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Abstract

Dense Hopfield networks with p-body interactions are known for their feature to prototype
transition and adversarial robustness. However, theoretical studies have been mostly
concerned with their storage capacity. We derive the phase diagram of pattern retrieval in
the teacher-student setting of p-body networks, finding ferromagnetic phases reminiscent
of the prototype and feature learning regimes. On the Nishimori line, we find the critical
amount of data necessary for pattern retrieval, and we show that the corresponding
ferromagnetic transition coincides with the paramagnetic to spin-glass transition of
p-body networks with random memories. Outside of the Nishimori line, we find that
the student can tolerate extensive noise when it has a larger p than the teacher. We
derive a formula for the adversarial robustness of such a student at zero temperature,
corroborating the positive correlation between number of parameters and robustness
in large neural networks. Our model also clarifies why the prototype phase of p-body
networks is adversarially robust.
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1 Introduction27

Hopfield networks are artificial neural networks that model associative memory [1]. In the28

Hopfield model, examples σ ∈ {−1, 1}N of memories ξµ ∈ {−1, 1}N , µ = 1, . . . , M , are29

retrieved by sampling the Gibbs distribution of a 2-body Hamiltonian H
�

σ|ξ
�

at a given30

temperature T [2]. Hopfield networks can be trained in a biologically plausible way using31

Hebb’s rule [1,3], which leads to H
�

σ|ξ
�

= − 1
N

∑M
µ=1

�
∑N

i=1 ξ
µ

i
σi

�2
. However, they can only32

store up to M ∼ O (N) i.i.d. random memories in the limit of large N [1, 4, 5]. One way to33

find this scaling is to study the phase diagram of H
�

σ|ξ
�

as a function of the temperature T34

and load α =
M
N [5], where the so-called ferromagnetic phase, which extends up to α ≈ 0.14,35

corresponds to accurate retrieval.36

Since Hopfield’s seminal work, several generalizations have been investigated in relation37

to their critical storage capacity and retrieval capabilities. For example, parallel retrieval38

has been studied in relation to pattern sparsity [6–10] or hierarchical interactions [11–15],39

and non-universality has been shown with respect to more general pattern entries and unit40

priors [16–22]. Efforts to overcome the O (N) limitation of the capacity led to the development41

of a novel class of modern Hopfield networks [23–25], which are sometimes called dense due to42

their faculty to store much more memories than the original Hopfield model [26]. These neural43

networks surpass O (N) storage capacity by using higher-order interactions instead of the44

original 2-body couplings [27–32]. In particular, Gardner [30] calculated the replica-symmetric45

(RS) phase diagram of the Hamiltonian H
�

σ|ξ
�

= −
∑N

i1<...<ip=1 Ji1...ip
σi1 ...σip

with p-body46

interactions Ji1...ip
=

p!
Np−1

∑M
µ=1 ξ

µ

i1
...ξµ

ip
conditioned on i.i.d. random memories ξµ ∈ {−1, 1}N ,47

finding a M =O
�

Np−1
�

storage capacity. These calculations were later extended to include48

the effects of one-step replica symmetry breaking (1RSB) [33].49

Although they draw a rather detailed picture of the retrieval of individual i.i.d. random50

memories, these results are not the end of the story. First of all, 1RSB calculations allegedly51

struggle to find the paramagnetic to spin-glass phase transition accurately at large p because52

of numerical instability issues [33]. Second of all, dense Hopfield networks have been rapidly53
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gaining a renewed attention for reasons other than their storage capacity since a recent54

paper [26] by Krotov and Hopfield (K & H), where they were used as a trainable machine55

learning architecture. For instance, they have been related to transformers [23,34] and diffusion56

models [35,36], and they were found to be significantly more explainable and adversarially57

robust than feedforward neural networks with ReLU activation functions [26,37].58

One such aspect of dense Hopfield networks that is still poorly understood is their per-59

formance as generative models for unsupervised learning, where they are trained over some60

given dataset to reproduce its probability distribution. As far as we are aware, this problem has61

not yet been studied theoretically for p-body models with p ≥ 3. However, it was studied for62

the original 2-body Hopfield network by using the teacher-student setting [38] first described63

in [16,17,39]. In the teacher-student setting, which is also called inverse problem in opposition64

to the direct problem of random pattern retrieval, a student model H
�

ξ|σ
�

is trained with M65

teacher examples σa ∼ H
�

σa|ξ∗
�

conditioned on the planted pattern ξ∗. In other words, the66

student tries to infer the pattern ξ∗ of the teacher using a structured set of examples σa.67

At finite load α =
M
N , two regimes of pattern retrieval were found: example retrieval68

(eR) and signal retrieval (sR). In the eR phase, the student tries to reconstruct ξ∗ by directly69

retrieving the examples σa, which is a good strategy provided that they are strongly correlated70

with ξ∗. In the sR phase, on the other hand, retrieval is done by extracting subtle cues from71

weakly correlated examples. The two types of examples used in these two retrieval strategies72

are respectively called prototypes and features of ξ∗ [26]. Interestingly, a prototype regime73

and a feature regime were also observed by K & H in dense Hopfield networks trained to74

classify real data [26], where it was found that the prototype regime is significantly more75

adversarially robust than the feature regime. In other words, the prototype regime is more76

resistant than the feature regime to small data perturbations that are specifically designed to77

cause incorrect classification [40,41]. This prototype approach is arguably a big step towards78

designing adversarially robust neural networks, a long-standing problem that still lacks a fully79

satisfying solution [42–44].80

In this work, we study the performance of p-body Hopfield networks in the teacher-student81

setting, revealing a prototype regime and a feature regime as in the 2-body model. In Section82

2, we review Gardner’s main results in studying p-body Hopfield models and summarize83

what the rest of the literature on spin-glass models with p-body interactions tell us about84

the paramagnetic to spin-glass phase transition in p-body Hopfield models. In Section 3, we85

compute the phase diagram of these p-body models in the teacher-student setting. In Section86

4.1, we discuss the transition to the retrieval phase in the inverse problem. In Section 4.2,87

we compare this retrieval transition against the transition to the spin-glass phase in the direct88

problem. Despite their different nature, we show that these two transitions are equivalent89

on the Nishimori line where the teacher and the student have the same p and T [45–48]. In90

Section 4.3, we discuss the phase diagram on the Nishimori line in more details. In Section91

4.4 and Section 4.5, we discuss the phase diagram outside of the Nishimori line. First of all,92

we investigate the effect of using an inference temperature different from the dataset noise.93

Second of all, we reveal that using a larger p for the student than the teacher gives the student94

an extensive tolerance against both teacher noise and pattern interference. Finally, in Section95

4.6, we derive a closed-form expression that measures the adversarial robustness of the student96

at zero temperature and explain what our results reveal about the nature of adversarial attacks.97
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2 Overview of Gardner’s results98

Consider the p-body Hamiltonian99

H
�

σ|ξ
�

= −
N
∑

i1<...<ip=1

Ji1...ip
σi1 ...σip

= −
p!

Np−1

N
∑

i1<...<ip=1

M
∑

µ=1

ξ
µ

i1
...ξµ

ip
σi1 ...σip

(1)

conditioned on a set of M =
αNp−1

p! quenched memories ξµ ∈ {−1, 1}N , µ = 1, . . . , M , sampled100

i.i.d. from the Rademacher distribution
1
2

�

δ
�

ξ
µ

i
− 1

�

+ δ
�

ξ
µ

i
+ 1

��

. In the direct model,101

patterns σ are in turn sampled from the equilibrium Gibbs distribution P(σ|ξ) = Z−1e−βH[σ|ξ],102

where β ≥ 0 is the inverse temperature and Z =
∑

σ e−βH[σ|ξ] is the system’s partition function.103

The so-called direct problem studied by Gardner [30] consists of quantifying the performance104

of this model as a method of memory retrieval. In that context, the overlap
1
N

∑

i ξ
µ

i
σi is a105

good measure of retrieval accuracy, and its expected value can be derived from the quenched106

free entropy f =
1
N 〈logZ〉ξ in the thermodynamic limit N →∞. At finite p, Gardner used107

the (non-rigorous) replica trick [49] to evaluate the RS approximation of f (see also Appendix108

B) in terms of a variational principle of the form109

f = lim
N→∞

1

N
〈logZ〉ξ = lim

N→∞,L→0

�

∂

∂ L

�

1

N
log




ZL�

ξ

��

= Extr
m,k,q ,k,r

f (m, k,q , r ),

whose solution is110

q =

∫

R

dx
1
p

2π
exp

�

−
1

2
x2
�

tanh2 �β
�p
αr x + k

��

m =

∫

R

dx
1
p

2π
exp

�

−
1

2
x2
�

tanh
�

β
�p
αr x + k

��

r = pq p−1

k = pmp−1, (2)

and the order parameters m and q are to be interpreted as expected overlaps. To be more111

precise, m can be shown to be the expected overlap of a retrieval attemptσ against one memory112

in the thermodynamic limit, i.e. m = limN→∞

¬ 1
N

∑

i ξ
µ

i
σi

¶

ξ,σ
. Similarly, q is the expected113

overlap between two retrieval attempts σ1 and σ2, i.e. q = limN→∞

¬ 1
N

∑

i σ
1
i
σ2

i

¶

ξ,σ
or114

equivalently q = limN→∞

¬ 1
N

∑

i 〈σi〉2σ
¶

ξ
. Intuitively, q measures the tendency of the system115

to stay frozen in specific configurations rather than visiting all possible values of σ.116

