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Abstract

We systematically study gapless edge modes corresponding to Z3 symmetry-protected
topological (SPT) phases of two-dimensional three-state Potts paramagnets on a trian-
gular lattice. First, we derive microscopic lattice models for the gapless edge and, using
the density-matrix renormalization group (DMRG) approach, investigate the finite size
scaling of the low-lying excitation spectrum and the entanglement entropy. Based on the
obtained results, we identify the universality class of the critical edge, namely the corre-
sponding conformal field theory and the central charge. Finally, we discuss the inherent
symmetries of the edge models and the emergent winding symmetry distinguishing be-
tween two possible Z3 SPT phases. As a result, the two topologically non-trivial and one
trivial phases define a general one-dimensional chain supporting a tricriticality, which
we argue supports a gapless SPT order in one dimension. Numerically, we show that low
energy states in the continuous limit of the edge model can be described by conformal
field theory (CFT) with central charge c = 1, given by the coset SUk(3)/SUk(2) CFT at
level k=1.
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1 Introduction

Symmetry-protected topological (SPT) phases [1–10] are a relatively new concept in con-
densed matter physics. Over recent years, there has been a notable research activity in that
direction [11–41]. These phases fundamentally differ from the conventional phases defined
by local order parameters while simultaneously possessing a topological nature. The notion of
protection by symmetry means the impossibility of a smooth transition between phases without
breaking the symmetry. This protection is what gives SPT phases their distinctive and robust
topological properties. SPT phases usually emerge in non-degenerate gapped quantum sys-
tems with some symmetry S at zero temperature and are beyond the classical theory of phase
transitions. Two states belong to different phases if they cannot be connected adiabatically
(without closing the gap) while preserving the symmetry S on the whole path. The distinc-
tion between phases becomes apparent once considered on a system with a boundary. In this
case, the "non-trivial" phases exhibit gapless excitations, and the ground state of the "trivial"
phase can be given as a tensor product of local states. In d-dimensional space, SPT phases are
classified by the non-trivial elements of the Hd+1(S, U(1)) cohomology group.

Commencing with the conventional understanding of phases described by the Landau the-
ory [42, 43], a cornerstone for the emergence of distinct phases and phase transitions is the
symmetry group associated with the order parameter and its corresponding finite-size scal-
ing universality classes. Spontaneously or explicitly broken symmetry is the key feature in this
conventional notion of phases. The conventional states of the matter, as well as the SPT states,
demonstrate short-range entanglement [37], unlike the topologically ordered states, which are
long-range entangled [44–58]. Generally speaking, phases with short-range entangled states
can be classified as either symmetry-broken (within the scope of the conventional theory), SPT,
or capable of simultaneously hosting symmetry-breaking and SPT orders. A distinctive feature
of SPT states is their role in enabling the emergence of symmetry-protected gapless boundary
excitations. Those excitations frequently belong to non-standard statistics and are important
as key elements in the foundation of topological quantum computation.

The concept describing the SPT phases allows their classification based on cohomology
classes of corresponding discrete symmetry groups. It was introduced and developed by X.G.
Wen and coauthors [1, 6–8, 13, 14]. As a particular case of the cohomology classification,
the problem of the complete classification of SPT phases in one spatial dimension was solved
in, e.g., Refs. [6, 7, 59, 60]. This formalism allows an intuitive understanding of the variety
and properties of SPT phases. However, it lacks an explicit presentation of specific models
or a precise way of manipulations to construct models of SPT phases based on a desirable
symmetry and a known topologically trivial mode. The situation changed with the work of
Levin and Gu [12], where the authors show an SPT modification of Z2 paramagnetic quantum
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Ising model with gapless Z2 symmetry-protected edge states.
Recently, the approach of [12] was extended to the (×Z3)3 symmetric Potts model, and

the corresponding critical boundary model was derived [61]. For that case, SPT phases are
classified by the cohomology group H3((×Z3)3, U(1)) = (×Z3)7. A study was performed on
one of the boundary models belonging to a seven-generator group of phases. It was sug-
gested that the low energy effective conformal field theory is equivalent to the coset model
SUk(3)/SUk(2) at the level k = 2.

Based on the conventional definition, SPT models possess the following properties: firstly,
the system must exhibit a global symmetry S, which remains unbroken in all phases. The so-
called "trivial" phase of the system typically features a gapped spectrum and has the simplest
form of the Hamiltonian, with the ground state usually expressed as a direct product of dif-
ferent subsystem states. The non-trivial phases of SPT models generally feature gapless edge
modes. The fact of phases being symmetry protected is implemented as the non-existence of
a symmetric series of transformations Uα continuous on α ∈ [0, 1], with U0 = 1 and U1 being
the transformation connecting the two states in different phases. An alternative description
of various phases is related to the ’t Hooft anomaly [62]. It is the obstruction to gauging
the system’s symmetry S. In one dimension, cohomology classes describing the phases can
be identified with the emergence of a projective representation of the symmetry group. This
concept can be generalized for higher dimensions. The system can be gauged with the mod-
ified representation. In this article, we study SPT phases of the pure Z3 paramagnetic Potts
model, in contrary to [61], where (×Z3)3 was considered, and only a single edge state of the
phase with the diagonal Z3 symmetry was investigated. In this case, SPT phases are classi-
fied by cohomology group H3(Z3, U(1)) = Z3. The objective is to systematically construct a
model that features SPT characteristics, starting with the Z3 Potts paramagnet as its trivial
phase. We explicitly define the one-dimensional edge Hamiltonian and study its properties,
including spectrum, symmetries, and low-energy modes. We also show the model has hid-
den U(1) "winding number" anomalous symmetry. Through the further numerical study of
finite size scaling behavior of excitation gap, entanglement entropy, and Kac-Moody currents
on edge states, we argue that the effective low energy theory of the edge model is the coset
CFT SUk(3)/SUk(2) at level k = 1. The present work also enables the study of gauged Z3 SPT
models, disclosing anyonic properties of the excitations in the topologically ordered phase.

2 Symmetry protected topological phase and the edge Hamilto-
nian

We start with the three-state paramagnetic Potts model defined on a triangular lattice. The
Hamiltonian is given by

H0 = −
∑

p

(Xp + X†
p) (1)

with the sum taken over all sites of the triangular lattice and Xp being the Z3 generators on
the sites [61]. We also introduce on-cite Z3 operators Zp which obey commutativity relations

XpZp = ϵZp Xp with ϵ = e
2πi
3 . As Z3 generators, they have eigenvalues 1,ϵ,ϵ∗. The matrices

for Xp and Zp are explicitly given as

Xp =





0 0 1
1 0 0
0 1 0



 , Zp =





ϵ 0 0
0 1 0
0 0 ϵ∗



 . (2)
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Zp can also be represented as Zp = ϵnp , with np having eigenvalues 0,±1. Commutativity
relations take the form Xpnp = (np+1)Xp , where addition to np should always be understood
as by mod 3. The Hamiltonian Eq.1 has a global Z3 symmetry, given by operator

S =
∏

p

Xp . (3)

It is known, that non-trivial SPT phases are defined by cohomology classes of corresponding
symmetry group, that is H3(Z3, U(1)) = Z3 in our case [6–8, 13]. The transformations of
a topologically trivial Hamiltonian to Hamiltonians of non-trivial SPT phases are given by
a unitary transformation generated by non-exact closed 3-forms (cocycles) of the symmetry
group. The cocycle for Z3 symmetry was constructed in [61] and has form ψ3(n1, n2, n3) =
n1n2n3(n1 + n2). The corresponding unitary transformation is written as

U =
∏

〈abc〉

(U△)
ε△ =

∏

〈abc〉

ϵε△nanb(nc−nb)(nb−na) (4)

where 〈abc〉 denotes all the triangles in the lattice with a, b, and c always being nodes of a
specific corresponding color, and U∆ is the portion of the unitary operator corresponding to
the given 〈abc〉 triangle. The exponent is induced from ψ3 as ψ3(na, nb − na, nc − nb) [61].
In this formula, ε△ = ±1 indicates the orientation of the triangle, ∆.

