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Abstract

A major task in particle physics is the measurement of rare signal processes. These mea-
surements are highly dependent on the classification accuracy of these events in relation
to the huge background of other Standard Model processes. Reducing the background
by a few tens of percent with the same signal efficiency can already increase the sen-
sitivity considerably. This work demonstrates the importance of incorporating physical
information into deep learning-based event selection. The paper includes this informa-
tion into different methods for classifying events, in particular Boosted Decision Trees,
Transformer Architectures (Particle Transformer) and Graph Neural Networks (Particle
Net). In addition to the physical information previously proposed for jet tagging, we
add particle measures for energy-dependent particle-particle interaction strengths as
predicted by the leading order interactions of the Standard Model (SM). We find that the
integration of physical information into the attention matrix (transformers) or edges
(graphs) notably improves background rejection by 10% to 40% over baseline models
(a graph network), with about 10% of this improvement directly attributable to what
we call the SM interaction matrix. In a simplified statistical analysis, we find that such
architectures can improve the significance of signals by a significant factor compared to
a graph network (our base model).
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1 Introduction30

With the unprecedented amount of data provided by the upcoming runs of the Large Hadron31

Collider (LHC), one can start to measure rare processes with very small cross-sections. Ex-32

amples are the recent observations of four top quarks originating from a single proton-proton33

collision event [1, 2]. At the heart of this endeavor is the difficult task of detecting and mea-34

suring rare signaling processes amidst the overwhelming background noise generated by the35

multitude of Standard Model processes. Accurate classification of these events is crucial, as36

even a small reduction in background noise on the order of a few tens of percent while main-37

taining the same signal detection efficiency can lead to a profound increase in sensitivity.38

At the same time, the recent deep learning revolution has found a large variety of applica-39

tions in high energy physics (see e.g. [3] for a review). One of these is the development of a40

large variety of architectures for the purpose of classification of particle physics data, includ-41

ing improved BDTs [4], convolutional networks [5], graph neural networks [6] and attention-42

based architectures [7, 8]. These methods are mainly used in the context of the classification43

of jet data. On the other hand, their application to event-level data has not yet been explored44

to the same degree, and BDTs are still the most commonly used method.45
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In this work, we perform a comparison of different event classification methods and high-46

light a crucial aspect: the inclusion of physical information and inductive biases in machine47

learning architectures. In addition to the already proposed data used for jet tagging, we intro-48

duce a new approach by incorporating particle measures that capture the subtleties of particle-49

particle interaction strengths as predicted by the Feynman rules of the Standard Model 1 With50

this in mind, we present a publicly available dataset to test classification methods with four51

top and top-top-Higgs events. We perform wide hyperparameter scans over all models and52

compute several performance metrics to evaluate their performance.53

In Section 2, we describe the data generation and the data format. Section 3 briefly de-54

scribes the Machine Learning (ML) models used in the comparison and their optimization. In55

Section 4, we explore how to inform the ML models about physics. We discuss our results in56

Section 5, followed by the conclusions in Section 6.57

2 Data description58

In this section, we describe the data generation and the data format used for this work.59

2.1 Data generation60

We simulated proton-proton collisions at a center-of-mass energy of 13 TeV. The relevant pro-61

duction processes for this work consist of the backgrounds t t̄ + X, where X = Z, W+ and62

W+W− and signal processes including the four top production process and t t̄ H production.63

The hard scattering process generation was performed at leading order, where up to two addi-64

tional jets are added to the final state in the case of the background processes, and up to one65

for the signal. The cross-sections for all the processes and the corresponding total number of66

events generated are depicted in Tab. 1.67

The hard scattering was generated with MG5_aMC@NLO version 2.7 [9]with the NNPDF31_lo68

parton distribution functions set [10], using the 5 flavor scheme. Parton showering was per-69

formed with Pythia version 8.239 [11], while the MLM merging scheme [12] was used to70

merge high-multiplicity hard scattering events with the parton shower. A fast detector simula-71

tion was performed with Delphes version 3.4.2 [13] using the ATLAS detector map. Finally,72

an HT =
∑

jet s ET > 400 GeV restriction was imposed at the parton level during event gener-73

ation. The purpose of this restriction is generation efficiency, since our signal region imposes74

HT > 500 GeV on the reconstructed objects (see Section 2.2 for details.).75

Physics process σ (pb) Ntot ε

pp → t t̄ t t̄ (+1 j) 0.01 32463742 0.007
pp → t t̄ h (+2 j) 0.022 29783343 0.001
pp → t t̄ W± (+2 j) 0.045 8954246 0.005
pp → t t̄ W+W− (+2 j) 0.0096 20160377 0.003
pp → t t̄ Z (+2 j) 0.034 10605846 0.011

Table 1: Signal and background processes with the corresponding LO (Leading Or-
der) cross-section σ in pb (second column), the total number of generated events
Ntot (third column) and the efficiency ε of the cuts applied (fourth column).

1Pairwise particle-particle interaction strengths and 4-vector correlations are called “pairwise kinematic fea-
tures” in the following text, see chapter 4 for details.
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2.2 Event and object selection76

Collision events consist of objects such as jets, b-jets, leptons, and photons, each with their77

corresponding kinematic variables (see Section 2.3). Following the strategy in Ref. [14], an78

event is saved if at least one of the following conditions is met:79

• At least one jet or a b-jet with transverse momentum pT > 60 GeV and pseudorapidity80

|η| < 2.8,81

• At least one electron with pT > 25 GeV and |η| < 2.47, except for 1.37 < |η| < 1.52,82

• At least one muon with pT > 25 GeV and |η| < 2.7,83

• At least one photon with pT > 25 GeV and |η| < 2.37.84

The subsequent object selection then follows in Ref. [15], meaning that individual objects85

are kept only if they pass the following requirements:86

• Electron candidates satisfying pT > 28 GeV and |η| < 2.47 are selected. In the region87

1.37 < |η| < 1.52, known as the LAr crack region, electrons are rejected in order to88

reduce the contribution from non-prompt and fake electrons due to detector design in89

the liquid Argon calorimeter.90

• Muon candidates are required to pass the Medium quality working point, with pT > 2891

GeV, and |η| < 2.5.92

• Jet candidates satisfying pT > 25 GeV and |η| < 2.5 are selected.93

Finally, to remove as much background as possible with respect to the signal events, we94

define a signal region [15] that requires at least six jets, at least two of which are b-tagged,95