The resulting RS phase diagram (see Fig. 1) are derived from the value of the order117

parameters as a function of three hyperparameters: the interaction order p, temperature118

T = 1/β and load α =
Mp!
Np−1 . There are four different phases:119

• In the Paramagnetic phase (P), the overlaps m and q both vanish. The network does not120

retrieve any specific pattern: sampled configurations are completely random.121

• In the Spin-Glass phase (SG), m vanishes but q > 0. In other terms, the network does not122

retrieve individual stored memories but rather converges to spurious patterns depending123

on all the memories in a non-trivial way.124

• In the signal Retrieval phases (lR and gR), m ̸= 0 and q > 0, which means that the125

network is able to retrieve the stored memories. lR and gR are respectively locally126
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Figure 1: RS phase diagrams of the direct models with p = 3 on the left and p = 10
on the right. Accurate pattern retrieval is not possible in the paramagnetic phase (P)
or in the spin-glass phase (SG), but it is possible in the local retrieval phase (lR) and
in the global retrieval phase (gR). The ferromagnetic fixed point corresponding to
accurate pattern retrieval is globally stable in the gR phase, but locally stable in the
lR phase. The phase diagrams are inexact below the white dashed line where the total
entropy of the paramagnetic phase becomes negative. The black dotted line overlaying
the p = 3 diagram is the (exact) 1RSB P-SG transition temperature Ts (α, 3), which
is obtained by rescaling by

p
2α the corresponding transition temperature of the

spin-glass model with p-body Gaussian interactions. The d1RSB transition Td (α, 3)
is very close to Ts (α, 3) throughout the displayed range of α. The white dotted line
in the p = 3 plot is the temperature TG (α, 3) below which multiple steps of RSB are
required to compute the free entropy. It is also obtained by rescaling by

p
2α the

corresponding transition temperature of the Gaussian spin-glass model.

stable and globally stable. In other words, local retrieval lR is only attainable from127

initial conditions in a limited neighborhood of a memory ξµ, while global retrieval gR is128

accessible from any initial conditions given enough time. These two phases are said to129

be ferromagnetic.130

Gardner also calculated the exact p →∞ phase diagram without making any assumptions131

about replica symmetry [30]. In this limit, the resulting paramagnetic to spin-glass (P-SG)132

phase transition occurs at a temperature TE(α) that coincides with the boundary of the region133

where the total entropy of the paramagnetic phase becomes negative, given by β2α = 2 log 2134

(white dashed line in Fig. 1).135

At finite p, Gardner’s results only tell us that the model cannot be in the paramag-136

netic phase below TE(α). Therefore, a spin-glass transition should occur at a temperature137

Ts (α, p) ≥ TE(α). Since the RS spin glass solution of Eqs. (2) exists only below TE(α) (violet138

region in Fig. 1), the spin-glass transition must be towards a RSB spin-glass phase.139

Outside of the signal retrieval phases, the free entropy of the direct model is the same as140

for the spin-glass model with p-body Gaussian interactions where the temperature is rescaled141

by a factor of
p

2α [50, 51]. Therefore, the spin-glass and paramagnetic solutions are the142

same in the direct model as in this Gaussian spin-glass model, and we expect the exact phase143

diagrams of both models to be identical when the direct model is not in its signal retrieval144

phases. According to previous work on the Gaussian model with finite p [51], a 1RSB solution145

with m = k = 0 exists and is globally stable throughout a whole phase below Ts (α, p) ≥ TE(α)146
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(see Fig. 1). This solution becomes unstable at a lower transition temperature TG(α, p)147

(see Fig. 2), below which multiple steps of RSB are required. In the limit of p → ∞, it148

holds that Ts(α, p) → TE(α) and TG(α, p) → 0. In other terms, the direct model becomes149

1RSB, which is consistent with the fact that it is converging to a random energy model with150

temperature rescaled by
p

2α [30, 50, 52]. Finally, we mention that this type of models151

exhibits a random first order transition phenomenology [53–56]: there is in fact a range of152

temperatures Ts(α, p) ≤ T ≤ Td(α, p) where the dynamics get trapped in an exponential153

number of metastable clusters, with an emerging RSB structure that does not affect the free154

energy (see Fig. 2). This range of temperatures thus defines a so-called dynamical 1RSB155

(d1RSB) phase. Below Ts(α, p), the number of clusters is no longer exponential, and the156

system undergoes the thermodynamic 1RSB phase transition that we mentioned previously.157

The critical temperatures TG(α, p), Ts (α, p) and Td(α, p) can all be obtained by standard RSB158

methods, but the resulting saddle-point equations can be prone to numerical instability at large159

p [33]. In Sections 4.2 and 4.3, we discuss an alternative way to obtain Ts (α, p) and Td(α, p).160

3 Teacher-student setting161

On our end, we study a dense Hopfield network with Hamiltonian (1) as a generative model162

for unsupervised learning. In that context, the memories ξ are model parameters that have to163

be trained in such a way that the examples of a given dataset {σa}Ma=1 result as typical network164

configurations.165

In particular, we study a controlled teacher-student setting in which the examples are166

sampled from the probability distribution P
�

σa|ξ∗
�

of a so-called teacher dense Hopfield167

network conditioned on a single planted pattern ξ∗ ∈ {−1, 1}N whose entries are quenched168

Rademacher random variables. A student dense Hopfield network, also known as the inverse169

model, then samples its own student pattern ξ from the posterior distribution170

P
�

ξ|σ
�

=
P(ξ)

∏M
a=1 P

�

σa|ξ
�

P(σ)
=

P(ξ)

P(σ)

M
∏

a=1

Z−1 exp
�

−βH[σa|ξ]
�

,

where P
�

σa|ξ
�

is the Gibbs distribution of the direct model with a single memory ξ, and P
�

ξ
�

171

is the prior on ξ that is chosen to be uniform. Since the direct model has only a single pattern,172

Z does not depend on ξ (see Appendix C), and the posterior simplifies to173

P
�

ξ|σ
�

= Z−1(σ)exp
�

−βH[ξ|σ]
�

.

In sum, the student posterior distribution is that of a dense Hopfield network where ξ plays the174

role of the sampled pattern and the examples σ act like the M quenched memories. Our task,175

called the inverse problem, consists of quantifying the student’s capability to infer the teacher176

pattern, which we will also call the signal. Like Gardner, we calculate a free entropy of the177

form f =
1
N 〈logZ〉σ in the thermodynamic limit N →∞. This time, however, the average178

〈·〉σ is over a structured set of examples σ. In fact, we recall that, unlike the i.i.d. memories179

studied by Gardner, the examples σa are sampled from the teacher distribution P
�

σa|ξ∗
�

.180

In general, the student does not have access to the teacher generative model. In our181

controlled teacher-student setting, the student knows that the correct model for P
�

σa|ξ
�

is a182

dense Hopfield network. Nevertheless, it does not necessarily have access to the interaction183

order p∗ and inverse temperature β∗ used by the teacher. Therefore, we denote the student184

hyperparameters by p and β and emphasize that they are not necessarily equal to p∗ and β∗.185

6
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As previously stated, we calculate the free entropy186

f =
1

N
〈logZ〉σ = 2−N

∑

ξ∗

∑

σ

[Z∗]−M exp

 

β∗
p∗!

Np∗−1

M
∑

a=1

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗

σa
i1

...σa
ip

!

× log
∑

ξ

exp

 

β
p!

Np−1

M
∑

a=1

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

!

(3)

in the thermodynamic limit N →∞. We then draw phase diagrams of the inverse problem as187

a function of p∗, T ∗ = 1/β∗, p, T = 1/β and α, where α is M normalized to O (1). Unless188

explicitly specified otherwise, we use α =
Mp!
Np−1 .189

3.1 Matched interaction orders190

We first consider the case where p∗ = p and the only possible mismatch between the teacher191

and student networks is in the inverse temperature, i.e. β∗ ̸= β . At low T ∗, the student’s task192

is easy. In fact, below the critical temperature Tcrit of the direct problem with one pattern (see193

Fig. 1, α = 0 axis), the teacher produces examples σa that cluster around ξ∗. Therefore, the194

student can infer ξ∗ by aligning its pattern ξ with the examples σa. This retrieval strategy195

works even when using a very small amount of examples (see [38]). Since the size of our196

dataset is extensive, the retrieval accuracy is maximum in the thermodynamic limit. We call197

this region the (accurate) example Retrieval phase (eR).198

Conversely, when T ∗ is above Tcrit, the examples in the training set are very noisy and we199

do not observe a finite overlap between σa and ξ∗ (see Fig. 1, α = 0 axis). In this regime, we200

find that the RS approximation of the p∗ = p free entropy can be computed (see Appendix D)201

in terms of the variational principle202

f = Extr
m,k,q ,r,q∗,r ∗

�

β∗βα [q∗]p −
1

2
β2αq p +βmp −β∗βαr ∗q∗ (4)

