when209

p = 4 (see Appendix D). These equations can also be derived by extrapolating the large-noise210

equations equations to αlarge noise→ 0 and λ→∞ with fixed λαlarge noise = ηαfinite noise.211

4 Results and Discussion212

4.1 Transition to the ordered phases: universality213

The paramagnetic solution of Eqs. (4) always exists and is globally stable in the part of the214

phase diagram where the T is relatively large and α is relatively small. On the other hand, the215

gR phase exists when β2αp and β∗βαp are both large. In fact, in that limit, q∗ = q = 1 is216

a fixed point of Eqs. (4). The critical line where gR becomes globally stable instead of P is217

not clear from this analysis alone, but we can at least find it analytically in the limit of infinite218

p. As for the direct model, the free entropy and the total entropy of the paramagnetic phase219

are respectively
1
2β

2α+ log2 and −1
2β

2α+ log2 [30]. At the same time, the p →∞ free220

entropy takes the form221

f = Extr

�

β∗βα θ [q∗]−
1

2
β2α θ [q]−β∗βαr ∗q∗ +

1

2
β2αrq −

1

2
β2αr +

1

2
β2α+ log 2

+

∫

dx
1
p

2π
exp

§

−
1

2
x2
ª

log
�

cosh
�Æ

β2αr x +β∗βαr ∗
��

�

,

where θ [q] := limp→∞ q p , q ∈ [0, 1], is the Heaviside step function jumping at q = 1, i.e.222

θ (1) = 1 and θ (q) = 0 ∀q ∈ [0, 1). In this limit, the ferromagnetic phase is characterized by223

q = q∗ = 1, and its free entropy is then224

f = β∗βα−β∗βαp +

∫

dx
1
p

2π
exp

§

−
1

2
x2
ª

log
�

2 cosh
�Æ

β2αpx +β∗βαp
��

≈ β∗βα−β∗βαp +

∫

dx
1
p

2π
exp

§

−
1

2
x2
ª

�Æ

β2αpx +β∗βαp
�

= β∗βα.

The corresponding total entropy is s = f −β ∂ f
∂ β = 0, as expected from a ferromagnetic phase225

with q∗ = q = 1. On the Nishimori line, f = β∗βα becomes larger than the free entropy of226

the paramagnetic phase, which triggers a phase transition, if and only if227

T <

√

√ α

2 log 2
, (6)

8



SciPost Physics Submission

where T =
r

α

2 log 2 is also the temperature below which the total entropy of the paramag-228

netic phase becomes negative. Outside of the Nishimori line, this inequality generalizes to229

β∗βα >
1
2β

2α+ log 2, leading to230

β∗ −

√

√

[β∗]2 −
2 log 2

α
< β < β∗ +

√

√

[β∗]2 −
2 log 2

α
,

while the temperature where the paramagnetic total entropy becomes negative stays the same.231

In the p →∞ limit, the transition towards gR of the inverse model on the Nishimori line232

is identical to the exact P-SG transition of the direct model [30]. We claim that these two233

critical lines are actually closely related for any p. In the Hopfield model with p = 2, they234

were already shown to be identical [38]. We will now argue that they overlap for any p and235

β such that the inverse model is outside of the eR phase. In the case of p = 2, both lines236

can be obtained exactly from the RS approximation of either the direct model or the inverse237

model, so there is no obvious advantage to using this equivalence in calculations. In general,238

while the inverse problem on the Nishimori line is replica symmetric, the direct problem is not,239

and the p ≥ 3 replica symmetric P-SG transition is not exact. Moreover, even the critical line240

calculated using 1RSB may be inaccurate due to numerical instability [33]. In this situation,241

the knowledge of the gR transition in the replica-symmetric inverse problem can be used to242

locate the exact P-SG transition of the direct problem, where symmetry breaking occurs.243

For that purpose, we will argue that the direct model is in the paramagnetic phase if and only244

if the inverse model is in the paramagnetic phase.245

The converse implication comes from the fact that since (see Appendix C)246

P (σ) =
1

2MN

Z(σ)
〈Z〉

, (7)

the example distribution P (σ) of the inverse problem is contiguous [51] to the uniform247

distribution, i.e. the memory distribution of the direct problem, when248

lim
N→∞

§ logZ − log 〈Z〉
N

ª

= 0. (8)

As determined in Appendix C and D, the annealed expression
1
N log 〈Z〉 is equal to the free249

entropy of the paramagnetic phase. Therefore, when the inverse model is in the paramagnetic250

phase, P (σ) is contiguous to the uniform distribution. This property is called quiet planting251

and is known to occur more generally in mean-field paramagnets [52–55]. In our problem252

setting, it means that if the inverse model is in the paramagnetic phase, then it is equivalent to253

the direct model. In particular, if the inverse model is in the paramagnetic phase, then so is the254

direct model. In more intuitive terms, the gR transition temperature of the inverse model must255

be greater than or equal to the P-SG transition temperature of the direct model because the256

ensemble of examples σa generated by the teacher model is on average at least as structured257

as the set of i.i.d. random memories stored in the direct model.258

For the direct implication, notice that the average replicated partition function of the direct259
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model in the paramagnetic phase can be approximated as (see Appendix E)260




ZL� ≈
1

〈Z〉

�

∑

σ

exp

�

βN
∑

γ

∑

µ∈Γγ

�

1

N

∑

i

ξ
µ

i
σ
γ

i

�p

+β
∑

γ

∑

µ∈Γ̄

p!

Np−1

∑

i1<...<ip

ξ
µ

i1
...ξµ

ip
σ
γ

i1
...σγ

ip

�

∑

σ0

exp

 

β
∑

µ∈Γ̄

p!

Np−1

∑

i1<...<ip

ξ
µ

i1
...ξµ

ip
σ0

i1
...σ0

ip

!

�

.