HT > 500 GeV, and two leptons of the same sign, or at least three leptons for each event. The96

resulting efficiencies are shown in Table 1.97

2.3 Data format98

The generated Monte Carlo data were saved as ROOT files and then processed into CSV files99

using the event selection presented in Section 2.2. Each line in the CSV files is of variable100

length and contains three event specifiers followed by the kinematic features for each object101

in the event. The specific line format follows the event format used in the Dark Machines102

challenges [14,16], given by103

event ID; process ID; weight; /ET ; φ/ET
; obj1, E1, pT1

,η1,φ1; obj2, E2, pT2
,η2,φ2; ...

such that each object is represented by a string that starts with an identifier obj_n 2, followed104

by its kinematic properties in the form of a four-vector containing the full energy E and the105

transverse momentum pT in units of MeV, as well as the pseudo-rapidity η and the azimuthal106

angle φ. The other relevant quantities are /ET and φ/ET
, which represent the magnitude of107

Emiss
T and the azimuthal angle φEmiss

T
of the missing transverse energy. The other three com-108

ponents represent the identity of an event, the corresponding physical process, and the event109

weight, which is given by the cross-section of the process divided by the total number of events110

generated.111

Since the length of the events is variable, the data is zero-padded to the largest number of112

objects found in the events within in the entire dataset. The dataset includes 302 072 events,113

2j: jet, b: b-jet, e-: electron, e+: positron, µ-: muon, µ+: antimuon, g: photon.
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half of which correspond to the four tops signal and half of which are background processes.114

All background processes have an equal number of events. Finally, the dataset was split in 80%115

used for training, 10% used for validation and 10% used for testing. The data are available in116

CSV format in Ref. [17].117

3 Machine learning models118

In this section we provide a brief summary of the models and methods used in this work.119

3.1 Boosted decision tree120

We use Light Gradient Boosting Machine (LightGBM3) for this study to test the performance121

of Boosted Decision Tree (BDT).122

BDTs combine a series of weak classifiers (decision trees) into a stronger classifier through123

gradient boosting. The boosting strategy is defined with respect to a series of previous deci-124

sion trees f1, f2, ..., ft−1 which remain fixed, while the t-th tree ft is calculated. This process is125

made highly efficient in LightGBM by converting the input data to histograms, and using gra-126

dient based sampling to focus on the data that are not well modelled. This procedure reduces127

memory usage and is optimized for both CPU and GPU performance. LightGBM uses first- and128

second-order derivatives to minimize the loss for the next iteration for gradient boosting129

Loss(t ) =
n
∑

i=1

l(yi , ( ŷ
(t−1)
i

+ ft (xi))) +
t
∑

i=1

ω( fi)

≈
n
∑

i=1

[gi ft (xi) +
1

2
hi f 2

t (xi)] +ω( ft ) + constant

gi = ∂ ŷ (t−1)
i

l(yi , ŷ (t−1)
i

), hi = ∂
2

ŷ (t−1)
i

l(yi , ŷ (t−1)
i

).

(1)

where l is a reconstruction loss functions, e.g. Mean Square Error, Binary Cross Entropy, etc.,130

ft is the t-th tree, and ŷ (t−1) is the class label predicted by f1, f2, ..., ft−1. The term ω( fi)131

represents tree complexity terms that involve properties such as depth, number of leaves, etc.132

LightGBM uses a depth-first algorithm to add branches to the tree ft with limitation on largest133

depth while minimizing Equation (1).134

A common property of collision data in particle physics is a wide variability in object num-135

bers and types. A structured formatting of the data would thus lead to a large degree of136

sparsity, which we found to significantly degrade the BDT performance. We thus choose to137

pre-process the data by limiting the maximum number of (jets, b-jets, e−, e+, µ−, µ+) to the138

(4, 4, 1, 1, 1, 1) hardest objects respectively.139

One useful feature of this BDT is the fact that training is much faster than is the case for140

all the other architectures described below. Therefore, fine-tuning of the hyperparameters and141

adjustment of the data format is easy and efficient. Another attractive advantage of BDTs is142

their capacity to indicate feature importance, which details which input value is most impor-143

tant for its performance. In Section 4.1 we discuss the inclusion of high-level features beyond144

the raw four-vectors, where this feature is especially useful.145

3http://github.com/microsoft/LightGBM with binary cross entropy as loss function, auc as early stop
metric, 5000 estimators, 500 leaves, 0.01 learning rate, gbdt boost type, and max depth equaling to 15.
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3.2 Fully-connected network146

Fully-connected neural networks (FCNs) [18] are deep neural networks in their most basic147

form. They consist of several layers of neurons, each of which is connected to every neuron in148

the following layer. The connections represent a linear transformation with trainable parame-149

ters, which are followed by a non-linear activation function. After the final layer with a single150

node, a sigmoid activation is applied to produce a classification score.151

The hidden layers all use ReLU activations, and the first five layers were followed by a152

Dropout layer with probability 0.5. The network was trained with the Adam optimizer [19]153

with default parameters. An exponential learning rate schedule with γ = 0.95 was used, as154

well as early stopping by monitoring the performance on the validation set. The batch size155

and learning rates, as well as the network parameters were optimized using Optuna [20].156

As is the case for BDTs, we found that the FCN performance generally deteriorates when157

applied to large, sparse input data. The data is thus pre-processed following the prescription158

given in Section 3.1.159

3.3 Convolutional network160

Convolutional Neural Networks (CNNs) [21] are mainly applied to analyze data where adja-161

cent items have a causal relationship, i.e. image data. CNNs apply convolutional operations162

through trainable filter matrices that slide over the data to produce output that is translation-163

ally equivariant. The convolutional layers are usually followed by pooling operations to reduce164

the dimension of the data in the inner network layers. Here, we utilize a one-dimensional vari-165

ant of such an architecture (1D CNN) called the DeepAK8 algorithm, originally used for jet166

tagging [22].167

We incorporate 11 particle features as given in Table 2. Each feature is then represented by168

an array of size Nmax = 18, the maximum number of objects in an event. The event-wide fea-169

tures Emiss
T and φEmiss

T
are added to the pT and φ feature vectors respectively. Following [22],170

the network consists of a set of 1D convolutional blocks that pass over each of the feature171

vectors separately. The output of these blocks is concatenated and passed to a FCN with ReLU172

activations. The blocks are composed of two sub-blocks which consist of a set of convolutional173

layers with a ReLU activation function followed by a max pooling layer and a Dropout layer174

with dropout probability 0.2. The model was trained with the Adam optimizer with default175

parameters, with a learning rate scheduler and early stopping which both monitor the valida-176

tion AUC (Area Under the Curve) to prevent overfitting. The number of convolutional layers,177

the number of filters and the kernel size, as well as the FCN parameters were optimized with178

Optuna.179

Variables per particle

E, pT , η, φ, jettag, b-jettag, e−tag, e+tag, µ−tag, µ+tag, γtag

Table 2: Particle input variables for the 1D CNN, Particle Net and Particle Trans-
former. FCNs and BDTs use the same variables, but limit the information of 4 mo-
menta. For leptons only the lepton with the highet pT per lepton type (including
charge) is considered, while for jets and b−jets, only the four jets with highest pT
are considered. As a result, only 12 objects are used for FCNs and BDTs.