+
1

2
β2αrq −

1

2
β2αr −βmk +

1

2
β2α+ log 2

+

∫

dx
1
p

2π
exp

§

−
1

2
x2
ª

¬

log
�

cosh
�

β
�p
αr x +β∗αr ∗ + kz

���
¶

z

�

,

whose solution is the saddle-point equations203

q∗ =

∫

R

dx
1
p

2π
exp

�

−
1

2
x2
�

¬

tanh
�

β
�p
αr x +β∗αr ∗ + kz

��
¶

z

q =

∫

R

dx
1
p

2π
exp

�

−
1

2
x2
�

¬

tanh2 �β
�p
αr x +β∗αr ∗ + kz

��
¶

z

m =

∫

R

dx
1
p

2π
exp

�

−
1

2
x2
�

¬

z tanh
�

β
�p
αr x +β∗αr ∗ + kz

��
¶

z
(5)

r ∗ = p [q∗]p−1

r = pq p−1

k = pmp−1,

where z is a Rademacher random variable and α =
Mp!
Np−1 . As in the direct model described204

in Section 2, the order parameters m and q have a clear interpretation in terms of expected205

7
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overlaps. m = limN→∞

¬ 1
N

∑

i ξiσ
a
i

¶

ξ∗,σ,ξ
is the expected overlap of a retrieval attempt with206

an example σa, and q = limN→∞

¬ 1
N

∑

i




ξi
�2
ξ

¶

ξ∗,σ
is the expected overlap between two207

retrieval attempts. Similarly, q∗ is the expected overlap between the teacher and student208

patterns, i.e. q∗ = limN→∞

¬ 1
N

∑

i ξ
∗
i
ξi

¶

ξ∗,σ,ξ
. Therefore, it is a good measure of inference209

performance. The free entropy (Eq. 4) is expected to be exact in absence of mismatch between210

the teacher and the student, i.e. β∗ = β . This condition is known as the Nishimori line [45–48].211

Outside of the Nishimori region, RSB corrections are expected. Like the direct problem, the212

inverse problem with T ∗ > Tcrit has different phases characterized by the values of the order213

parameters:214

• In the Paramagnetic phase (P), the overlaps m, q∗ and q all vanish.215

• In the signal Retrieval phases (lR and gR), m = 0 but q∗ ≠ 0 and q > 0. lR and gR are216

respectively locally stable and globally stable. In other words, local retrieval lR is only217

attainable from initial conditions in a limited neighborhood of ξ∗, while global retrieval218

gR is accessible from any initial conditions given enough time. These two phases are219

also said to be ferromagnetic.220

• In the (inaccurate) example Retrieval phase (eR), m ̸= 0 and q > 0 but q∗ = 0.221

• In the Spin-Glass phase (SG), q > 0 but q∗ and m vanish.222

In sum, when T ∗ is above Tcrit, the student can only learn the teacher pattern in the signal223

retrieval phases. In all the other phases, the student pattern is uncorrelated with the signal, being224

either a random guess (P phase), aligned with a noisy example (inaccurate eR phase), or aligned225

with a spurious low energy state (SG phase). We stress that we cannot have m ̸= 0 and q∗ ̸= 0226

at the same time (accurate eR phase) when T ∗ > Tcrit because limN→∞

¬ 1
N

∑

i ξ
∗
i
σa

i

¶

ξ∗,σ
= 0227

in that regime (see Fig. 1, α = 0 axis).228

3.2 Mismatched interaction orders229

We also investigate the T ∗ > Tcrit regime in the presence of a mismatch between the interaction230

orders of the teacher and student networks, i.e. p∗ ̸= p. We focus on the case of p∗ = 2 and231

even p ≥ 3 to study the consequences of fitting the teacher of [38] using a student with higher232

order interactions. We find two different scaling regimes of the training set size M and inverse233

temperature β∗ that make retrieval possible (see Appendix D):234

• a large-noise scaling where β∗ ∼ O
�

N2/p−1
�

and M ∼ O
�

Np−1
�

, such that α =
Mp!
Np−1235

and λ =
[β∗]p/2

(p/2)! Np/2−1 are finite;236

• a finite-noise scaling where β∗ ∼ O (1) and M ∼ O
�

Np/2
�

, such that α =
M(p/2+1)!

Np/2 is237

finite.238

In the large-noise scaling, we obtain saddle point equations similar to Eqs. (5) but with β∗239

replaced by λ (see Appendix D). Conversely, the finite noise scaling leads to240

q∗ =
¬

tanh (β [ηαr ∗ + kz])
¶

z

m =
¬

z tanh (β [ηαr ∗ + kz])
¶

z
(6)

r ∗ = p [q∗]p−1

k = pmp−1,

8
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where η generally depends on β∗ and p in a non-trivial way, but we find that η =
2[β∗]2

(1−2β∗)2
when241

p = 4 (see Appendix D). These equations can also be derived by extrapolating the large-noise242

equations to αlarge noise→ 0 and λ→∞ with fixed λαlarge noise = ηαfinite noise.243

4 Results and Discussion244

4.1 Retrieval transition at large interaction order245

The paramagnetic solution of Eqs. (5) always exists and is globally stable in the part of the246

phase diagram where the temperature T is relatively large and α =
Mp!
Np−1 is relatively small.247

On the other hand, the gR phase exists when β2αp and β∗βαp are both large. In fact, in248

that limit, q∗ = q = 1 is a fixed point of Eqs. (5). The critical line where gR becomes globally249

stable instead of P is not clear from this analysis alone, but we can at least find it analytically250

in the limit of infinite p. As for the direct model, the free entropy and the total entropy of the251

paramagnetic phase are respectively
1
2β

2α+ log 2 and −1
2β

2α+ log 2 [30]. At the same time,252

the p →∞ free entropy takes the form253

f = Extr

�

β∗βα θ (q∗ − 1)−
1

2
β2α θ (q − 1)−β∗βαr ∗q∗ +

1

2
β2αrq −

1

2
β2αr +

1

2
β2α

+ log 2+

∫

dx
1
p

2π
exp

§

−
1

2
x2
ª

log
�

cosh
�Æ

β2αr x +β∗βαr ∗
��

�

,

where θ (q − 1) := limp→∞ q p , q ∈ [0, 1], is the Heaviside step function jumping at q = 1,254

i.e. θ (1) = 1 and θ (q) = 0 ∀q ∈ [0, 1). In this limit, the ferromagnetic phase is characterized255

by q = q∗ = 1, and its free entropy is then256

f = β∗βα−β∗βαp +

∫

dx
1
p

2π
exp

§

−
1

2
x2
ª

log
�

2 cosh
�Æ

β2αpx +β∗βαp
��

≈ β∗βα−β∗βαp +

∫

dx
1
p

2π
exp

§

−
1

2
x2
ª

�Æ

β2αpx +β∗βαp
�

= β∗βα.

The corresponding total entropy is s = f −β ∂ f
∂ β = 0, as expected from a ferromagnetic phase257

with q∗ = q = 1. On the Nishimori line, f = β∗βα becomes larger than the free entropy of258

the paramagnetic phase, which triggers a phase transition, if and only if259

T <

√

√ α

2 log 2
, (7)

where TE =
r

α

2 log 2 is also the temperature below which the total entropy of the paramag-260

netic phase becomes negative. Outside of the Nishimori line, this inequality generalizes to261

β∗βα >
1
2β

2α+ log 2, leading to262

β∗ −

√

√

[β∗]2 −
2 log 2

α
< β < β∗ +

√

√

[β∗]2 −
2 log 2

α
,

while the temperature where the paramagnetic total entropy becomes negative stays the same.263
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4.2 Transition to the ordered phases: universality264

In the p →∞ limit, the transition towards gR of the inverse model on the Nishimori line265

is identical to the exact P-SG transition of the direct model [30]. We claim that these two266

critical lines are actually closely related for any p. In the Hopfield model with p = 2, they267

were already shown to be identical [38]. We will now argue that they overlap for any p and268

β such that T > Tcrit (see Figs. 2 and 1). In the case of p = 2, both lines can be obtained269

exactly from the RS approximation of either the direct model or the inverse model, so there is270

no obvious advantage to using this equivalence in calculations. In general, while the inverse271

problem on the Nishimori line is replica symmetric, the direct problem is not, and the p ≥ 3272

replica symmetric P-SG transition is not exact. Moreover, even the critical line calculated using273

1RSB may be inaccurate due to numerical instability [33]. In this situation, the knowledge274

of the gR transition in the replica-symmetric inverse problem can be used to locate the exact275

P-SG transition of the direct problem, where symmetry breaking occurs.276

For that purpose, we will argue that, given T > Tcrit, the direct model is in the paramagnetic277

phase if and only if the inverse model is in the paramagnetic phase.278

The converse implication comes from the fact that since (see Appendix C)279

P (σ) =
1

2MN

Z(σ)
〈Z〉

, (8)

the example distribution P (σ) of the inverse problem is contiguous [57] to the uniform280

distribution, i.e. the memory distribution of the direct problem, when281

lim
N→∞

§ logZ − log 〈Z〉
N

ª

= 0. (9)

As determined in Appendix C and D, the annealed expression
1
N log 〈Z〉 is equal to the free282

entropy of the paramagnetic phase. Therefore, when the inverse model is in the paramagnetic283

phase, P (σ) is contiguous to the uniform distribution. This property is called quiet planting284

and is known to occur more generally in mean-field paramagnets [58–61]. In our problem285

setting, it means that if the inverse model is in the paramagnetic phase, then it is equivalent to286

the direct model. In particular, if the inverse model is in the paramagnetic phase, then so is the287

direct model. In more intuitive terms, the gR transition temperature of the inverse model must288

be greater than or equal to the P-SG transition temperature of the direct model because the289

ensemble of examples σa generated by the teacher model is on average at least as structured290

as the set of i.i.d. random memories stored in the direct model.291

For the direct implication, notice that the average replicated partition function of the direct292

model in the paramagnetic phase can be approximated as (see Appendix E)293




ZL� ≈
1

〈Z〉

�

∑

σ

exp

�

βN
∑

γ

∑

µ∈Γγ

�

1

N

∑

i

ξ
µ

i
σ
γ

i

�p

+β
∑

γ

∑

µ∈Γ̄

p!