This expression is identical to the replicated partition function of the inverse model outside of261

the eR phase, which therefore must also be in the paramagnetic phase.262

As a consequence, the P-SG transition line of the direct model must be identical to the gR263

transition line of the inverse model on the Nishimori line.264

4.2 Phase diagram on the Nishimori line265

On the Nishimori line, the student is fully informed about the teacher generative model and266

uses β = β∗ and p = p∗. In this scenario, thanks to the Nishimori identities [46], it is well267

known that ξ∗ and ξ play symmetric roles and that q∗ = q . For the same reason, the overlaps268
1
N

∑

i ξ
∗
i
ξi and

1
N

∑

i ξ
1
i
ξ2

i
have the same distribution. From the self-averaging of

1
N

∑

i ξ
∗
i
ξi , it269

follows that the system is expected to be replica symmetric, and Eqs. (3) and (4) are expected270

to hold. Fig. (2) shows the phase diagrams obtained by solving the saddle-point equations271

numerically on the Nishimori line. Both q∗ = q and the replica symmetry condition are verified.272

In particular, numerical solutions of a few values of p ≥ 3 show that the gR transition occurs273

at a higher T than the line β2α = 2 log2 where the total entropy of the paramagnetic phase274

becomes negative. In other terms, the phase transition towards gR prevents the total entropy275

from becoming negative when T decreases below
r

α

2 log 2 , which is consistent with the RS276

solution being exact on the Nishimori line.277

At low T , the student can learn efficiently within the accurate eR regime. In this phase,278

learning is possible (q∗ ̸= 0) because the examples are correlated with the signal and the279

student can retrieve it by simply being aligned with them (m ̸= 0).280

At high T , learning is possible only if the amount of examples, i.e. the size of the dataset, is281

sufficiently large. When α is too small, Eqs. (4) have only a paramagnetic fixed point because282

the amount of information carried by the dataset is not large enough. Numerical solutions283

suggest that the paramagnetic fixed point always exist and it is actually locally stable in the284

whole high-temperature regime. When α is sufficiently large, the signal retrieval fixed point285

appears as a locally stable attractor. It becomes globally stable as the size of the dataset is286

increased further.287

The critical boundary of the gR phase can be obtained by solving the saddle-point equations288

numerically (Eqs. 4), and the result is consistent with the analytical p →∞ gR boundary of289

Eq. (6). In fact, we find that the analytical boundary closely agrees with the numerical solution290

of the saddle-point equations with p∗ = p = 10 and remains a good approximation even down291

to p∗ = p = 4.292

In the student model, σ plays a similar role as the weights of the trainable dense Hopfield293

network model that Krotov designed for classification of data [26]. In that context, ξ is294

analogous to the test data whose labels are being predicted (see Fig. 3). In fact, the computation295

performed by Krotov’s model to recover labels is similar to the update rule used by the student296

to infer the teacher pattern (see Appendix A). Moreover, the eR and gR phases are respectively297
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Figure 2: Exact replica-symmetric phase diagrams of the inverse models with p = 3
on the left, p = 4 in the center and p = 10 on the right. Accurate pattern retrieval
is not possible in the paramagnetic phase (P), but it is possible in the local retrieval
phase (lR), in the global retrieval phase (gR) and in the example retrieval phase
(eR). The ferromagnetic fixed point corresponding to accurate pattern retrieval is
globally stable in the gR phase, but locally stable in the lR phase. The black dashed
lines mark the spurious continuation of the lR and gR phase boundaries through the
eR phase. The white dashed line is the p →∞ gR critical line calculated analytically
at the end of Section 3. It matches the corresponding numerical phase boundary
increasingly well as p grows larger.

reminiscent of the prototype and feature regimes of Krotov’s networks. Therefore, we believe298

that the student can act as a toy model of label prediction in these two regimes.299

Comparing instead the phase diagrams of our inverse model with that of the inverse 2-body300

Hopfield model, we see that the eR and gR phases of the inverse p-body model with p ≥ 3 are301

respectively analogous to the eR and sR (signal Retrieval) phases presented in [38]. One of302

the key differences between p = 2 and p ≥ 3 is that the paramagnetic to signal retrieval phase303

transition of the p-body model is second order for p = 2 but first order for p ≥ 3. On the one304

hand, the second order phase transition of p = 2 indicates that its paramagnetic fixed point is305

never locally stable and sets an unambiguous boundary between the sR phase where ξ∗ can306

be recovered starting from any initial conditions and the paramagnetic phase where pattern307

retrieval is impossible [55]. On the other hand, the first order phase transition of p ≥ 3 allows308

the retrieval and paramagnetic regimes to coexist. The lR phase is locally stable precisely309

because it coexists with the paramagnetic phase and has a lower free entropy. Meanwhile,310

the gR phase also coexists with the paramagnetic phase, but has a larger free entropy. In the311

presence of phase coexistence, an algorithm trying to retrieve ξ∗ starting from random initial312

conditions can get stuck in the paramagnetic phase instead. In fact, it has been conjectured313

that there is no algorithm with random initial conditions that can find such a ferromagnetic314

fixed point in a tractable amount of time [55,56]. That kind of metastable region was thus315

given the name hard phase [55,57]. In summary, we expect that p ≥ 3 models in the gR phase316

can only recover partially corrupted patterns whereas p = 2 can recover them entirely.317

Fig. (4) shows results from Monte Carlo simulations with p = 3, where L replicas of318

the student pattern {ξb}L
b=1

are initialized to the teacher pattern ξ∗ corrupted by some319

Rademacher noise ϵ. In other words, the initial values of ξb
i

are sampled from the distri-320

bution (1− ϵ)δ
�

ξi − ξ∗i
�

+
ϵ

2

�

δ
�

ξi + 1
�

+ δ
�

ξi − 1
��

with ϵ ∈ [0, 1]. The value of ϵ is tuned321

so that the simulations start relatively close to the saddle-point solutions. As explained pre-322

viously, gR is a hard phase, so this initialization is necessary to make ξb converge to gR in a323

reasonable amount of time. Additionally, it is also used to make ξb converge to the lR phase324

rather than the P phase when desired. Once the simulations are over, the overlaps are averaged325
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Teacher
pattern ξ∗

Examples σ
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pattern ξ

Data x
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Weights w

Data x
with predicted
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�

σ
�

�ξ∗
�

H
�

ξb
�

�σ
�

Backward
propagation

Forward
propagation

Figure 3: The first row of this diagram sketches how a p-body Hopfield network in
the teacher-student setting can reconstruct an incomplete pattern ξb to match the
teacher pattern ξ∗ by relying on the examples σ obtained from ξ∗. The second row
summarizes how a dense neural network trained by Krotov can recover the labels y ′ of
the data x given the weights w learned from x [26]. Both models tackle similar tasks
using an approach where σ and ξb respectively play the same roles as w and (x , y ′).
The forward propagation algorithm used to generate y ′ is similar to the update rule
of the student (see [26] and Appendix A), but the backpropagation algorithm used to
learn w is very different from the update rule of the teacher.