6



SciPost Physics Submission

3.4 Particle Net180

Particle Net (PN) [23] is a graph-based architecture based on Dynamic Graph Convolutional181

Neural Networks [24]. It treats events as particle cloud inspired by a point cloud [24] in182

Computer Vision challenges. Every final-state particle, encoded by the variables shown in183

Table 2, is represented by an individual node in the graph, carrying (E, pT , η, φ) as node184

values. Edges are constructed by connecting these particles with their k-nearest neighbours185

(kNN), where distances are defined as ∆Ri j =
r

(∆η)2
i j
+ (∆φ)2

i j
. The graph representing186

the event thus has N (number of final state particles) nodes and kN edges.187

Messages are passed to every node i by all k neighbouring nodes j in the graph by applying188

the operation189

x ′i =
1

k

k
∑

j=1

FCN(xi , xi − xi j
) (2)

to every node. Here, j runs over the k nearest neighbors of i and the weights of the190

FCN are the same for every node and edges combination. We performed experiments with an191

attention-weighted procedure rather than the simple averaging over edges of Equation (2),192

but found no difference in performance.193

The node features are then updated to x ′
i
. Multiple layers of the above procedure are194

applied consecutively, and the node features after every step are concatenated, averaged over195

the nodes, and then processed by another FCN which also receives Emiss
T and φEmiss

T
to obtain196

a classification.197

We performed a wide hyperparameter scan over the ParticleNet architecture and found no198

significant difference in performance as long as sufficient capacity is available. We thus choose199

to use the hyperparameter settings recommended in Ref. [23] and the training procedure200

of [25]. Our implementation is based on Ref. [26].201

3.5 Particle Transformer202

Particle Transformer (ParT) [8] is a transformer-based architecture originally developed for jet203

tagging. It is inspired by the success of similar architectures in fields such as natural language204

processing [27], embedding individual particles rather than words. At its core lies the repeated205

application of the self-attention mechanism206

Attention(Q, K , T) = SoftMax
�

QK T/
p

d
�

V, (3)

where Q, K and V are trainable d-dimensional linear projections of the particle embedding207

based on the variables of Table 2.208

The application of the attention mechanism serves to correlate every particle with all oth-209

ers. Furthermore, it is applicable to vary numbers of particles and is explicitly permutation210

invariant. Classification is obtained by appending a classification token to the list of parti-211

cle embeddings before the last few layers of the transformer. This token is a trainable set of212

weights that is identical for every event. The attention mechanism then correlates the classi-213

fication token with the event, after which it is processed by an FCN, which also receives Emiss
T214

and φEmiss
T

, to produce a classification label. Our implementation is based on Ref. [28].215

As was the case for Particle Net, a hyperparameter scan over the ParT architecture does216

not lead to significant differences in performance. We thus choose to use the hyperparameter217

settings and training procedure recommended in Ref. [8].218

7
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3.6 Particle Transformer as Set Transformer219

We incorporate the Set Transformer architecture [29] into the ParT model. In a Set Trans-220

former, the matrix Q in Eq. (3) is no longer a projection of the input states, but rather a set of221

so-called inducing points. These are parameters that are jointly optimized with the rest of the222

parameters of the transformer. The model should thus learn to use Q to effectively summarize223

the information contained in V for any possible state.224

This modification leads to a self-attention mechanism that is permutation invariant [30],225

meaning that permuted inputs produce exactly the same output. The usual self-attention226

mechanism is permutation equivariant, meaning that the outputs permute along with the in-227

puts. Since collision data presents as an unordered set of particles, the performance of the228

model may benefit from the former, as it imposes a stricter constraint.229

In our experiments, we explored various configurations for the number of inducing points,230

specifically testing sets of {18, 20, 30, 40, 50, 100, 200} points. While the performance of the231

transformer model without pairwise features increased slightly with increasing number of in-232

ducing points, we did not observe any improvement with increasing number of inducing points233

in the model with pairwise features. Once again, the best Set Tranformer model proved to be234

the one containing all pairwise kinematic interactions as explained in the following chapter235

(labelled ‘SetTint. SM’).236

3.7 Particle Transformer with Focal Loss237

For the particle transformer we perform experiments using the focal loss [31] in place of the238

usual cross-entropy loss. It is given by239

Focal Loss = −αt (1− pt )
γ log(pt ). (4)

where:240

• αt is a balancing factor that weights the importance of the different classes t . The alpha241

parameter essentially adjusts the importance given to each class and can handle class242

imbalances.243

• pt is the model’s estimated probability for the class label t ,244

• γ is the focusing parameter, which adjusts the rate at which easy-to-classify examples245

are down-weighted. High γ values would decrease the contribution of events which are246

very much signal-like, i.e. pt were is large.247

While the focal loss was originally developed to handle class imbalance, it can still enhance248

model performance in other cases. The scaling factor (1−pt )γ increases the weight of difficult249

training samples, where the model does not yet assign large probability, while attenuating the250

loss for well-classified samples.251

We performed a comprehensive hyperparameter scan over the focal loss parameters using252

the extended ParT model (with SM running coupling constants including the pairwise kine-253

matic features with the (third) SM interaction matrix as explained in the following chapter).254

Scans were performed over α ∈ {0.25, 0.5, 0.75, 1} and γ ∈ {0, 1, 2, 3, 4, 5, 6}. The best re-255

sults were achieved for α = 0.75 and γ = 3 (the model is labelled ‘ParTint. SM (FL)’). Even256

at these optimal values, the overall model performance was not better than that of models257

trained with the usual cross-entropy loss. Thus, results presented below pertain to models258

trained with cross-entropy loss, unless otherwise specified. However, this conclusion is highly259

dependent on the mixture of background processes. In particular, the focal loss leads to better260

performance in separating some backgrounds.261
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4 Informing the ML models about physics262