Np−1

∑

i1<...<ip

ξ
µ

i1
...ξµ

ip
σ
γ

i1
...σγ

ip

�

∑

σ0

exp

 

β
∑

µ∈Γ̄

p!

Np−1

∑

i1<...<ip

ξ
µ

i1
...ξµ

ip
σ0

i1
...σ0

ip

!

�

.

This expression is identical to the replicated partition function of the inverse model with294

T > Tcrit, which therefore must also be in the paramagnetic phase.295

As a consequence, when T > Tcrit, the P-SG transition line of the direct model must be296

identical to the gR transition line of the inverse model on the Nishimori line.297
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Figure 2: Exact RS phase diagrams of inverse models on the Nishimori line, i.e. p∗ = p
and β∗ = β . the left, center and right plots respectively have p = 3, p = 4 and
p = 10. Accurate pattern retrieval is not possible in the paramagnetic phase (P), but
it is possible in the local retrieval phase (lR), in the global retrieval phase (gR) and
in the example retrieval phase (eR). The ferromagnetic fixed point corresponding to
accurate pattern retrieval is globally stable in the gR phase, but locally stable in the
lR phase. The critical temperature of the eR phase is the critical temperature Tcrit of
the direct problem with one pattern (see Fig. 1, α = 0 axis). The black dashed lines
mark the spurious continuation of the lR and gR phase boundaries through the eR
phase. The white dashed line is the p →∞ gR critical line calculated analytically
in Section 4.1. It matches the corresponding numerical phase boundary increasingly
well as p grows larger. The white dotted lines on the p = 3 plot mark the 1RSB and
d1RSB critical temperatures Ts (α, 3) and Td (α, 3) of the direct model (see Section
2). We truncated them below Tcrit for improved visibility. Ts (α, 3) and Td (α, 3) are
obtained by rescaling the corresponding critical temperatures found in [54] by

p
2α.

4.3 Phase diagram on the Nishimori line298

On the Nishimori line, the student is fully informed about the teacher generative model and299

uses β = β∗ and p = p∗. In this scenario, thanks to the Nishimori identities [46], it is well300

known that ξ∗ and ξ play symmetric roles and that q∗ = q . For the same reason, the overlaps301
1
N

∑

i ξ
∗
i
ξi and

1
N

∑

i ξ
1
i
ξ2

i
have the same distribution. From the self-averaging of

1
N

∑

i ξ
∗
i
ξi , it302

follows that the system is expected to be replica symmetric, and Eqs. (4) and (5) are expected303

to hold. Fig. (2) shows the phase diagrams obtained by solving the saddle-point equations304

numerically on the Nishimori line. Both q∗ = q and the replica symmetry condition are verified.305

In particular, numerical solutions of a few values of p ≥ 3 show that the gR transition occurs306

at a higher T than the line β2α = 2 log2 where the total entropy of the paramagnetic phase307

becomes negative. In other terms, the phase transition towards gR prevents the total entropy308

from becoming negative when T decreases below
r

α

2 log 2 , which is consistent with the RS309

solution being exact on the Nishimori line.310

At low T , the student can learn efficiently within the accurate eR regime. In this phase,311

learning is possible (q∗ ̸= 0) because the examples are correlated with the signal and the312

student can retrieve it by simply being aligned with them (m ̸= 0).313

At high T , learning is possible only if the amount of examples, i.e. the size of the dataset, is314

sufficiently large. When α is too small, Eqs. (5) have only a paramagnetic fixed point because315

the amount of information carried by the dataset is not large enough. Numerical solutions316

suggest that the paramagnetic fixed point always exist and it is actually locally stable in the317

whole high-temperature regime. When α is sufficiently large, the signal retrieval fixed point318

appears as a locally stable attractor (lR phase). It becomes globally stable (gR phase) as the319

size of the dataset is increased further or the student temperature decreases.320
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Backward
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Figure 3: The first row of this diagram sketches how a p-body Hopfield network in
the teacher-student setting can reconstruct an incomplete pattern ξb to match the
teacher pattern ξ∗ by relying on the examples σ obtained from ξ∗. The second row
summarizes how a dense neural network trained by K & H can recover the labels y ′ of
the data x given the weights w learned from x [26]. Both models tackle similar tasks
using an approach where σ and ξb respectively play the same roles as w and (x , y ′).
The forward propagation algorithm used to generate y ′ is similar to the update rule
of the student (see [26] and Appendix A), but the backpropagation algorithm used to
learn w is very different from the update rule of the teacher.

As per the previous Section, the critical boundary of the gR phase obtained by solving Eqs.321

5 is identical to the 1RSB P-SG transition temperature Ts(α, p) of the direct model. Similarly,322

we observe that the metastable lR phase coincides with the d1RSB phase of the direct model323

(see Fig. 2). Our results are also consistent with the fact that Ts (α, p)→ TE(α) in the p →∞324

limit. In fact, we find that the analytical limit boundary closely agrees with the numerical325

solution of the saddle-point equations with p∗ = p = 10 and remains a good approximation326

even down to p∗ = p = 4.327

In the student model, σ plays a similar role as the weights of the trainable dense Hopfield328

network model that K & H designed for classification of data [26]. In that context, ξ is analogous329

to the test data whose labels are being predicted (see Fig. 3). In fact, the computation performed330

by K & H’s model to recover labels is similar to the update rule used by the student to infer the331

teacher pattern (see Appendix A). Moreover, the eR and gR phases are respectively reminiscent332

of the prototype and feature regimes of K & H’s networks. Therefore, we believe that the333

student can act as a toy model of label prediction in these two regimes.334

Comparing instead the phase diagrams of our inverse model with that of the inverse 2-body335

Hopfield model, we see that the eR and gR phases of the inverse p-body model with p ≥ 3 are336

respectively analogous to the eR and sR (signal Retrieval) phases presented in [38]. One of337

the key differences between p = 2 and p ≥ 3 is that the paramagnetic to signal retrieval phase338

transition of the p-body model is second order for p = 2 but first order for p ≥ 3. On the one339

hand, the second order phase transition of p = 2 indicates that its paramagnetic fixed point is340

never locally stable and sets an unambiguous boundary between the sR phase where ξ∗ can341

be recovered starting from any initial conditions and the paramagnetic phase where pattern342

retrieval is impossible [61]. On the other hand, the first order phase transition of p ≥ 3 allows343

the retrieval and paramagnetic regimes to coexist. The lR phase is locally stable precisely344

because it coexists with the paramagnetic phase and has a lower free entropy. Meanwhile,345

the gR phase also coexists with the paramagnetic phase, but has a larger free entropy. In the346

presence of phase coexistence, an algorithm trying to retrieve ξ∗ starting from random initial347

conditions can get stuck in the paramagnetic phase instead. In fact, it has been conjectured348
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Figure 4: Monte-Carlo simulations of the p = 3 inverse model compared against
RS saddle-point solutions. The lR phase is included on the left and central plots,
but not on the right one. The left plot has ϵ = 0, and the two other ones have a
handpicked ϵ such that the simulations are initalized near the saddle-point solutions.
The dots are simulation data at a few values of α, and the lines are slices of the

saddle-point solutions at the same α. The teacher generates M =
αNp−1

p! examples σa

with N = 512 components each, and the simulation results are then averaged over
L = 100 student patterns. The simulation data is sometimes systematically shifted
up with respect to the saddle-point solution. This difference is notably visible on the
central plot, right after the fall from eR to gR when α = 3.

that there is no algorithm with random initial conditions that can find such a ferromagnetic349

fixed point in a tractable amount of time [61,62]. That kind of metastable region was thus350

given the name hard phase [61,63]. In summary, we expect that p ≥ 3 models in the gR phase351

can only recover partially corrupted patterns whereas p = 2 can recover them entirely.352