Figure 4: Monte-Carlo simulations of the p = 3 inverse model compared against
RS saddle-point solutions. The lR phase is included on the left and central plots,
but not on the right one. The left plot has ϵ = 0, and the two other ones have a
handpicked ϵ such that the simulations are initalized near the saddle-point solutions.
The dots are simulation data at a few values of α, and the lines are slices of the

saddle-point solutions at the same α. The teacher generates M =
αNp−1

p! examples σa

with N = 512 components each, and the simulation results are then averaged over
L = 100 student patterns. The simulation data is sometimes systematically shifted
up with respect to the saddle-point solution. This difference is notably visible on the
central plot, right after the fall from eR to gR when α = 3.
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over all L replicas. If we fix ϵ = 0, then the simulations generally converge to the lR phase when326

it is a fixed point. If instead we initialize them to the saddle-point solutions by handpicking ϵ,327

then they stay near the initial overlaps. In either case, the simulations converge to eR when it is328

globally stable. Some simulation data points might be systematically shifted up with respect to329

the saddle-point solutions. However, this difference decreases with the system size N, so finite330

size effects seem sufficient to explain it (see Fig. 9 in Appendix F). Overall, the Monte-Carlo331

simulations are in very good agreement with the p = 3 overlap landscape obtained by solving332

the saddle-point equations numerically.333

4.3 Inference temperature vs dataset noise334

In the two next Sections, we will discuss the phase diagram when the student is only partially335

informed about the teacher generative model, i.e. when the Nishimori conditions do not hold.336

We start with the case where p = p∗ but β ̸= β∗, i.e. the inference temperature T is different337

from the dataset noise T ∗. As we argued in Section 3, the student accurately retrieves ξ∗ when338

T ∗ < Tcrit. On the other hand, we must solve the saddle-points equations (see Eqs. 4) to study339

T ∗ > Tcrit.340

We show the phase diagram of this region on Fig. (5). At high inference temperature T , the341

situation is similar to Fig. (2): retrieval is possible if the data load α is sufficiently large, but342

the paramagnetic phase is always locally stable. The situation is different when the inference343

temperature is low. In that case, there are two phases that we did not see for β = β∗: the344

inaccurate eR phase and the SG phase. When α is relatively small, the student falls in the345

inaccurate eR phase. In this regime, it has finite overlap with one of the noisy examples and346

cannot retrieve the signal ξ∗. When α is larger, the interference among the noisy examples347

prevents the student to be aligned with them. In this regime, the SG phase, the student locally348

converge to spurious patterns that are uncorrelated with the signal.349

Accurate pattern retrieval is only possible in the lR and gR phases where α is so large that350

the student can gather enough information from the dataset to become very close to ξ∗. The351

phase diagrams indicate that pattern retrieval is optimal on the Nishimori line in the sense that352

β = β∗ is the inverse temperature where the student needs the least examples to recover ξ∗.353

In other words, the student’s performance is non-monotonic in T and peaks at T = T ∗. These354

properties were also observed in the teacher-student setting of the p = 2 Hopfield network [38].355

Contrary to what one would expect to see on the exact phase diagram [45,46], the Nishimori356

line T = T ∗ does not to cross a triple point on the RS phase diagram. The issue is that the RS357

phase diagram is not exact outside of the Nishimori line. In particular, the SG phase boundary358

is not exact. Outside of the retrieval regime, the free entropy of the inverse model is the same359

as the direct model. Since the transition towards gR of the inverse model on the Nishimori360

line overlaps the exact P-SG transition of the direct model (see Section 4.2), we deduce that361

it must also overlap the exact P-SG transition of the inverse model outside of the gR phase.362

Plotting it on the RS phase diagrams, we see that it indeed crosses the Nishimori line and the363

gR phase boundary at the same point, which therefore becomes a triple point, as expected.364

4.4 Interaction order and noise tolerance365

So far, we assumed that the student is informed about the interaction order used by the teacher,366

i.e. p = p∗. In this Section, we investigate the role of the student’s choice of p when the task367

is to learn from a dataset sampled by a 2-body Hopfield network, i.e. p∗ = 2. We study two368

different non trivial scalings regimes of M and β∗ that make pattern inference possible (see369

Appendix D).370

We first consider a large noise scaling where β∗ ∼ O
�

N2/p−1
�

and M ∼ O
�

Np−1
�

, such
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Figure 5: RS phase diagrams of inverse models with p∗ = p and fixed β∗. The top
and bottom rows of plots respectively have p∗ = p = 3 and p∗ = p = 4. In the
same way, the left, central and right columns correspond to T ∗ = 1.5, T ∗ = 1.6
and T ∗ = 1.7. Accurate pattern retrieval is not possible in the paramagnetic phase
(P), in the spin-glass phase (SG) or in the example retrieval phase (eR), but it is
possible in the local retrieval phase (lR) and in the global retrieval phase (gR). The
ferromagnetic fixed point corresponding to accurate pattern retrieval is globally stable
in the gR phase, but locally stable in the lR phase. Conversely, the SG fixed point
is always locally stable and leads the student to a frozen spurious signal. The white
dashed line indicates the Nishimori line β∗ = β . The black dashed lined is the gR
phase boundary on the Nishimori line. As explained in Section 4.2, we expect it to
overlap the exact SG phase transition.
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Figure 6: RS phase diagrams of inverse models with p∗ = 2 and p = 4. The left

plot is for α =
M(p/2+1)!

Np/2 , and β∗ = 1− 1
p

2
such that η = 1 and the right plot is for

α =
Mp!
Np−1 and β∗ =

r

2λ
N with λ = β . Accurate pattern retrieval is not possible in the

paramagnetic phase (P) or in the example retrieval phase (eR), but it is possible in the
local retrieval phase (lR) and in the global retrieval phase (gR). The ferromagnetic
fixed point corresponding to accurate pattern retrieval is globally stable in the gR
phase, but locally stable in the lR phase. The black dashed lines mark the metastable
continuation of the eR, lR and gR phase boundaries through neighboring phases
with a larger free entropy. The paramagnetic total entropy becomes negative below
the white dashed line drawn on the right plot. However, the paramagnetic phase is
no longer globally stable at that temperature.

that

α =
Mp!