The fact of ψ3 being a closed form guarantees that U is symmetric under S in the bulk,
however the non-exactness ensures it is not symmetric on the boundary. We can write the
U-transformed Hamiltonian as

Ha = UH0U−1 = −
∑

p

(X̄p + X̄†
p), X̄p = Up XpU†

p (5)

where Up is the part of U that was generated by triangles containing the site p. In other
words, it is the part of U that is not commutative with Xp . We can define n̄p = pp and
this way, the barred operators, X̄p , satisfy the same algebra relations as the initial ones. The
Hamiltonian operator mentioned above can be split into bulk and boundary parts, which are
still commutative. The symmetry of the boundary part, H∂ ,a, with respect to S, was broken by
the proposed unitary transformation, but it can be restored straightforwardly by substituting

H∂ ,a → H∂ =
1

3
(H∂ ,a + SH∂ ,aS† + S†H∂ ,aS) (6)

and the bulk part H∂ ∗ = H∂ ∗,a stays the same. Notice that the commutativity [H∂ , H∂ ∗] = 0
holds. By denoting V = SUS†U† and V ′ = S†USU† = SVS†V , we can rewrite the edge
Hamiltonian Eq.6 as

H∂ = −
1

3

∑

p∈∂
(X̄p + VX̄p V† + V ′X̄p V ′†) +H.c. . (7)

By using the relations Xpϵ
knp X†

p = ϵ
k(np+1) for ∀k ∈ Z one can obtain the expressions for V

and V ′. Particularly,

V =
∏

〈abc〉

ϵε△(−n3
b
−n2

b
+nanb+nbnc−nanc+n2

anb+n2
b
nc−n2

anc) . (8)

Now we will focus on bringing V to a simpler form, and then calculate the expression for V ′

accordingly.
We note that U∆ is not uniquely defined, and it can be changed without changing the SPT

phase thus allowing us to tweak V . This can be done by adding any 2-vertex terms (leading
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to a trivially identical transformation) or adding terms created by exact 3-forms to U∆. The

different 2-vertex terms are fαβ(np , nq) = ϵ
nαp nβq with α,β ∈ {0, 1, 2}. It is straightforward to

see that adding any of those terms to U∆ creates an additional term g pq
αβ
= S f pq

αβ
S† f pq†

αβ
to V

(we indicate the arguments of the functions as upper indices for more compact writing). The
situation is simple because all g pq

αβ
are commutative with initial U∆ and with each other. The

expressions of g pq
αβ

are

α = 0 α = 1 α = 2
β = 0 1 ϵ ϵ1−np

β = 1 ϵ ϵ1+np+nq ϵ1+np−nq−npnq+n2
q

β = 2 ϵ1−nq ϵ1+nq−np−npnq+n2
p ϵ1−np−nq+npnq−npn2

q−n2
pnq+n2

p+n2
q

Adding different combinations of f pq
αβ

terms to U∆ can lead to the creation of basic elements
in the exponent of V . Namely

f pq
(1)
= f pq

10 → 1 ,

f pq
(2)
= f pq

(1)
/ f pq

20 → np ,

f pq
(3)
= f pq

(1)
f pq
(2)
/ f q p
(2)

f pq
21 → npnq − n2

q ,

f pq
(4)
= f pq

(1)
/ f pq
(2)

f q p
(2)

f pq
(3)

f q p
(3)

f pq
22 → n2

pnq + npn2
q .

(9)

Using these simpler expressions, it is easy to see that multiplying f bc
(2)

f ab
(3)

f cb
(3)

f ac
(4)

to U∆ will
bring V to a simpler, color-rotation-invariant form:

V →
∏

〈abc〉

ϵε△(nanb(na−1)+nbnc(nb−1)+ncna(nc−1)) =
∏

△,γ

ϵ
ε△n△γ n△

γ+1(n
△
γ −1), (10)

where n△γ is the spin of the vertex with color γ in triangle △. γ runs through the colors, and
adding 1 to γ changes it as the color changes when passing through points a → b → c → a.
Further addition of f ca

(3)
f cb
(3)
/ f ba
(3)

f ab
(3)

eliminates the (-1) in the braces and another f ab
(4)

f bc
(4)

f ca
(4)

leaves us with the final form

V =
∏

△,γ

ϵ
−ε△n△γ n△

γ+1(n
△
γ −n△

γ+1) (11)

which will be used in Eq.7 for the edge Hamiltonian. This expression has a mixed symmetry
with regards to color permutations (it is symmetric under rotation and anti-symmetric under
reflection). We will later see the usefulness of such property when writing the edge Hamilto-
nian.

The exact 3-forms aren’t particularly helpful for our case, nevertheless it is useful to see
the calculation of their investment directly. The generators of exact 3-forms are written as
δψ

αβ

2 (n1,n2, n3) where ψαβ2 (n1, n2) = nα1 nβ2 and δ is the co-boundary operator, which is
explicitly known. The 3-forms themselves that should be written in U∆ are f ′

αβ
(na, nb, nc) =

ϵδψ
αβ

2 (na,nb−na,nc−nb). The multiplier added to V as a result is g ′
αβ
= S f ′

αβ
S† f ′†

αβ
. Here again,

we use the commutativity relations of g ′ operators. The results for g ′ are given in the following
table:

α = 0 α = 1 α = 2
β = 0 1 ϵ∗ ϵnb−1

β = 1 1 1 ϵnanb+nbnc−nanc−n2
b

β = 2 1 ϵ−nanb−nbnc+nanc+n2
b ϵn2

a(nb−nc)+n2
b
(na+nb+nc)−nanb−nbnc+nanc+n2

b
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This result provides no additional freedom of transformation selection. However, some oth-
erwise complicated transformations are in plain view here. Notice that we do not have the
freedom to choose p and q here. After fixing the transformation V , the explicit expression of
the aforementioned V ′ = SVSV† should be calculated accordingly.

