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Abstract

We construct (2+1)-dimensional lattice systems, which we call fusion surface mod-
els. These models have finite non-invertible symmetries described by general fusion
2-categories. Our method can be applied to build microscopic models with, for ex-
ample, anomalous or non-anomalous one-form symmetries, 2-group symmetries, or
non-invertible one-form symmetries that capture non-abelian anyon statistics. The
construction of these models generalizes the construction of the 1+1d anyon chains
formalized by Aasen, Fendley, and Mong. Along with the fusion surface models, we
also obtain the corresponding three-dimensional classical statistical models, which are
3d analogues of the 2d Aasen-Fendley-Mong height models. In the construction, the
“symmetry TFTs” for fusion 2-category symmetries play an important role.
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1 Introduction and Summary

1.1 Motivation

Symmetry plays a fundamental role in both constructing and analyzing models of physical
systems. Recently, various generalizations of symmetry have been introduced, includ-
ing higher-form symmetry [1], higher-group symmetry [2–5], and even more general non-
invertible symmetry [6, 7]. These generalized symmetries greatly extend the applicability
of various symmetry-based techniques in theoretical physics, and have therefore been one
of the main topics in the field.

The core principle of the generalizations is the correspondence between symmetry op-
erations and topological defects/operators [1], see Figure 1 for an illustration of this corre-
spondence. In particular, symmetry operations for a conventional symmetry correspond to
invertible topological defects with codimension one, which form a group under the fusion.
The generalizations of a conventional symmetry are achieved by relaxing the requirements
for the dimensionality and invertibility of topological defects: higher-form symmetries are
generated by topological defects with higher codimensions and non-invertible symmetries
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Figure 1: A timelike insertion of a symmetry defect realizes a twisted boundary condition,
while a spacelike insertion does a symmetry operation on a state.

are generated by topological defects that do not have their inverses.1 We note that topo-
logical defects associated with a non-invertible symmetry can have arbitrary codimensions,
and therefore non-invertible symmetries include higher-form symmetries as special cases.
While higher-form symmetries are still described by groups, non-invertible symmetries
are no longer described by groups in general because the fusion rules of the associated
topological defects are not necessarily group-like.

In 1+1 dimensions, finite non-invertible symmetries are generally described by fusion
categories [6,7,9] (see also [10] for an earlier reference), which are natural generalizations
of finite groups.2 For this reason, finite non-invertible symmetries in 1+1 dimensions are
called fusion category symmetries [19]. Fusion category symmetries are particularly well
studied in the context of rational conformal field theories [7, 20–26] and topological field
theories (TFTs) [6,10,19,27–30]. See also, e.g., [31–52] for recent developments. Although
these symmetries were originally discussed in the context of quantum field theories (QFTs),
they also exist on the lattice. In particular, we can systematically construct 1+1d lattice
models with general fusion category symmetries, which are known as anyon chain models
[33,53,54].

In higher dimensions, finite non-invertible symmetries in univery theories are expected
to be described by fusion higher categories [55–58]3. Since the discovery of concrete
realizations of such symmetries in lattice models [59] and QFTs [60–64], non-invertible
symmetries in higher dimensions have been studied intensively in various contexts, see,
e.g., [59–121] for recent advances and also [122, 123] for earlier discussions. However,
systematic construction of physical systems with general fusion higher category symmetries
is still lacking.

Given the generalization of symmetry, one may wonder whether we can utilize it to
build physical models with a given generalized symmetry. This question was answered
affirmatively by Aasen, Fendley, and Mong for fusion category symmetries in 1+1 dimen-

1One can further generalize the notion of symmetry by allowing the defects to be non-topological along
some spatial directions. Symmetries generated by such defects are called subsystem symmetries, which
are typically exhibited by fractonic systems [8]. We do not investigate this direction in this paper.

2Precisely, while finite non-invertible symmetries of 1+1d bosonic systems are described by fusion cate-
gories, finite non-invertible symmetries of 1+1d fermionic systems are described by superfusion cate-
gories [11–18]. In this paper, we will only consider bosonic systems. Technically, all fusion categories
and fusion 2-categories that we will discuss in this paper are supposed to be spherical. We also empha-
size that we do not consider non-unitary theories where symmetry categories can be non-semisimple.

3The definition of fusion n-category for n = 2 is given in [55] in detail, and it will also be reviewed in
Section 2.1. For n ≥ 3, the definition is proposed in [57, Definition II.9], upon the technical assumption
mentioned in Remark I.2 of the reference.
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sions [33]4: they constructed explicit two-dimensional classical statistical models acted
upon by a given fusion category. The corresponding 1+1d quantum lattice models turn
out to be the anyon chain models, which have the given fusion category symmetries. In
this paper, we generalize their construction to 2+1 dimensions. Namely, we construct
three-dimensional classical statistical models and the corresponding (2+1)-dimensional
quantum lattice systems that are acted upon by a given fusion 2-category. We call our
2+1d quantum lattice models the fusion surface models, which are (2+1)-dimensional ana-
logues of the 1+1d anyon chains. By construction, the fusion surface models have finite
non-invertible symmetries described by general fusion 2-categories, i.e., fusion 2-category
symmetries.

The fusion 2-category symmetry in 2+1 dimensions has a particular significance: it
includes the symmetry of anyons in topological orders as a special example. Within a
generalized Landau paradigm, the existence of anyons in topologically ordered phases can
be regarded as a consequence of a spontaneously broken higher (potentially non-invertible)
symmetry [69]. Therefore, the fusion surface models with non-invertible higher symmetry
provide candidates that might realize a given topological order. In other words, if the
model has a gapped point, it is guaranteed that the IR phase contains the anyons we used
as an input to the model. While our models include the Levin-Wen string-net models [125]
that realize non-chiral topological orders, it probably requires a numerical study to see
whether our model can realize chiral topological orders.

Another example of a fusion 2-category symmetry is a finite 2-group (a.k.a. invertible)
symmetry with and without an ’t Hooft anomaly [2, 3, 5]. A 2-group is a symmetry
structure where a conventional symmetry is non-trivially intertwined with an invertible
higher symmetry. Our method naturally works for constructing lattice models that possess
such a symmetry structure.

In the rest of the introduction, we briefly review the fusion category symmetry in 1+1 di-
mensions and the Freed-Teleman-Aasen-Fendley-Mong (FT-AFM) construction [33,124].5

This would serve as a stepping stone to the (2+1)-dimensional case, which is a straight-
forward generalization of the (1+1)-dimensional case but is apparently more complicated.
After reviewing the FT-AFM construction in 1+1d, we will outline the construction of the
2+1d fusion surface models.

1.2 Review of the Aasen-Fendley-Mong model

Fusion category. In 1+1 dimensions, a finite generalized symmetry is described by a
fusion category, which is a generalization of a finite group. It describes the algebraic
structure of topological defects of codimension one, or equivalently topological lines, in
1+1 dimensions.6 More explicitly, a fusion category C contains the following data (see,
e.g., [6, 7] for a detailed explanation and more examples for physicists):

• Simp C: the finite set of (isomorphism classes of) “simple objects”. A simple object
a ∈ Simp C represents an oriented indecomposable topological defect line in 1+1d.

4A statistical-mechanical model, which was defined following a similar conceptual framework, has been
previously presented in [124].

5We slightly generalize the presentation in [33] in that we allow the multiplicity of fusion coefficients.
While such symmetries are not so common in 1+1 dimensions, in 2+1 dimensions there are multiple
inequivalent junctions as long as there is a bulk topological line. Thus, we consider the multiplicity in
1+1 dimensions as a warm-up.

6When finite one-form symmetries are also present, the whole symmetry is described by a multifusion
category, and it is related to the concept of decomposition or “universes” in a (1+1)-dimensional system.
See, for example, [32,126,127] for discussions on this point.
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Figure 2: Data defining a fusion (1-)category C. (a) Topological lines in 1+1 dimensions
define objects of C. In particular, simple (i.e., indecomposable) topological lines
correspond to simple objects, whereas superpositions of them correspond to
non-simple objects. (b) Topological line-changing operators define morphisms
between topological lines. (c) The stacking of two topological lines a and b is
denoted by a⊗ b and it is in general a superposition of simple topological lines.
(d) By locally fusing two lines a and b, we get topological junction operators
(vca,b)i connecting three lines a, b and c. The number of independent junction
operators is equal to the fusion coefficient N c

ab.
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Figure 3: The F -move in a fusion category.

There is a special object I ∈ Simp C representing the trivial defect. See Figure 2a.

• Obj C: the set of objects. Any object b ∈ Obj C takes the form of b =
⊕

a∈Simp C na a
where a runs over simple objects and na’s are non-negative integers. An object
a1 ⊕ a2 represents a superposition of defects a1 and a2: the correlation function
containing a1 ⊕ a2 is the sum of the correlation function containing a1 and the one
containing a2.

• HomC(a, b): the “hom space” between two objects a and b. A morphism ϕ ∈
HomC(a, b) from a to b represents a topological line-changing operator connecting
the lines a and b. See Figure 2b. Such operators form a (finite-dimensional) C-vector
space because they can be added and multiplied by complex numbers. In addition,
in HomC(a, a) =: EndC(a), there is the identity operator/morphism ida. Two line-
changing operators ϕ1 ∈ HomC(a, b) and ϕ2 ∈ HomC(b, c) can be composed, and the
composition defines an element ϕ2 ◦ ϕ1 ∈ HomC(a, c). The hom space between two
simple objects a, b ∈ Simp C is one dimensional when a = b and zero-dimensional
otherwise. In particular, for a simple object a ∈ Simp C, there is a canonical isomor-
phism EndC(a) ∼= C, which maps λ ida ∈ EndC(a) to λ ∈ C.

• a ⊗ b ∈ Obj C: the tensor product of objects a and b. This corresponds to the
fusion of topological lines a and b. See Figures 2c and 2d. We can expand the
tensor product as a ⊗ b =

⊕
c∈Simp C N

c
ab c, where the non-negative integers N c

ab

are called fusion coefficients. As a physicists’ convention, we fix a particular (non-
canonical) basis Basis(a⊗ b, c) := {(vca,b)i}i=1,··· ,Nc

ab
of the hom space Hom(a⊗ b, c)

for a, b, c ∈ Simp C.
• F -symbols (F abc

d )(x;v1,v2),(y;v3,v4) ∈ C: complex numbers that govern the “F -move”
depicted in Figure 3. Specifically, the F -symbols encode the relationship between
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Figure 4: The pentagon identity.

two different ways of composing basis morphisms via the following equation:7

v2 ◦ (v1 ⊗ idc) =
∑

y∈Simp C,
v3∈Basis(b⊗c,y),
v4∈Basis(a⊗y,d)

(F abc
d )(x;v1,v2),(y;v3,v4)v4 ◦ (ida⊗v3) ∈ Hom(a⊗ b⊗ c, d).

(1.1)
The F -symbols should satisfy the pentagon identity depicted in Figure 4 [129].

In addition, a fusion category has the following data regarding “dual”, which is a relaxed
notion of the inverse:

• a∗ ∈ Obj C: the dual of an object a. This represents the orientation reversal of a,
see Figure 5a.

• eva ∈ HomC(a
∗⊗a, I): the evaluation morphism. This represents the pair-annihilation

of topological lines a and a∗, see Figure 5b.

• coeva ∈ HomC(I, a
∗ ⊗ a): the coevaluation morphism. This represents the pair-

creation of topological lines a and a∗, see Figure 5c.8

• dim(a) ∈ C: the quantum dimension of an object a. This quantity is defined by the
equality eva ◦ coeva = dim(a) idI and thus corresponds to the vacuum expectation
value of a loop of a, see Figure 5d. If the quantum dimensions of a and a∗ agree with
each other for every object a ∈ Obj C, the fusion category C is said to be spherical.

The above data that satisfy appropriate consistency conditions define a fusion category
[6, 7, 9].

Examples. Let us see a few basic examples of fusion categories that naturally appear in
physical systems.

• Finite group. Topological defects for a finite group symmetry G form the fusion
category VecG of G-graded vector spaces. The category VecG consists of simple

7Precisely, the left- and right-hand sides of eq. (1.1) differ by an isomorphism αa,b,c : (a⊗b)⊗c→ a⊗(b⊗c)
called an associator, which is assumed to be the identity here. This assumption is always possible due
to Mac Lane strictness theorem [128].

8There are left and right evaluation/coevaluation morphisms depending on whether we consider a ⊗ a∗

or a∗ ⊗ a. For a unitary fusion category, any two of them are automatically determined by the other
two because of the unitary structure. See, e.g., [6, 9] for more details.
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Figure 5: The duality structure in a fusion (1-)category C. (a) The dual a∗ of a topological
line a is its orientation reversal. (b) There is a morphism eva : a∗⊗a → I called
evaluation defined by the figure. (c) There is a morphism coeva : I → a∗ ⊗ a
called coevaluation defined by the figure. (d) The expectation value of a loop of
a topological line a is called the “quantum dimension” and is denoted by dim a.
In the mathematical terms it is the composition eva ◦ coeva ∈ Hom(I, I) ∼= C.

objects Lg labeled by group elements g ∈ G. These simple objects obey the group-
like fusion rules Lg1 ⊗ Lg2 = Lg1g2 and have trivial F -symbols.9 The dual of an
object Lg is its inverse, i.e., we have L∗

g = Lg−1 . In particular, when G = {id} is the
trivial group, VecG reduces to the category Vec of finite-dimensional vector spaces,
which corresponds to the trivial (i.e., no) symmetry. We note that all simple objects
of VecG are invertible.

• Ising category. A basic example of a non-invertible fusion category arises in the
critical Ising model [7, 23, 130]. The category contains simple objects η for the Z2

spin-flip symmetry and N for the Kramers-Wannier self-duality, forming the fusion
category Ising called the “Ising category”. The latter object does not constitute a
conventional symmetry but does a non-invertible symmetry. The fusion rules of the
simple objects are given by

η ⊗ η ∼= I, η ⊗N ∼= N ⊗ η ∼= N , N ⊗N ∼= I ⊕ η. (1.2)

As we can see from the above equation, the simple object N is indeed non-invertible.