4.1 Pairwise kinematic features based on 4-vectors263

Previous work has highlighted that the inclusion of information beyond raw four-vector data,264

such as correlations of four-vectors (called here pairwise features), can improve deep learning265

classifier performance [8,25] in jet physics. These pairwise 4-vector correlations are invariant266

masses or distances between two objects, which are typically known from jet physics.267

Similarly, it is common practice to include high-level features in the training of BDTs to268

improve event classification, see e.g. [32]. The work of Ref. [25] suggests that this increase in269

performance is due to the resulting implicit embedding of Lorentz symmetry in the network270

architecture through features that adhere to (sub)symmetries. Lorentz’s symmetry has previ-271

ously been shown to function as a strong inductive bias for neural network design [33–36].272

For the BDT, we perform experiments with the inclusion of a variety of high-level features,273

which are treated on the same footing as the low-level ones. Similarly, we follow [8, 25]274

and include pairwise features in Particle Net and Particle Transformer through a trainable275

embedding Ui j for particles i and j . They are then included in Particle Net by replacing276

Equation (2) with277

x ′i =
1

k

k
∑

j=1

FCN(xi , xi − xi j
+Ui j) (5)

and in Particle Transformer by replacing Equation (3) with278

Attention(Q, K , T) = SoftMax
�

QK T/
p

d +U
�

V. (6)

In all three above cases, we evaluated the performance of a wide variety of kinematic pairwise279

features, including m i j , ∆Ri j , the jet-based features used in Ref. [8] and three-body invariant280

masses. Using the feature importance indicator of the BDT, and empirically for Particle Net281

and Particle Transformer, we find that for all architectures the performance is saturated by the282

inclusion of only m i j and∆Ri j . Furthermore, the BDT indicates that we find that the pairwise283

invariant masses lead to the biggest gain in performance. This result is in line with the findings284

of [25]. In the next section, we experiment with adding further information through dynamics,285

while maintaining the above kinematic information.286

4.2 Pairwise kinematic features and the Standard Model Interaction Matrix287

The Standard Model (SM) of particle physics provides the most comprehensive framework for288

understanding the electromagnetic, weak and strong nuclear interactions between elementary289

particles. We explore incorporating the dynamics of particle interactions described by the SM290

through the inclusion of a separate interaction matrix in the embedding Ui j for the PN and291

ParT models. The interaction matrix consists of entries indicating the significance of pairwise292

particle interactions.293

To systematically investigate the effect of adding dynamic information to the models, we294

explore the use of three types of interaction matrices with increasing amounts of physical295

information. In the first matrix (abbreviation SMids and called SM matrix[1] in Table 3 ),296

an entry ‘1’ indicates an interaction possible at leading order in the SM, while a ‘0’ indicates297

interactions that only appear at higher orders. The following pairwise interactions are assigned298

a ‘1’ in the matrix: jet–jet, jet–b-jet, jet–γ, b-jet–b-jet, b-jet–γ, e−– e+, e−– γ, e+– γ, µ− –µ+, µ−299

–γ. µ+ –γ. The omission of other particle interactions with a "0" does not mean that they are300

physically impossible, but is a practical limitation for the model. The simplified representation301

does not take into account the full complexity of the SM, but should provide a computationally302

tractable method for learning high-level interaction features.303
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In the second iteration of the interaction matrix (abbreviation SMconst and called SM ma-304

trix[2] in Table 3) we use the coupling constants of the SM as fixed parameters: gZ = 0.758 for305

the weak force for leptons, gs = 1.22 for the strong force in jet interactions, and ge = 0.31 for306

the electromagnetic force in photon interactions. The interactions between jets and photons as307

well as between b-jets and photons are determined by the electromagnetic coupling constant308

ge , since photons have no colour charge. Consequently, the interactions are characterized as309

follows:310

• For the jet-γ interactions, the modified coupling constant is ge×0.5 to reflect the assump-311

tion that jets originate mainly from quarks for the signals investigated in this work. The312

factor 0.5 in the jet-γ coupling constant comes from the average charge of the quarks,313

which is calculated as
�1

3 +
2
3

�

/2, assuming an equal distribution of the quark charges314

of
1
3 and

2
3 .315

• For the b-jet-γ interactions, we take into account the electric charge of the b-quarks by316

using ge ×
1
3 .317

For the third interaction matrix (abbreviation SM and called SM matrix[3] in Table 3) we318

take the energy dependence of the coupling constants into account:319

• For QED, the running of the fine-structure constantα is described by the Renormalization320

Group Equation (RGE). At one-loop level for a given pair of particle types (i, j), it can321

be approximated as:322

α(Q2) =
α(µ2

0)

1−
nα(µ2

0)
3π · ln
�

Q2

µ2
0

� ,

ge =
p

4πα

(7)

The factor n approximates the contribution of the different particles in the loop. We323

used n = 3 and considered only leptons. Other choices did not have much influence.324

• For QCD, the running of αs is more complex due to the non-Abelian nature of the theory.325

The one-loop RGE for a given pair of particle types (i, j), αs is:326

αs(Q
2) =

αs(µ2
0)

1+
αs (µ2

0)(33−2n f )
12π ln
�

Q2

µ2
0

� ,

gs =
p

4παs

(8)

Here µ0 = 91.1876 GeV, α(µ0) =
1

127.5 , αs(µ0) = 0.118, n f = 6 is the number of quark327

flavors that are active at the energy scale Q2. To calculate these constants at a specific328

scale, such as the average transverse momentum p̄t of a particle pair in an event, we set329