What remains is to find the result of the action of V and V ′ on X̄p of the edge. All terms
in V-s depend on the spins of two neighboring sites. Although there were 3-spin dependent
terms in U , there was no way they could have made their way up to here, as it would mean that
those factors would not cancel out in bulk. There were also single-spin-dependent terms in our
intermediate calculation, which could not have vanished. We will discuss how to handle terms
like that in a moment. Once again, we should note that only the parts of V and V ′ generated by
the triangles that contain p are important. It is also easy to see that 2-spin terms that depend
on a vertex in bulk will cancel out, as they exist in two neighboring triangles with opposite
signs. So V-s reduces to border link terms. Let us denote the neighboring edge vertices of p
by p ± 1 with a specific positive traversal orientation (clockwise). We choose ε△ = 1 for the
triangles which have ascending γ along the traversal with that orientation, and ε△ = −1 for
the others. So γp+1 = γp ± 1 implies ε△p,p+1

= ±1. Using denotation v(α,β) = ϵαβ(β−α), V
can be rewritten as

V∂ =
∏

p∈∂
v(np ,np+1) . (12)

The 1-spin terms can be handled in the final transformation. One can see that terms with
np cancel out if there is an even number of triangles containing p, which is always the case for
p-s in bulk. In case of an odd number of containing triangles, the sign of the term will depend
on ε△p,p−1

= ε△p,p+1
. So, for our v to handle such terms, v should be split into two v+ and

v−, depending on the orientation of the triangle. To satisfy the above-mentioned conditions,
the 1-spin term in v+ should be the conjugate of one in v−. Notice that the np term will have
come only from one triangle, as the rest will cancel out each other, so if we intend to include
it in our new v±, we should do it with an opposite sign than in V , as there will be two terms
of that kind for the same p. The factorization for V ′ corresponding to Eq.12 will be

V ′
∂
=
∏

p∈∂
v ′(np , np+1) =

∏

p∈∂
v†(np , np+1) (13)

with v ′(np ,np+1) = ϵ−(αβ−α−β−1)(β−α). Products over v ′ and v† are equal, as v ′(α,β) and
v†(α,β) differ only by terms∝ α−β and∝ α2−β2, and those contributions from neighbour
links cancel out each other. These lead to the following expressions for the action on X̄p -s:

VX̄p V† = ϵnp−1(np−1+np−1)X̄pϵ
−np+1(np+1+np+1) ,

V ′X̄p V ′† = ϵ−np−1(np−1+np−1)X̄pϵ
np+1(np+1+np+1) .

(14)

As a result, we get a Hamiltonian H∂ that is translation invariant and does not depend on
the shape of the edge:

H∂ = −
1

3

∑

p∈∂
X̄p

�

1

2
+ ϵ(np−1−np+1)(np−1+np+np+1+1) +H.c.

�

+H.c. . (15)

An alternative way to write H∂ is

H∂ = −
∑

p∈∂
X̄pδ(np−1−np+1)(np−1+np+np+1+1) +H.c. . (16)

Here δn is a function that is equal to 1 if n is divisible by 3 and is equal to 0 otherwise. This
becomes apparent after the observation that δn can be written as 3δn = 1+ ϵn + ϵ−n .
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3 Symmetries of edge Hamiltonian

Besides the translation and reflection symmetries, our Hamiltonian might have some addi-
tional symmetries. To discuss them, let us parametrize the Hamiltonian as

H∂ (λ1,λ2,λ3) = −
1

3

∑

p∈∂
X̄p
�

λ1 +λ2ϵ
(np−1−np+1)(np−1+np+np+1+1)

+ λ3ϵ
−(np−1−np+1)(np−1+np+np+1+1)�+H.c., (17)

with H∂ (1, 1, 1) being the boundary Hamiltonian we are dealing with.
From Eq.6 one can derive that the three parameters λi , i = 1, 2, 3 will permute cyclically

under action of opertor S:

SH∂ (λ1,λ2,λ3)S
† = H∂ (λ3,λ1,λ2) . (18)

There is yet another global symmetry. Let us define the operator χp to be

χp =





0 0 1
0 1 0
1 0 0



 in the basis, where X̄p =





0 0 1
1 0 0
0 1 0



 and np =





1 0 0
0 0 0
0 0 -1



 .

It can be seen that χp X̄±p χ
†
p = X̄∓p and χpnpχ

†
p = −np . We can define the product of all χp -s

in the system as an operator, P. Using the commutation relation between X̄p and np , one can
show that

PH∂ (λ1,λ2,λ3)P
† = H∂ (λ1,λ3,λ2) . (19)

Now it is clear that the Hamiltonian has a global S3 symmetry with generators S and P.

3.1 Winding number

Here we identify an additional "winding" symmetry of the edge Hamiltonian. To this end, we
write it using a different parametrization of the basis states. Namely, we will parametrize them
by the last spin nN and a set of differences wi defined by

ϵwi = ϵni−ni−1 , wi ∈ {−1, 0, 1}, i = 1, ..., N, n0 ≡ nN ; . (20)

Alternatively,
wi = δni−ni−1−1 − δni−ni−1+1, i = 1, ..., N, n0 ≡ nN . (21)

This set of variables is not completely independent because ϵw1+···+wN = 1. The Hamiltonian
can be written in terms of wi as (see Eq.16)

H∂ = −
∑

p∈∂
X̄pδ(wp+wp+1)(wp+1−wp+1) +H.c. , (22)

H∂ = −
∑

p∈∂
X̄p(δwp−1δwp+1+1 + (1− δwp−1)(1− δwp+1+1)) +H.c. . (23)

Now, we introduce a new operator, W , which, in terms of wp ∈ {−1, 0, 1} can be expressed
as

W =
1

3

∑

p∈∂
wp =

∑

p∈∂
(δwp−1 − δwp+1) . (24)

The operator W counts the full number of turns that ϵnp makes around the unit circle as we
move around the boundary ∂ . Thus we will refer to W as to the the winding-number operator.
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When np+1 = np+1, we count that as a rotation by
2π
3 and when np+1 = np−1, we count that

as a rotation by −2π
3 . One can check that the winding-number operator W commutes with the

Hamiltonian. The nontrivial part of that commutator calculation reduces to the observation
that

X̄p(δwp−1 − δwp+1 + δwp+1−1 − δwp+1+1)(δwp−1δwp+1+1 + (1− δwp−1)(1− δwp+1+1)) =

= X̄p(δwp+1 − δwp
+ δwp+1

− δwp+1−1)(δwp−1δwp+1+1 + (1− δwp−1)(1− δwp+1+1)) =

= (δwp−1 − δwp+1 + δwp+1−1 − δwp+1+1)X̄p(δwp−1δmp+1+1 + (1− δwp−1)(1− δwp+1+1)),
(25)

which one can confirm by substituting all 9 possible combinations of wp and wp+1. Thus, the
winding-number operatorW is conserved by the Hamiltonian. The winding-number symmetry
generated byW is a topological symmetry of the boundary model, as it takes values inZ instead
of Z3. It distinguishes the non-trivial phase from the trivial one, as the latter has no conserved
topological quantities.

The symmetry can be reformulated in terms of a conserved current jµp = (qp , mp) as

∂µ jµp = ∂t qp −∇p mp = i[H∂ ,qp]− (mp+1 −mp−1) = 0, (26)

where ∇p is the discrete derivative in real space. As the charge of the symmetry is given by
W , qi should be given as qi = (wi + wi+1)/3. The sum is taken to ensure space reflection
symmetry of qi , which is broken for wi . Using the original form of edge Hamiltonian, one can
check that i[H∂ , wp/3] = mp −mp−1 if

mp = i X̄p

�

1

3
δ(np−1−np+1)(np−1+np+np+1+1) − δnp−1−np+1

δnp−1+np+np+1+1

�

+H.c. (27)

and Eq.26 follows immediately. In the process of derivation we have used identities δab =
δa + δb − δaδb, δaδb = δaδka+b and δn + δn+1 + δn−1 = 1 for any a, b, k, n ∈ Z.