• Representation category. Another significant example of a fusion category is the
representation category Rep(G) for a finite group G. In this category, simple objects
are irreducible representations of G, general objects are general finite dimensional
representations, morphisms are intertwiners, the tensor product of objects is the
ordinary tensor product of representations, and the dual is the complex conjugation.
When G is non-abelian, Rep(G) contains irreducible representations of dimension
greater than 1, which are non-invertible.

Symmetry TFT construction. In [33], Aasen, Fendley, and Mong constructed both two-
dimensional classical statistical mechanical models and (1+1)-dimensional quantum chain
models based on fusion categories.
As noted in their paper [33], these models can be naturally understood in terms of

three-dimensional topological field theory known as the Turaev-Viro-Barrett-Westbury

9The F -symbols become non-trivial when the finite group symmetry G is anomalous.
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2+1d TFT
TVBW(C)

topological boundary decorated boundary

Figure 6: The AFM height model realized as the TVBW model on a slab with one topolog-
ical boundary and one non-topological boundary. The non-topological boundary
is obtained by decorating the Dirichlet boundary with a defect network as shown
in Figure 7.

(TVBW) model [131,132]. Here, the TVBW model plays the role of what is called “sym-
metry topological field theory (SymTFT)” in the QFT literature [19,91,124,133–135] and
“categorical symmetry” in the condensed matter literature [58,136–141].10

The TVBW model is a state sum model on a (2+1)-dimensional (oriented) spacetime
lattice. The input datum of the state sum is a (spherical) fusion category C, and the
TVBW model constructed from a fusion category C is denoted by TVBW(C). The model
describes the topological order whose anyon data are described by the Drinfeld center
Z(C) of C, which is a modular tensor category made out of a fusion category C.
The two-dimensional statistical mechanical model in [33], which we call the AFM height

model, can be constructed by placing the TVBW model on a slab, that is, the direct
product of an interval I and a two-dimensional oriented closed surface Σ, see Figure 6. On
the left and right boundaries of the slab I ×Σ, we impose topological and non-topological
boundary conditions respectively. The non-topological boundary condition is defined by
decorating the “Dirichlet” boundary of TVBW(C) with a network of defects as depicted
in Figure 7. Here, the Dirichlet boundary condition is a topological boundary condition
such that the category of topological lines on the boundary is the input fusion category
C. For simplicity, just as in [33, 124], we choose the Dirichlet boundary condition as the
topological boundary condition on the left boundary.11

To see the symmetry of the AFM height model, we consider the topological lines (or
anyons) in TVBW(C). Although we can insert any anyons labeled by objects of Z(C) in
the 3d bulk, some of them can be absorbed by the topological boundary on the left. Thus,
the nontrivial topological lines in the AFM height model are identified with the lines on
the topological boundary, which form the fusion category C.12

AFM height model. Let us unpack the above abstract construction to obtain explicit 2d
classical statistical models. The input data of the AFM height model are listed as follows:

• a (spherical) fusion category C,
10The idea of using the Turaev-Viro model to construct and study 2d statistical-mechanical systems had

already appeared in [124].
11In general, topological boundary conditions of TVBW(C) are in one-to-one correspondence with (finite

semisimple) module categories over C (equipped with a module trace) [122,123,142,143]. In particular,
the Dirichlet boundary condition corresponds to the regular C-module category C.

12If the topological boundary condition on the left boundary is the one labeled by a C-module category
M, topological lines on the boundary form a fusion category FunC(M,M), which is the category
of C-module endofunctors of M [122, 123, 142]. Choosing a different topological boundary condition
corresponds to gauging (a part of) the fusion category symmetry C [44, 48,91,133].
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Figure 7: The decorated boundary in Figure 6. The transfer matrix T of the AFM height
model is defined by the region indicated in the figure.

• an object ρ ∈ Obj C,

• an object F ∈ Obj C,

• morphisms Fρ ∈ HomC(ρ,F ⊗ ρ) and F̃ρ ∈ HomC(ρ⊗F , ρ).

Note that both ρ and F are not necessarily simple. Based on the above data,13 we explicitly
describe the AFM height model on a two-dimensional torus Σ = T 2.

In order to define the model based on the above data, we first draw a defect network
on the torus T 2 as shown in Figure 7. This defect network plays the role of the spacetime
lattice on which dynamical variables reside. Specifically, we assign a dynamical variable
Γi ∈ Simp C to each plaquette i, and also assign a dynamical variable Γij ∈ Basis(Γi ⊗
ρ∗,Γj) to each vertical segment (i.e., a black edge) separating plaquettes i and j, see Figure
8 for the assignment of these dynamical variables. The dynamical variables Γij on edges
are trivial when all the fusion coefficients N c

ab are either 0 or 1, which is often assumed
in the literature for simplicity. The statistical mechanical partition function is defined by
the sum of the Boltzmann weights for all possible configurations of dynamical variables:

Z =
∑

{Γi},{Γij}

∏

h

Wh(Γ⃗). (1.3)

Here, h runs over the horizontal segments (i.e., the blue and green edges) in Figure 7, and
Wh(Γ⃗) ∈ C is the local Boltzmann weight depending on the dynamical variables around h.
More specifically, when h is the green edge in Figure 8, the local Boltzmann weight Wh(Γ⃗)
depends only on four objects {Γi,Γj ,Γk,Γℓ} and four basis morphisms {Γij ,Γjk,Γiℓ,Γℓk}
appearing in the same figure. The explicit form of the Boltzmann weight Wh(Γ⃗) is given

13These data are redundant. In particular, for an invertible element ϕ ∈ HomC(F ,F), modifying (Fρ, F̃ρ)

into ((ϕ ⊗ idρ) ◦ Fρ, F̃ρ ◦ (idρ ⊗ϕ−1)) does not change the model. In addition, it turns out that the
choice F = ρ∗ ⊗ ρ can reproduce the most general model (for a fixed ρ). In this case, we can fix the

above ambiguity by the condition of, for example, F̃ρ = evρ∗ ⊗ idρ. With this gauge fixing, the pair
(ρ,Fρ) parametrizes the model without obvious redundancies except for the overall scaling.
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Γℓ

Γi

Γj

Γk

Γiℓ

Γij Γjk

Γℓk

Γi ∈ Simp C
Γij ∈ Basis(Γi ⊗ ρ∗,Γj)

Figure 8: The dynamical variables in the AFM height model.

by the following diagrammatic equation:

Wh(Γ⃗) =
√
dimΓj dimΓℓ ×

ρ

ρ

ρ

ρ

F
Γi

Γℓ

Γk

Γj

Fρ F̃ρ

ΓℓkΓiℓ

ΓjkΓij

, (1.4)

where (vcab)i ∈ HomC(c, a⊗ b) is the dual junction of (vcab)i ∈ Basis(a⊗ b, c) that satisfies

evc ◦(idc∗ ⊗(vcab)i) ◦ (idc∗ ⊗(vcab)j) ◦ coevc = δij . (1.5)

We write the basis of Hom(c, a⊗b) as Basis(c, a⊗b) := {(vcab)i}i=1,··· ,Nc
ab
. The weight (1.4)

can also be written explicitly in terms of F -symbols. If we define the transfer matrix T
by the Boltzmann weight on the region indicated in Figure 7, we can write the partition
function of the AFM height model as Z = TrTN , where N is the number of plaquettes in
the vertical direction.

Quantum anyon chain. We can obtain a (1+1)-dimensional quantum chain model known
as the anyon chain [53, 54] by taking the anisotropic limit of the above two-dimensional
statistical mechanical model [33]. The Hilbert space H of the model is spanned by the
fusion trees depicted in Figure 9. Here, we assign a simple object Γi ∈ C to each segment
i connecting the vertical ρ lines, and assign a morphism Γi,i+1 ∈ Basis(Γi ⊗ ρ∗,Γi+1) to
each vertex connecting the segments i, i+ 1 and the vertical ρ line. These simple objects
and basis morphisms are the dynamical variables of the model.14 An assignment of simple
objects Γi and Γi+1 is prohibited if the fusion coefficient N

Γi+1

Γiρ∗
is zero.

The Hamiltonian H of the model is derived by expanding the transfer matrix of the
AFM height model as T = idH − ϵH + O(ϵ2) in the anisotropic limit, where ϵ is a small
parameter.15 The Hamiltonian obtained in this way is of the form H = −∑

i ĥi−1,i,i+1,

14The dimension of the Hilbert space asymptotically grows as dimH ∼ (dim ρ)L where L ≫ 1 is the
number of vertical ρ lines. Thus, we can regard ρ as the degree of freedom at each site. Note that
dim ρ is not necessarily an integer.

15As we can see from eq. (1.4), the parameter of the AFM height model is a morphism φ := (F̃ρ ⊗ idρ) ◦
(idρ⊗Fρ) ∈ Hom(ρ⊗ρ, ρ⊗ρ). The anisotropic limit is defined by choosing φ = idρ⊗ρ+ ϵφ

′ and taking

the limit of ϵ≪ 1. By abuse of notation, φ′ is also written as (F̃ρ ⊗ idρ) ◦ (idρ ⊗Fρ) in eq. (1.6).
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Γi−2 Γi−1 Γi Γi+1 Γi+2

ρ ρ ρ ρ

Γi−2,i−1 Γi−1,i Γi,i+1 Γi+1,i+2

Figure 9: The fusion tree defining the Hilbert space of the quantum anyon chain.

where the local interaction ĥi−1,i,i+1 can be expressed diagrammatically as16

ĥi−1,i,i+1

Γi−1 Γi Γi+1

ρ ρ

Γi−1,i Γi,i+1

=
Γi−1 Γi Γi+1

ρ ρ

Γi−1,i Γi,i+1

F
Fρ F̃ρ

=
∑

Fint

A(Fint)
Γi−1 Γi Γi+1

ρ ρ

Γi−1,i Γi,i+1

f
v w .

(1.6)
Here, Fint = {f, v, w} denotes the set consisting of a simple object f ∈ Simp C and
morphisms v ∈ Basis(ρ, f ⊗ ρ) and w ∈ Basis(ρ⊗ f, ρ) that appear in the diagram on the
right-hand side. The weight A(Fint) is a complex number determined by (F ,Fρ, F̃ρ).

The above 1+1d model has a fusion category symmetry C. The symmetry acts on the
system “from above” as shown in Figure 10. That is, we define the action of a topological
line a ∈ Obj C by placing it above the fusion tree and fusing it into the tree using the
F -move. This symmetry action commutes with the Hamiltonian (1.6) because it acts on
the fusion tree “from below”:




Γi−1 Γi Γi+1

ρ ρ

Γi−1,i Γi,i+1

a

,

Γi−1 Γi Γi+1

ρ ρ

Γi−1,i Γi,i+1

F
Fρ F̃ρ



= 0. (1.7)

If we write both the Hamiltonian and the symmetry action in terms of the F -symbols, the
commutation relation (1.7) follows from the pentagon identity shown in Figure 4.

Examples. Let us consider several examples of the anyon chain models.

• Spin chains. When C = VecZN
and ρ =

⊕
g∈ZN

Lg, the state space of the anyon
chain model becomes the tensor product of N -dimensional on-site Hilbert spaces.
Namely, we have a ZN -valued spin on each site. The Hamiltonian of the model
preserves the on-site ZN symmetry that rotates these spins. Thus, the anyon chain
model in this case reduces to an ordinary ZN -symmetric spin chain. More generally,
if we choose C = VecG and ρ =

⊕
g∈G Lg, we obtain a G-symmetric spin chain whose

on-site Hilbert space is the regular representation of G. Furthermore, we can also
consider spin chains with anomalous finite group symmetries by choosing C = VecωG,
the category of G-graded vector spaces with a twist ω ∈ H3(G,U(1)).

16In the original paper by Aasen, Fendley, and Mong [33], they use a different basis for the local Hamilto-
nian ĥi−1,i,i+1. However, the choice of a basis does not affect the family of Hamiltonians obtained in
this way, up to a reparametrization, because the two bases are related by F -moves.
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Γi−2 Γi−1 Γi Γi+1 Γi+2

ρ ρ ρ ρ

a

Γi−2 Γi−1 a⊗ Γi Γi+1 Γi+2

ρ ρ ρ ρ

Γi−2 Γi−1 a⊗ Γi a⊗ Γi+1 Γi+2

ρ ρ ρ ρ

F

F

Figure 10: The action of a line a ∈ Obj C on the Hilbert space H. This action changes the
dynamical variable on each edge from Γi to a ⊗ Γi. The dynamical variables
on the vertices are also affected accordingly. The resulting fusion tree can be
written as a linear combination of fusion trees whose edges are labeled by fusion
channels of a⊗ Γi.

• Gauged spin chains. If we choose C = Rep(G), we obtain the G-gauged version of
the spin chains, where the choice of ρ ∈ Rep(G) determines the on-site Hilbert space
of the ungauged G-symmetric spin chain. More specifically, the Rep(G) symmetry
can be ungauged by replacing the Dirichlet boundary condition on the left boundary
of the SymTFT with another topological boundary condition labeled by a Rep(G)-
module category Vec [44,48,133]. This ungauging procedure results in aG-symmetric
spin chain whose on-site Hilbert space is ρ ∈ Rep(G).

• Critical Ising model. When C is the Ising category and ρ is the Kramers-Wannier
duality line, the anyon chain model reproduces the critical Ising model [33].

• Golden chain. When C is the Fibonacci category and ρ is the unique non-invertible
line,17 we obtain the golden chain [53].