Np−1
and λ =

[β∗]p/2

(p/2)!
Np/2−1

are finite. In this scaling, a p ≥ 3 network requires O
�

Np−2
�

more training examples than a371

p = 2 network with finite load γ =
M
N , but also has a higher tolerance to teacher noise. For372

instance, a student with p = 4 interactions is able to retrieve the pattern of a teacher with373

T ∗ ∼ O
�

N1/2
�

noise when it is shown enough examples M ∼ O
�

N3
�

to be in the gR phase374

(see Fig. 6).375

O
�

N1/2
�

noise tolerance was also observed in the p = 4 direct model, where it is a376

consequence of the redundancy stemming from storing O (N)memories rather than the O
�

N3
�

377

needed to saturate the storage capacity [58]. Our p = 4 inverse model exploits a different378

kind of redundancy by learning from O
�

N3
�

examples whereas p = 2 only needs O (N). In379

other terms, both storing extensively less memories than the maximum allowed amount and380

generating extensively more examples than the minimum required amount provide enough381

redundancy to recover a pattern muddled in an extensive amount of noise. In both cases, there is382

an O
�

N2
�

gap between the number of patterns used in the noise-tolerant and noise-susceptible383

regimes. Going beyond p = 4, the inverse model has O
�

N1−2/p
�

noise tolerance as a function384

of p. In particular, our theory predicts that the tolerance saturates at T ∗ ∼O (N) as p →∞,385

but at the cost of using an intractable number of examples. This behavior is different from386

the O
�

N1/2−p/4
�

tolerance of the direct p-body model in the noisy-learning regime studied387

in [59]. In other terms, the dataset noise that we are facing is of a different nature than the388
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Figure 7: Monte-Carlo simulations (dashed lines) and RS saddle-point solutions (full
lines) of the inverse model in the large-noise scaling with p∗ = 2 and p = 4. The

teacher generates M =
αNp−1

p! examples σa with N = 256 components each, and the
simulation results are then averaged over L = 100 student patterns. The student
patterns are all initialized to ξ∗.

learning noise of [59]. In any case, it is interesting that both the direct and inverse models389

are able to tolerate an extensive amount of noise. Overall, our results suggest that it could be390

advantageous to use a student network with a relatively large p to learn from a large but noisy391

dataset when the p∗ of the teacher generative model is unknown.392

An unavoidable drawback of large teacher noise is that it always lead to uncorrelated393

examples, which makes accurate example retrieval impossible. Instead, it is replaced by the394

inaccurate example retrieval phase where the student has finite overlap m with a noisy example395

generated by the teacher but no overlap with the signal (see Fig. 6). Depending on T and α,396

this phase can be either globally stable or locally stable. For the sake of clarity, we plot only the397

globally stable phase on our phase diagram in Fig. (6). The locally stable phase is arguably less398

important to plot because it is identical to the locally stable ferromagnetic phase previously399

reported in the direct model when assuming replica symmetry (see [33] and Fig. 1).400

Given m = 0, the free entropy of the inverse model with p ≥ 3, p∗ = 2 and β = λ is401

the same as on the Nishimori line (see Eq. 4 and Appendix D). As a direct consequence, the402

total entropy is positive outside of the eR phase (see Fig. 6). Additionally, the p∗ = 2, p ≥ 3403

phase diagrams with β ̸= λ are identical to the p = p∗ phase diagrams with β ≠ β∗, which404

suggests that β = λ is optimal for p∗ = 2, p ≥ 3 in the same sense as β = β∗ is optimal for405

p = p∗ (see Fig. 5). Monte-Carlo simulations confirm that a student with p ≥ 3 is able to406

retrieve the pattern of a teacher with p = 2 and T ∗ ∼O
�

N1/2
�

(see Fig. 7). However, the lR407

phase transition is at a higher T in the simulations than on the β = λ RS phase diagram (see408

Fig. 5), which means that RSB is necessary to describe it accurately. One could check where409

replica symmetry holds by evaluating the stability of the RS saddle point throughout the phase410

diagram.411

We also consider a different scaling regime where β∗ ∼ O (1) and M ∼ O
�

Np/2
�

, such
that

α =
M(p/2+ 1)!

Np/2

is finite. In this finite-noise scaling, p ≥ 3 requires O
�

Np/2−1
�

more training examples than412

p = 2, which is a lot less than the first scaling. For instance, a student with p = 4 needs O
�

N2
�

413

examples to retrieve ξ∗. As before, the phase transitions are all first order, the overlap q∗ stays414

high throughout the gR and lR phase of p = 4 and gR is a hard phase. The saddle-point415

equations (see Eqs. 5) are free from the pattern interference term
p
αr x present in their416
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p∗ = p counterparts (see Eqs. 4) until β∗ becomes so small that is approaches O
�

N2/p−1
�

.417

Therefore, contrary to p∗ = p = 2, the network is never in the SG phase. Practically, it means418

that p ≥ 3 gives more freedom than p = 2 for tuning β and α. The only remaining restriction419

is that choosing α and T too small puts the network into the inaccurate eR phase resulting420

from the kz term (see Fig. 6). The saddle point equations can be derived without the RS421

ansatz because they do not involve q and r . Consequently, we expect them to yield an exact422

solution. Like on the Nishimori line, the total entropy of the paramagnetic phase is always423

positive, which is consistent with the solution being exact.424

4.5 Robustness against adversarial attacks425

Inverse models with p∗ = 2 and p ≥ 3 offer an opportunity to study adversarial attacks in a426

simple setting because their phase diagrams have regions where the signal retrieval phases (gR427

and lR) overlap with the inaccurate eR phase. Recall that, in the lR phase, a noisy student428

pattern ξ either converges to ξ∗ or falls in the paramagnetic phase, depending on the amount429

of noise that ξ contains initially. The quantity of noise needed to prevent pattern retrieval430

becomes smaller as one approaches the lR to P phase transition and the basin of attraction431

of lR shrinks. Similarly, in the region of inaccurate eR where signal retrieval is metastable,432

patterns ξ that are corrupted by replacing some of their entries ξi by the components σa
i

433

of an example σa may converge to σa when enough entries are replaced. The fraction ϵ of434

entries that need to be replaced becomes smaller as the basin of attraction of inaccurate eR435

expands and overtakes that of signal retrieval. In practice, an adversary can use this strategy436

to trick the student into converging to a pattern other than ξ∗. This scenario is similar to an437

adversarial attack targeting the input of Krotov’s dense Hopfield network model because the438

student pattern ξ plays a similar role in the inverse model as the test data in Krotov’s dense439

Hopfield networks (see Fig. 3, Section 4.2 and Appendix A). In that analogy, the examples σ440

are acting like the neural network weights rather than taking the role of the training data.441

We will now investigate what values of the perturbation size ϵ are a threat by deriving a442

formula for the largest ϵ such that the student converges to the signal at zero temperature. This443

largest ϵ will be denoted ϵ∗, and we expect it to be a good measure of adversarial robustness.444

The saddle-point equations with T = 0 indicate that the student converges to one of the signal445

retrieval phases if and only if k < ηαr ∗ (see Eqs. 5). Sampling the initial conditions of ξi446

from (1− ϵ)δ
�

ξi − ξ∗i
�

+ ϵ δ
�

ξi −σa
i

�

with ϵ ∈ [0, 1], we get447

r ∗ = p





1

N

(1−ϵ)N
∑

i=1

ξ∗iξ
∗
i +

1

N

ϵN
∑

i=1

ξ∗iσ
a
i





p−1

,

k = p





1

N

(1−ϵ)N
∑

i=1

ξ∗iσ
a
i +

1

N

ϵN
∑

i=1

σa
i σ

a
i





p−1

.