3.2 Boundary ’t Hooft anomaly for the SPT Hamiltonian

In the nontrivial SPT phase, the Hamiltonian we found at the boundary for the non-trivial edge
mode possesses the anomalous Z3 symmetry itself called ’t Hooft anomaly [62]. Generally
speaking, the ’t Hooft anomaly is the obstruction to introducing a gauge symmetry with a
given discrete group into the system, which results in irreducible topological terms. In our
case, it is the initial Z3 symmetry. Let us consider the uniform symmetry operator S to see
the anomaly. The transformation of Eq.5 affects the symmetry group {I,S,S†} as well: I→ I,
S→ V†S, S†→ S†V . Note that in this section, we only consider the boundary Hamiltonian, so
the subscript "∂ ” is dropped everywhere.

The presence of an anomaly indicates that we should pass to the projective representation
of the group based on the modification of the associativity condition of group multiplication.
The physical picture for non-trivial SPT phases looks as follows [63]. The ground state of the
system consists of different regions separated by domain walls, representing defect lines of
the discrete symmetry realizations. Moreover, the states on defect lines themselves are the
realization of SPT phases in one lower dimension.

As a result of our symmetrization procedure, the factor S =
∏

p Xp commutes trivially
with the Hamiltonian. One can check that V also commutes with the Hamiltonian and S. The
exponent of V (12) tracks the passes between sites with states n = 1 and n = 2 throughout the
boundary, so V = ϵW for the closed interval, where W is the winding number symmetry that

8
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we have identified earlier. In this sense S and V form a Z3 × Z3 symmetry group. Summing
up, the elements of the transformed symmetry group can be given by

S(g ) = V−g Sg =

�

∏

p

ϵ−gnpnp+1(ni+1−ni)

�

·

�

∏

p

X g
p

�

(28)

with g ∈ {0, 1, 2}. Now let us identify the anomaly of this symmetry. Once the symmetry is
considered on a finite section of the edge, the anomaly manifests as broken associativity at the
endpoints of this section. The implied locality of S allows us to consider a single endpoint at a
time [64,65]. First, we restrict the symmetry operators to a half-infinite interval p ∈ (0, 1, . . . )

Sr (g ) =

 

∞
∏

p=0

ϵ−gnpnp+1(np+1−np)

!

·

 

∞
∏

p=0

X g
p

!

. (29)

These operators satisfy

Sr (g )Sr (h) = A(g , h)Sr (g h), A(g , h) = ϵhgn2
0+hg 2n0 . (30)

The anomaly is then given by the extra phase factor, ω3, in the associativity condition

Sr (g )(Sr (h)Sr (k)) =ω3(g , h, k)(Sr (g )Sr (h))Sr (k), (31)

which indicates that Sr is a projective representation of the Z3 symmetry group. The 3-cocycle
ω3 can be calculated explicitly as

ω3(g , h, k) =
Sr (g )A(h, k)S−1

r (g )A(g , hk)

A(g , h)A(g h, k)
= ϵg hk(g+h) . (32)

This is precisely the non-trivial element of cohomology group H3(Z3, U(1)) that we started
with.

4 Alternate forms of the Hamiltonian

The boundary Hamiltonian can be further simplified upon introducing the "wall operators,"
n̂p , and the corresponding X̂p to satisfy

n̂p = np+1 − np mod 3

X̄p = X̂p−1X̂†
p .

(33)

These operators straightforwardly obey the initial algebra of operators np and Xp . In terms of
operators in Eq.33, H∂ can be written as

H∂ = −
∑

p∈∂
X̂p−1X̂†

pδn̂p−1+n̂p
+ δn̂p−1

X̂p−1X̂†
pδn̂p

+ δn̂p
X̂p−1X̂†

pδn̂p−1
+H.c. (34)

which is the easiest to verify by directly observing the action of different terms of Eq.16 on
possible configurations {np}. This can be further transformed into the following form

H∂ = −
∑

p∈∂
(X̂p−1X̂†

p +H.c.)δn̂p−1+n̂p
− (δn̂p

− δn̂p−1
)(X̂p−1X̂†

p +H.c.)(δn̂p
− δn̂p−1

) . (35)

Here we used the fact that δnp
Xpδnp

= 0. The expression can be written in a more compact
form by introducing notation for a discrete transfer operation: (1 + ∆)Ap = Ap+1, for any

9
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operator Ap . Note that ∆ is the discrete derivative to the right, and (1+∆)−1 ̸= (1−∆), as it
would be in the infinitesimal continuous case. Then the boundaru Hamiltonian acquires the
following form:

H∂ = −
∑

p∈∂
(2− X̂p

←→
∆ X̂†

p)δ(∆−1)n̂p
+∆δn̂p

(2− X̂p
←→
∆ X̂†

p)∆δn̂p
. (36)

This can be used in studies of the ground state properties and the excited states of the boundary
model.

4.1 From ZN
3 to ZN/3Z

The Hilbert space of our boundary model, H∂ , has a basis labeled with strings of N numbers
ni ∈ {−1, 0, 1}. We could expand this model to one set in a bigger Hilbert space, H̃∂ , where
basis elements are strings of N arbitrary integers, up to a total shift by 3:

H∂ = L2({|n1, . . .nN〉 : n ∈ ZN
3 }) ,→ H̃∂ =

L2(span{|n1, . . . ,nN〉 : n ∈ Z})
S3

. (37)

Now, One can define operators Xp , X†
p on H̃∂ similarly to what was done for H∂ . Namely, they

act on the states on p by increasing or decreasing np by 1. We already used this redefinition
of Xp in Eq.37, as a part of S =

∏

p Xp . In the expanded Hilbert space H̃∂ , operators Xp and
np form another representation of the ladder algebra, because the relation X3

p = 1 is lost.
There is an immersion I : H∂ ,→ H̃∂ , which maps the basis elements of H∂ to the basis

elements of H̃∂ in the following manner. Let I(|n1, . . . , nN〉) = |ñ1, . . . , ñN〉, where

ñ1 = n1,

ñk = ñk−1 + wk , k ≥ 2 .
(38)

Reversing the procedure, we note that there is a surjective map S : H̃∂ ↠ H∂ that takes |ñi〉
to |ñi mod 3〉. An operator P = IS is a projection operator on ImI and SI = 1.

To this end, one can define a Hamiltonian acting on the larger Hilbert space H̃∂ as follows:

H̃∂ = −
∑

p∈∂

�

X2
pδnp−np−1−1δnp+1−np+1 + Xp(1− δnp−np−1+1)(1− δnp+1−np−1)

�

+H.c. . (39)

It has a few special properties. First, the subspace ImP ≈H∂ is invariant under H̃∂

[P, H̃∂ ] = 0 (40)

and the restriction of H̃∂ to H∂ is H∂ :

H∂ = SH̃∂ I . (41)

Second, it is defined in terms of ladder operators that act on the space of states labeled by
Z-numbers instead of Z3.