• Haagerup model. The Haagerup category H3 is a fusion category that is directly
related to neither finite groups nor affine Lie algebras [144–146]. It is generated by
a Z3 invertible line η and a self-dual non-invertible line ρ that satisfy the following
fusion rules:

ρ⊗ η ∼= η2 ⊗ ρ, ρ⊗ ρ ∼= I ⊕ (I ⊕ η ⊕ η2)⊗ ρ. (1.8)

Numerical studies in [40,41] suggest that the anyon chain model and the correspond-
ing statistical mechanical model with the Haagerup symmetry H3 contain a critical
point with central charge c ∼ 2, but the conclusive identification of the phase is
elusive so far.

1.3 Generalization to 2+1 dimensions

Our strategy for constructing (2+1)-dimensional models, which we call the fusion surface
models, is to directly generalize the story reviewed above.

Fusion 2-category. In higher dimensions, finite generalized symmetries are expected to
be described by higher categories [55–58]. In particular, we can naturally expect that
finite generalized symmetries of (2+1)-dimensional unitary bosonic systems are generally
described by fusion 2-categories. The precise definition of a (spherical) fusion 2-category

17The Fibonacci category consists of two simple objects I and τ that satisfy the fusion rule τ ⊗ τ = I ⊕ τ.
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Figure 11: The diagrammatic representations of objects, 1-morphisms, and 2-morphisms
in a fusion 2-category. An object A is represented by an oriented surface, whose
coorientation is specified by the red arrow perpendicular to the surface. A 1-
morphism a : A → B is represented by an oriented line at the interface between
surfaces A and B. A 2-morphism α : a ⇒ b is represented by a junction of lines
a and b. In our convention for surface diagrams, a 1-morphism is read from
right to left, and a 2-morphism is read from bottom to top. The red arrow
specifying the coorientation of a surface will be omitted when the coorientation
is clear from the context.

Figure 12: The diagrammatic representation of the tensor product A□B. A surface labeled
by A appears in front of a surface labeled by B.

can be found in [55]. Here we review the concept of fusion 2-category very briefly. A
longer review of fusion 2-categories will be provided in Section 2.1.

In 2+1 dimensions, a defect can have 2-, 1-, or 0-dimensional volume. Correspondingly,
a fusion 2-category C consists of

• Obj C: the set of objects,

• HomC(A,B): the 1-category of 1-morphisms between objects A,B ∈ Obj C, and
• HomA→B(a, b): the vector space of 2-morphisms between 1-morphisms a, b ∈ HomC(A,B).18

As depicted in Figure 11, each element of Obj C corresponds to a two-dimensional topo-
logical surface, each object of HomC(A,B) corresponds to a topological interface between
two surfaces A and B, and each element of HomA→B(a, b) corresponds to a topological in-
terface between topological interfaces a and b. Note that both 1- and 2-morphisms can be
composed, e.g., for a ∈ HomC(A,B) and b ∈ HomC(B,C), there exists b◦a ∈ HomC(A,C).
Similarly, two objects A and B can be stacked on top of each other, which defines the
tensor product A□B ∈ Obj C, see Figure 12. Furthermore, a fusion 2-category is also
equipped with the duality data such as the dual A# of an object A, the dual a∗ of a
1-morphism a, and the evaluation and coevaluation morphisms associated with them.

Symmetry TFT construction. In [55], a state sum model on a four-dimensional (ori-
ented) spacetime lattice is defined based on a (spherical) fusion 2-category C. We call this
state sum model the Douglas-Reutter (DR) model and denote it as DR(C). The DR model

18The vector space HomA→B(a, b) is a hom space of the 1-category HomC(A,B).
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3+1d TFT
DR(C)

topological boundary decorated boundary

f
g

Figure 13: Schematic description of the fusion surface model.

is a four-dimensional version of the TVBW model, and thus we can utilize it to generalize
the FT-AFM construction to one higher dimension.

In order to generalize the FT-AFM construction, we consider the DR model DR(C) on
a four-dimensional slab I × T 3 where I is an interval and T 3 is a three-dimensional torus,
see the left panel of Figure 13. On the left boundary of the slab, we impose the Dirichlet
boundary condition of DR(C).19 In particular, this means that topological defects on the
left boundary are described by the fusion 2-category C that we started with. On the other
hand, on the right boundary, we impose a non-topological boundary condition that is
obtained by decorating the Dirichlet boundary with the defect network shown in the right
panel of Figure 13.

Since the bulk of DR(C) is topological, the configuration depicted in the left panel
of Figure 13 defines a purely 3d classical statistical model, which we call the 3d height
model. Furthermore, by taking the anisotropic limit of the 3d height model, we can
define the corresponding 2+1d quantum lattice model, which we call the fusion surface
model. The derivation of the 3d height models and 2+1d fusion surface models will be
explained in detail in sections 3 and 4 respectively. In the rest of this subsection, we will
briefly summarize the definition of the 2+1d fusion surface model and describe its fusion
2-category symmetry.

1.3.1 Fusion surface models

Input data. The fusion surface model is a 2+1d quantummodel on a honeycomb lattice.20

In order to define the state space of this model, we fix the following data, see Figure 14:

• a (spherical) fusion 2-category C,
• objects ρ, σ, λ ∈ Obj C,
• 1-morphisms f ∈ HomC(ρ□σ, λ) and g ∈ HomC(σ□ρ, λ).

Moreover, to define the Hamiltonian, we fix the data listed below, see also Figure 15:

19More generally, we can also use a different topological boundary condition on the left boundary, which
should be labeled by a module 2-category over C. A different choice of a module 2-category would
correspond to a different way of gauging the fusion 2-category symmetry C. In the case of a non-
anomalous finite group symmetry 2VecG, the relation between the choice of a module 2-category and
the (twisted) gauging is studied in [113]. We do not explore this generalization in this paper.

20Although a honeycomb lattice is convenient for our purpose, e.g. because at each vertex the minimal
number (three) of edges meet, it should be straightforward to generalize the model to another lattice.
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λ

λ

λ λ

ρ

ρ

ρ

ρ

σ

σ

σ

σ

g

g

g

f

f

f

ρ, λ, σ ∈ Obj C
f ∈ HomC(ρ□σ, λ)

g ∈ HomC(σ□ρ, λ)

Figure 14: Data defining the state space.

Fλ

F̃λ

F̃ρ

Fρ

F̃σ

Fσ
Fg

λσ

Fg
σρ

Fg
ρλ

Ff
ρλ

Ff
λσ

Ff
σρF

Figure 15: Data defining the Hamiltonian. The domains/codomains of the symbols are
summarized in eqs. (1.9) and (1.10).

• an object F ∈ Obj C,

• 1-morphisms

Fλ ∈ HomC(F□λ, λ), Fρ ∈ HomC(F□ρ, ρ), Fσ ∈ HomC(F□σ, σ),

F̃λ ∈ HomC(λ□F , λ), F̃ρ ∈ HomC(ρ□F , ρ), F̃σ ∈ HomC(σ□F , σ),
(1.9)

• 2-morphisms

Ff
λσ ∈ Homρ□σ□F→λ(F̃λ ◦ (f□1F ), f ◦ (1ρ□F̃σ)),

Fg
σρ ∈ Homσ□F□ρ→λ(g ◦ (F̃σ□1ρ), g ◦ (1σ□Fρ)),

Ff
ρλ ∈ HomF□ρ□σ→λ(f ◦ (Fρ□1σ),Fλ ◦ (1F□f)),

Fg
λσ ∈ HomF□σ□ρ→λ(Fλ ◦ (1F□g), g ◦ (Fσ□1ρ)),

Ff
σρ ∈ Homρ□F□σ→λ(f ◦ (1ρ□Fσ), f ◦ (F̃ρ□1σ)),

Fg
ρλ ∈ Homσ□ρ□F→λ(g ◦ (1σ□F̃ρ), F̃λ ◦ (g□1F )).

(1.10)

State space. The state space H0 of the fusion surface model on a honeycomb lattice is
a specific subspace of a larger state space H that is spanned by fusion diagrams of the
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following form:

. (1.11)

Dynamical variables living on plaquettes (written in white), edges (written in black), and
vertices (written in black) of the honeycomb lattice are labeled by simple objects, simple
1-morphisms, and basis 2-morphisms of C respectively. More precisely, the plaquette
variables take values in the set of representatives of connected components of simple objects
of C, and the edge variables take values in the set of representatives of isomorphism classes
of simple 1-morphisms of C, see Section 2.1 for the terminology. The dynamical variables
on plaquettes are denoted by Γi in the above equation, whereas the dynamical variables on
edges and vertices are not specified in order to avoid cluttering the diagram. The colored
surfaces in eq. (1.11) are labeled by objects ρ, σ, and λ, which are not dynamical variables
of the model. Similarly, the colored edges in eq. (1.11) are labeled by 1-morphisms f and
g, which are not dynamical variables as well. The state space H0 is the subspace of H on
which the eigenvalue of the plaquette operator B̂p defined by the following equation is 1
for every plaquette p:

B̂p =
∑

Γ45∈End(Γ4)

dim(Γ45)

Dim(Γ4)
. (1.12)

Here, dim(Γ45) is the quantum dimension of a simple 1-morphism Γ45, and Dim(Γ4) :=
dim(Γ4) dim(EndC(Γ4)) is the product of the quantum dimension of a simple object Γ4

and the total dimension of a fusion 1-category EndC(Γ4) := HomC(Γ4,Γ4), see Section 2
for the definitions of these quantities. The diagram on the right-hand side of eq. (1.12) is
evaluated by fusing the loop labeled by Γ45 to the edges of the honeycomb lattice. We note
that B̂p is a local commuting projector just like the plaquette operator of the Levin-Wen
model [125]. The projector to the subspace H0 is given by the product of B̂p’s on all
plaquettes, namely, we have

H0 =


 ∏

p: plaquettes

B̂p


H. (1.13)

Hamiltonian. The Hamiltonian of the model is given by H = −∑
p: plaquettes T̂p, where

each term T̂p is defined by the following diagrammatic equation:

T̂p = . (1.14)
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Figure 16: The action of a fusion 2-category symmetry is defined by the fusion of surface
and line defects to the spatial lattice.

The diagram on the right-hand side is evaluated by fusing the yellow surface, yellow
edges, and yellow vertices into the honeycomb lattice. Here, they are labeled by an object
F ∈ Obj C, 1-morphisms (1.9), and 2-morphisms (1.10) as shown in Figure 15. If we
expand them in terms of simple objects, simple 1-morphisms, and basis 2-morphisms, the
Hamiltonian (1.14) can also be written as

T̂p =
∑

Fint

A(Fint) , (1.15)

where the weight A(Fint) is a complex number, and the summation on the right-hand
side is taken over all possible simple objects, simple 1-morphisms, and basis 2-morphisms
labeling the yellow surface, yellow edges, and yellow vertices in the diagram. The labels
summed over are collectively denoted by Fint in the above equation. Specifically, Fint

consists of one simple object, six simple 1-morphisms, and six basis 2-morphisms. Under
several assumptions that we spell out in Section 4.2, we can show that the Hamiltonian
(1.15) becomes Hermitian if the weight satisfies A(Fint) = A(F int)

∗, where F int basically
means the dual of Fint, see Section 4.2 for more details.21

Symmetry. The fusion surface model defined above has a fusion 2-category symmetry
described by the input fusion 2-category C. The action of the symmetry is defined by the
operation of fusing topological surfaces and topological lines into the honeycomb lattice
from above as shown in Figure 16. This symmetry action can be written in terms of the
10-j symbols of the fusion 2-category. The commutativity of the symmetry action and the
Hamiltonian (1.15) is guaranteed by the coherence conditions on the 10-j symbols. This
is because the symmetry operator acts on a state from above, while the Hamiltonian acts
on a state from below, see eq. (1.7) for an analogous statement in 1+1d.

Examples. Let us see several examples of the fusion surface model that we will discuss
in this paper.

21We can always make the Hamiltonian Hermitian by adding the Hermitian conjugate, which would not
violate the fusion 2-category symmetry of the model.
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• Spin models with anomalous finite group symmetries. When the input
fusion 2-category is the 2-category 2VecωG of G-graded 2-vector spaces with a twist
ω ∈ H4(G,U(1)) [55], the fusion surface model has a finite group symmetry G with
an anomaly ω. In particular, when ρ, σ, and λ are the sum of all simple objects
ρ = σ = λ = ⊞g∈G g, the dynamical variables of the model are G-valued spins on
all plaquettes. Thus, the fusion surface model in this case reduces to an ordinary
spin model with an anomalous finite group symmetry. We will study this example
in Section 4.4.3. As a special case, the fusion surface model includes the anomaly
free G-symmetric spin model discussed in [113].

• Lattice models with non-invertible and invertible 1-form symmetries.
When the input fusion 2-category is (the condensation completion of) a ribbon cat-
egory B,22 the fusion surface model has a non-invertible 1-form symmetry described
by B. We will discuss this example briefly in Section 4.4.2. In particular, when
the fusion rules of B are group-like, the fusion surface model reduces to an ordinary
spin model with an anomalous invertible 1-form symmetry. This example will be
discussed in more detail in Section 5.1.

• Kitaev honeycomb model without a magnetic field. When the input fusion
2-category is (the condensation completion of) the Ising category, we can obtain the
Kitaev honeycomb model without a magnetic field [147] as a variant of the fusion
surface model. We will consider this example in Section 5.2.

• Non-chiral topological phases with fusion 2-category symmetries. For any
fusion 2-category C, we can construct a commuting projector Hamiltonian with C
symmetry by defining the input data of the fusion surface model using a separable
algebra in C. Since the Hamiltonian is the sum of local commuting projectors, this
model would realize a non-chiral topological phase with C symmetry. We expect that
all non-chiral topological phases with arbitrary fusion 2-category symmetries can be
realized in this way by choosing a separable algebra appropriately. This example
will be discussed in Section 5.3.