By the law of large numbers,
1
ϵN

∑ϵN
i=1 ξ

∗
i
σa

i
and

1
(1−ϵ)N

∑(1−ϵ)N
i=1

ξ∗
i
σa

i
are both typically close448

to m∗ =
1
N

∑N
i ξ
∗
i
σa

i
≈ 0 as N →∞. If we take σa to be a typical example, then r ∗ and k449

reduce to450

r ∗ ≈ p (1− ϵ)p−1

k ≈ pϵp−1.
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Figure 8: Monte-Carlo simulations of the overlap q∗ as a function of α and ϵ in the
inverse model with p∗ = 2, β∗ = 1 − 1

p
2
, p = 4, β =∞ and N = 1024. The

simulation results are averaged over L = 100 student patterns. On the left plot, the
inverse model is corrupted by an example σa that has a small overlap with ξ∗ in
absolute value. On the right plot, it is corrupted by the example that has the largest

overlap with ξ∗. The black line ϵ∗ =
α1/3

α1/3+1
is our analytical formula for the largest

adversarial perturbation ϵ such that the student retrieves ξ∗ rather than the example
σa.

Substituting these expressions back in k < ηαr ∗ yields451

ϵp−1 < ηα (1− ϵ)p−1

ϵ <
[ηα]

1
p−1

[ηα]
1

p−1 + 1
.

In other terms, the inverse model with p∗ = 2 and even p ≥ 3 is resistant to adversarial attacks452

of size ϵ∗ =
[ηα]

1
p−1

[ηα]
1

p−1 +1
and smaller. For p = 4, ϵ∗ is in good agreement with Monte-Carlo453

simulations of the inverse model corrupted by a typical example (see Fig. 8). This comparison454

is good evidence that our solution of the finite-noise scaling is indeed exact. Additionally, ϵ∗ is455

a decent approximation of empirical robustness even when the inverse model is corrupted by456

the example that has the largest overlap with ξ∗. Just like adversarial attacks targeting more457

complicated neural networks [40,41], our example-based attack can be hard to detect at low ϵ458

because a few adversarially perturbed entries ξi do not look very different from a low amount459

of meaningless noise. Interestingly, ϵ∗ grows monotonically with α, which is consistent with the460

common observation that larger neural networks are also more adversarially robust [43,60–65].461

At first glance, this effect can be counter-intuitive because adversarial vulnerability looks like a462

form of overfitting [42]. In our model, however, all examples work together to stabilize the lR463

phase, and the best way to push the student into the eR phase is to perturb it with a single464

example. Therefore, it is not surprising that increasing α makes the student more robust. We465

recall that the examples σ are a feature-based representation of ξ∗. Interestingly, it means466

that the underlying mechanism of our example-based attack is conceptually similar to gradient-467

based attacks targeting many common types of neural networks [42]. In fact, gradient-based468

attacks find features stored in neural network weights and add them to the data in order to469

fool the network [42, 66–68]. It would be interesting to investigate, both empirically and470

theoretically, if only a small number of weights are involved in constructing these adversarial471
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attacks. If it is the case, it could explain why larger neural networks are often more robust.472

In general, we expect this kind of one-example attack to be possible in any region of signal473

retrieval that overlaps with the inaccurate eR phase. Using p ≠ p∗ may not be a necessary474

ingredient of adversarial vulnerability in more general models with other sources of mismatch,475

but in our case it ensures that the signal retrieval phases intersect the inaccurate eR phase.476

Conversely, the accurate eR phase is by definition robust to adversarial attacks since retrieving477

an example σa is the same as recovering ξ∗. This distinction clarifies why the dense Hopfield478

networks designed by Krotov are adversarially robust in the prototype phase despite being479

adversarially vulnerable in the feature phase. In fact, Krotov observed that adversarial attacks480

are unsuccessful in the prototype phase specifically because they retrieve stored examples that481

are semantically meaningful [37]. In summary, our model yields two main results concerning482

adversarial examples. First of all, it suggests a reason why large feature-based neural networks483

are more adversarially robust than smaller ones. Second of all, it clarifies why dense Hopfield484

networks are much more robust in the prototype phase than in the feature phase.485

5 Conclusion486

In this work, we derive the exact phase diagram of the p-dense networks in the teacher-487

student setting [16,17,30,38]. On the Nishimori line, we find an example retrieval phase (eR)488

and a global retrieval phase (gR) reminiscent of the prototype and feature regimes observed489

empirically in dense Hopfield networks [26]. We show that the phase transition towards gR of490

the inverse model overlaps the paramagnetic to spin-glass (P-SG) transition of the direct model,491

which allows us to locate the P-SG transition much more precisely than before [30,33]. On492

the other hand, we discover that inverse models outside of the Nishimori line are able to resist493

an extensive amount of noise. In fact, a student with p ≥ 3 is able to learn from a teacher with494

p∗ = 2 even when the teacher’s inverse temperature β∗ is as low as O
�

N2/p−1
�

. Moreover, such495

a student is immune to pattern interference until β∗ reaches O
�

N2/p−1
�

. In this setting, we496

derive a formula measuring the adversarial robustness of the student with p ≥ 3 and T = 0. We497

then use this formula to describe how making a neural network larger can potentially increase498

its robustness to adversarial attacks constructed with only a few learned weights [43,60–65].499

Our model also clarifies why the prototype phase of dense Hopfield networks is adversarially500

robust [37]. We compare our key results against Monte-Carlo simulations.501

Dense networks with exponential interactions have been argued to be the p →∞ limit of502

the p-body models [69]. It would be interesting to see if they can achieve O (N) noise tolerance503

at the cost of an exponential number of training examples. More generally, studying exponential504

models in the teacher-student setting would be an interesting extension of this work and could505

be used to complement existing studies of the direct model [69,70]. A caveat of our model is506

that the teacher has only one pattern. In fact, we would need to use a teacher with at least507

two patterns to describe more completely the kind of adversarial attack aiming to misclassify508

data. It should be possible to study this kind of teacher by using an approach similar to [71].509

On the practical side, we highlight the untapped benefits of using p-body models to either510

resist an extensive amount of noise in the feature phase or improve adversarial robustness in511

the prototype phase. Overall, we stress that further investigations of dense Hopfield networks512

could unlock their true potential.513
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each pattern ξµ and example σ. In this Section, we will omit ξ in the argument of H
�

σ|ξ
�

747

and write H [σ] instead for notational simplicity. Unless indicated otherwise, we will assume748

a large number number of components N ≫ 1 and patterns M ∼ O
�

Np−1
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. We will start749

by comparing it to the dense Hopfield network Hamiltonian H [σ] = − 1
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�
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studied by Krotov [26].751
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Ji1...ip
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On the other hand, Krotov’s Hamiltonian may be rewritten755

H [σ] = −
1

Np−1

∑

µ

�

∑

i

ξ
µ

i
σi

�p

= −
1

Np−1
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µ
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!
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ξ
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ip
σip

!