Q2 = p̄2
t =
�

p i
t+p j

t
2

�2

as the energy scale in the RGEs to calculate α(Q2) and αs(Q2).330

ge gives the effective coupling strength for electromagnetic interactions, while gs gives331

the effective coupling strength for strong interactions at a given energy scale Q2. We332

used gz as a constant value from the previous version of the matrix.333
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The interaction matrix provides a structured approach to encode SM-particle interactions334

for training machine learning models, especially models such as ParT. By simplifying the wide335

range of possible interactions into a prioritized scheme, the matrix allows learning to focus on336

the most important interactions. The interaction matrices here are structured in such a way337

that large negative numbers (-10k) are used if no particle exist (i.e. masked). This masking is338

achieved by the softmax activation function, which exponentiates the values in the attention339

matrix and thus pushes the irrelevant values towards zero.340

5 Results341

5.1 Summary of Model details342

Table 3 summarizes the details of the ML models and the sessions that we found after the343

hyperparameter studies discussed above. In the following sections, we will discuss the perfor-344

mance of these models applied to 4 top signals with different backgrounds and to signals with345

top-top-Higgs events.346

NN structure Pairwise kinematic features Loss function

BDT

Cross-entropy

BDTint. m i j , ∆Ri j
FCN
CNN
PN
PNint. m i j , ∆Ri j
PNint. SMids m i j , ∆Ri j + SM matrix[1]
PNint. SM const m i j , ∆Ri j + SM matrix[2]
PNint. SM m i j , ∆Ri j + SM matrix[3]
ParT
ParTint. m i j , ∆Ri j
ParTint. SM (FL) m i j , ∆Ri j + SM matrix[3] Focal [α = 0.75, γ = 3]
ParTint. SMids m i j , ∆Ri j + SM matrix[1]
ParTint. SM const m i j , ∆Ri j + SM matrix[2]
ParTint. SM m i j , ∆Ri j + SM matrix[3]

Cross-entropy
SetTint. SM m i j , ∆Ri j + SM matrix[3]

Table 3: Summary of Machine Learning (ML) model details, including neural net-
work (NN) structures and their respective loss functions. This table also highlights
the inclusion of pairwise kinematic features in certain models. The particle input
variables for these models are detailed in Table 2.

5.2 A search for 4 top production347

In order to investigate the relationship between the amount of training data and the model’s348

performance, we plotted learning curves on the Fig. 1 that shows the area under the ROC349

curve (AUC) scores as a function of training size. The x-axis represents the size of the training350

set, while the y-axis denotes the AUC score achieved by the model on a test set.351

As illustrated in the figure, there is a clear trend of improving AUC scores with an increase in352

the training set size, affirming the hypothesis that larger datasets enhance model performance.353

Notably, this improvement is more pronounced in the initial stages of increasing the data354
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Figure 1: Learning curves of various machine learning models. This plot illustrates
the relationship between the size of the training dataset and the AUC (Area Under the
Curve) for each model. The vertical dashed lines represent the referenced training
sizes of 48k and 240k event in the dataset.

volume. Beyond a certain point, however, the rate of improvement in AUC scores begins355

to plateau. This observation suggests that while additional training data is beneficial, the356

marginal gains in model accuracy diminish after reaching a certain dataset size.357

Furthermore, the learning curves also provide insights into the data efficiency and learning358

capacity of the different models. Models like PN and ParT demonstrate a steeper ascent in the359

AUC scores with fewer data, indicating better data efficiency, while others show a more gradual360

improvement, reflecting their need for larger datasets to achieve comparable performance.361

Our analysis and its key findings, based on the 48k training dataset, are summarized in362

Table 4. Full details covering the entire 240k training dataset can be found in Table 8 in the363

Appendix. This table shows the AUC values together with the background efficiencies (εB) at364

signal efficiencies (εS)4 of 30% and 70% for each evaluated method. In particular, the PN and365

ParT architectures with the inclusion of pairwise features and SM running coupling constants366

(labelled ‘int. SM’) consistently achieved the best performance in all metrics and at different367

signal efficiencies.368

The background efficiencies at a signal efficiency of 30% vary among the models. Gener-369

ally, a lower background efficiency at this signal efficiency level indicates a model’s strength in370

maintaining signal detection while effectively rejecting a significant portion of the background.371

At a higher signal efficiency of 70%, the background efficiencies increase for all models, which372

is expected as increasing signal efficiency typically comes at the cost of allowing more back-373

4εS ≡
TP

TP+FN and εB ≡
FP

TN+FP .
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BDT BDTint. FCN CNN

t t̄ + h
AUC 0.825(0) 0.831(0) 0.821(2) 0.778(6)
εB(εS = 0.7) 0.206(0) 0.192(0) 0.203(1) 0.272(11)
εB(εS = 0.3) 0.026(1) 0.026(0) 0.026(1) 0.037(1)

t t̄ +W
AUC 0.891(0) 0.895(0) 0.887(0) 0.867(5)
εB(εS = 0.7) 0.099(0) 0.092(0) 0.103(1) 0.125(8)
εB(εS = 0.3) 0.011(0) 0.011(0) 0.010(0) 0.011(1)

t t̄ +W W
AUC 0.740(0) 0.746(0) 0.737(1) 0.745(2)
εB(εS = 0.7) 0.347(0) 0.339(0) 0.342(5) 0.335(3)
εB(εS = 0.3) 0.050(0) 0.051(0) 0.054(0) 0.051(0)

t t̄ + Z
AUC 0.833(0) 0.856(0) 0.836(0) 0.839(1)
εB(εS = 0.7) 0.191(0) 0.163(0) 0.192(0) 0.190(4)
εB(εS = 0.3) 0.026(0) 0.019(0) 0.023(0) 0.021(1)

PN PNint. PNint. SM ParTint. SM (FL)

t t̄ + h
AUC 0.824(0) 0.842(1) 0.846(1) 0.844(1)
εB(εS = 0.7) 0.199(0) 0.176(3) 0.171(2) 0.176(2)
εB(εS = 0.3) 0.025(0) 0.019(1) 0.020(1) 0.020(1)

t t̄ +W
AUC 0.887(0) 0.895(2) 0.900(1) 0.902(4)
εB(εS = 0.7) 0.102(1) 0.097(1) 0.091(1) 0.091(5)
εB(εS = 0.3) 0.011(0) 0.011(0) 0.010(0) 0.011(0)

t t̄ +W W
AUC 0.742(0) 0.760(1) 0.765(0) 0.768(3)
εB(εS = 0.7) 0.335(2) 0.311(1) 0.297(2) 0.294(7)
εB(εS = 0.3) 0.051(0) 0.044(1) 0.044(1) 0.044(1)

t t̄ + Z
AUC 0.851(0) 0.879(1) 0.887(1) 0.892(0)
εB(εS = 0.7) 0.168(4) 0.136(1) 0.126(2) 0.119(4)
εB(εS = 0.3) 0.020(0) 0.016(1) 0.016(0) 0.016(0)