1.4 Structure of the paper

This paper is organized as follows. In Section 2, we review fusion 2-categories and the state
sum construction of the 4d Douglas-Reutter TFT. In Section 3, we define the 3d height
models on a cubic lattice, which are three-dimensional analogues of the 2d AFM height
models. In Section 4, we derive the 2+1d fusion surface models on a honeycomb lattice by
taking an appropriate limit of the 3d height models. In particular, we see that the fusion
surface models are (2+1)-dimensional analogues of the 1+1d anyon chain models. We
also investigate the unitarity and fusion 2-category symmetries of these models. Finally,
in Section 5, we study several examples of the fusion surface models, including those that
would realize general non-chiral topological phases with fusion 2-category symmetries.

2 Preliminaries

Throughout the paper, we suppose that the base field of a fusion 2-category is C.

22The condensation completion physically means that we add in topological surfaces consisting of the
condensates of topological lines. Mathematically, the condensation completion of a ribbon category B
is described by the 2-category Mod(B) of module categories over B.
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2.1 Fusion 2-categories

Finite symmetries in 2+1 dimensions are characterized by the algebraic structure of topo-
logical surfaces, topological lines, and topological point defects. In unitary theories, these
defects are expected to form a spherical fusion 2-category. In this section, we briefly review
the basics of fusion 2-categories. We refer the reader to [55] for more details, see also [148].

A fusion 2-category C consists of objects, 1-morphisms between objects, and 2-morphisms
between 1-morphisms. The 1-morphisms between objects A and B form a finite semisim-
ple 1-category, which is denoted by HomC(A,B). The subscript C of HomC(A,B) will
often be omitted in what follows. The 2-morphisms between 1-morphisms a and b form
a finite dimensional vector space, which is denoted by Hom(a, b). Physically, objects, 1-
morphisms, and 2-morphisms correspond to surface defects, line defects, and point defects
respectively. The diagrammatic representations of these data are shown in Figure 11.

The fusion of topological surfaces labeled by A and B corresponds to taking the tensor
product of objects A and B. The tensor product of A and B, which is denoted by A□B,
is represented by the diagram of layered two surfaces, where the surface labeled by A is
put in front of the surface labeled by B, see Figure 12. The unit of the tensor product is
called a unit object and is denoted by I. The unit object I corresponds to a trivial surface
defect, which is represented by an invisible diagram.

The fusion of topological lines labeled by a and b corresponds to the composite of 1-
morphisms a and b, which is denoted by a ◦ b. In the diagrammatic representation of
the composite a ◦ b, the line labeled by a is on the left of the line labeled by b. There
is also a similar correspondence between the fusion of topological point defects and the
composition of 2-morphisms.

Every object and every 1-morphism of a fusion 2-category C have their duals. The dual
A# of an object A is represented by the orientation reversal of a surface diagram labeled
by A. Similarly, the dual a∗ of a 1-morphism a is represented by the orientation reversal
of a line labeled by a.23 We note that a∗ is a 1-morphism from B to A when a is a
1-morphism from A to B. Taking the duals of objects and 1-morphisms is involutive, i.e.,
we have A## = A and a∗∗ = a.

An object A ∈ C is called a simple object if the vector space of 2-endomorphisms of
the identity 1-morphism 1A is one-dimensional, i.e., End(1A) := Hom(1A,1A) ∼= C. The
unit object I of a fusion 2-category is required to be simple. Similarly, a 1-morphism
a ∈ Hom(A,B) is called a simple 1-morphism if its endomorphism space End(a) is a
one-dimensional vector space. We note that the identity 1-morphism of a simple object
is simple. A fusion 2-category C has only finitely many (isomorphism classes of) simple
objects and simple 1-morphisms between simple objects.

Any objects and 1-morphisms in C can be decomposed into finite direct sums of simple
objects and simple 1-morphisms respectively. The direct sum of objects A and B is denoted
by A ⊞ B, whereas the direct sum of 1-morphisms a and b is denoted by a ⊕ b. Simple
objects and simple 1-morphisms are indecomposable, which means that they cannot be
decomposed into direct sums any further.

Since the unit object I is simple, the identity 1-morphism 1I has a one-dimensional
vector space of 2-endomorphisms End(1I) ∼= C. This implies that any 2-endomorphism of
1I is proportional to the identity 2-morphism and hence can be identified with a number.
In particular, a closed surface diagram, when viewed as a 2-endomorphism of 1I , gives rise
to a complex number. This enables us to define complex numbers dimR(a) and dimL(a)

23In the mathematical literature, the dual of a 1-morphism is often called the adjoint.

18



for a 1-morphism a ∈ Hom(A,B) by the following sphere diagrams:

dimR(a) = , dimL(a) = . (2.1)

We call these quantities the right and left dimensions of a. Here, we implicitly used the
(co)evaluation 1- and 2-morphisms to define the cups and caps as in the definition of the
quantum dimension in a fusion 1-category, cf. Figure 5d.
The left and right dimensions agree with each other when a fusion 2-category C is

equipped with an additional structure called a pivotal structure. In a pivotal fusion 2-
category, the right (or equivalently left) dimension of a 1-morphism a is simply denoted by
dim(a) and is called the quantum dimension of a. In particular, the quantum dimension
of the identity 1-morphism 1A ∈ End(A) is denoted by dim(A) := dim(1A) and is called
the quantum dimension of A.24 A pivotal fusion 2-category C is said to be spherical if the
quantum dimension of every object agrees with the quantum dimension of its dual. In the
rest of this paper, a fusion 2-category C always means a spherical fusion 2-category.

The quantum dimension of a 1-morphism a ∈ Hom(A,B) can be understood as the trace
of the identity 2-morphism of a. More generally, the trace of a 2-morphism α ∈ End(a) is
defined as the value of the following sphere diagram:

Tr(α) = . (2.2)

The trace defines a non-degenerate pairing ⟨α, β⟩ := Tr(αβ) between 2-morphisms α ∈
Hom(a, b) and β ∈ Hom(b, a). The dual bases of the vector spaces Hom(a, b) and Hom(b, a)
with respect to the above non-degenerate pairing are denoted by {αi} and {αi}, which
satisfy ⟨αiαj⟩ = δij . We call αi and αi basis 2-morphisms or normalized 2-morphisms.

In a fusion 1-category, the associativity of the tensor product is captured by the F -
symbols. In a fusion 2-category, the tensor product among objects satisfies a higher
associativity, which is captured by the data called the 10-j symbols. Specifically, the
10-j symbols z+(Γ; [01234]) and z−(Γ; [01234]) are defined by the following diagrammatic
equations:25

=
∑

Γ024

∑

Γ0124,Γ0234

dim(Γ024)z+(Γ; [01234]) ,

(2.3)

24Simple objects A and B can have different quantum dimensions even if they are isomorphic to each other.
Physically, isomorphic objects with different quantum dimensions differ by an invertible 2d TFT.

25The 10-j symbols defined here are the same as those defined in [55]. Indeed, eq. (2.3) and (2.4) reduce
to the original definition of the 10-j symbols given in [55] if we take the trace of these equations after
post-composing a 2-morphism that is the dual of a summand on the right-hand side.
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=
∑

Γ024

∑

Γ0124,Γ0234

dim(Γ024)z−(Γ; [01234]) .

(2.4)
Here, the diagram in the above equation consists of ten surfaces [ij] labeled by simple
objects Γij where 0 ≤ i < j ≤ 4, ten lines [ijk] labeled by simple 1-morphisms Γijk ∈
HomC(Γij□Γjk,Γik) where 0 ≤ i < j < k ≤ 4, and five points [ijkl] labeled by basis 2-
morphisms Γijkl ∈ Hom(Γikl ◦ (Γijk□1Γkl

),Γijl ◦ (1Γij□Γjkl)) where 0 ≤ i < j < k < l ≤ 4.
The summation on the right-hand side is taken over (isomorphism classes of) simple 1-
morphisms Γ024 and basis 2-morphisms Γ0124 and Γ0234. The braiding of two lines Γ012

and Γ234 on the right-hand side represents the interchanger 2-isomorphism [55], which
reduces to the ordinary braiding isomorphism when Γ012 and Γ234 are 1-endomorphisms
of the unit object I.

For later convenience, we define the notion of connected components of simple objects
and simple 1-morphisms in a fusion 2-category C. Simple objects A and B are connected
if and only if there exists a non-zero 1-morphism between them, and we say they are in
the same connected component. Similarly, simple 1-morphisms a and b are connected if
and only if there exists a non-zero 2-morphism between them. We note that the connected
component of a simple object is bigger than the isomorphism class of the simple object.26

This is because there can be non-zero 1-morphisms between simple objects A and B even
if they are not isomorphic to each other. The set of connected components of simple
objects in C is denoted by π0C. By a slight abuse of notation, we will also write the set of
representatives of connected components as π0C.

2.2 Douglas-Reutter TFT

The Douglas-Reutter TFT is a four-dimensional oriented topological field theory obtained
from a spherical fusion 2-category C [55]. This TFT generalizes various 4d TFTs known
in the literature, see table 1.27 In this section, we review the Douglas-Reutter TFT, which
is denoted by DR(C), following Walker’s universal state sum [160].

Let M be a closed oriented 4-manifold. In order to define the partition function of the
Douglas-Reutter TFT DR(C) on M , we first choose a triangulation of M . We also give
a branching structure on the triangulated 4-manifold M by choosing a global order o of
0-simplices.

The dynamical variables of the Douglas-Reutter TFT DR(C) are simple objects Γij

living on 1-simplices [ij], simple 1-morphisms Γijk living on 2-simplices [ijk], and basis

26On the other hand, the connected component of a simple 1-morphism agrees with the isomorphism
class. This is because a simple 1-morphism a : A → B in a fusion 2-category is a simple object in a
finite semisimple 1-category Hom(A,B) and every non-zero morphism between simple objects in such
a 1-category is an isomorphism due to Schur’s lemma.

27There are also other 4d TFTs such as unoriented TFTs [149, 150], spin and pin TFTs [151], and TFTs
with U(1) symmetry [152], which are not examples of the Douglas-Reutter TFT. We do not consider
these TFTs in this paper. It would be interesting to generalize our analyses to these TFTs.
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Table 1: The relation between the Douglas-Reutter TFT and other 4d TFTs [55].

Fusion 2-category Douglas-Reutter TFT

Finite group (with a twist) (twisted) Dijkgraaf-Witten TFT [153]
Finite 2-group (with a twist) (twisted) Yetter TFT [154,155]

Ribbon category Crane-Yetter TFT [156–158]
G-crossed braided fusion category Cui TFT [159]

Figure 17: The compatibility conditions on a configuration of dynamical variables. The
left figure represents the compatibility between the dynamical variable on a 2-
simplex [ijk] and those on the boundary of [ijk]. The right figure represents the
compatibility between the dynamical variable on a 3-simplex [ijkl] and those
on the boundary of [ijkl].

2-morphisms Γijkl living on 3-simplices [ijkl], where i < j < k < l with respect to the
global order o of 0-simplices. Here, Γij and Γijk are taken from the set of representatives
of connected components of simple objects and simple 1-morphisms. A configuration
of the above dynamical variables must be compatible with the monoidal structure of a
fusion 2-category C in the following sense: a simple 1-morphism Γijk is a 1-morphism from
Γij□Γjk to Γik and a basis 2-morphism Γijkl is a 2-morphism from Γikl ◦ (Γijk□1Γkl

) to
Γijl ◦ (1Γij□Γjkl). These compatibility conditions can be expressed by the fusion diagrams
shown in Figure 17. A configuration Γ of dynamical variables is referred to as a C-state.
The partition function of DR(C) is given by the sum of appropriate weights over all

possible C-states. More specifically, the partition function ZDR(M) on a closed oriented
4-manifold M is defined by the following formula: [55,160]

ZDR(M) =
∑

Γ

∏

0-simplices [i]

1

dim(C)
∏

1-simplices [ij]

1

Dim(Γij)

∏

2-simplices [ijk]

dim(Γijk)
∏

4-simplices [ijklm]

zϵo([ijklm])(Γ; [ijklm]).
(2.5)

Here, dim(C) = ∑
X∈π0C(dim(End(X)))−1 is the total dimension of a fusion 2-category C,28

Dim(Γij) := dim(Γij)dim(End(Γij)) is the product of the quantum dimension dim(Γij)
of a simple object Γij and the global dimension dim(End(Γij)) of the endomorphism 1-
category End(Γij), and dim(Γijk) is the quantum dimension of a simple 1-morphism Γijk.
The weight zϵo([ijklm])(Γ; [ijklm]) on a 4-simplex [ijklm] is the 10-j symbol defined by
eqs. (2.3) and (2.4). The subscript ϵo([ijklm]) is a sign determined by the orientation
of a 4-simplex [ijklm] in the following way: ϵo([ijklm]) is + if the orientation of [ijklm]
induced by the orientation of the underlying manifold M agrees with the one induced by
the global order o of 0-simplices, and ϵo([ijklm]) is − otherwise.