Fig. (4) shows results from Monte Carlo simulations with p = 3, where L replicas of353

the student pattern {ξb}L
b=1

are initialized to the teacher pattern ξ∗ corrupted by some354

Rademacher noise ϵ. In other words, the initial values of ξb
i

are sampled from the distri-355

bution (1− ϵ)δ
�

ξi − ξ∗i
�

+
ϵ

2

�

δ
�

ξi + 1
�

+ δ
�

ξi − 1
��

with ϵ ∈ [0, 1]. The value of ϵ is tuned356

so that the simulations start relatively close to the saddle-point solutions. As explained pre-357

viously, gR is a hard phase, so this initialization is necessary to make ξb converge to gR in a358

reasonable amount of time. Additionally, it is also used to make ξb converge to the lR phase359

rather than the P phase when desired. Once the simulations are over, the overlaps are averaged360

over all L replicas. If we fix ϵ = 0, then the simulations generally converge to the lR phase when361

it is a fixed point. If instead we initialize them to the saddle-point solutions by handpicking ϵ,362

then they stay near the initial overlaps. In either case, the simulations converge to eR when it is363

globally stable. Some simulation data points might be systematically shifted up with respect to364

the saddle-point solutions. However, this difference decreases with the system size N, so finite365

size effects seem sufficient to explain it (see Fig. 9 in Appendix F). Overall, the Monte-Carlo366

simulations are in very good agreement with the p = 3 overlap landscape obtained by solving367

the saddle-point equations numerically.368

4.4 Inference temperature vs dataset noise369

In the two next Sections, we will discuss the phase diagram when the student is only partially370

informed about the teacher generative model, i.e. when the Nishimori conditions do not hold.371

We start with the case where p = p∗ but β ̸= β∗, i.e. the inference temperature T is different372

from the dataset noise T ∗. As we argued in Section 3.1, the student accurately retrieves ξ∗373

when T ∗ < Tcrit. On the other hand, we must solve the saddle-points equations (see Eqs. 5) to374

study T ∗ > Tcrit.375

We show the phase diagram of this region on Fig. (5). At high inference temperature T , the376

situation is similar to Fig. (2): retrieval is possible if the data load α is sufficiently large, but377

13



SciPost Physics Submission

Figure 5: RS phase diagrams of inverse models with p∗ = p and fixed β∗. The top
and bottom rows of plots respectively have p∗ = p = 3 and p∗ = p = 4. In the
same way, the left, central and right columns correspond to T ∗ = 1.5, T ∗ = 1.6
and T ∗ = 1.7. Accurate pattern retrieval is not possible in the paramagnetic phase
(P), in the spin-glass phase (SG) or in the example retrieval phase (eR), but it is
possible in the local retrieval phase (lR) and in the global retrieval phase (gR). The
ferromagnetic fixed point corresponding to accurate pattern retrieval is globally stable
in the gR phase, but locally stable in the lR phase. Conversely, the SG fixed point
is always locally stable and leads the student to a frozen spurious signal. The white
dashed line indicates the Nishimori line β∗ = β . The black dashed lined is the gR
phase boundary on the Nishimori line. As explained in Section 4.3, we expect it to
overlap the exact SG phase transition.

the paramagnetic phase is always locally stable. The situation is different when the inference378

temperature is low. In that case, there are two phases that we did not see for β = β∗: the379

inaccurate eR phase and the SG phase. When α is relatively small, the student falls in the380

inaccurate eR phase. In this regime, it has finite overlap with one of the noisy examples and381

cannot retrieve the signal ξ∗. When α is larger, the interference among the noisy examples382

prevents the student to be aligned with them. In this regime, the SG phase, the student locally383

converge to spurious patterns that are uncorrelated with the signal.384

Accurate pattern retrieval is only possible in the lR and gR phases where α is so large that385

the student can gather enough information from the dataset to become very close to ξ∗. The386

phase diagrams indicate that pattern retrieval is optimal on the Nishimori line in the sense that387

β = β∗ is the inverse temperature where the student needs the least examples to recover ξ∗.388

In other words, the student’s performance is non-monotonic in T and peaks at T = T ∗. These389

properties were also observed in the teacher-student setting of the p = 2 Hopfield network [38].390

Contrary to what one would expect to see on the exact phase diagram [45,46], the Nishimori391

line T = T ∗ does not to cross a triple point on the RS phase diagram. The issue is that the RS392

phase diagram is not exact outside of the Nishimori line. In particular, the SG phase boundary393

is not exact. Outside of the retrieval regime, the free entropy of the inverse model is the same394
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as the direct model. Since the transition towards gR of the inverse model on the Nishimori395

line overlaps the exact P-SG transition of the direct model (see Section 4.3), we deduce that396

it must also overlap the exact P-SG transition of the inverse model outside of the gR phase.397

Plotting it on the RS phase diagrams, we see that it indeed crosses the Nishimori line and the398

gR phase boundary at the same point, which therefore becomes a triple point, as expected.399

4.5 Interaction order and noise tolerance400

So far, we assumed that the student is informed about the interaction order used by the teacher,401

i.e. p = p∗. In this Section, we investigate the role of the student’s choice of p when the task402

is to learn from a dataset sampled by a 2-body Hopfield network, i.e. p∗ = 2. We study two403

different non trivial scalings regimes of M and β∗ that make pattern inference possible (see404

Appendix D).405

4.5.1 Large noise scaling406

We first consider a large noise scaling where β∗ ∼O
�

N2/p−1
�

and M ∼O
�

Np−1
�

, such that

α =
Mp!

Np−1
and λ =

[β∗]p/2

(p/2)!
Np/2−1

are finite. In this scaling, a p ≥ 3 network requires O
�

Np−2
�

more training examples than a407

p = 2 network with finite load γ =
M
N , but also has a higher tolerance to teacher noise. For408

instance, a student with p = 4 interactions is able to retrieve the pattern of a teacher with409

T ∗ ∼ O
�

N1/2
�

noise when it is shown enough examples M ∼ O
�

N3
�

to be in the gR phase410

(see Fig. 6).411

O
�

N1/2
�

noise tolerance was also observed in the p = 4 direct model, where it is a412

consequence of the redundancy stemming from storing O (N)memories rather than the O
�

N3
�

413

needed to saturate the storage capacity [64]. Our p = 4 inverse model exploits a different414

kind of redundancy by learning from O
�

N3
�

examples whereas p = 2 only needs O (N). In415

other terms, both storing extensively less memories than the maximum allowed amount and416

generating extensively more examples than the minimum required amount provide enough417

redundancy to recover a pattern muddled in an extensive amount of noise. In both cases, there is418

an O
�

N2
�

gap between the number of patterns used in the noise-tolerant and noise-susceptible419

regimes. Going beyond p = 4, the inverse model has O
�

N1−2/p
�

noise tolerance as a function420

of p. In particular, our theory predicts that the tolerance saturates at T ∗ ∼O (N) as p →∞,421

but at the cost of using an intractable number of examples. This behavior is different from422

the O
�

N1/2−p/4
�

tolerance of the direct p-body model in the noisy-learning regime studied423

in [65]. In other terms, the dataset noise that we are facing is of a different nature than the424

learning noise of [65]. In any case, it is interesting that both the direct and inverse models425

are able to tolerate an extensive amount of noise. Overall, our results suggest that it could be426

advantageous to use a student network with a relatively large p to learn from a large but noisy427

dataset when the p∗ of the teacher generative model is unknown.428

An unavoidable drawback of large teacher noise is that it always lead to uncorrelated429

examples, which makes accurate example retrieval impossible. Instead, it is replaced by the430

inaccurate example retrieval phase where the student has finite overlap m with a noisy example431

generated by the teacher but no overlap with the signal (see Fig. 6). Depending on T and α,432

this phase can be either globally stable or locally stable. For the sake of clarity, we plot only the433

globally stable phase on our phase diagram in Fig. (6). The locally stable phase is arguably less434

important to plot because it is identical to the locally stable ferromagnetic phase previously435

reported in the direct model when assuming replica symmetry (see [33] and Fig. 1).436
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Figure 6: RS phase diagrams of inverse models with p∗ = 2 and p = 4. The left

plot is for α =
M(p/2+1)!

Np/2 , and β∗ = 1− 1
p

2
such that η = 1 and the right plot is for

α =
Mp!
Np−1 and β∗ =

r

2λ
N with λ = β . Accurate pattern retrieval is not possible in the

paramagnetic phase (P) or in the example retrieval phase (eR), but it is possible in the
local retrieval phase (lR) and in the global retrieval phase (gR). The ferromagnetic
fixed point corresponding to accurate pattern retrieval is globally stable in the gR
phase, but locally stable in the lR phase. The black dashed lines mark the metastable
continuation of the eR, lR and gR phase boundaries through neighboring phases
with a larger free entropy. The paramagnetic total entropy becomes negative below
the white dashed line drawn on the right plot. However, the paramagnetic phase is
no longer globally stable at that temperature.