ParT ParTint. ParTint. SM SetTint. SM

t t̄ + h
AUC 0.824(0) 0.837(2) 0.846(1) 0.845(1)
εB(εS = 0.7) 0.197(3) 0.179(6) 0.174(1) 0.176(3)
εB(εS = 0.3) 0.023(0) 0.020(0) 0.020(0) 0.020(0)

t t̄ +W
AUC 0.896(1) 0.899(1) 0.905(2) 0.898(1)
εB(εS = 0.7) 0.097(2) 0.090(1) 0.089(3) 0.094(2)
εB(εS = 0.3) 0.010(0) 0.010(0) 0.009(0) 0.011(0)

t t̄ +W W
AUC 0.737(0) 0.767(1) 0.769(0) 0.763(1)
εB(εS = 0.7) 0.354(3) 0.295(5) 0.288(2) 0.301(5)
εB(εS = 0.3) 0.050(1) 0.040(0) 0.042(0) 0.047(1)

t t̄ + Z
AUC 0.839(1) 0.885(0) 0.891(1) 0.886(2)
εB(εS = 0.7) 0.182(2) 0.130(1) 0.119(3) 0.129(4)
εB(εS = 0.3) 0.021(1) 0.016(0) 0.015(0) 0.014(0)

Table 4: The areas under the ROC curve and the background efficiencies, at signal
efficiencies of 70% and 30% respectively, correspond to the 48k training dataset.
Quoted uncertainties are extracted from three independent runs for each network
architecture. Numbers in bold indicate the best performance. In cases where the
performances of multiple architectures are the best within the uncertainty, the results
are both indicated.

ground events. Certain models, particularly PNint. SM and ParTint. SM with pairwise kinematic374

features and the SM interaction matrix, manage to maintain relatively lower background effi-375
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Figure 2: Signal efficiency versus background rejection plot for the four background
processes corresponding to the 48k training dataset.

ciencies, underscoring their efficiency in handling a more challenging balance between signal376

and background.377

Figure 2 presents an alternative metric that more effectively illustrates the significance378

of these differences. In this comparison, we evaluate the background rejection as a function379

of signal efficiencies to a PN baseline model using the 48k training dataset. The PN and ParT380

architectures including physical information, particularly PNint. SM and ParTint. SM with pairwise381

kinematic features and the SM interaction matrix, demonstrate an improvement in background382

reduction compared to the PN basedline model of 10-40% for signal efficiencies between 30383

and 90%. Best performance is found for models that include the SM interaction matrix.384

Fig. 3 shows the signal and background distributions as a function of the classifier score,385

normalized to the total cross-section. This figure, with its solid lines and error bands, contains386

the mean and standard deviation observed over three independent runs for each architecture387

across the entire dataset. A critical observation here is the tendency of the best performing388

architectures to concentrate large portions of the background at lower classifier values, espe-389

cially for background processes with higher cross-sections such as t t̄ + W and t t̄ + Z. This390

property is of crucial importance for the discrimination of backgrounds in signal fits in LHC391

experiments.392

Table 5 compares the performance of various models at two distinct signal efficiency levels,393

εS = 0.3 and εS = 0.7. Significance, denoted as σ, is defined as the signal count s divided by394

the square root of the background count b. This calculation is done under the assumption of395
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Figure 3: The distribution of the signal and the backgrounds as a function of the
classifier score, normalized to the total cross-section. The solid lines and error bands
correspond to the mean and standard deviation over three independent runs for each
architecture across the entire dataset.
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a luminosity of 100 fb−1 and incorporates the LO (Leading Order) cross-section from Table 1.396

We also consider the impact of systematic errors on the significance, represented by σδsys=0.2,397

which is calculated as s divided by the square root of the effective background count bsys,398

where bsys = b + (b · δsys)2 and δsys is set to 0.2.399

At εS = 0.3, the model captures 30% of the true signal events. The significance without400

systematic errors at this level suggests effective discrimination between signal and background.401

However, introducing a systematic error of 20% noticeably reduces the significance, under-402

scoring the influence of factors like instrumental or theoretical uncertainties. At εS = 0.7,403

the model identifies 70% of the true signal events. While this higher efficiency captures more404

signal events, the corresponding raw significance drops. The impact of systematic errors is405

more pronounced at this efficiency, as evidenced by a further decrease in σδsys=0.2.406

σ σδs y s = 0.2

BDT
εS = 0.3 20.77 6.79
εS = 0.7 16.82 2.01

BDTint.
εS = 0.3 21.93 7.53
εS = 0.7 17.51 2.17

FCN
εS = 0.3 20.31 6.51
εS = 0.7 16.67 1.97

CNN
εS = 0.3 20.88 6.86
εS = 0.7 16.73 1.98

PN
εS = 0.3 23.09 8.29
εS = 0.7 17.68 2.21

PNint.
εS = 0.3 25.30 9.83
εS = 0.7 20.51 2.97

PNint. SM
εS = 0.3 25.65 10.09
εS = 0.7 20.50 2.97

ParT
εS = 0.3 22.37 7.82
εS = 0.7 17.72 2.23

ParTint.
εS = 0.3 24.54 9.29
εS = 0.7 20.21 2.89

ParTint. SM
εS = 0.3 25.36 9.88
εS = 0.7 20.53 2.98

ParTint. SM (FL)
εS = 0.3 26.19 10.48
εS = 0.7 20.28 2.91

SetTint. SM
εS = 0.3 25.58 10.03
εS = 0.7 20.18 2.88

Table 5: Significance table calculated for the entire dataset.

Comparative analysis reveals that the different versions of the particle transformer with407

SM interaction matrix (PartTint SM with and without focal loss and as Set Transformer) achieve408

the highest significance without systematic errors at εS = 0.3. In addition, ParTint. SM attains409

the highest significance, accounting for systematic errors at εS = 0.7. These findings highlight410

the crucial role of model selection based on specific analytical requirements and the significant411

impact of systematic errors, especially at higher signal efficiency levels.412

Compared to the baseline graph network (PN), it is interesting to estimate how much the413

sample statistic (or integrated luminosity) would have to be increased in order to achieve a414

similar increase in significance, neglecting systematic errors. An increase of significance e.g.415

from 2.21 σ (baseline PN model at 70% signal efficiency) to 2.98 σ (ParTint. SM) corresponds416
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Figure 4: The performance of Particle Net on the four background processes as a
function of k, the number of nearest neighbours. The solid lines and error bands
correspond to the mean and standard deviation over three independent runs for every
value of k correspond to the 48k training dataset.

to an increase in integrated luminosity of approximately 82%. An increase of significance e.g.417

from 8.29 σ (baseline PN model at 30% signal efficiency) to 9.88 σ (ParTint. SM) corresponds418

to an increase in integrated luminosity of approximately 42% and an increase from 8.29 σ to419

10.48 σ (ParTint. SM (FL)) corresponds to an increase in integrated luminosity of approximately420