28The global dimension dim(End(X)) of End(X) for a simple object X ∈ π0C is given by the sum of the
squared norm ∥x∥2 = (dim(x)/dim(X))2 for all (isomorphism classes of) simple objects x ∈ End(X).
We note that ∥x∥ is the quantum dimension of x viewed as an object of a fusion 1-category End(X).
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The formula (2.5) is based on Walker’s universal state sum construction [160], which is
slightly different from the original formulation by Douglas and Reutter [55]. In the original
paper by Douglas and Reutter, dynamical variables Γij on 1-simplices are taken from the
set of isomorphism classes of simple objects rather than the set of connected components
of them. Accordingly, the scalar factor on each 1-simplex [ij] is further divided by the
number of (isomorphism classes of) simple objects in the connected component of Γij .
In the subsequent sections, we will use Walker’s universal state sum construction instead
of the original formulation by Douglas and Reutter because the former can immediately
be applied to manifolds with general cell decompositions, which is convenient for our
purposes.
In order to apply Walker’s universal state sum to a closed 4-manifold M with a general

cell decomposition, we begin with turning the cell decomposition into a handle decompo-
sition by thickening each cell. A thickened j-cell is called a j-handle, which has the shape
of Bj × B4−j where Bn is an n-dimensional ball. We sometimes use the terms j-cell and
j-handle interchangeably. The boundary of a j-cell is topologically a 3-sphere S3 consist-
ing of two regions Sj−1 × B4−j and Bj × S3−j . The former region is glued to i-cells for
i < j, while the latter region is glued to i-cells for i > j. Given a handle decomposition
as above, we can write down the partition function of the Douglas-Reutter TFT on M as

ZDR(M) =
∑

Γ

∏

4-handles h4

1

dim(C)
∏

3-handles h3

1

Dim(Γ(h3))
∏

2-handles h2

ev(Γ(∂h2))
∏

0-handles h0

ev(Γ(∂h0)),
(2.6)

where a C-state Γ is a compatible assignment of simple objects Γ(h3), simple 1-morphisms
Γ(h2), and basis 2-morphisms Γ(h1) to 3-handles h3, 2-handles h2, and 1-handles h1 re-
spectively. In the above equation, Γ(∂hj) represents the surface diagram that appears as
the intersection of the 3-sphere ∂hj and the original (i.e., not thickened) cell decomposition
labeled by a C-state Γ. Since the surface diagram Γ(∂hj) is closed, it defines a 2-morphism
from the unit object I to itself, which is canonically identified with a complex number.
This complex number, which would be expressed in terms of the 10-j symbols and the
quantum dimensions, is denoted by ev(Γ(∂hj)) in the above equation. We note that eq.
(2.6) reduces to eq. (2.5) when the cell decomposition is the dual of a triangulation.
We can also apply Walker’s universal state sum to manifolds with boundaries. In order

to compute the partition function on an oriented 4-manifold M with boundary ∂M , we
endow M with a cell decomposition and label the boundary 2-cells, boundary 1-cells,
and boundary 0-cells by simple objects, simple 1-morphisms, and basis 2-morphisms in a
consistent manner. The labeling on the boundary cells defines a fusion diagram on ∂M ,
which we denote by F . A fusion diagram F on the boundary is called a coloring. When
the boundary ∂M is colored by a fusion diagram F , a C-state Γ in the bulk is constrained
so that the dynamical variable Γ(hj) on a bulk j-cell intersecting the boundary ∂M agrees
with the label on the boundary (j−1)-cell hj ∩∂M . For this setup, the partition function
on an oriented 4-manifold M with a non-empty boundary can be written as

ZDR(M ;F) = NF
∑

Γ

∏

4-handles h4

1

dim(C)
∏

3-handles h3

1

Dim(Γ(h3))
∏

2-handles h2

ev(Γ(∂h2))
∏

0-handles h0

ev(Γ(∂h0)),
(2.7)

where the products on the right-hand side are taken over j-handles that do not intersect
the boundary. The numerical factor NF is a complex number that depends only on the
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Figure 18: A schematic picture of the 3d classical statistical model obtained from the 4d
Douglas-Reutter TFT on a slab N × [0, 1]. We impose a topological boundary
condition τ on the left boundary N×{0}. On the other hand, we impose a (not
necessarily topological) boundary condition decorated by a coloring

∑
F A(F)F

on the right boundary N × {1}. The above geometry defines a genuine three-
dimensional system because the four-dimensional bulk is topological.

coloring F on the boundary. In particular, NF does not depend on the cell decomposition
of the bulk. The detailed definition of NF does not matter for later applications as we
will see shortly in Section 3.1.

3 3d height models

3.1 3d classical statistical models from 4d Douglas-Reutter TFT

We construct three-dimensional classical statistical models based on the Douglas-Reutter
TFT. Specifically, we put the DR theory on a slab N × [0, 1], where N is a closed oriented
3-manifold equipped with a cell decomposition. See Figure 18. The partition function of
this 3d classical statistical model is given by

Z(A; τ) =
∑

F
A(F)ZDR(N × [0, 1]; τ,F), A(F) ∈ C. (3.1)

Here, ZDR(N × [0, 1]; τ,F) is the partition function of the Douglas-Reutter TFT on a
slab N × [0, 1], where τ and F specify the boundary conditions on the left and right
boundaries respectively. Concretely, τ is a topological boundary condition on the left
boundary N × {0} and F is a coloring on the right boundary N × {1}.29 We note that
the numerical factor NF in eq. (2.7) is absorbed into the redefinition of the weight A(F)
in eq. (3.1) and therefore the precise form of NF does not matter.

The above partition function defines a purely three-dimensional system because we can
squash the bulk TFT due to its topological nature. Indeed, we can write the right-hand
side of the above equation without using the four-dimensional bulk at all. To see this, we
choose a cell decomposition of N × [0, 1] so that every j-cell in the bulk is of the form
cj−1× [0, 1], where cj−1 is a (j−1)-cell on the boundary. In particular, there are no 0-cells
in the bulk. For this choice of a cell decomposition, we can think of a C-state, which
is originally defined as a collection of dynamical variables in the bulk, as a collection of
dynamical variables on the boundary N × {1} by projecting the dynamical variables on
j-cells in the bulk onto the corresponding (j − 1)-cells on the boundary N × {1}. More
specifically, a C-state assigns a simple object, a simple 1-morphism, and a basis 2-morphism

29We expect that a topological boundary τ is obtained by decorating the Dirichlet boundary by a fine mesh
of topological surfaces labeled by an algebra object of the input fusion 2-category. In the subsequent
sections, we will restrict our attention to the case where τ is the Dirichlet boundary.
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to each 0-cell, 1-cell, and 2-cell on the boundary N × {1}. We note that the dynamical
variables are now living only on the boundary N ×{1}. Since the projection of dynamical
variables in the bulk to the boundary preserves the locality, the partition function (3.1)
can be viewed as a genuine 3d classical statistical model.

The symmetry of the above 3d classical statistical model is determined by the pair
of the 4d TFT DR(C) in the bulk and a topological boundary condition τ on the left
boundary. For this reason, the bulk topological field theory is called a symmetry TFT
[19, 91, 124, 133–135] or categorical symmetry [58, 136–141] in the literature. Specifically,
the symmetry of the 3d model is generated by topological defects living on the topological
boundary τ . Therefore, a different choice of a topological boundary condition gives rise
to a different symmetry.30

In what follows, we take τ to be the Dirichlet boundary condition, which means that
the coloring on the left boundary N × {0} is a trivial fusion diagram. In this case, eq.
(2.7) implies that we can shrink the left boundary N ×{0} to a point when computing the
partition function because shrinking the Dirichlet boundary to a point does not affect the
surface diagrams Γ(∂hj) in eq. (2.7). More specifically, the partition function on a slab
N × [0, 1] agrees, up to a constant N0, with the partition function on a cone pt ∗N , which
is a (singular) manifold obtained by shrinking the Dirichlet boundary to a point. Thus,
the partition function of the 3d classical statistical model can be written as

Z(A) =
∑

F
A(F)ZDR(pt ∗N ;F). (3.2)

We note that the scalar factor N0 is absorbed into the redefinition of A(F).

Before proceeding, we emphasize that the simple objects, simple 1-morphisms, and basis
2-morphisms contained in the coloring F are regarded as dynamical variables of the 3d
model for the time being. These dynamical variables will be integrated out when we
will define the 3d height models in the next subsection. Hence, the dynamical variables
of the 3d height models consist only of simple objects, simple 1-morphisms, and basis
2-morphisms contained in the C-state Γ.

3.2 3d height models on a triangulated cubic lattice

Let us now explicitly construct the 3d height model based on the above general idea of
constructing 3d classical statistical models. The lattice Λ on which the 3d height model is
defined is a cubic lattice endowed with a triangulation and a branching structure as shown
in Figure 19. The underlying 3-manifold of Λ is supposed to be a 3-torus T 3.

A configuration of dynamical variables is specified by a pair (Γ,F) of a C-state Γ and
a coloring F . As we mentioned in the previous subsection, a C-state Γ assigns a simple
object Γi to each 0-simplex [i], a simple 1-morphism Γij to each 1-simplex [ij], and a basis
2-morphism Γijk to each 2-simplex [ijk]. On the other hand, a coloring F consists of a
simple object Fij on each 1-simplex [ij], a simple 1-morphism Fijk on each 2-simplex [ijk],
and a basis 2-morphism Fijkl on each 3-simplex [ijkl].31 This difference is because, in the
4d Douglas-Reutter theory on the cone, while Γ’s are assigned to the cells connecting the
vertex [pt] and the right boundary, F ’s are assigned to the simplices on the boundary.

30Given a topological boundary condition, we can obtain another topological boundary condition by
condensing a separable algebra formed by a set of topological defects on the boundary. The condensation
of a separable algebra on the topological boundary is regarded as the gauging of the fusion 2-category
symmetry of the 3d model.

31A coloring F gives rise to a fusion diagram on the dual cell decomposition of Λ.
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Figure 19: The cubic lattice on which the 3d height model is defined is equipped with the
above triangulation and branching structure.

The partition function of a general 3d classical statistical model defined in the pre-
vious subsection can be written as the sum of the Boltzmann weights over all possible
configurations of dynamical variables on Λ as follows:

Z(A) =
∑

Γ

∑

F
A(F)

∏

0-simplices [i]

1

Dim(Γi)

∏

1-simplices [ij]

dim(Γij)
∏

cubes c

z(Γ,F ; c). (3.3)

Here, the weight z(Γ,F ; c) on a cube c is given by the product of the weights on the
3-simplices contained in c. By construction, the weight on a 3-simplex [ijkl] is the 10-j
symbol on the corresponding 4-simplex pt ∗ [ijkl], whose vertices are ordered as pt <
i, j, k, l. Therefore, if we label the vertices of a cube c by 1, 2, · · · , 8 as shown in Figure
19, we can write the weight z(Γ,F ; c) as

z(Γ,F ; c) = zϵ(Γ,F ; pt ∗ [1245])zϵ(Γ,F ; pt ∗ [2456])zϵ(Γ,F ; pt ∗ [4568])
z−ϵ(Γ,F ; pt ∗ [1345])z−ϵ(Γ,F ; pt ∗ [3457])z−ϵ(Γ,F ; pt ∗ [4578]), (3.4)

where ϵ = ± is a sign determined by the choice of an orientation of the underlying manifold
T 3. We note that the relative signs for different 3-simplices [ijkl] are determined solely
by the branching structure on Λ, which is independent of the choice of the orientation
of T 3. For example, the relative sign for 3-simplices [1245] and [2456] can be computed
as follows. We first suppose that each 4-simplex pt ∗ [ijkl] has an orientation ϵijkl.

32 In
this case, a 4-simplex pt ∗ [1245] induces an orientation −ϵ1245 on a 3-simplex pt ∗ [245],
whereas a 4-simplex pt ∗ [2456] induces an orientation ϵ2456 on pt ∗ [245]. These induced
orientations must be opposite to each other because the underlying (singular) manifold
pt ∗ T 3 is oriented. Therefore, we find ϵ1245 = ϵ2456, which shows that the relative sign
for [1245] and [2456] is positive. Similarly, we can compute the relative signs for other 3-
simplices. We can also check that ϵ in eq. (3.4) does not depend on a cube c by computing
the relative signs for 3-simplices contained in adjacent cubes.
A 3d height model is obtained by choosing a weight A(F) appropriately as we describe

below. In order to define the 3d height model, we first take A(F) to be the product of
local weights on cubes:

A(F) =
∏

cubes c

Ac(Fc). (3.5)

We note that the function Ac(Fc) can depend on a cube c, meaning that the Boltzmann
weight can be non-uniform on the lattice Λ. The argument Fc denotes the set of dynamical
variables contained in the coloring on a cube c. More specifically, Fc consists of 19 simple

32We define the orientation of an n-simplex [i0 · · · in−1] to be positive if it is an even permutation of
i0, · · · , in−1. Otherwise, the orientation of [i0 · · · in−1] is defined to be negative.
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Figure 20: We fix the coloring on the boundary of each cube as above, while we keep the
coloring inside each cube dynamical. The dual fusion diagram of the above
coloring is shown in Figure 21.

Figure 21: The coloring (3.6) on a triangulated cube defines a fusion diagram on the dual
cell decomposition, which looks like a hexagonal prism as shown above. The
yellow surface, lines and points in the above diagram are the duals of the
internal edge, triangles and tetrahedra of a triangulated cube.

objects Fc
ij on 1-simplices [ij] in c, 12 simple 1-morphisms Fc

ijk on 2-simplices [ijk] in c,
and 6 basis 2-morphisms Fc

ijkl on 3-simplices [ijkl] in c. The superscript c will be omitted
when it is clear from the context. Furthermore, we fix the coloring on the boundary of
each cube so that we can integrate out the coloring F later while preserving the locality of
the Boltzmann weight. In other words, we require that a local weight Ac(Fc) is non-zero
only when a coloring Fc satisfies the following conditions, see also Figure 20:

Fc
12 = Fc

34 = Fc
56 = Fc

78 = Fc
35 = Fc

46 = ρ,

Fc
13 = Fc

24 = Fc
57 = Fc

68 = Fc
25 = Fc

47 = σ,

Fc
15 = Fc

26 = Fc
37 = Fc

48 = Fc
14 = Fc

58 = λ,

Fc
124 = Fc

125 = Fc
347 = Fc

357 = Fc
468 = Fc

568 = f,

Fc
134 = Fc

135 = Fc
246 = Fc

256 = Fc
478 = Fc

578 = g.