As the next step, let us look closely at what basis states in ImP look like. Those are labeled
by sets of numbers n1, . . . , nN that satisfy

�

�np − np−1

�

� ≤ 1, 2 ≤ p ≤ N (42)

up to a total shift by 3. The fact that ImP is conserved by the Hamiltonian means that if
we start with a state that satisfies the condition Eq.42, we will obtain a linear combination of
states that also satisfy this condition. For those states, the winding number is just

W =
nN − n1 + δn1−nN−1 − δn1−nN+1

3
=
�nN − n1 + 1

3

�

, (43)
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Figure 1: Results for the first excitation gap of the edge modes in open chains given
by simulation based on density matrix renormalization group (DMRG) plotted versus
the boundary length up to N = 214. The error bars demonstrate the precision of the
calculation and are of the order 10−2. The red line is the∝ N−1 fitting curve.

where [ ] denotes the integer part. We can make this statement even stronger. The Hamiltonian
acting on a basis state |ni〉 that satisfies the condition Eq.42 produces a linear combination of
all states that differ from |ni〉 in exactly one spin, satisfy Eq.42 and have the same winding
number. This proves that there are no diagonal symmetry operators other than W , as any
two states |Ψ1〉 , |Ψ2〉 ∈H∂ ≈ ImP with the same winding number produce a nonzero matrix
element of the evolution operator:

〈Ψ2|exp(−iH∂ t ) |Ψ1〉 ≠ 0 . (44)

This shows, that the only symmetry of our Hamiltonian which is diagonal in basis of ni
operators is W .

5 Conformal properties of the edge model

As was done in our previous study, Ref. [61], one can detect conformal properties of the edge
modes by analyzing the finite-size effects of the gap and entanglement entropy of the boundary
model (Eq.15). For numerical calculations, we use the transformed form, (Eq.A.3), of the
Hamiltonian (Eq.15). We use DMRG to calculate the excitation gap in our model for various
system sizes, N. According to [66,67], the finite size behavior of the excitation gap in a CFT
reads

∆N =
2π xN

N
+O(10−2). (45)

Here we found the number xN ≃ 2.01, which within precision of O(10)−2 fits with the con-
formal dimension xN = 2 of the scaling operator that is concerned with the correlation length.
The numerical data of the gap are presented in Ref. Fig.1. Calculations have been made for
system sizes from N = 20 ∼ 214. To find out the central charge of massless edge excitations,
we should analyze the entanglement entropy of the ground state. We performed calculations
of the entanglement entropy for open and closed chains. The results of the numerical calcula-
tions for open chains of lengths N = 56, 84, 112, 156, 200, 256, 300 are presented in Fig.2.

As shown in Ref. [68], the entanglement entropy in the conformal field theory with a
central charge c on the open strip of length N can be determined by the following formula:

SN(l) = a +
c

6
log

�N

π
sin

�πl

N

��

. (46)
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Figure 2: Points represent numerical values of the unscaled (left) and scaled
(Eq.47) (right) entanglement entropy for finite open chains with lengths N =
56, 84, 112, 156, 200, 256, 300. Curves are defined by Eq.46 with c = 1.06 and
a = 0.557.

Here a is a constant while l is a length of entangled spins. For a closed chain, the propor-
tionality coefficient should be set to c/3 instead of c/6. This equation characterizes how the
entanglement entropy of the spin chain model at criticality changes with the finite system
size. Numerical values for the entanglement entropy of open chains at various values of N is
shown in Fig.2. It also demonstrates the fitting of the analytic formula Eq.46 with parameters
c = 1.064 and a = 0.557 as well as the collection of all numerical points of open chains on a
single scaled function.

Sscaled(x ) = SN(l)−
c

6
log[N] = a +

c

6
log

� 1

π
sin[πx ]

�

, x =
l

N
, l = 2, · · ·N − 1 . (47)

Similar results for closed chains are presented in Fig.3. Here, we have analyzed smaller
chain lengths because the calculations take longer in this case. Fitting the results to Eq.47
but with coefficients

c
3 in front of log we have obtained c = 1.01 and a = 0.991. Both

results unambiguously show that our edge model in che continuum limit is described by a CFT
with central charge c = 1. Thus it may be tempting to conclude that the edge model for Z3
paramagnets coincides with edge states of the Levin-Gu model with Z2 symmetry, which is
defined by the XX model of free fermions [12]. This, however, is not the case, as we will show
below.

Another piece of information about the low energy effective CFT can be obtained from the
study of Kac-Moody currents, which can appear in the model. The winding number symmetry
W forms a U(1) current jµp = (qp , mp) and it is necessary to check if it can be holomorphically
factorised into chiral U(1) currents, j±p = qp±mp , forming a Kac-Moody algebra. For the latter
to form, the currents must satisfy commutativity relations,

[ j+p , j−p′] = 0, (48)

in thermodynamic limit. This is necessary for the currents to be independent. Using the
exact diagonalization approach, we numerically calculate matrix elements of the commutators
mentioned above between low energy states for relatively short system sizes. Our results for

12
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Figure 3: Points represent numerical values of the unscaled (left) and scaled (right)
entanglement entropy for finite closed chains with lengths N = 20, 24, ..., 52. Curves
are defined by Eq.46 but with coefficient

c
3 instead of

c
6 , with c = 1.01 and a = 0.991.

systems of sizes N = 4, 6, ..., 14 show that commutators with p′ = p are numerically 0. In
the p′ = p + 1 case, they decrease as ∼ N−1.35, and are exactly 0 otherwise. Calculations are
presented in Fig.4

The next step is to check the holomorphicity condition:

∂− j+ = ∂+ j− = 0, (49)

with ∂± = ∂t ±∇p . After excluding the analytically known relation ∂− j+ + ∂+ j− = 2∂µ jµ = 0
we are left with equation ∂− j+ − ∂+ j− = 0. The latter can be written as

i[H , mp]− (qp+1 − qp−1) = 0 (50)

in our discrete case. We use the same numerical approach to test the validity of the conjecture
in the thermodynamic limit. The dependence of matrix elements for both the commutator and
the difference terms on system size N for N ∈ {3, 4, ..., 15} is presented in Fig.4. It has some
instabilities, but it is clear that their upper limit exponentially decreases as e−N/6, implying
the same decay for the overall expression.

And at last, after verifying the existence of Kac-Moody currents, we have to check the
corresponding anomaly, given by the momentum space current commutators [ j±n , j±−n] = nk

with j±n =
1

2π

∑

p=1,N e
πinp

N j±p . Here k denotes the level of the Kac-Moody algebra and defines
the anomaly. The commutator can be reduced to a simpler form using the fact that [ j±p , j±p′] ̸= 0
if and only if p′ = p ± 1. Thus

[ j+n , j+−n] =
i

2π2
sin

�

2πn

N

�

∑

p

[ j+p , j+p+1] −−−→n≪N
n

i
∑

p[ j
+
p , j+p+1]

πN
. (51)

Resorting again to numerics, we are able to determine the Kac-Moody algebra level. Compu-
tations similar to the above produce k ≃ 0.95, which reproduces k = 1 within precision of
O(10)−2 as shown in Fig.5.

Based on the values of c,∆ and k, it can be conjectured that the corresponding edge theory
can be given by the SU1(3)/SU1(2) coset CFT model of current algebras at level k=1. SU1(3)
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Figure 4: The finite size behavior of expressions indicating the existence of anoma-
lous U(1) symmetry of the boundary Hamiltonian. Left panel shows a power low
decrease of the commutator, [ j+p , j−p+1]. Right panel shows an exponential decrease
of i[H , mp]−∇qp .