60%.421

Finally, in Fig. 4 shows the performance corresponding to the 48k training dataset using the422

AUC metric for PN as a function of k, the number of nearest neighbors. As one might expect,423

performance improves with k, eventually saturating when k approaches the limit where every424

particle is connected to all other particles. Note that this limit would require more significant425

computational overhead in the context of jet physics, as the number of objects can grow much426

larger and the complexity scales like O(kn). Here, the number of objects is limited and setting427

k = n is unproblematic. Note that this setup converts PN into an architecture that is quite428

similar to ParT, as is reflected in the results.429

5.3 The top-top-Higgs searches430

To evaluate the impact of including ongoing coupling constants on the efficiency of neural431

networks, a second analysis was performed focusing on the search for top-top-Higgs signals.432

The main results of this study are presented in Table 6. The table shows the AUC for both 4 top433

and top-top-Higgs signal detection. The first row of the table shows the AUC values obtained434

for the 4 top signal, followed by the second row explaining the results for the top-top-Higgs435

signal. It is important to emphasize that the entire data set was used when analysing the 4436

top signal, while the data set for the top-top-Higgs signal, although identical in composition,437

intentionally excluded the data of the 4 top signal. This study shows three different ML models:438

the standard ParT architecture, the extended ParT with integrated pairwise features (labelled439

‘int.’) and the extended ParT with SM running coupling constants (labelled ‘int. SM’). The440

model containing both the pairwise features and the SM interaction matrix performs best,441

which again confirms our earlier results. Here too, the background can be significantly reduced442

by about 30% compared to a PN baseline model.443

Table 7 shows the significance estimate for the simplified top-top Higgs analysis. Here444

we have not included all backgrounds (compared to a full ATLAS or CMS analysis), and the445

values should only be used to see how important background reduction can be. For example,446

an increase in significance from 3.80 σ (base PN model at 70% signal efficiency) to 5.02 σ447

(PNint. SM) corresponds to an increase in integrated luminosity of about 75%, which confirms448
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our previous results.449

Comprehensive results covering other versions of the SM interaction matrices are presented450

in Table 9 in the Appendix.451

PN PNint. PNint. SM

t t̄ t t̄
AUC 0.8471(1) 0.8729(0) 0.8739(0)
εB(εS = 0.7) 0.1758(3) 0.1387(1) 0.1369(1)
εB(εS = 0.3) 0.0207(0) 0.0182(0) 0.0176(0)

t t̄ + h
AUC 0.8146(2) 0.8505(0) 0.8523(0)
εB(εS = 0.7) 0.2292(1) 0.1787(0) 0.1733(1)
εB(εS = 0.3) 0.0471(1) 0.0345(0) 0.0340(0)

ParT ParTint. ParTint. SM

t t̄ t t̄
AUC 0.8404(0) 0.8708(0) 0.8732(0)
εB(εS = 0.7) 0.1842(3) 0.1394(0) 0.1366(0)
εB(εS = 0.3) 0.0230(0) 0.0172(0) 0.0169(0)

t t̄ + h
AUC 0.8058(1) 0.8507(0) 0.8532(0)
εB(εS = 0.7) 0.2399(2) 0.1794(1) 0.1748(1)
εB(εS = 0.3) 0.0502(0) 0.0357(0) 0.0351(0)

Table 6: Results for the 4 top and top-top-Higgs signals: the areas under the ROC
curve and the background efficiencies, at signal efficiencies of 70% and 30% respec-
tively, correspond to the entire training dataset. Quoted uncertainties are extracted
from three independent runs for each network architecture. Numbers in bold indi-
cate the best performance.

σ σδs y s = 0.2

PN
εS = 0.3 32.18 7.63
εS = 0.7 34.30 3.80

PNint.
εS = 0.3 37.53 10.27
εS = 0.7 38.75 4.84

PNint. SM
εS = 0.3 37.86 10.44
εS = 0.7 39.50 5.02

ParT
εS = 0.3 30.24 6.76
εS = 0.7 33.48 3.62

ParTint.
εS = 0.3 36.82 9.90
εS = 0.7 38.39 4.75

ParTint. SM
εS = 0.3 37.20 10.10
εS = 0.7 39.05 4.91

Table 7: Significance table calculated for the top-top-Higgs signal.
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6 Conclusions452

In this work, we present a novel approach to event classification in particle physics by inte-453

grating physical information, in particular energy-dependent SM interactions, into advanced454

machine learning models. Our study focuses on improving transformer models with an at-455

tention matrix and graph networks such as PN with edge features, both of which reflect the456

dynamical nature of SM interactions.457

The results show that PN and ParT exhibit superior performance when these pairwise fea-458

tures and interaction matrices are integrated. This integration improves background suppres-459

sion by 10 − 40% over the baseline models (PN without other physical information), with460

approximately 10% of this improvement directly attributable to the SM interaction matrix. In461

a simplified statistical analysis, we find that these ML models increase significance by up to462

30% compared to the baseline model. To achieve a similar improvement in significance by463

increasing the luminosity L, one needs to increase L by about 70%, assuming that significance464

improvement scales with
p

L when signal and background events are proportional to L. We465

conclude that embedding SM interactions as physical information in network structures is an466

important avenue in this field that could lead to more accurate and efficient event classification467

in particle physics.468
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Appendix477

A Additional Plots and Tables478

This appendix complements the main text by providing an additional plot and two compre-479

hensive tables. It summarizes the results for the entire 240k dataset, providing a complete480

perspective on the data’s scope and the analysis outcomes.481

A.1 AUC482

Fig. 5 displays the ROC curves for all architectures against various backgrounds, providing a483

visual perspective on their comparative performances throughout the entire dataset.484
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Figure 5: Receiver Operating Characteristic (ROC) curves for all architectures for
the 4 top signal across the four background processes. The solid lines and error
bands represent the mean and standard deviation of three independent runs for each
architecture over the entire training dataset.
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BDT BDTint. FCN CNN

t t̄ + h
AUC 0.833(0) 0.840(0) 0.832(0) 0.838(3)
εB(εS = 0.7) 0.193(0) 0.183(0) 0.195(0) 0.182(3)
εB(εS = 0.3) 0.022(0) 0.022(0) 0.023(1) 0.021(2)

t t̄ +W
AUC 0.896(0) 0.900(0) 0.895(0) 0.888(3)
εB(εS = 0.7) 0.093(0) 0.087(0) 0.093(1) 0.107(3)
εB(εS = 0.3) 0.009(0) 0.009(1) 0.011(0) 0.009(0)

t t̄ +W W
AUC 0.745(0) 0.754(0) 0.742(0) 0.739(2)
εB(εS = 0.7) 0.339(0) 0.317(2) 0.341(0) 0.344(2)
εB(εS = 0.3) 0.048(0) 0.045(0) 0.048(0) 0.052(0)

t t̄ + Z
AUC 0.852(1) 0.869(0) 0.848(0) 0.857(0)
εB(εS = 0.7) 0.167(1) 0.149(2) 0.170(2) 0.161(2)
εB(εS = 0.3) 0.020(0) 0.018(0) 0.020(0) 0.018(0)