(3.6)

Here, ρ, σ, and λ are simple objects, and f : ρ□σ → λ and g : σ□ρ → λ are simple
1-morphisms, all of which are chosen arbitrarily.33 We emphasize that the choice of these
simple objects and simple 1-morphisms does not depend on a cube c. The above coloring
defines a fusion diagram on the dual of a triangulated cube as shown in Figure 21. The
coloring inside a cube c, which is denoted by Fc

int, remains dynamical after fixing the
coloring on the boundary of c. Since the coloring Fc

int inside c can be chosen independently
of the coloring Fc′

int inside any other cube c′, the summation over all colorings F in eq.
(3.3) can be factorized into the summations over Fc

int for all cubes c. Therefore, we can
write the partition function (3.3) as

Z(A) =
∑

Γ

∏

[i]

1

Dim(Γi)

∏

[ij]

dim(Γij)
∏

c

∑

Fc
int

Ac(Fc
int)z(Γ,F ; c). (3.7)

33Although we assume that objects ρ, σ, λ, and 1-morphisms f, g are simple, a similar derivation of the 3d
height model can be applied even when they are non-simple.
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Figure 22: The initial time slice (left) and the final time slice (right) on a single cube.

For later convenience, we write the above partition function in a more compact form as

Z(A) =
∑

Γ

∏

c: cubes

Wc(Γ; c), (3.8)

where the Boltzmann weight Wc(Γ; c) on a cube c is defined by

Wc(Γ; c) = dim(Γc
45)

√√√√
∏

j=4,5

∏
i=1,2,3

∏
k=6,7,8 dim(Γc

ij)dim(Γc
jk)

Dim(Γc
j)

∑

Fc
int

Ac(Fc
int)z(Γ,F ; c).

(3.9)
We call the 3d classical statistical model defined by the above partition function a 3d
height model because this model is a three-dimensional analogue of the 2d AFM height
model in [33]. We note that a coloring F is already integrated out in eq. (3.8) and hence
is no longer regarded as a dynamical variable of the 3d height model.

Although we do not describe in detail, we can also incorporate topological defects by
inserting them on the left (i.e., topological) boundary of the Douglas-Reutter theory before
squashing the four-dimensional bulk. These topological defects generate the symmetry of
the 3d height model. In Section 4.4, we will see how this symmetry is realized in the
corresponding 2+1d quantum model.

4 2+1d fusion surface models

Throughout this section, we suppose that the weight Ac(Fc
int) does not depend on cube c

and write it simply as A(Fc
int).

4.1 2+1d fusion surface models from 3d height models

In this subsection, we derive the Hamiltonian of the 2+1d fusion surface model on a
honeycomb lattice, which is the quantum counterpart of the 3d height model on the
triangulated cubic lattice Λ. To this end, we first choose a time direction on Λ. The time
direction on each cube is given by the direction from vertex [4] to vertex [5]. We call
vertices [4] and [5] the initial vertex and the final vertex respectively. The above choice of
a time direction enables us to define the initial time slice and the final time slice for each
cube as follows: the initial time slice consists of the faces containing the initial vertex [4],
whereas the final time slice consists of the faces containing the final vertex [5], see Figure
22.34 A global time slice on the whole cubic lattice is illustrated in Figure 23, where the
cubes are colored in blue, green, and yellow for later convenience.

34We can equally choose the time direction in the opposite way, and we will end up with the same (family
of) models.
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(a)

(b)

Figure 23: (a) A colored cubic lattice. A blue cube is surrounded by three green cubes
and three yellow cubes. A green cube is surrounded by three yellow cubes and
three blue cubes. A yellow cube is surrounded by three blue cubes and three
green cubes. (b) The initial and final time slices at t = 0, 1 viewed from the z
direction. Each red line represents the intersection of a time slice and a plane
perpendicular to the z-axis.

The triangulation of a cubic lattice shown in Figure 19 gives rise to a triangular lattice
on a single time slice, which is the Poincaré dual of a honeycomb lattice. We illustrate
the relation between a triangulated cubic lattice, a triangular lattice, and a honeycomb
lattice in Figure 24. The plaquettes of the honeycomb lattice in Figure 24 are colored
in accordance with the colors of the cubes of the cubic lattice. We note that dynamical
variables on the honeycomb lattice are simple objects, simple 1-morphisms, and basis
2-morphisms living on plaquettes, edges, and vertices.35

Based on the above definition of a time slice, we define the transfer matrix of the 3d
height model on Λ. The transfer matrix T̂ is a linear map from the state space on a time
slice at t = 0 to the state space on another time slice at t = 1. Physically, this linear
map represents the imaginary time evolution from t = 0 to t = 1. The state space on a
time slice is spanned by possible configurations of dynamical variables on the honeycomb
lattice. Specifically, the state space H is given by H = Span{|Γ⟩}, where |Γ⟩ denotes a
state corresponding to a configuration Γ on the honeycomb lattice. Pictorially, we will
often write |Γ⟩ as

|Γ⟩ =

∣∣∣∣∣∣∣∣∣

〉
, (4.1)

where we omitted labels on the edges and vertices on the right-hand side in order to avoid
cluttering the notation. The inner product of states in H is defined by ⟨Γ′|Γ⟩ = δΓ,Γ′ .

If we choose the initial time slice at t = 0 and the final time slice at t = 1 as shown in
Figure 23, the transfer matrix T̂ is factorized into the product of three linear maps

T̂ = T̂yellowT̂greenT̂blue, (4.2)

35Equivalently, simple objects, simple 1-morphisms, and basis 2-morphisms are living on vertices, edges,
and plaquettes of the triangular lattice.
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Figure 24: A time slice on the triangulated cubic lattice (left) becomes a triangular lattice
(middle), which is related to a honeycomb lattice (right) by the Poincaré dual-
ity. The color of a vertex v of the cubic lattice represents the color of the cube
whose initial vertex is v. A vertex of the triangular lattice has the same color
as the color of the corresponding vertex of the cubic lattice, while a plaquette
of the honeycomb lattice has the same color as the color of its dual vertex of
the triangular lattice.

where T̂blue, T̂green, and T̂yellow are the imaginary time evolutions on the blue plaquettes,
green plaquettes, and yellow plaquettes respectively. More specifically, the linear map
T̂blue is given by the product of local transfer matrices on the blue plaquettes. The matrix
element of the local transfer matrix T̂p on a plaquette p is defined by the Boltzmann weight
on the corresponding cube c with the dynamical variables inside c integrated out, namely,

〈
∣∣∣∣∣∣∣∣∣
T̂p

∣∣∣∣∣∣∣∣∣

〉
=

∑

Γc
int

Wc(Γ; c), (4.3)

where c is a cube whose initial vertex is dual to the plaquette p and Γc
int is the collection of

dynamical variables inside c. We note that the local transfer matrices on blue plaquettes
commute with each other because any two plaquettes of the same color are not adjacent
to each other. Hence, the product of these transfer matrices is defined unambiguously.
The other two linear maps T̂green and T̂yellow in eq. (4.2) are also defined by the products
of local transfer matrices on the green plaquettes and the yellow plaquettes respectively.
Therefore, we have

T̂ =
∏

yellow plaquettes py

T̂py

∏

green plaquettes pg

T̂pg

∏

blue plaquettes pb

T̂pb . (4.4)

The partition function (3.3) of the 3d height model can be written in terms of the above
transfer matrix as Z(A) = TrH(T̂

N ), where N is the number of lattice sites in the time
direction.
The transfer matrix formalism of the 3d height model enables us to write down the

Hamiltonian of the corresponding 2+1d quantum model on a honeycomb lattice. Specifi-
cally, we define the Hamiltonian of the 2+1d quantum lattice model by

H = −
∑

plaquettes p

T̂p, (4.5)

where T̂p is the local transfer matrix on a plaquette p defined by eq. (4.3). However, the
above 2+1d model is not precisely the quantum counterpart of the 3d height model. This
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is because the imaginary time evolution e−ϵH on the state space H does not become the
transfer matrix of the 3d height model even when ϵ ≪ 1. In other words, the transfer
matrix T̂ of the 3d height model cannot be expanded as T̂ = idH−ϵH +O(ϵ2) due to the
fact that the state space H contains a lot of states that are redundant in the description
of the 3d height model.
The appropriate quantum counterpart of the 3d height model is obtained by restricting

the state space of the above 2+1d model to a specific subspace of H. To see this, we first
notice that the partition function of the 3d height model can also be written as

Z(A) = TrH

(
(T̂0T̂ T̂0)

N
)
= TrH0(T̂

N ), (4.6)

where T̂0 is the transfer matrix for the trivial weight A(Fc
int) = δFc

int,1
and H0 := T̂0H

is the image of T̂0. Here, the trivial weight means that A(Fc
int) is one if Fc

int is a trivial
coloring and zero otherwise. We note that T̂0 is a projector, that is, it satisfies T̂ 2

0 = T̂0.
This is because the Dirichlet boundary decorated by the trivial coloring is topological in
the imaginary time direction. More explicitly, T̂0 can be written as the product of local
commuting projectors as in eq. (4.21), which makes it clear that T̂0 is a projector. The
first equality of eq. (4.6) follows from the relation T̂ = T̂0T̂ T̂0, which is an immediate
consequence of the fact that T̂0 is the transfer matrix for the trivial weight. The second
equality of eq. (4.6) follows from the definition of H0. Equation (4.6) motivates us to
consider a 2+1d quantum lattice model whose state space on the honeycomb lattice is
H0 rather than H. The Hamiltonian of this model is given by eq. (4.5), where the
domain of the Hamiltonian is now restricted to H0. The restriction of the state space
to H0 makes sense because the Hamiltonian (4.5) does not mix states in H0 and those
in the kernel ker(T̂0) of T̂0 due to the equality T̂ = T̂0T̂ T̂0. The 2+1d quantum lattice
model on H0 is precisely the quantum counterpart of the 3d height model. Indeed, if
we take the weight A(Fc

int) of the 3d height model to be slightly off from the trivial
weight, i.e., δFc

int,1
+ ϵA(Fc

int) for ϵ ≪ 1, the transfer matrix T̂ can be expanded in ϵ as

T̂ = T̂0 − ϵHT̂0 +O(ϵ2),36 which reduces to idH0 − ϵH +O(ϵ2) on H0. Namely, our 2+1d
lattice model whose state space is H0 can be obtained by taking the anisotropic limit of
the 3d height model. Here, we emphasize that the point in passing to the smaller state
space H0 is to find the completely anisotropic limit where the transfer matrix becomes
the identity, around which we can expand the transfer matrix.
The introduction of H0 is also motivated by the 3+1d perspective. Specifically, the state

space of the DR theory on a time slice that is perpendicular to the boundaries depicted in
Figure 18, is represented by H0, not H. This can be understood by noting that T̂0 is the
transfer matrix when the decoration remains invariant under time translation, and such a
transfer matrix should be evaluated as the identity operator on the state space.
There is also another way to see the reduction of the state space from a 3+1d point

of view. As we will discuss in Section 4.3, T̂0 is the projection onto the eigenspace of
a generalized Levin-Wen plaquette operator. This insight implies that H corresponds to
the state space for configurations where a bunch of hollow cylinders connects the two
boundaries of the 3+1d slab in Figure 18. Each cylinder terminates at the center of a
plaquette on the right boundary and extends horizontally in the figure, and inside it,
there is the trivial phase. The projector T̂0 is responsible for closing these holes, cf. the
original discussion by Levin and Wen [125, Appendix C].
The discrepancy between the naive coloring space H and the space H0 stems from the

difference in the homotopy type of the honeycomb lattice, on which the coloring is defined,

36We note that HT̂0 = T̂0HT̂0 because T̂ and T̂0 commute with each other due to T̂ = T̂0T̂ T̂0.
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and the homotopy type of the continuum space on which the DR theory is defined. The
former has almost as many generators as plaquettes, while the latter depends only on the
global shape of the space (e.g. either torus or open disk). This discrepancy does not occur
in 1+1d open anyon chain.

We note that the derivation of the above 2+1d quantum lattice model from the 3d
height model is parallel to the derivation of the 1+1d anyon chain model from the 2d
AFM height model elaborated on in [33]. Thus, we can think of our lattice model as a
2+1d analogue of the anyon chain model. Indeed, as we will see in Section 4.3, our 2+1d
model admits a graphical representation analogous to the anyon chain model. We call
these 2+1d lattice models fusion surface models.

As we will discuss in Section 4.4, the 2+1d fusion surface model has an exact fusion
2-category symmetry described by the input fusion 2-category C. Equivalently, the 2+1d
quantum lattice model defined by the same form of the Hamiltonian (4.5) acting on a
larger state space H has a fusion 2-category symmetry C only on its subspace H0 ⊂ H.37

The existence of this fusion 2-category symmetry is guaranteed by the symmetry TFT
construction depicted in Figure 18.

4.2 Unitarity of the model

In this subsection, we spell out the condition for the Hamiltonian (4.5) to be Hermitian
under several assumptions on the input fusion 2-category C. Let us first list the assump-
tions that we make. The first assumption is that the set of representatives of the connected
components of simple objects is closed under taking the dual up to isomorphism. Namely,
for the representative X of every connected component, there is a connected component
whose representative Y is isomorphic to the dual object X#. This isomorphism is assumed
to preserve the quantum dimension and the 10-j symbol. The precise meaning of this as-
sumption will become clear in a later computation. Similarly, for every representative x of
simple 1-morphisms in HomC(X,Y ), there is a representative y of simple 1-morphisms in
HomC(Y,X) that is isomorphic to x∗, and we assume that this isomorphism preserves the
10-j symbol.38 We also make an assumption that the quantum dimensions of the repre-
sentatives of simple objects and simple 1-morphisms are positive real numbers.39 Finally,
we assume that the 10-j symbol has the properties that we call the reflection positivity
and the 4-simplex symmetry. The reflection positivity of the 10-j symbol zϵ(Γ; [01234]) is
the property that flipping the orientation of a 4-simplex [01234] amounts to taking the
complex conjugation of the 10-j symbol:40

z−ϵ(Γ; [01234]) = zϵ(Γ; [01234])
∗. (4.7)

The 4-simplex symmetry of the 10-j symbol zϵ(Γ; [01234]) is the invariance under any
permutation σ ∈ S5 of vertices of a 4-simplex [01234]:

zϵ(Γ; [01234]) = zϵ·sgn(σ)(Γ; [σ(0)σ(1)σ(2)σ(3)σ(4)]). (4.8)

37This kind of symmetry is called exact emergent symmetry in [161].
38This assumption particularly implies that the Frobenius-Schur indicator of a self-dual simple 1-morphism

is trivial.
39The quantum dimension of a simple object is multiplied by λ2 if we stack an invertible 2d TFT on top

of it, where λ2 is the partition function of the invertible 2d TFT on a sphere. We note that λ has to
be real and hence λ2 is positive if this invertible 2d TFT is reflection positive [162].