Figure 5: |
∑

p[ j
+
p , j+p+1]|

versus system size N. The slope of the line is 0.95π, indicating that current anomaly k ≈ 1.
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contains two U1(1) subgroups at level k=1, one of which will be gauged out as a subgroup of
denominator group SU1(2), while the next will remain. It is clear that this U(1) is the maximal
remaining subgroup in the factor, and it is linked to anomalous winding number symmetry
observed above as U(1) Kac-Moody at level k=1. One can expect that ’t Hooft anomalous Z3,
presented in our boundary model (16), can be a subgroup of this remained U1(1) Kac-Moody,
since, as it is well known, central extensions in current algebra can be regarded as projective
representations of U(1) symmetry. This means that a phase factor will appear in the partition
function of our boundary model after U(1) symmetry transformation, as ’t Hooft Z3 anomaly
should appear. Of course, precise observation of this phase factor is necessary, which is a tusk
for subsequent studies. The ’t Hooft anomaly in the low energy model can also be detected in
other ways, presented in Refs. [64,69].

6 Concluding remarks

We have studied the three-state paramagnetic Potts model withZ3 symmetry on a 2D triangular
lattice. According to expectations, different SPT phases are classified by the cohomology group
H3(Z3,U(1)) = Z3. We have constructed the unitary operator responsible for this phase
and found the Hamiltonian of edge states. Numerical study of finite size effects of the edge
Hamiltonian showed that it is gapless and the conformal dimension of the scaling operator,
which defines the correlation length, is ∆N = 2. Calculation of the entanglement entropy
of low-lying excitation shows that it has a central charge c = 1. We also find hidden U(1)
symmetry of the Hamiltonian corresponding to the winding number, which, as it appeared,
leads to anomalous U(1) Kac-Moody current algebra with level k=1. This analysis points out
that the effective theory of low energy excitations of our edge Hamiltonian is the coset CFT
SUk(3)/SUk(2) with k=1. This coset contains U(1) anomalous subalgebra.

The incorporation of SPT degrees of freedom into the three-state Potts paramagnet opens
new avenues for understanding phase transitions, anyonic excitations, and the interplay be-
tween topology and quantum information. Experimental realizations of the SPT Potts para-
magnet, such as in cold atom systems or magnetic materials, are still an open problem. The
present work opens up a possibility for developing experimental platforms for probing and
manipulating the topological aspects of Z3 SPT paramagnets.
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A Identities

One can check that the following identities hold for n1,n2, n3 ∈ {−1, 0, 1} and ϵ = e2πi/3

ϵn1n2(n2−n1) =
1

3

�

ϵn1−n2 − ϵn1+n2 − ϵ−n1−n2 + ϵ−n1 + ϵn2 + 2
�

, (A.1)

ϵn1n2 =
1

3

�

1+ ϵn1 + ϵ−n1 + ϵn2 + ϵ−n2 + ϵn1 + ϵn1+n2−1 +

+ ϵ−n1−n2−1 + ϵ1+n1−n2 + ϵ1−n1+n2
�

, (A.2)

1+ ϵ(n1−n3)(1+n1+n2+n3) + ϵ−(n1−n3)(1+n1+n2+n3) =

=
1

3

�

5

2
− ϵ1−n1+n2 − ϵ1−n3+n2 + 2ϵn1−n3 + 2ϵ1+n1+n2+n3

�

+ c.c. . (A.3)

These identities can be used to reduce two-site interactions of given forms to the sum of single-
site operator products. It proves useful for computational purposes.

References

[1] Z.-C. Gu and X.-G. Wen, Tensor-entanglement-filtering renormalization approach
and symmetry-protected topological order, Phys. Rev. B 80, 155131 (2009),
doi:10.1103/PhysRevB.80.155131.

[2] T. Senthil, Symmetry-protected topological phases of quantum matter, Annual Review
of Condensed Matter Physics 6(1), 299 (2015), doi:10.1146/annurev-conmatphys-
031214-014740.

[3] X.-G. Wen, Colloquium: Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89,
041004 (2017), doi:10.1103/RevModPhys.89.041004.

[4] J. Li, A. Chan and T. B. Wahl, Classification of symmetry-protected topological phases
in two-dimensional many-body localized systems, Phys. Rev. B 102, 014205 (2020),
doi:10.1103/PhysRevB.102.014205.

[5] H. Song, S.-J. Huang, L. Fu and M. Hermele, Topological phases protected by point group
symmetry, Phys. Rev. X 7, 011020 (2017), doi:10.1103/PhysRevX.7.011020.

[6] X. Chen, Z.-C. Gu and X.-G. Wen, Classification of gapped symmetric
phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011),
doi:10.1103/PhysRevB.83.035107.

[7] X. Chen, Z.-C. Gu and X.-G. Wen, Complete classification of one-dimensional gapped
quantum phases in interacting spin systems, Phys. Rev. B 84, 235128 (2011),
doi:10.1103/PhysRevB.84.235128.

[8] X. Chen, Z.-C. Gu and X.-G. Wen, Local unitary transformation, long-range quantum
entanglement, wave function renormalization, and topological order, Phys. Rev. B 82,
155138 (2010), doi:10.1103/PhysRevB.82.155138.

[9] F. Pollmann, E. Berg, A. M. Turner and M. Oshikawa, Symmetry protection of topolog-
ical phases in one-dimensional quantum spin systems, Phys. Rev. B 85, 075125 (2012),
doi:10.1103/PhysRevB.85.075125.

16

https://doi.org/10.1103/PhysRevB.80.155131
https://doi.org/10.1146/annurev-conmatphys-031214-014740
https://doi.org/10.1146/annurev-conmatphys-031214-014740
https://doi.org/10.1103/RevModPhys.89.041004
https://doi.org/10.1103/PhysRevB.102.014205
https://doi.org/10.1103/PhysRevX.7.011020
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.82.155138
https://doi.org/10.1103/PhysRevB.85.075125


SciPost Placeholder Submission

[10] F. Pollmann, A. M. Turner, E. Berg and M. Oshikawa, Entanglement spectrum
of a topological phase in one dimension, Phys. Rev. B 81, 064439 (2010),
doi:10.1103/PhysRevB.81.064439.

[11] X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry-protected topological orders in inter-
acting bosonic systems, Science 338(6114), 1604 (2012), doi:10.1126/science.1227224.

[12] M. Levin and Z.-C. Gu, Braiding statistics approach to symmetry-protected topological
phases, Phys. Rev. B 86, 115109 (2012), doi:10.1103/PhysRevB.86.115109.

[13] X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders
and the group cohomology of their symmetry group, Phys. Rev. B 87, 155114 (2013),
doi:10.1103/PhysRevB.87.155114.

[14] Z.-C. Gu and X.-G. Wen, Symmetry-protected topological orders for interacting fermions:
Fermionic topological nonlinear σ models and a special group supercohomology theory,
Phys. Rev. B 90, 115141 (2014), doi:10.1103/PhysRevB.90.115141.

[15] A. Kapustin, R. Thorngren, A. Turzillo and Z. Wang, Fermionic symmetry protected topo-
logical phases and cobordisms, Journal of High Energy Physics 2015(12), 1 (2015),
doi:10.1007/JHEP12(2015)052.

[16] A. Kapustin and R. Thorngren, Fermionic spt phases in higher dimensions and bosonization,
Journal of High Energy Physics 2017(10), 80 (2017), doi:10.1007/JHEP10(2017)080.

[17] D. Gaiotto and T. Johnson-Freyd, Symmetry protected topological phases and
generalized cohomology, Journal of High Energy Physics 2019(5), 7 (2019),
doi:10.1007/JHEP05(2019)007.