= −
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Np−1

∑

µ

∑

i1...ip

ξ
µ

i1
...ξµ

ip
σi1 ...σip

,

where the sum over i1...ip includes both the set of indices i1 ̸= ... ̸= ip found in H [σ] and other756

configurations where some indices are equal. For example, the configuration i1 ̸= ... ̸= ip−1 = ip757

contains the fewest equal indices after i1 ̸= ... ̸= ip . In other words, H [σ] can be expressed as758

an expansion around H [σ], and the two Hamiltonians are equivalent when the normalized759

residuals
H[σ]−H[σ]

N vanish in the limit of large N. In this study, we encounter two cases which760

bring different results.761

1 The Hamiltonians H [σ] and H [σ] are dominated by a few closely packed configurations762

ξµ that have finite overlap
1
N

∑

i ξ
µ

i
σi ∼O (1) with σ. We say that they are aligned with763

σ.764

2 The Hamiltonians H [σ] and H [σ] are dominated by many spread out configurations765

ξµ that have microscopic overlap
1
N

∑

i ξ
µ

i
σi ∼O

�

N−1/2
�

with σ. We say that they are766

misaligned with σ767

We use the expansion of H [σ] to discuss both the aligned case and the misaligned case. We768

start by writing the i1 ̸= ... ̸= ip and i1 ≠ ... ̸= ip−1 = ip terms explicitly, which leads to the769

form770

H [σ] = −
1
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because there are
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2

�

=
p(p−1)

2 ways for the indices ip−1 and ip to be equal. This expression771

can be summarized by H [σ] = H [σ] +H ′ [σ] + ..., where H ′ [σ] simplifies to772
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.

In the aligned case, H ′ [σ] is O (1) in N because the sum over i1 < ... < ip−2 is O
�

Np−2
�

.773

The terms implied by the ellipsis are even smaller because their sums are resctricted by more774

equality constraints. Therefore, the residuals
H[σ]−H[σ]

N vanish in the limit of large N, and775

the two Hamiltonians are equivalent. Conversely, we find that H [σ] and H [σ] differ from776
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each other in the misaligned case (see Appendix B for more details). Therefore, although the777

phases of H [σ] that we obtain in this study are qualitatively similar to the ones observed by778

Krotov [26,37], the phase diagram of H [σ] must be compared against a simulation of H [σ]779

rather than H [σ] in order to test our theory quantitatively.780

To understand how to sample σ in both models, consider a Monte-Carlo simulation used781

to find the statistical equilibrium of a spin ensemble σ with Hamiltonian G [σ]. To be more782

specific, suppose σ is updated to a new state σ′ with a randomly selected spin σi flipped with783

acceptance probability Pi =
1

1+exp[β(G[σ′]−G[σ])] for a large number of time-steps. This approach784

works well for G [σ] = H [σ]. However, in the case of H [σ], we find that the simulation785

only converges when we use the local field hi =
p!

Np−1

∑

µ ξ
µ

i

∑

i1<...<ip−1
ξ
µ

i1
...ξµ

ip−1
σi1 ...σip−1

786

mentioned by Gardner [30] to approximate
H[σ′]−H[σ]

2σi
at large N. In other words, we iteratively787

flip randomly chosen spins σi with acceptance probability Pi =
1

1+exp(2βhiσi)
for a large number788

of time steps. For arbitrary p, it is not obvious how to compute hi quickly as a sub-routine of789

the Monte-Carlo simulation. However, we find that both p = 3 and p = 4 have closed-formed790

expressions that are easy to evaluate numerically in an efficient way. To be more precise,791

• p = 3 leads to hi = 3
∑

µ ξ
µ

i

h
� 1

N

∑

j ξ
µ

j
σ j

�2
− 1

N

i

,792

• and p = 4 leads to hi = 4
∑

µ ξ
µ

i

� 1
N

∑

j ξ
µ

j
σ j

�
h
� 1

N

∑

j ξ
µ

j
σ j

�2
− 3

N

i

.793

For this reason and also because the number M ∼O
�

Np−1
�

of patterns ξµ used in a Monte-794

Carlo simulations increases exponentially with p, we choose to simulate only p = 3 and795

p = 4.796

The output of the neural network model that Krotov designed for classification of data797

is c j = tanh
�1

2β (H [σ′]−H [σ])
�

≈ tanh
h

βp
∑

µ ξ
µ

j

� 1
N

∑

i ξ
µ

i
σi

�p−1i

. We omit the linear798

rectifier present in the original paper [26] because the overlaps
1
N

∑

i ξ
µ

i
σi are almost always799

positive (see for example the Supplement of [72]). The predicted class is then j ′ = argmax j {ci}.800

Using 1− P j =
1

1+exp[β(H[σ′]−H[σ])] instead of c j does not change j ′ because 1− P j and c j are801

related by 1− P j =
1
2

�

c j + 1
�

. When we evaluate Pi using H instead of H, this relation does802

not always hold exactly. Rather, it should be considered an approximation.803

B Direct model cumulant expansions804

In the direct model, the average replicated partition function



ZL
�

takes the form:805
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*
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!+

with σ =
�

σ1 . . . σL
	

. Gardner simplifies it to806
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∑
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��

,
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where the sets Γγ contain the patterns ξµ that have macroscopic overlap with σγ, and their807

complement Γ̄ = ∩γΓ̄γ consists of the remaining patterns. Two approximations are used to808

obtain this expression:809

•
∑

µ∈Γγ
p!

Np−1

∑

i1<...<ip
ξ
µ

i1
...ξµ

ip
σ
γ

i1
...σγ

ip
≈ N

∑

µ∈Γγ

� 1
N

∑

i ξ
µ

i
σ
γ

i

�p
because this part of810

H
�

σγ|ξ
�

is aligned with σ (see Case 1 of Appendix A).811

•
∑

µ∈Γ̄γ
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ξ
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ip
σ
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ip
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p!
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∑

i1<...<ip
ξ
µ
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...ξµ

ip
σ
γ

i1
...σγ

ip
since Γ̄812

contains almost all of the elements in each Γ̄γ when N is large.813

Gardner evaluates the contribution of the µ ∈ Γ̄ terms via a cumulant expansion, resulting in:814

log
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exp
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∑

δ
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ξ
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+

because the product of independent spins ξµ
i1

...ξµ
ip

averages to 0. The sums are then regrouped815

to get816

log

*
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β
∑
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+

.