Figure 7: Monte-Carlo simulations (dashed lines) and RS saddle-point solutions (full
lines) of the inverse model in the large-noise scaling with p∗ = 2 and p = 4. The

teacher generates M =
αNp−1

p! examples σa with N = 256 components each, and the
simulation results are then averaged over L = 100 student patterns. The student
patterns are all initialized to ξ∗.
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Given m = 0, the free entropy of the inverse model with p ≥ 3, p∗ = 2 and β = λ is437

the same as on the Nishimori line (see Eq. 5 and Appendix D). As a direct consequence, the438

total entropy is positive outside of the eR phase (see Fig. 6). Additionally, the p∗ = 2, p ≥ 3439

phase diagrams with β ̸= λ are identical to the p = p∗ phase diagrams with β ≠ β∗, which440

suggests that β = λ is optimal for p∗ = 2, p ≥ 3 in the same sense as β = β∗ is optimal for441

p = p∗ (see Fig. 5). Monte-Carlo simulations confirm that a student with p ≥ 3 is able to442

retrieve the pattern of a teacher with p = 2 and T ∗ ∼O
�

N1/2
�

(see Fig. 7). However, the lR443

phase transition is at a higher T in the simulations than on the β = λ RS phase diagram (see444

Fig. 5), which means that RSB is necessary to describe it accurately. One could check where445

replica symmetry holds by evaluating the stability of the RS saddle point throughout the phase446

diagram.447

4.5.2 Finite noise scaling448

We also consider a different scaling regime where β∗ ∼O (1) and M ∼O
�

Np/2
�

, such that

α =
M(p/2+ 1)!

Np/2

is finite. In this finite-noise scaling, p ≥ 3 requires O
�

Np/2−1
�

more training examples than449

p = 2, which is a lot less than the first scaling. For instance, a student with p = 4 needs O
�

N2
�

450

examples to retrieve ξ∗. As before, the phase transitions are all first order, the overlap q∗ stays451

high throughout the gR and lR phase of p = 4 and gR is a hard phase. The saddle-point452

equations (see Eqs. 6) are free from the pattern interference term
p
αr x present in their453

p∗ = p counterparts (see Eqs. 5) until β∗ becomes so small that is approaches O
�

N2/p−1
�

.454

Therefore, contrary to p∗ = p = 2, the network is never in the SG phase. Practically, it means455

that p ≥ 3 gives more freedom than p = 2 for tuning β and α. The only remaining restriction456

is that choosing α and T too small puts the network into the inaccurate eR phase resulting457

from the kz term (see Fig. 6). The saddle point equations can be derived without the RS458

ansatz because they do not involve q and r . Consequently, we expect them to yield an exact459

solution. Like on the Nishimori line, the total entropy of the paramagnetic phase is always460

positive, which is consistent with the solution being exact.461

4.6 Robustness against adversarial attacks462

Inverse models with p∗ = 2 and p ≥ 3 offer an opportunity to study adversarial attacks in a463

simple setting because their phase diagrams have regions where the signal retrieval phases (gR464

and lR) overlap with the inaccurate eR phase. Recall that, in the lR phase, a noisy student465

pattern ξ either converges to ξ∗ or falls in the paramagnetic phase, depending on the amount466

of noise that ξ contains initially. The quantity of noise needed to prevent pattern retrieval467

becomes smaller as one approaches the lR to P phase transition and the basin of attraction468

of lR shrinks. Similarly, in the region of inaccurate eR where signal retrieval is metastable,469

patterns ξ that are corrupted by replacing some of their entries ξi by the components σa
i

of an470

example σa may converge to σa when enough entries are replaced. The fraction ϵ of entries471

that need to be replaced becomes smaller as the basin of attraction of inaccurate eR expands472

and overtakes that of signal retrieval. In practice, an adversary can use this strategy to trick the473

student into converging to a pattern other than ξ∗. This scenario is similar to an adversarial474

attack targeting the input of K & H’s dense Hopfield network model because the student pattern475

ξ plays a similar role in the inverse model as the test data in K & H’s dense Hopfield networks476

(see Fig. 3, Section 4.3 and Appendix A). In that analogy, the examples σ are acting like the477

neural network weights rather than taking the role of the training data.478
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We will now investigate what values of the perturbation size ϵ are a threat by deriving a479

formula for the largest ϵ such that the student converges to the signal at zero temperature. This480

largest ϵ will be denoted ϵ∗, and we expect it to be a good measure of adversarial robustness.481

The saddle-point equations with T = 0 indicate that the student converges to one of the signal482

retrieval phases if and only if k < ηαr ∗ (see Eqs. 6). Sampling the initial conditions of ξi483

from (1− ϵ)δ
�

ξi − ξ∗i
�

+ ϵ δ
�

ξi −σa
i

�

with ϵ ∈ [0, 1], we get484

r ∗ = p





1

N

(1−ϵ)N
∑

i=1

ξ∗iξ
∗
i +

1

N

ϵN
∑

i=1

ξ∗iσ
a
i





p−1

,

k = p





1

N

(1−ϵ)N
∑

i=1

ξ∗iσ
a
i +

1

N

ϵN
∑

i=1

σa
i σ

a
i





p−1

.

By the law of large numbers,
1
ϵN

∑ϵN
i=1 ξ

∗
i
σa

i
and

1
(1−ϵ)N

∑(1−ϵ)N
i=1

ξ∗
i
σa

i
are both typically close485

to m∗ =
1
N

∑N
i ξ
∗
i
σa

i
≈ 0 as N →∞. If we take σa to be a typical example, then r ∗ and k486

reduce to487

r ∗ ≈ p (1− ϵ)p−1

k ≈ pϵp−1.

Substituting these expressions back in k < ηαr ∗ yields488

ϵp−1 < ηα (1− ϵ)p−1

ϵ <
[ηα]

1
p−1

[ηα]
1

p−1 + 1
.

In other terms, the inverse model with p∗ = 2 and even p ≥ 3 is resistant to adversarial attacks489

of size ϵ∗ =
[ηα]

1
p−1

[ηα]
1

p−1 +1
and smaller. For p = 4, ϵ∗ is in good agreement with Monte-Carlo490

simulations of the inverse model corrupted by a typical example (see Fig. 8). This comparison491

is good evidence that our solution of the finite-noise scaling is indeed exact. Additionally, ϵ∗ is492

a decent approximation of empirical robustness even when the inverse model is corrupted by493

the example that has the largest overlap with ξ∗. A similar construction with the perturbation494

sampled uniformly at random gives k ∼ O
�

N1/2−p/2
�

≈ 0, so adversarial attacks are much495

more efficient at fooling the model than random noise. Just like adversarial attacks targeting496

more complicated neural networks [40,41], our example-based attack can be hard to detect497

at low ϵ because a few adversarially perturbed entries ξi do not look very different from498

a low amount of meaningless noise. Moreover, ϵ∗ grows monotonically with α, which is499

consistent with the common observation that larger neural networks are also more adversarially500

robust [43, 66–71]. At first glance, this effect can be counter-intuitive because adversarial501

vulnerability looks like a form of overfitting [42]. In our model, however, all examples work502

together to stabilize the lR phase, and the best way to push the student into the eR phase is503

to perturb it with a single example. Therefore, it is not surprising that increasing α makes504

the student more robust. We recall that the examples σ are a feature-based representation505

of ξ∗. Interestingly, it means that the underlying mechanism of our example-based attack506

is conceptually similar to gradient-based attacks targeting many common types of neural507

networks [42]. In fact, gradient-based attacks find features stored in neural network weights508
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Figure 8: Monte-Carlo simulations of the overlap q∗ as a function of α and adversarial
attack size ϵ in the inverse model with p∗ = 2, β∗ = 1 − 1

p
2
, p = 4, β =∞ and

N = 1024. The simulation results are averaged over L = 100 student patterns. On
the left plot, the inverse model is corrupted by an example σa that has a small overlap
with ξ∗ in absolute value. On the right plot, it is corrupted by the example that has

the largest overlap with ξ∗. The black line ϵ∗ =
α1/3

α1/3+1
is our analytical formula for

the largest adversarial perturbation ϵ such that the student retrieves ξ∗ rather than
the example σa.

and add them to the data in order to fool the network [42,72–74]. It would be interesting to509

investigate, both empirically and theoretically, if only a small number of weights are involved510

in constructing these adversarial attacks. If it is the case, it could explain why larger neural511

networks are often more robust. In general, we expect this kind of one-example attack to be512

possible in any region of signal retrieval that overlaps with the inaccurate eR phase. Using513

p ̸= p∗ may not be a necessary ingredient of adversarial vulnerability in more general models514

with other sources of mismatch, but in our case it ensures that the signal retrieval phases515

intersect the inaccurate eR phase. Conversely, the accurate eR phase is by definition robust to516

adversarial attacks since retrieving an example σa is the same as recovering ξ∗. This distinction517

clarifies why the dense Hopfield networks designed by K & H are adversarially robust in the518

prototype phase despite being adversarially vulnerable in the feature phase. In fact, K & H519

observed that adversarial attacks are unsuccessful in the prototype phase specifically because520

they retrieve stored examples that are semantically meaningful [37]. In summary, our model521

yields two main results concerning adversarial examples. First of all, it suggests a reason why522

large feature-based neural networks are more adversarially robust than smaller ones. Second523

of all, it clarifies why dense Hopfield networks are much more robust in the prototype phase524

than in the feature phase.525

5 Conclusion526

In this work, we derive the exact phase diagram of the p-dense networks in the teacher-527

student setting [16,17,30,38]. On the Nishimori line, we find an example retrieval phase (eR)528

and a global retrieval phase (gR) reminiscent of the prototype and feature regimes observed529

empirically in dense Hopfield networks [26]. We show that the phase transition towards gR of530

the inverse model overlaps the paramagnetic to spin-glass (P-SG) transition of the direct model,531

which allows us to locate the P-SG transition much more precisely than before [30,33]. On532

the other hand, we discover that inverse models outside of the Nishimori line are able to resist533
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an extensive amount of noise. In fact, a student with p ≥ 3 is able to learn from a teacher with534

p∗ = 2 even when the teacher’s inverse temperature β∗ is as low as O
�

N2/p−1
�

. Moreover, such535

a student is immune to pattern interference until β∗ reaches O
�

N2/p−1
�

. In this setting, we536

derive a formula measuring the adversarial robustness of the student with p ≥ 3 and T = 0. We537

then use this formula to describe how making a neural network larger can potentially increase538

its robustness to adversarial attacks constructed with only a few learned weights [43,66–71].539