[18] J. C. Wang, Z.-C. Gu and X.-G. Wen, Field-theory representation of gauge-gravity symmetry-
protected topological invariants, group cohomology, and beyond, Phys. Rev. Lett. 114,
031601 (2015), doi:10.1103/PhysRevLett.114.031601.

[19] T. Morimoto, H. Ueda, T. Momoi and A. Furusaki, z3 symmetry-protected topo-
logical phases in the su(3) aklt model, Phys. Rev. B 90, 235111 (2014),
doi:10.1103/PhysRevB.90.235111.

[20] L. H. Santos and J. Wang, Symmetry-protected many-body aharonov-bohm effect, Phys.
Rev. B 89, 195122 (2014), doi:10.1103/PhysRevB.89.195122.

[21] J. C. Wang, L. H. Santos and X.-G. Wen, Bosonic anomalies, induced fractional quantum
numbers, and degenerate zero modes: The anomalous edge physics of symmetry-protected
topological states, Phys. Rev. B 91, 195134 (2015), doi:10.1103/PhysRevB.91.195134.

[22] M. Cheng and D. J. Williamson, Relative anomaly in (1 + 1)d rational conformal field
theory, Phys. Rev. Res. 2, 043044 (2020), doi:10.1103/PhysRevResearch.2.043044.

[23] Y. Alavirad and M. Barkeshli, Anomalies and unusual stability of multicompo-
nent luttinger liquids in zn × zn spin chains, Phys. Rev. B 104, 045151 (2021),
doi:10.1103/PhysRevB.104.045151.

[24] R. A. Lanzetta and L. Fidkowski, Bootstrapping lieb-schultz-mattis anomalies, Phys. Rev.
B 107, 205137 (2023), doi:10.1103/PhysRevB.107.205137.

[25] B. Yoshida, Topological color code and symmetry-protected topological phases, Phys. Rev.
B 91, 245131 (2015), doi:10.1103/PhysRevB.91.245131.

17

https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1126/science.1227224
https://doi.org/10.1103/PhysRevB.86.115109
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.90.115141
https://doi.org/10.1007/JHEP12(2015)052
https://doi.org/10.1007/JHEP10(2017)080
https://doi.org/10.1007/JHEP05(2019)007
https://doi.org/10.1103/PhysRevLett.114.031601
https://doi.org/10.1103/PhysRevB.90.235111
https://doi.org/10.1103/PhysRevB.89.195122
https://doi.org/10.1103/PhysRevB.91.195134
https://doi.org/10.1103/PhysRevResearch.2.043044
https://doi.org/10.1103/PhysRevB.104.045151
https://doi.org/10.1103/PhysRevB.107.205137
https://doi.org/10.1103/PhysRevB.91.245131


SciPost Placeholder Submission

[26] B. Yoshida, Topological phases with generalized global symmetries, Phys. Rev. B 93, 155131
(2016), doi:10.1103/PhysRevB.93.155131.

[27] B. Yoshida, Gapped boundaries, group cohomology and fault-tolerant logical gates, Annals
of Physics 377, 387 (2017), doi:10.1016/j.aop.2016.12.014.

[28] Y. Hu, Y. Wan and Y.-S. Wu, Twisted quantum double model of topological phases in two
dimensions, Phys. Rev. B 87, 125114 (2013), doi:10.1103/PhysRevB.87.125114.

[29] L. Tsui, Y.-T. Huang, H.-C. Jiang and D.-H. Lee, The phase transitions between zn×zn
bosonic topological phases in 1+1d, and a constraint on the central charge for the critical
points between bosonic symmetry protected topological phases, Nuclear Physics B 919, 470
(2017), doi:10.1016/j.nuclphysb.2017.03.021.

[30] N. Tantivasadakarn, Dimensional reduction and topological invariants of
symmetry-protected topological phases, Phys. Rev. B 96, 195101 (2017),
doi:10.1103/PhysRevB.96.195101.

[31] T. D. Ellison, K. Kato, Z.-W. Liu and T. H. Hsieh, Symmetry-protected sign problem and
magic in quantum phases of matter, Quantum 5, 612 (2021), doi:10.22331/q-2021-12-
28-612.

[32] Y. Chen, A. Prakash and T.-C. Wei, Universal quantum computing using (Zd)
3

symmetry-protected topologically ordered states, Phys. Rev. A 97, 022305 (2018),
doi:10.1103/PhysRevA.97.022305.

[33] S. D. Geraedts and O. I. Motrunich, Exact models for symmetry-protected topological phases
in one dimension (2014), arXiv:1410.1580.

[34] C. Wang, C.-H. Lin and M. Levin, Bulk-boundary correspondence for three-
dimensional symmetry-protected topological phases, Phys. Rev. X 6, 021015 (2016),
doi:10.1103/PhysRevX.6.021015.

[35] Q.-R. Wang and Z.-C. Gu, Towards a complete classification of symmetry-protected topo-
logical phases for interacting fermions in three dimensions and a general group supercoho-
mology theory, Phys. Rev. X 8, 011055 (2018), doi:10.1103/PhysRevX.8.011055.

[36] E. O’Brien, E. Vernier and P. Fendley, “not-a”, representation symmetry-protected topo-
logical, and potts phases in an S3-invariant chain, Phys. Rev. B 101, 235108 (2020),
doi:10.1103/PhysRevB.101.235108.

[37] N. Tantivasadakarn, R. Thorngren, A. Vishwanath and R. Verresen, Long-range entangle-
ment from measuring symmetry-protected topological phases (2022), arXiv:2112.01519.

[38] T. A. Sedrakyan, V. M. Galitski and A. Kamenev, Topological spin ordering via chern-simons
superconductivity, Phys. Rev. B 95, 094511 (2017), doi:10.1103/PhysRevB.95.094511.

[39] K. Wang and T. A. Sedrakyan, Universal finite-size scaling around tricriticality between
topologically ordered, symmetry-protected topological, and trivial phases, Phys. Rev. B 101,
035410 (2020), doi:10.1103/PhysRevB.101.035410.

[40] K. Wang and T. A. Sedrakyan, Universal finite-size amplitude and anomalous entanglement
entropy of z = 2 quantum Lifshitz criticalities in topological chains, SciPost Phys. 12, 134
(2022), doi:10.21468/SciPostPhys.12.4.134.

18

https://doi.org/10.1103/PhysRevB.93.155131
https://doi.org/10.1016/j.aop.2016.12.014
https://doi.org/10.1103/PhysRevB.87.125114
https://doi.org/10.1016/j.nuclphysb.2017.03.021
https://doi.org/10.1103/PhysRevB.96.195101
https://doi.org/10.22331/q-2021-12-28-612
https://doi.org/10.22331/q-2021-12-28-612
https://doi.org/10.1103/PhysRevA.97.022305
arXiv:1410.1580
https://doi.org/10.1103/PhysRevX.6.021015
https://doi.org/10.1103/PhysRevX.8.011055
https://doi.org/10.1103/PhysRevB.101.235108
arXiv:2112.01519
https://doi.org/10.1103/PhysRevB.95.094511
https://doi.org/10.1103/PhysRevB.101.035410
https://doi.org/10.21468/SciPostPhys.12.4.134


SciPost Placeholder Submission

[41] R. Wang, B. Wang and T. Sedrakyan, Chern-simons superconductors and their instabilities,
Phys. Rev. B 105, 054404 (2022), doi:10.1103/PhysRevB.105.054404.