PN PNint. PNint. SM ParTint. SM (FL)

t t̄ + h
AUC 0.854(1) 0.871(0) 0.872(0) 0.867(3)
εB(εS = 0.7) 0.161(2) 0.129(1) 0.129(3) 0.138(4)
εB(εS = 0.3) 0.016(0) 0.017(0) 0.017(0) 0.016(0)

t t̄ +W
AUC 0.901(0) 0.917(1) 0.919(0) 0.918(1)
εB(εS = 0.7) 0.089(1) 0.072(1) 0.071(2) 0.071(2)
εB(εS = 0.3) 0.008(0) 0.007(0) 0.007(0) 0.007(0)

t t̄ +W W
AUC 0.759(2) 0.791(0) 0.793(0) 0.791(3)
εB(εS = 0.7) 0.312(4) 0.256(2) 0.252(2) 0.249(7)
εB(εS = 0.3) 0.043(1) 0.036(1) 0.035(2) 0.035(1)

t t̄ + Z
AUC 0.876(2) 0.913(0) 0.913(0) 0.909(0)
εB(εS = 0.7) 0.139(5) 0.095(1) 0.094(2) 0.097(1)
εB(εS = 0.3) 0.015(0) 0.013(0) 0.012(0) 0.010(0)

ParT ParTint. ParTint. SM SetTint. SM

t t̄ + h
AUC 0.843(1) 0.869(0) 0.871(0) 0.864(3)
εB(εS = 0.7) 0.179(3) 0.131(2) 0.132(0) 0.141(4)
εB(εS = 0.3) 0.019(0) 0.015(0) 0.015(0) 0.016(1)

t t̄ +W
AUC 0.901(0) 0.915(0) 0.918(1) 0.915(2)
εB(εS = 0.7) 0.087(3) 0.078(1) 0.072(1) 0.074(2)
εB(εS = 0.3) 0.008(0) 0.009(0) 0.008(0) 0.009(0)

t t̄ +W W
AUC 0.753(1) 0.792(1) 0.792(1) 0.786(2)
εB(εS = 0.7) 0.318(5) 0.250(2) 0.248(2) 0.257(5)
εB(εS = 0.3) 0.047(1) 0.032(0) 0.034(0) 0.036(1)

t t̄ + Z
AUC 0.866(0) 0.907(1) 0.912(0) 0.907(2)
εB(εS = 0.7) 0.150(2) 0.098(2) 0.093(3) 0.100(4)
εB(εS = 0.3) 0.017(0) 0.012(1) 0.011(0) 0.011(0)

Table 8: The areas under the ROC curve and the background efficiencies, at signal
efficiencies of 70% and 30% respectively, correspond to the entire training dataset
(240k events). Quoted uncertainties are extracted from three independent runs for
each network architecture. Numbers in bold indicate the best performance. In cases
where the performances of multiple architectures are the best within the uncertainty,
the results are both indicated.
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A.2 ttH485

Comprehensive results covering other versions of the SM interaction matrices are presented in486

Table 9, which details the Area Under the Curve (AUC) for both the 4 top and top-top-Higgs487

signals. Specifically, the first row illustrates the AUC results for the 4 top signal, while the488

subsequent row delineates the outcomes related to the top-top-Higgs signal. It is important489

to note that, although the full dataset was employed for the 4 top signal analysis, the dataset490

used for the top-top-Higgs signal analysis was the same, yet it explicitly excluded data from491

the 4 top.492

Five scenarios are provided for the PN and the ParT: the standard ParT/PN architecture,493

ParT/PN with the inclusion of pairwise features (int.), ParT/PN with the first iteration of the494

interaction matrix (SMids), ParT/PN with the second iteration of the interaction matrix (where495

the coupling constants on the SM are fixes parameters) and ParT/PN with the inclusion of SM496

running coupling constants (int. SM, which is the third iteration).497

PN PNint. PNint. SMids PNint. SM const PNint. SM

t t̄ t t̄
AUC 0.8471(1) 0.8729(0) 0.8725(0) 0.8727(0) 0.8739(0)
εB(εS = 0.7) 0.1758(3) 0.1387(1) 0.1377(0) 0.1384(0) 0.1369(1)
εB(εS = 0.3) 0.0207(0) 0.0182(0) 0.0178(0) 0.0178(0) 0.0176(0)

t t̄ + h
AUC 0.8146(2) 0.8505(0) 0.8489(1) 0.8505(0) 0.8523(0)
εB(εS = 0.7) 0.2292(1) 0.1787(0) 0.1785(1) 0.1764(3) 0.1733(1)
εB(εS = 0.3) 0.0471(1) 0.0345(0) 0.0343(1) 0.0350(0) 0.0340(0)

ParT ParTint. ParTint. SMids ParTint. SM const ParTint. SM

t t̄ t t̄
AUC 0.8404(0) 0.8708(0) 0.8715(0) 0.8717(0) 0.8732(0)
εB(εS = 0.7) 0.1842(3) 0.1394(0) 0.1389(2) 0.1372(1) 0.1366(0)
εB(εS = 0.3) 0.0230(0) 0.0172(0) 0.0180(0) 0.0167(0) 0.0169(0)

t t̄ + h
AUC 0.8058(1) 0.8507(0) 0.8473(0) 0.8497(0) 0.8532(0)
εB(εS = 0.7) 0.2399(2) 0.1794(1) 0.1836(3) 0.1801(1) 0.1748(1)
εB(εS = 0.3) 0.0502(0) 0.0357(0) 0.0355(1) 0.0367(0) 0.0351(0)

Table 9: Results for the 4 top and top-top-Higgs signals: the areas under the ROC
curve and the background efficiencies, at signal efficiencies of 70% and 30% respec-
tively, correspond to the entire training dataset. Quoted uncertainties are extracted
from three independent runs for each network architecture. Numbers in bold indi-
cate the best performance.
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