40The term “reflection positivity” originates from an analogy to the property of a reflection positive
quantum field theory: the partition function of a reflection positive quantum field theory becomes its
complex conjugate if the orientation of the underlying spacetime is reversed.
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The signature sgn(σ) of a permutation σ is + if σ is an even permutation and it is − if σ
is an odd permutation.41

When the permutation σ is non-trivial, the right-hand side of eq. (4.8) involves objects
and morphisms that are dual to those on the left-hand side. Let us illustrate this point by
considering the simplest example where σ = (01) is the transposition of 0 and 1. In this
case, the 4-simplex symmetry (4.8) reduces to zϵ(Γ; [01234]) = z−ϵ(Γ; [10234]). The right-
hand side of this equation involves a simple object Γ10, whereas the left-hand side involves
another simple object Γ01. These simple objects are supposed to be dual to each other,
i.e., we have Γ10 = Γ#

01. Similarly, the right-hand side z−ϵ(Γ; [10234]) involves a simple
1-morphism Γ10j : Γ10□Γ0j → Γ1j for 2 ≤ j ≤ 4, whereas the left-hand side zϵ(Γ; [01234])
involves another simple 1-morphism Γ01j : Γ01□Γ1j → Γ0j . These simple 1-morphisms
are related to each other by an appropriate duality that contains both the object-level
duality and the morphism-level duality. Specifically, the relation between Γ01j and Γ10j is
expressed as

= , (4.9)

where Γ∗
01j : Γ0j → Γ01□Γ1j is the morphism-level dual of Γ01j and (Γ∗

01j)
# : Γ#

1j□Γ#
01 →

Γ#
0j is the object-level dual of Γ∗

01j . The relation between the basis 2-morphisms on the
left-hand side Zϵ(Γ; [01234]) and those on the right-hand side z−ϵ(Γ; [10234]) is also given
in a similar way. The 4-simplex symmetry (4.8) implies that the 10-j symbol on a 4-
simplex does not depend on the choice of a branching structure on it. This is a natural
generalization of the tetrahedral symmetry of the 6-j symbol of a fusion 1-category [163].

Let us now derive the condition for the Hermiticity of the Hamiltonian (4.5) based on
the above assumptions. We first write down the matrix element of the local Hamiltonian
T̂p explicitly as follows:

〈
∣∣∣∣∣∣∣∣∣
T̂p

∣∣∣∣∣∣∣∣∣

〉

=
∑

Γ45

∑

Γ145,··· ,Γ458

∑

F45

∑

F145,··· ,F458

∑

F1245,··· ,F4578

A(F45;F145, · · · ,F458;F1245, · · · ,F4578)

dim(Γ45)

√√√√
∏

j=4,5

dim(Γ1j)dim(Γ2j)dim(Γ3j)dim(Γj6)dim(Γj7)dim(Γj8)

Dim(Γj)

zϵ(Γ,F ; pt ∗ [1245])zϵ(Γ,F ; pt ∗ [2456])zϵ(Γ,F ; pt ∗ [4568])
z−ϵ(Γ,F ; pt ∗ [1345])z−ϵ(Γ,F ; pt ∗ [3457])z−ϵ(Γ,F ; pt ∗ [4578]).

(4.10)

41We expect that these conditions, e.g., the triviality of the Frobenius-Schur indicators of 1-morphisms, can
be relaxed to the axioms of what we should call a unitary fusion 2-category. In the more general cases,
the Hermiticity condition (4.12) should be modified to include, e.g., the Frobenius-Schur indicators:
see Section 5.1. We do not explore the most general conditions in this paper.
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The summation on the right-hand side is taken over the representatives of simple objects,
simple 1-morphisms, and basis 2-morphisms. Due to the assumptions, the matrix element
of the Hermitian conjugate of T̂p can be computed as

〈
∣∣∣∣∣∣∣∣∣
T̂ †
p

∣∣∣∣∣∣∣∣∣

〉
=

〈
∣∣∣∣∣∣∣∣∣
T̂p

∣∣∣∣∣∣∣∣∣

〉
∗

=
∑

Γ54

∑

Γ154,··· ,Γ548

∑

F54

∑

F154,··· ,F548

∑

F1254,··· ,F5478

A(F54;F154, · · · ,F548;F1254, · · · ,F5478)
∗

dim(Γ45)

√√√√
∏

j=4,5

dim(Γ1j)dim(Γ2j)dim(Γ3j)dim(Γj6)dim(Γj7)dim(Γj8)

Dim(Γj)

zϵ(Γ,F ; pt ∗ [1245])zϵ(Γ,F ; pt ∗ [2456])zϵ(Γ,F ; pt ∗ [4568])
z−ϵ(Γ,F ; pt ∗ [1345])z−ϵ(Γ,F ; pt ∗ [3457])z−ϵ(Γ,F ; pt ∗ [4578]).

(4.11)
The Hamiltonian (4.5) is Hermitian if and only if the above two quantities (4.10) and (4.11)
agree with each other. We emphasize that Γ45,F45, etc. involved in the 10-j symbols in
eq. (4.11) are not representatives themselves in general but the appropriate duals of the
representatives Γ54,F54, etc. Although they are not representatives, they are isomorphic
to representatives because the set of representatives is assumed to be closed under taking
the dual up to isomorphism. Since we are assuming that these isomorphisms preserve the
quantum dimension and 10-j symbol, we can identify the summands on the right-hand side
of eq. (4.11) with those on the right-hand side of eq. (4.10). Therefore, the Hermiticity
condition on the Hamiltonian (4.5) reduces to

A(F45;F145, · · · ,F458;F1245, · · · ,F4578) = A(F54;F154, · · · ,F548;F1254, · · · ,F5478)
∗,

(4.12)
where the arguments on the right-hand side are the representatives of the connected com-
ponents of appropriate duals of the arguments on the left-hand side. The above equation
can be written simply as A(Fc

int) = A(Fc
int)

∗, where the bar represents the appropriate
dual.42

4.3 Graphical representation

In this subsection, we give a graphical representation of the 2+1d fusion surface model
that we obtained from the 3d height model. To begin with, we consider a graphical
representation of a state in the larger state space H. As we mentioned in Section 4.1,
states in H are in one-to-one correspondence with possible configurations of dynamical
variables on a honeycomb lattice. A configuration of dynamical variables is constrained
by the monoidal structure of the input fusion 2-category C. For example, a simple 1-
morphism Γij on an edge eij is constrained by the simple objects Γi and Γj on the adjacent
plaquettes pi and pj . More specifically, Γij has to be a simple 1-morphism from Γi□Fij

to Γj , where Fij is a simple object assigned to a 1-simplex [ij] of the original 3d lattice
Λ that is dual to an edge eij on the honeycomb lattice. We recall that Fij is fixed due
to eq. (3.6), meaning that Fij is not dynamical. Similarly, a basis 2-morphism Γijk on a
vertex vijk at the junction of three edges eij , ejk, and eik must be a 2-morphism between

42In Section 5.1, we will see an example where the Hermiticity condition (4.12) is modified due to the
non-trivial Frobenius-Schur indicator of a simple 1-morphism.
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partial
fusion−−−−→

bubble
removal−−−−−→

Figure 25: The diagrammatic representation of the Hamiltonian is evaluated by combining
the partial fusion around edges and the bubble removal around vertices.

Γjk ◦ (Γij□1Fjk
) and Γik ◦ (1Γi□Fijk). The local constraints around all vertices combine

dynamical variables on the honeycomb lattice into a single fusion diagram. Therefore, a
state on the honeycomb lattice can be identified with a fusion diagram as follows:

∣∣∣∣∣∣∣∣∣

〉
= NΓ . (4.13)

Here, the left-hand side is an orthonormal basis of the state space H on the honeycomb
lattice and NΓ is a normalization factor defined by

NΓ =

√ ∏

plaquettes

1

Dim(Γi)

∏

edges

dim(Γij). (4.14)

The action of the local Hamiltonian T̂p on a state (4.13) is graphically expressed as

T̂p =
∑

Γ5

∑

Γ45

∑

Fint

A(Fint)
dim(Γ45)

Dim(Γ5)
.

(4.15)
The yellow surface and the small white plaquette on the right-hand side are labeled by
simple objects F45 and Γ5 respectively. The edges and vertices are also labeled by simple
1-morphisms and basis 2-morphisms, although the labels are omitted in the above equation
due to the lack of space. For example, the loop at the junction of three surfaces Γ4,Γ5,
and F45 is labeled by a simple 1-morphism Γ45 : Γ4□F45 → Γ5. The other labels can also
be deduced from the labels already specified in the above equation. The right-hand side
of eq. (4.15) is evaluated in two steps as shown in Figure 25. In what follows, we show
that the above graphical representation gives the correct matrix element (4.3) of the local
Hamiltonian T̂p by explicitly evaluating the fusion diagram step by step.

The first step of the evaluation is the partial fusion, which is represented by the following
diagrammatic equality of 2-morphisms:

=
∑

d

∑

(πi,ιi)

=
∑

d

∑

αi

dim(d) .

(4.16)
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The 2-morphisms πi and ιi in the above equation are the projection and inclusion 2-
morphisms, whereas αi and αi are basis 2-morphisms. The defining property of the
projection and inclusion 2-morphisms is that they are dual to each other and satisfy
πi · ιj = δij1. In particular, 2-morphisms πi and ιi are proportional to basis 2-morphisms
αi and αi. The proportionality constant can be figured out by comparing the trace of ιi ·πi
with that of αi · αi. The trace of ιi · πi is equal to the quantum dimension of the target
1-morphism d of πi, while the trace of αi ·αi is unity because αi is normalized. Therefore,
we have ιi · πi = dim(d)αi ·αi, which shows the second equality of eq. (4.16). We perform
this partial fusion for all edges around the central plaquette labeled by Γ5.
The second step of the evaluation is to remove the small bubbles that are localized

around the vertices after we perform the partial fusion. As an example, we focus on the
bubble at the left bottom vertex v124. In order to remove the bubble, we first notice that
the configuration of surfaces around a vertex v124 can be identified with the left-hand side
of the 10-j move (2.3) as follows:43

= . (4.17)

This identification makes it clear that the 10-j move around a vertex v124 deforms the
fusion diagram as

=
∑

Γ′
25

∑

Γ′
245

∑

Γ125

dim(Γ′
25)z+(Γ,F ; pt ∗ [1245])

(4.18)
We can now remove the bubble on the right-hand side by using the fact that the com-
position of Γ′

245 and Γ245 is non-zero only when Γ′
25 = Γ25 and Γ′

245 = Γ245. When
non-zero, the above composite map is a 2-endomorphism of Γ25, which is proportional to
the identity 2-morphism because Γ25 is simple. More specifically, we have Γ′

245 · Γ245 =
δΓ25,Γ′

25
δΓ245,Γ′

245
dim(Γ25)

−1idΓ25 , which can be verified by computing the trace of both

sides. Therefore, eq. (4.18) reduces to

=
∑

Γ125

z+(Γ,F ; pt ∗ [1245]) . (4.19)

Similar equations also hold for the other vertices.44

43Equation (4.17) involves the identification of 2-morphisms related by the duality.
44Precisely, the 10-j symbol z+ on the right-hand side is replaced by z− depending on vertices.
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Combining eqs. (4.13), (4.14), (4.15), (4.16), and (4.19) leads to eq. (4.10) with ϵ being
+. Thus, we find that the 2+1d quantum lattice model defined on the larger state space
H has a graphical representation (4.15). This graphical representation can further be
simplified on the subspace H0 ⊂ H as follows:

T̂p =
∑

Fint

A(Fint) . (4.20)

This is the graphical representation of the Hamiltonian of the 2+1d fusion surface model.
We will show the above equation in the rest of this subsection.

Before we derive eq. (4.20), we first specify the subspace H0 ⊂ H in more detail. As
alluded to in Section 4.1, the subspace H0 is defined as the image of the transfer matrix
T̂0 for the trivial weight. The transfer matrix T̂0 is given by the product of local transfer
matrices B̂p, namely,

T̂0 =
∏

plaquettes p

B̂p, (4.21)

where B̂p is represented by the following diagrammatic equation:

B̂p =
∑

Γ45∈End(Γ4)

dim(Γ45)

Dim(Γ4)
. (4.22)

We note that B̂p is a local commuting projector, i.e., it satisfies B̂pB̂p′ = B̂p′B̂p and

B̂2
p = B̂p.

45 Therefore, the subspace H0 is spanned by the states satisfying B̂p = 1 for all
the plaquettes:

H0 = T̂0H = Span{|Γ⟩ ∈ H | B̂p |Γ⟩ = |Γ⟩ ,∀p}. (4.23)

On this subspace, a contractible loop of x ∈ End(Γ4) on a plaquette acts as a scalar
multiplication. This is because the loop operator B̂x

p for a contractible loop of x on a

plaquette p can be absorbed by the projector B̂p as follows:

B̂x
p B̂p = B̂x

p

∑

Γ45∈End(Γ4)

dim(Γ45)

Dim(Γ4)
B̂Γ45

p =
dim(x)

dim(Γ4)
B̂p. (4.24)

This equation implies that a contractible loop of x can be shrunk at the expense of mul-
tiplying a scalar factor dim(x)/dim(Γ4), which is the quantum dimension of an object x
in a fusion 1-category End(Γ4).