[42] L. D. Landau, On the theory of phase transitions, Zh. Eksp. Teor. Fiz. 7, 19 (1937),
doi:10.1016/B978-0-08-010586-4.50034-1.

[43] L. Landau and L. E.M., Statistical Physics. Vol. 5, Elsevier Science, ISBN 9780080570464
(2013).

[44] X.-G. Wen, Topological order: From long-range entangled quantum matter to a unified
origin of light and electrons, ISRN Condensed Matter Physics 2013, 198710 (2013),
doi:10.1155/2013/198710.

[45] M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys.
Rev. Lett. 96, 110405 (2006), doi:10.1103/PhysRevLett.96.110405.

[46] M. Oshikawa and T. Senthil, Fractionalization, topological order, and quasiparticle statis-
tics, Phys. Rev. Lett. 96, 060601 (2006), doi:10.1103/PhysRevLett.96.060601.

[47] T. A. Sedrakyan, V. M. Galitski and A. Kamenev, Statistical transmuta-
tion in floquet driven optical lattices, Phys. Rev. Lett. 115, 195301 (2015),
doi:10.1103/PhysRevLett.115.195301.

[48] T. A. Sedrakyan, L. I. Glazman and A. Kamenev, Spontaneous formation of a nonuni-
form chiral spin liquid in a moat-band lattice, Phys. Rev. Lett. 114, 037203 (2015),
doi:10.1103/PhysRevLett.114.037203.

[49] S. Maiti and T. Sedrakyan, Fermionization of bosons in a flat band, Phys. Rev. B 99,
174418 (2019), doi:10.1103/PhysRevB.99.174418.

[50] R. Wang, Z. Y. Xie, B. Wang and T. Sedrakyan, Emergent topological orders and phase
transitions in lattice chern-simons theory of quantum magnets, Phys. Rev. B 106, L121117
(2022), doi:10.1103/PhysRevB.106.L121117.

[51] E. Fradkin and S. H. Shenker, Phase diagrams of lattice gauge theories with higgs fields,
Phys. Rev. D 19, 3682 (1979), doi:10.1103/PhysRevD.19.3682.

[52] E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum critical
points, Annals of Physics 310(2), 493–551 (2004), doi:10.1016/j.aop.2004.01.004.

[53] S. Sachdev, Topological order, emergent gauge fields, and fermi surface reconstruction,
Reports on Progress in Physics 82(1), 014001 (2018), doi:10.1088/1361-6633/aae110.

[54] L. Kong and H. Zheng, Categories of quantum liquids i, Journal of High Energy Physics
2022(8), 70 (2022), doi:10.1007/JHEP08(2022)070.

[55] T. A. Sedrakyan, A. Kamenev and L. I. Glazman, Composite fermion state of spin-orbit-
coupled bosons, Phys. Rev. A 86, 063639 (2012), doi:10.1103/PhysRevA.86.063639.

[56] T. A. Sedrakyan, L. I. Glazman and A. Kamenev, Absence of bose condensation on lattices
with moat bands, Phys. Rev. B 89, 201112 (2014), doi:10.1103/PhysRevB.89.201112.

[57] C. Wei and T. A. Sedrakyan, Chiral spin liquid state of strongly interacting bosons with
a moat dispersion: A monte carlo simulation, Annals of Physics 456, 169354 (2023),
doi:10.1016/j.aop.2023.169354.

19

https://doi.org/10.1103/PhysRevB.105.054404
https://doi.org/10.1016/B978-0-08-010586-4.50034-1
https://doi.org/10.1155/2013/198710
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.96.060601
https://doi.org/10.1103/PhysRevLett.115.195301
https://doi.org/10.1103/PhysRevLett.114.037203
https://doi.org/10.1103/PhysRevB.99.174418
https://doi.org/10.1103/PhysRevB.106.L121117
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1016/j.aop.2004.01.004
https://doi.org/10.1088/1361-6633/aae110
https://doi.org/10.1007/JHEP08(2022)070
https://doi.org/10.1103/PhysRevA.86.063639
https://doi.org/10.1103/PhysRevB.89.201112
https://doi.org/10.1016/j.aop.2023.169354


SciPost Placeholder Submission

[58] R. Wang, T. A. Sedrakyan, B. Wang, L. Du and R.-R. Du, Excitonic topological order in
imbalanced electron–hole bilayers, Nature 619(7968), 57 (2023), doi:10.1038/s41586-
023-06065-w.

[59] N. Schuch, D. Pérez-García and I. Cirac, Classifying quantum phases using matrix
product states and projected entangled pair states, Phys. Rev. B 84, 165139 (2011),
doi:10.1103/PhysRevB.84.165139.

[60] L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B
83, 075103 (2011), doi:10.1103/PhysRevB.83.075103.

[61] H. Topchyan, V. Iugov, M. Mirumyan, S. A. Khachatryan, T. S. Hakobyan and T. A. Se-
drakyan, z3 and (×z3)3 symmetry protected topological paramagnets, Journal of High
Energy Physics (in press) (2023), arXiv:2210.01187.

[62] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking,
NATO Sci. Ser. B 59, 135 (1980), doi:10.1007/978-1-4684-7571-5_9.

[63] X. Chen, Y.-M. Lu and A. Vishwanath, Symmetry-protected topological phases
from decorated domain walls, Nature Communications 5(1), 3507 (2014),
doi:10.1038/ncomms4507.

[64] D. V. Else and C. Nayak, Classifying symmetry-protected topological phases through
the anomalous action of the symmetry on the edge, Phys. Rev. B 90, 235137 (2014),
doi:10.1103/PhysRevB.90.235137.

[65] L. Li, M. Oshikawa and Y. Zheng, Decorated defect construction of gapless-spt states (2023),
arXiv:2204.03131.

[66] J. L. Cardy, Conformal invariance and universality in finite-size scaling, Journal of Physics
A: Mathematical and General 17(7), L385 (1984), doi:10.1088/0305-4470/17/7/003.

[67] J. L. Cardy, Operator content of two-dimensional conformally invariant theories, Nuclear
Physics B 270, 186 (1986), doi:10.1016/0550-3213(86)90552-3.

[68] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, Journal of
Physics A: Mathematical and Theoretical 42(50), 504005 (2009), doi:10.1088/1751-
8113/42/50/504005.

[69] K. Kawagoe and M. Levin, Anomalies in bosonic symmetry-protected topological edge the-
ories: Connection to f symbols and a method of calculation, Phys. Rev. B 104, 115156
(2021), doi:10.1103/PhysRevB.104.115156.

20

https://doi.org/10.1038/s41586-023-06065-w
https://doi.org/10.1038/s41586-023-06065-w
https://doi.org/10.1103/PhysRevB.84.165139
https://doi.org/10.1103/PhysRevB.83.075103
arXiv:2210.01187
https://doi.org/10.1007/978-1-4684-7571-5_9
https://doi.org/10.1038/ncomms4507
https://doi.org/10.1103/PhysRevB.90.235137
arXiv:2204.03131
https://doi.org/10.1088/0305-4470/17/7/003
https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1103/PhysRevB.104.115156

	Introduction
	Symmetry protected topological phase and the edge Hamiltonian
	Symmetries of edge Hamiltonian
	Winding number
	Boundary 't Hooft anomaly for the SPT Hamiltonian

	Alternate forms of the Hamiltonian
	From Z3N to ZN/3Z

	Conformal properties of the edge model
	Concluding remarks
	Identities
	References