Consider ξµ
i
ξ
µ

j
for an arbitrary pair of indices i and j . There are two cases.817

• If i = j , then ξµ
i
ξ
µ

j
is deterministic and equal to 1.818

• If i ̸= j , then ξµ
i
ξ
µ

j
can be either +1 and −1 with equal probabilities.819

On the one hand, if in = jn for all n, then
D

ξ
µ

i1
ξ
µ

j1
...ξµ

ip
ξ
µ

jp

E

= 1. On the other hand, if in ̸= jn820

for some n, then
D

ξ
µ

i1
ξ
µ

j1
...ξµ

ip
ξ
µ

jp

E

= 0 because ξµ
i1
ξ
µ

j1
...ξµ

ip
ξ
µ

jp
is still a product of independent821

random spins once the deterministic variables are removed. These two cases can be summarized822
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by
D

ξ
µ

i1
ξ
µ

j1
...ξµ

ip
ξ
µ

jp

E

= δi1 j1 ...δip jp , which then gives823
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The order n > 2 terms are subdominant in N and can be neglected when p ≥ 3 [30]. The824

RS free entropy is then obtained through a standard approach to the replica method. Note825

that Gardner’s Hamiltonian is misaligned with σ when the free entropy is dominated by this826

cumulant expansion (see Case 2 of Appendix A). In the case of Krotov’s Hamiltonian, we827

must also take into account the correction H ′ [σ] =
1
2

p!
Np−2

∑

γ

∑

i1<...<ip−2
ξ
µ

i1
...ξµ

ip−2
σ
γ
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...σγ

ip−2
828

introduced in appendix A by imposing ip−1 = ip . In fact, a cumulant expansion of this829

expression gives830

log
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which contributes to the free energy on the same order in N as Gardner’s Hamiltonian. Therefore,831

Krotov’s Hamiltonian is not equivalent to Gardner’s Hamiltonian when the latter is misaligned832

with σ (see Case 2). The index configurations with more equality constraints also contribute833

to the free entropy on the same order in N because the factors of N that are lost to equality834

constraints are restored when the sums get squared in the cumulant expansion.835

p = 2 is the only positive integer such that Gardner’s Hamiltonian and Krotov’s Hamiltonian836

are equivalent [5,30]. In the misaligned case with a single stored pattern ξ∗ (see Case 2), the837

free entropy of p = 2 simplifies to838
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by using the Hubbard-Stratonovich transformation. At large N, it approximates to:839
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thanks to the well-known limit limN→∞

�

1+
1
N z
�N
= exp (z). This free entropy is consistent840

with the one found in literature when α =
1
N [5].841

C Teacher-student replicated partition function842
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�
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is the distribution of the direct model with a single pattern ξ. To simplify P
�
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further,845
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Appendix A for the definition of H
�
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without changing the configurations of σa that we are summing over. Therefore, Z does not849

depend on ξ, and we can factor it out of the sum
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Therefore, we define the partition function of the inverse model to beZ =
∑

ξ exp
�

−βH
�

ξ|σ
��

851

(again, see Appendix A for the definition of H
�

ξ|σ
�

). The Lth power of Z and its average then852

take the form853
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where b ∈
�

1 . . . L
	

label replicas in the set of patterns ξ =
�

ξ1 . . . ξL
	

inferred by the854

student. Using the definition of conditional probability, we rewrite P (σ) as855
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where P
�

σ|ξ∗
�

has the same functional form as P
�

σ|ξb
�

, but has hyperparameters p∗ and β∗856

in place of p and β . As we did for Z, we factor the partition function Z∗ of P
�
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out of857

the sum, which yields858
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,

where Z∗ =
∑
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�

−β∗H
�

ξ∗|σ
��

is the partition function of the inverse model with in-859

teraction order p∗. Using
∑

σ P (σ) = 1, we immediately deduce that
�
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�M
= 〈Z∗〉.860

Plugging P (σ) =
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We simplify this expression to:862
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where Γb represents the set of inputs σa which have macroscopic overlap with the pattern ξb,863

and Γ̄ =
�

∩b Γ̄b
�

∩ Γ̄∗ contains almost all of the elements in each Γ̄b and Γ̄∗ for N →∞. The864

reasoning used to build the sets Γ∗, Γb and Γ̄ is the same as outlined at the start of appendix B.865

D Teacher-student free entropy866

Assuming that the teacher is misaligned with σ (see Case 2 of Appendix A), the form of



ZL
�

867

obtained in appendix C simplifies to868
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In order to evaluate 〈Z∗〉 =
�

2N/M−NZ∗
�M

, we recall that the teacher is a special case of the869

direct model with a single memory (see Section 3). Since the teacher is in the misaligned case,870

its free entropy is871
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as derived in Appendix B. Given α∗ =
Mp∗!
Np∗−1 , we use it to simplify

log〈Z∗〉
N to872
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which is the paramagnetic free entropy of a p∗-body Hopfield network [5,30]. Coming back to873
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, we fix order parameters q∗b, q bc and mb
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In Fourier space, this expression takes the form876
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where the sum over σ with a pre-factor of
1

2MN was replaced by the uniform average 〈〉σ.877

Following the same reasoning as in appendix B, a second order cumulant expansion of the last878
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two terms for any a ∈ Γ̄ yields879
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When p∗ = p, it reduces to880
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because
¬
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¶

= δin jn (see Appendix B for more details). On the contrary, the second order881
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vanishes when p∗ ̸= p. In fact, spins come in882

pairs
¬
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= δin jn only up to n ≤ min {p∗, p}, and the remaining single-spin averages883
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= 0 make the second order expectation vanish.884

We need to go beyond second order to treat p∗ ̸= p. We will focus on p∗ = 2 and p ≥ 3885

to investigate the consequences of using a p-body model to learn examples generated by the886

original 2-body Hopfield model. For simplicity, we take p even so that the spins of both terms887

can be grouped in pairs at order
p
2 + 1, when the teacher term β∗
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is888

raised to the power of
p
2 and the student term is raised to the power of 1. This restriction will889

simplify some of the incoming calculations. To leading order in N, the cumulant generating890
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function reduces to891
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where the last term encompasses the teacher-student coupling that allows retrieval to take892

place. The teacher term893

log

*

exp

(

β∗
2

N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

≈ −
1

2
log (1− 2β∗)−β∗

and the student term894

log

*

exp

(

β
p!

Np−1

∑

b

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

)+

≈ β2 p!

Np−1
N
∑

b<c

�

1

N

∑

i

ξb
i ξ

c
i

�p

+
1

2
β2 p!