Our model also clarifies why the prototype phase of dense Hopfield networks is adversarially540

robust [37]. We compare our key results against Monte-Carlo simulations.541

Dense networks with exponential interactions have been argued to be the p →∞ limit of542

the p-body models [75]. It would be interesting to see if they can achieve O (N) noise tolerance543

at the cost of an exponential number of training examples. More generally, studying exponential544

models in the teacher-student setting would be an interesting extension of this work and could545

be used to complement existing studies of the direct model [75,76]. A caveat of our model is546

that the teacher has only one pattern. In fact, we would need to use a teacher with at least547

two patterns to describe more completely the kind of adversarial attack aiming to misclassify548

data. It should be possible to study this kind of teacher by using an approach similar to [77].549

In particular, [16] and [77] argue that the performance of restricted Boltzmann machines with550

a finite number P of i.i.d. planted patterns is independent of P in the teacher-student setting.551

It would be interesting to investigate whether this characteristic also holds for p-body dense552

networks. On the practical side, we highlight the untapped benefits of using p-body models to553

either resist an extensive amount of noise in the feature phase or improve adversarial robustness554

in the prototype phase. Overall, we stress that further investigations of dense Hopfield networks555

could unlock their true potential.556
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A Gardner’s Hamiltonian vs K & H’s Hamiltonian800

Consider the generalized Hopfield Hamiltonian H
�

σ|ξ
�

= −
∑N

i1<...<ip=1 Ji1...ip
σi1 ...σip

with801

p-body interactions Ji1...ip
=

p!
Np−1

∑M
µ=1 ξ

µ

i1
...ξµ

ip
described by Gardner [30], where M indicates802

the number of patterns ξµ used to construct J , and N denotes the number of components of803

each pattern ξµ and example σ. In this Section, we will omit ξ in the argument of H
�

σ|ξ
�

804

and write H [σ] instead for notational simplicity. Unless indicated otherwise, we will assume805

a large number number of components N ≫ 1 and patterns M ∼ O
�

Np−1
�

. We will start806

by comparing it to the dense Hopfield network Hamiltonian H [σ] = − 1
Np−1

∑

µ

�
∑

i ξ
µ

i
σi

�p
807

studied by K & H [26].808

For that purpose, we rewrite H in the form H [σ] = − 1
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∑

i1 ̸=... ̸=ip
Ji1...ip

σi1 ...σip
by sum-809

ming over all permutations of {i1...ip} in place of the restricted set i1 < ... < ip and compen-810

sating for double counting with the prefactor
1
p! . This manipulation leads to811
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On the other hand, K & H’s Hamiltonian may be rewritten812

H [σ] = −
1
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�p

= −
1

Np−1

∑

µ

 

∑

i1

ξ
µ

i1
σi1

!

...

 

∑

ip

ξ
µ

ip
σip

!

= −
1

Np−1

∑

µ

∑

i1...ip

ξ
µ

i1
...ξµ
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σi1 ...σip

,

where the sum over i1...ip includes both the set of indices i1 ̸= ... ̸= ip found in H [σ] and other813

configurations where some indices are equal. For example, the configuration i1 ̸= ... ̸= ip−1 = ip814

contains the fewest equal indices after i1 ̸= ... ̸= ip . In other words, H [σ] can be expressed as815

an expansion around H [σ], and the two Hamiltonians are equivalent when the normalized816

residuals
H[σ]−H[σ]

N vanish in the limit of large N. In this study, we encounter two cases which817

bring different results.818

1 The Hamiltonians H [σ] and H [σ] are dominated by a few closely packed configurations819

ξµ that have finite overlap
1
N

∑

i ξ
µ

i
σi ∼O (1) with σ. We say that they are aligned with820

σ.821

2 The Hamiltonians H [σ] and H [σ] are dominated by many spread out configurations822

ξµ that have microscopic overlap
1
N

∑

i ξ
µ

i
σi ∼O

�

N−1/2
�

with σ. We say that they are823

misaligned with σ824

We use the expansion of H [σ] to discuss both the aligned case and the misaligned case. We825

start by writing the i1 ̸= ... ̸= ip and i1 ≠ ... ̸= ip−1 = ip terms explicitly, which leads to the826

form827

H [σ] = −
1
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because there are
�p

2

�

=
p(p−1)

2 ways for the indices ip−1 and ip to be equal. This expression828

can be summarized by H [σ] = H [σ] +H ′ [σ] + ..., where H ′ [σ] simplifies to829

H ′ [σ] = −
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In the aligned case, H ′ [σ] is O (1) in N because the sum over i1 < ... < ip−2 is O
�

Np−2
�

.830

The terms implied by the ellipsis are even smaller because their sums are resctricted by more831

equality constraints. Therefore, the residuals
H[σ]−H[σ]

N vanish in the limit of large N, and832

the two Hamiltonians are equivalent. Conversely, we find that H [σ] and H [σ] differ from833

27



SciPost Physics Submission

each other in the misaligned case (see Appendix B for more details). Therefore, although the834

phases of H [σ] that we obtain in this study are qualitatively similar to the ones observed by835

K & H [26,37], the phase diagram of H [σ] must be compared against a simulation of H [σ]836

rather than H [σ] in order to test our theory quantitatively.837

To understand how to sample σ in both models, consider a Monte-Carlo simulation used838

to find the statistical equilibrium of a spin ensemble σ with Hamiltonian G [σ]. To be more839

specific, suppose σ is updated to a new state σ′ with a randomly selected spin σi flipped with840

acceptance probability Pi =
1

1+exp[β(G[σ′]−G[σ])] for a large number of time-steps. This approach841

works well for G [σ] = H [σ]. However, in the case of H [σ], we find that the simulation842

only converges when we use the local field hi =
p!

Np−1

∑

µ ξ
µ

i

∑

i1<...<ip−1
ξ
µ

i1
...ξµ

ip−1
σi1 ...σip−1

843

mentioned by Gardner [30] to approximate
H[σ′]−H[σ]

2σi
at large N. In other words, we iteratively844

flip randomly chosen spins σi with acceptance probability Pi =
1

1+exp(2βhiσi)
for a large number845

of time steps. For arbitrary p, it is not obvious how to compute hi quickly as a sub-routine of846

the Monte-Carlo simulation. However, we find that both p = 3 and p = 4 have closed-formed847

expressions that are easy to evaluate numerically in an efficient way. To be more precise,848

• p = 3 leads to hi = 3
∑

µ ξ
µ

i

h
� 1

N

∑

j ξ
µ

j
σ j

�2
− 1

N

i

,849

• and p = 4 leads to hi = 4
∑

µ ξ
µ

i

� 1
N

∑

j ξ
µ

j
σ j

�
h
� 1

N

∑

j ξ
µ

j
σ j

�2
− 3

N

i

.850

For this reason and also because the number M ∼O
�

Np−1
�

of patterns ξµ used in a Monte-851

Carlo simulations increases exponentially with p, we choose to simulate only p = 3 and852

p = 4.853

The output of the neural network model that K & H designed for classification of data is854

c j = tanh
�1

2β (H [σ′]−H [σ])
�

≈ tanh
h

βp
∑

µ ξ
µ

j

� 1
N

∑

i ξ
µ

i
σi

�p−1i

. We omit the linear855

rectifier present in the original paper [26] because the overlaps
1
N

∑

i ξ
µ

i
σi are almost always856

positive (see for example the Supplement of [78]). The predicted class is then j ′ = argmax j {ci}.857

Using 1− P j =
1

1+exp[β(H[σ′]−H[σ])] instead of c j does not change j ′ because 1− P j and c j are858

related by 1− P j =
1
2

�

c j + 1
�

. When we evaluate Pi using H instead of H, this relation does859

not always hold exactly. Rather, it should be considered an approximation.860

B Direct model cumulant expansions861

In the direct model, the average replicated partition function



ZL
�

takes the form:862
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where the sets Γγ contain the patterns ξµ that have macroscopic overlap with σγ, and their864

complement Γ̄ = ∩γΓ̄γ consists of the remaining patterns. Two approximations are used to865

obtain this expression:866

•
∑

µ∈Γγ
p!
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i1<...<ip
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� 1
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σ
γ

i

�p
because this part of867

H
�

σγ|ξ
�

is aligned with σ (see Case 1 of Appendix A).868
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ip
since Γ̄869

contains almost all of the elements in each Γ̄γ when N is large.870

Gardner evaluates the contribution of the µ ∈ Γ̄ terms via a cumulant expansion, resulting in:871
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Consider ξµ
i
ξ
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j
for an arbitrary pair of indices i and j . There are two cases.874