Np−1
LN

are both known from Appendix B. Later on, we will use log (z∗) and z∗ as shorthands for895
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are statistically equivalent as long as j1 < ... < jp , so the teacher-student coupling simplifies to899

*

β
p!

Np−1

∑

b

∑

j1<...< jp

ξb
j1

...ξb
jp
σa

j1
...σa

jp
exp

(

β∗
2

N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

= β
p!

Np−1

∑

b

∑

i1<...<ip

ξ∗i1
...ξ∗ip

ξb
i1

...ξb
ip

*

p!

Np

∑

j1<...< jp

ξ∗j1
...ξ∗jpσ

a
j1

...σa
ip

exp

(

β∗
2

N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

= V (β∗, p)β
p!

Np−1

∑

b

∑

i1<...<ip

ξ∗i1
...ξ∗ip

ξb
i1

...ξb
ip

,

where V (β∗, p) =
D

p!
Np

∑

j1<...< jp
ξ∗

j1
...ξ∗

jp
σa

j1
...σa

ip
exp

�

β∗
2
N

∑

i1<i2
ξ∗

i1
ξ∗

i2
σa

i1
σa

i2

�
E

does not900

depend on the microscopic details of the system. In fact, it can be expressed as a combination of901

the moments of z∗, which can all be derived from log (z∗). To leading order in N, the cumulant902

generating function expands to903
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At this stage, we only need to find V (β∗, p) in order to solve the system. We focus on two904

different scalings of M and β∗ that make the teacher-student coupling leading order in N:905

1 M ∼O
�
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�

and β∗ ∼O
�
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will be called the large-noise scaling.906
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and β∗ ∼O (1) will be called the finite-noise scaling.907

The student term vanishes in the first scenario but is leading order in the second one. The case908

of the teacher-student coupling is more subtle. When β∗ is small, we may keep only the first909

non-vanishing order of the exponential function present in the definition of V (β∗, p). Since p910
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to get the asymptotically exact expression V
�

[(p/2)!]2/p N1−2/p , p
�

= λ
p!

Np−1 . In the finite-914

noise scaling, this expansion is only an order of magnitude approximation. However, it still915

indicates that V (β∗, p) is O
�

N−p/2
�

when β∗ is O (1) in N. In other words, it shows that916

there is an O (1) parameter η such that V (β∗ (η, p) , p) = η
(p/2+1)!

Np/2 . We will now use the917

cumulants
∂ log(z∗)
∂ β∗ and

∂ log(z∗)
∂ β∗2 of z∗ to derive the value of η corresponding to p = 4. First of918

all, note that
4!
N4

∑

j1<...< j4
ξ∗

j1
...ξ∗

j4
σa

j1
...σa

j4
can be expressed as:919

24

N4

∑

j1< j2< j3< j4

ξ∗j1
ξ∗j2
ξ∗j3
ξ∗j4
σa

j1
σa

j2
σa

j3
σa

j4

=
1

N4

∑

j1 ̸= j2 ̸= j3 ̸= j4

ξ∗j1
ξ∗j2
ξ∗j3
ξ∗j4
σa

j1
σa

j2
σa

j3
σa

j4

=
1

N4





∑

j1 ̸= j2

ξ∗j1
ξ∗j2
σa

j1
σa

j2









∑

j3 ̸= j4

ξ∗j3
ξ∗j4
σa

j3
σa

j4



−
4

N3





∑

j1 ̸= j2

ξ∗j1
ξ∗j2
σa

j1
σa

j2



−
2

N2

=
1

N2





2

N

∑

j1< j2

ξ∗j1
ξ∗j2
σa

j1
σa

j2





2

−
4

N2





2

N

∑

j1< j2

ξ∗j1
ξ∗j2
σa

j1
σa

j2



−
2

N2

by subtracting the diagonals where pairs of indices are equal. Therefore,
1
z∗ V (β

∗, p) reduces to920

1

z∗
V (β∗, p) =

*

24

N4

∑

j1< j2< j3< j4

ξ∗j1
ξ∗j2
ξ∗j3
ξ∗j4
σa

i1
σa

i2
σa

i3
σa

i4
exp

(

β∗
2

N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

=
1

z∗
1

N2

�

*





2

N

∑

j1< j2

ξ∗j1
ξ∗j2
σa

i1
σa

i2





2

exp

(

β∗
2

N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

− 4

*





2

N

∑

j1< j2

ξ∗j1
ξ∗j2
σa

i1
σa

i2



exp

(

β∗
2

N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

− 2

*

exp

(

β∗
2

N

∑

i1<i2

ξ∗i1
ξ∗i2
σa

i1
σa

i2

)+

�

=
1

N2

�

∂ log (z∗)

∂ β∗2
+

�

∂ log (z∗)

∂ β∗

�2

− 4
∂ log (z∗)

∂ β∗
− 2

�

.
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In other terms, we find η =
2[β∗]2

(1−2β∗)2
when p = 4. In summary, depending on the scaling, the923
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In either case, the result is similar to p∗ = p except for its pre-factor. We describe the rest of927
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where the average over ξ∗ and σ is uniform. We use
log〈Z∗〉
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Assuming each ξb has macroscopic overlap with at most one pattern σa and using the replica-933

symmetric ansatz q∗b = q∗, q bc = q , r ∗b = r ∗, r bc = r , mb
a = m, kb

a = k, the free entropy934

approximates to935
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in order to simplify the free energy to938
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After differentiating and taking the limit, we get939
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In the case of p∗ = 2 and p ≥ 3 with finite α =
Mp!
Np−1 and λ =

[β∗]p/2

(p/2)! Np/2−1, the free energy940

has the same form but with β∗ replaced by λ. On the other other hand, the free energy with941
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E Direct model RSB ansatz943

Recall that the average replicated partition function of the direct model (see Eq. 9) takes the944

form945
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Introducing a new replica σ0, we rewrite it as946
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The O
� 1

Np/2−2

�

corrections vanish to leading order in N when we calculate the free entropy.950

F Monte-Carlo simulations for various system sizes951
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Figure 9: Monte-Carlo simulations of the p = 3 inverse model compared against
saddle-point solutions for different values of N. The lR phase is not included in these
plots. The left plot has N = 128, the center plot has N = 256, and the right plot
has N = 512. The dots are simulation data at a few values of α, and the lines are

slices of the saddle-point solutions at the same α. There are M =
αNp−1

p! examples σa,
and simulation results are averaged over L = 100 student patterns. The simulation
data is sometimes systematically shifted up with respect to the saddle-point solution,
but the size of the difference tends to decrease with N. The shift is the most visible
when α = 6 and right after the fall from eR to gR when α = 3. As expected, the
fluctuations of the paramagnetic phase also decrease with N.
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