• If i = j , then ξµ
i
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is deterministic and equal to 1.875

• If i ̸= j , then ξµ
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can be either +1 and −1 with equal probabilities.876
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random spins once the deterministic variables are removed. These two cases can be summarized879
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by
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The order n > 2 terms are subdominant in N and can be neglected when p ≥ 3 [30]. The RS881

free entropy is then obtained through a standard approach to the replica method. Note that882

Gardner’s Hamiltonian is misaligned withσ when the free entropy is dominated by this cumulant883

expansion (see Case 2 of Appendix A). In the case of K & H’s Hamiltonian, we must also take884
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appendix A by imposing ip−1 = ip . In fact, a cumulant expansion of this expression gives886
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which contributes to the free energy on the same order in N as Gardner’s Hamiltonian. Therefore,887

K & H’s Hamiltonian is not equivalent to Gardner’s Hamiltonian when the latter is misaligned888

with σ (see Case 2). The index configurations with more equality constraints also contribute889

to the free entropy on the same order in N because the factors of N that are lost to equality890

constraints are restored when the sums get squared in the cumulant expansion.891

p = 2 is the only positive integer such that Gardner’s Hamiltonian and Krotov’s Hamiltonian892

are equivalent [5,30]. In the misaligned case with a single stored pattern ξ∗ (see Case 2), the893

free entropy of p = 2 simplifies to894
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by using the Hubbard-Stratonovich transformation. At large N, it approximates to:895
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thanks to the well-known limit limN→∞

�

1+
1
N z
�N
= exp (z). This free entropy is consistent896

with the one found in literature when α =
1
N [5].897

C Teacher-student replicated partition function898
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where b ∈
�

1 . . . L
	

label replicas in the set of patterns ξ =
�

ξ1 . . . ξL
	

inferred by the910

student. Using the definition of conditional probability, we rewrite P (σ) as911
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We simplify this expression to:918




ZL� =
1

2MN

1

〈Z∗〉

∑

ξ∗

∑

σ

exp

�

β∗
p∗!

Np∗−1

∑

a∈Γ∗

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗

σa
i1

...σa
ip∗

+β∗
p∗!

Np∗−1

∑

a∈Γ̄∗

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗

σa
i1

...σa
ip∗

�

∑

ξ

exp

�

β
p!

Np−1

∑

b

∑

a∈Γb

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

+β
p!

Np−1

∑

b

∑

a∈Γ̄b

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

�

≈
1

2MN

1

〈Z∗〉

∑

ξ∗

∑

σ

exp

�

β∗N
∑

a∈Γ∗

�

1

N

∑

i

ξ∗iσ
a
i

�p∗

+β∗
p∗!

Np∗−1

∑

a∈Γ̄

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗

σa
i1

...σa
ip∗

�

∑

ξ

exp

�

βN
∑

b

∑

a∈Γb

�

1

N

∑

i

ξb
i σ

a
i

�p

+β
p!

Np−1

∑

b

∑

a∈Γ̄

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

�

,

where Γb represents the set of inputs σa which have macroscopic overlap with the pattern ξb,919

and Γ̄ =
�

∩b Γ̄b
�

∩ Γ̄∗ contains almost all of the elements in each Γ̄b and Γ̄∗ for N →∞. The920

reasoning used to build the sets Γ∗, Γb and Γ̄ is the same as outlined at the start of appendix B.921

D Teacher-student free entropy922

Assuming that the teacher is misaligned with σ (see Case 2 of Appendix A), the form of



ZL
�

923

obtained in appendix C simplifies to924




ZL� ≈
1

2MN

1

〈Z∗〉

∑

ξ∗ξ

∑

σ

exp

�

β∗
p∗!

Np∗−1

∑

a∈Γ̄

∑

i1<...<ip∗

ξ∗i1
...ξ∗ip∗

σa
i1

...σa
ip∗

�

exp

�

βN
∑

b

∑

a∈Γb

�

1

N

∑

i

ξb
i σ

a
i

�p

+β
p!

Np−1

∑

b

∑

a∈Γ̄

∑

i1<...<ip

ξb
i1

...ξb
ip
σa

i1
...σa

ip

�

.

In order to evaluate 〈Z∗〉 =
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2N/M−NZ∗
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, we recall that the teacher is a special case of the925

direct model with a single memory (see Section 3). Since the teacher is in the misaligned case,926

its free entropy is927
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as derived in Appendix B. Given α∗ =
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which is the paramagnetic free entropy of a p∗-body Hopfield network [5,30]. Coming back to929
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In Fourier space, this expression takes the form932
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where the sum over σ with a pre-factor of
1

2MN was replaced by the uniform average 〈〉σ.933

Following the same reasoning as in appendix B, a second order cumulant expansion of the last934
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two terms for any a ∈ Γ̄ yields935
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When p∗ = p, it reduces to936
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We need to go beyond second order to treat p∗ ̸= p. We will focus on p∗ = 2 and p ≥ 3941

to investigate the consequences of using a p-body model to learn examples generated by the942
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function reduces to947
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where the last term encompasses the teacher-student coupling that allows retrieval to take948

place. The teacher term949
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are both known from Appendix B. Later on, we will use log (z∗) and z∗ as shorthands for951

−1
2 log (1− 2β∗)−β∗ and exp

�

−1
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, respectively. The coupling between952

the teacher and the student can be rewritten as953
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= 1 for every index jn . All interacting spin tuples of the form ξ∗
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954
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are statistically equivalent as long as j1 < ... < jp , so the teacher-student coupling simplifies to955
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where V (β∗, p) =
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does not956

depend on the microscopic details of the system. In fact, it can be expressed as a combination of957

the moments of z∗, which can all be derived from log (z∗). To leading order in N, the cumulant958

generating function expands to959
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.

At this stage, we only need to find V (β∗, p) in order to solve the system. We focus on two960

different scalings of M and β∗ that make the teacher-student coupling leading order in N:961

1 M ∼O
�

Np−1
�

and β∗ ∼O
�

N2/p−1
�

will be called the large-noise scaling.962

2 M ∼O
�

Np/2
�

and β∗ ∼O (1) will be called the finite-noise scaling.963

The student term vanishes in the first scenario but is leading order in the second one. The case964

of the teacher-student coupling is more subtle. When β∗ is small, we may keep only the first965

non-vanishing order of the exponential function present in the definition of V (β∗, p). Since p966
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�2n
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2p/2 spin pairings with non-zero expectation that satisfy the968

inequality constraints. In the large-noise scaling, we set969

λ =
[β∗]p/2

(p/2)!
Np/2−1 ∼O (1)
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to get the asymptotically exact expression V
�
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by subtracting the diagonals where pairs of indices are equal. Therefore,
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The cumulants evaluate to977
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In other terms, we find η =
2[β∗]2

(1−2β∗)2
when p = 4. In summary, depending on the scaling, the979

teacher student coupling either simplifies to980
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In either case, the result is similar to p∗ = p except for its pre-factor. We describe the rest of983

the derivation only for p∗ = p because the p∗ = 2 and p ≥ 3 calculations are almost identical.984

Putting the result of the p∗ = p cumulant expansion back in
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where the average over ξ∗ and σ is uniform. We use
log〈Z∗〉

N =
1
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∗]2α+ log2 to simplify987
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Assuming each ξb has macroscopic overlap with at most one pattern σa and using the replica-989

symmetric ansatz q∗b = q∗, q bc = q , r ∗b = r ∗, r bc = r , mb
a = m, kb

a = k, the free entropy990

approximates to991
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Furthermore, the Hubbard-Stratonovich transformation gives992
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in order to simplify the free energy to994
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After differentiating and taking the limit, we get995
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In the case of p∗ = 2 and p ≥ 3 with finite α =
Mp!
Np−1 and λ =

[β∗]p/2

(p/2)! Np/2−1, the free energy996

has the same form but with β∗ replaced by λ. On the other other hand, the free energy with997
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Np/2 and η evaluates to:998
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E Direct model RSB ansatz999

Recall that the average replicated partition function of the direct model (see Eq. 10) takes the1000

form1001
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Introducing a new replica σ0, we rewrite it as1002
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The O
� 1

Np/2−2

�

corrections vanish to leading order in N when we calculate the free entropy.1006
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Figure 9: Monte-Carlo simulations of the p = 3 inverse model compared against
saddle-point solutions for different values of N. The lR phase is not included in these
plots. The left plot has N = 128, the center plot has N = 256, and the right plot
has N = 512. The dots are simulation data at a few values of α, and the lines are

slices of the saddle-point solutions at the same α. There are M =
αNp−1

p! examples σa,
and simulation results are averaged over L = 100 student patterns. The simulation
data is sometimes systematically shifted up with respect to the saddle-point solution,
but the size of the difference tends to decrease with N. The shift is the most visible
when α = 6 and right after the fall from eR to gR when α = 3. As expected, the
fluctuations of the paramagnetic phase also decrease with N.
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