On the subspace H0, we can also define the states whose plaquette variables are not
representatives in π0C. This is achieved by demanding that the contractible loop on a
plaquette can be shrunk at the expense of multiplying a scalar factor. Specifically, such a

45The local commuting projector B̂p is nothing but the plaquette term of the Levin-Wen model for the
input fusion 1-category End(Γ4) [125].
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state is defined by

:=
dim(Γ′

4)

dim(x)
. (4.25)

The left-hand side is well-defined on H0 because the right-hand side does not depend on
the choice of x ∈ Hom(Γ′

4,Γ4) when projected onto H0. Indeed, the composite of the loop
operator B̂x

p on the right-hand side and the projector B̂p is independent of x:

dim(Γ′
4)

dim(x)
B̂pB̂

x
p =

∑

y∈Hom(Γ′
4,Γ4)

dim(y)

Dim(Γ4)
B̂y

p . (4.26)

Let us now show that eq. (4.15) reduces to eq. (4.20) on H0. To this end, we use the
following expression for a simple 1-morphism Γ45 : Γ4□F45 → Γ5 on the right-hand side
of eq. (4.15):

Γ45
∼= Γ′

45 ◦ P. (4.27)

Here, P is the projection 1-morphism from Γ4□F45
∼= ⊞Γ′

5 to a fusion channel Γ′
5 and

Γ′
45 is a simple 1-morphism from Γ′

5 to Γ5. We note that the fusion channels are uniquely
determined only up to isomorphism. Physically, isomorphic fusion channels differ by
invertible 2d TFTs stacked to topological surfaces. We can and will always choose the
fusion channels properly so that the dimension of the projection 1-morphism P agrees
with the dimension of its target Γ′

5, i.e., we have dim(P ) = dim(Γ′
5). This choice of the

fusion channels in particular implies that simple 1-morphisms Γ45 and Γ′
45 have the same

dimension. By substituting eq. (4.27) into the right-hand side of eq. (4.15) and shrinking
the loop of Γ′

45, we find

T̂p =
∑

Fint

∑

Γ′
5,P

∑

Γ′
45

A(Fint)
dim(Γ′

45)
2

Dim(Γ5)dim(Γ′
5)

.

(4.28)
Due to the equality dim(End(Γ5)) =

∑
Γ′
45∈Hom(Γ′

5,Γ5)
dim(Γ′

45)
2/dim(Γ5)dim(Γ′

5), which

was shown in [55], the above equation reduces to

T̂p =
∑

Fint

∑

Γ′
5,P

A(Fint) . (4.29)

The right-hand side of the above equation can be written as

∑

Γ′
5,P

= . (4.30)
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To show this equation, we notice that the fusion of two surfaces Γ4 and F45 satisfies

=
∑

Γ′
5,P

c(P ) (4.31)

for some coefficient c(P ) ∈ C. If we compose the both sides with the inclusion 1-morphism
I : Γ′

5 →⊞Γ′
5
∼= Γ4□F45, the above equation reduces to

= c(P ) , (4.32)

where the projection 1-morphism P on the right-hand side is the dual of the inclusion
1-morphism I on the left-hand side. One can extract the coefficient c(P ) by taking the
trace of eq. (4.32) as c(P ) = dim(I)/dim(Γ′

5) = 1, where the last equality follows from
dim(I) = dim(P ) = dim(Γ′

5). Thus, we find that eq. (4.30) holds,46 which then implies
eq. (4.20) due to eq. (4.29).

4.4 Fusion 2-category symmetry

4.4.1 General case

The graphical representation (4.20) makes it clear that the 2+1d fusion surface model has
a fusion 2-category symmetry. The action of a fusion 2-category symmetry C is defined
by the fusion of surface defects and/or line defects to the fusion diagram representing a
state, see Figure 16 for a schematic picture of the symmetry action. The commutativity
of the Hamiltonian and the symmetry action automatically follows from the coherence
conditions for a fusion 2-category. In the following subsections, we study several simple
examples of fusion 2-category symmetries to demonstrate that the fusion surface models
actually have symmetries whose actions are defined in the above fashion.
Before proceeding, we emphasize that in general, the action of a fusion 2-category

symmetry is well-defined only on the projected state space H0. This is because if we try
to define the symmetry action by fusing a topological surface defect to a fusion diagram
representing a state, we generically end up with a fusion diagram whose plaquette variables
are not in the set of representatives of simple objects. Such a fusion diagram can be
canonically identified with a state only on H0 as in eq. (4.25).47

4.4.2 Non-invertible 1-form symmetry

The fusion 2-category that describes a (potentially) non-invertible 1-form symmetry is the
2-category Mod(B) of B-module categories,48 where B is the ribbon 1-category of topo-
logical line defects.49 The fusion 2-category Mod(B) has only one connected component

46The fact that P is the projection 1-morphism from Γ4□F45 to Γ′
5 is not sufficient to show eq. (4.30)

because the left-hand side of eq. (4.30) depends on the choice of the fusion channels through an
isomorphism Γ4□F45

∼= ⊞Γ′
5, whereas the right-hand side does not. Our claim is that eq. (4.30) is

satisfied when each fusion channel Γ′
5 is chosen so that dim(P ) = dim(Γ′

5) .
47As we will see in Section 4.4.2, the action of line defects is well-defined also on H because the edge

variables are always in the set of representatives.
48Here, a 1-form symmetry refers to a symmetry generated by codimension 2 topological defects, which

may or may not be invertible. This symmetry reduces to an ordinary (group-like) 1-form symmetry
when the topological defects are invertible. In this paper, non-invertible 1-form symmetries are also
simply called 1-form symmetries.

49The fusion 2-category Mod(B) is spherical when B is a ribbon 1-category, see Example 2.3.5 of [55].

38



−→ −→

Figure 26: A (potentially) non-invertible 1-form symmetry B acts on states by the fusion
of a topological line defect, which is written in light orange in the above figure.
We use the F -symbols and the R-symbols of a ribbon 1-category B to fuse the
line defect with the edges of a honeycomb lattice.

of simple objects, whose representative is chosen to be a unit object I, i.e., the regular
B-module. The endomorphism category of I ∈ Mod(B) is equivalent to B. In a general
fusion 2-category C, the endomorphism category EndC(I) describes the 1-form part of the
whole symmetry. The action of the 1-form part of a general fusion 2-category symmetry
C can be defined in the same way as the action of Mod(B) symmetry that we will discuss
below. In this subsection, we will focus on the case where C = Mod(B) for simplicity.

Since the connected component of simple objects of Mod(B) is unique, we do not have
dynamical variables on the plaquettes of a honeycomb lattice. Therefore, the dynamical
variables of the model are living only on the edges and vertices. These dynamical variables
are labeled by simple objects and basis morphisms of a ribbon 1-category B.
The diagrammatic representation (4.15) of the Hamiltonian acting on the larger state

space H is given by

T̂p =
∑

Γ45

∑

Fint

A(Fint)
dim(Γ45)

D , (4.33)

where D is the total dimension of a ribbon 1-category B. The right-hand side is evaluated
by fusing the loops of Γ45 and Fint = {F145, · · · ,F458} to the nearby edges. The action of
the 1-form symmetry is defined by the fusion of topological line defects to the honeycomb
lattice as shown in Figure 26. The commutativity of the Hamiltonian and the symmetry
action follows from the coherence conditions (i.e., the pentagon and hexagon equations) of
a ribbon category. It is straightforward to generalize the action of a line defect illustrated
in Figure 26 to the action of a general defect network, which also clearly commutes with
the Hamiltonian (4.33). In particular, we can explicitly define the action of condensation
defects on the lattice [56,68,164].

We emphasize that the action of Mod(B) symmetry commutes with the Hamiltonian
not only on H0 but also on H. This might seem to imply that our 2+1d lattice model
has a non-invertible 1-form symmetry Mod(B) on the entire state space H. However,
the symmetry on H is not the usual 1-form symmetry because the action of a symmetry
operator on a contractible loop is non-trivial. Such a symmetry on the lattice is called a
1-symmetry rather than 1-form symmetry in the literature [58,136]. Therefore, our 2+1d
lattice model has a 1-symmetry on the entire state space H, which reduces to a 1-form
symmetry Mod(B) on H0.

We note that the Hamiltonian (4.33) is factorized into the product of two commuting
operators as

T̂p = B̂pT̂
′
p = T̂ ′

pBp, (4.34)
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where B̂p and T̂ ′
p are defined by

B̂p =
∑

Γ45

dim(Γ45)

D , (4.35)

T̂ ′
p =

∑

Fint

A(Fint) . (4.36)

Eq. (4.35) can be regarded as a special case of eq. (4.36). Both of the above operators
preserve the non-invertible 1-symmetry on H. In particular, a new Hamiltonian defined
by H ′ = −∑

p T̂
′
p also possesses the same non-invertible 1-symmetry.

4.4.3 Anomalous finite group symmetry

We consider the case of a finite group symmetry G with an anomaly [ω] ∈ H4(G,U(1)).
A fusion 2-category 2VecωG describing an anomalous finite group symmetry G consists of
simple objects labeled by group elements. The 10-j symbol is given by a 4-cocycle ω as
z+(Γ; [ijklm]) = ω(Γij ,Γjk,Γkl,Γlm). Since 2VecωG does not have non-trivial 1-morphisms
and 2-morphisms in the sense that Hom2VecωG

(g, h) ∼= δg,hVec as a 1-category, we do not
have dynamical variables on the edges and vertices of a honeycomb lattice. Thus, the
dynamical variables are living only on the plaquettes. The dynamical variable on each
plaquette takes values in G.
In order to obtain a non-trivial model with an anomalous finite group symmetry G, we

need to choose objects ρ, σ, and λ in eq. (3.6) to be non-simple.50 In the following, we
choose ρ, σ, and λ to be the sum of all simple objects, i.e., we have

ρ = σ = λ =⊞
g∈G

g. (4.37)

In this case, there are effectively no constraints on the configuration of dynamical variables
on the plaquettes. More specifically, the state space H of the model is given by the tensor
product of local Hilbert spaces C|G| on the plaquettes of the honeycomb lattice. We note
that there is no difference betweenH andH0 for this example because the local commuting
projector B̂p on each plaquette is the identity operator due to the absence of non-trivial
1-morphisms.
The matrix element (4.10) of the local Hamiltonian T̂p is given by

〈
∣∣∣∣∣∣∣∣
T̂p

∣∣∣∣∣∣∣∣

〉

= A(g−1
4 g5)

ω(g1, g
−1
1 g2, g

−1
2 g4, g

−1
4 g5)ω(g2, g

−1
2 g4, g

−1
4 g5, g

−1
5 g6)ω(g4, g

−1
4 g5, g

−1
5 g6, g

−1
6 g8)

ω(g1, g
−1
1 g3, g

−1
3 g4, g

−1
4 g5)ω(g3, g

−1
3 g4, g

−1
4 g5, g

−1
5 g7)ω(g4, g

−1
4 g5, g

−1
5 g7, g

−1
7 g8)

.

(4.38)

50Objects ρ, σ, and λ were originally supposed to be simple in eq. (3.6). However, the diagrammatic
representation of the model given in Section 4.3 enables us to generalize them to non-simple objects
straightforwardly.
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(a) (b) (c)

Figure 27: We fuse a surface defect to the honeycomb lattice from above by combining
(a) the partial fusion, (b) the deformation of the defect, and (c) the bubble
removal. The orange region in the above figures represents the region where
the surface defect is already fused, while the white region represents the region
where the surface defect is not fused yet.

The diagrammatic representation (4.20) of the above Hamiltonian clearly shows that this
model has an anomalous finite group symmetry whose action is defined by fusing topolog-
ical surface defects to the honeycomb lattice from above.

Let us explicitly compute the action of a finite group symmetry G with anomaly ω.51

To this end, we precisely define the process of fusing a surface defect labeled by g ∈ G to
the honeycomb lattice from above. As illustrated in Figure 27a, instead of performing the
fusion at one time, we first fuse a surface defect to the honeycomb lattice only inside each
plaquette. We then slightly deform the surface defect as shown in Figure 27b and perform
the partial fusion of the defect around the vertices so that the defect looks like Figure 27c.
Removing the small bubbles in Figure 27c completes the fusion of a surface defect. As we
discussed in Section 4.3, removing a bubble at a vertex amounts to multiplying the 10-j
symbol. More specifically, we have

= ω(g, gi, g
−1
i gj , g

−1
j gk) ,

= ω(g, gi, g
−1
i gj , g

−1
j gk)

∗ .

(4.39)

Therefore, the action of g ∈ G on a general state |{gi}⟩ can be written as

Ûg |{gi}⟩ =
∏

ω(g, gi, g
−1
i gj , g

−1
j gk)

∏
ω(g, gi, g

−1
i gj , g

−1
j gk)

∗ |{ggi}⟩ , (4.40)

where the first and the second products on the right-hand side are taken over vertices shown
in the first and the second equalities in eq. (4.39). A straightforward calculation shows
that the symmetry action (4.40) commutes with the Hamiltonian (4.38) due to the cocycle
condition on ω. We note that the anomalous finite group symmetry of the Hamiltonian
(4.38) is preserved even if the weight A(g−1

4 g5) also depends on other variables of the
form g−1

i gj . In particular, when G is anomaly-free, our model reduces to the G-symmetric
models discussed in [113].

51See [165] for the action of an anomalous finite group symmetry in general dimensions.
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5 Examples

In this section, we discuss several examples of the fusion surface model and its variants.
In sections 5.1 and 5.2, we consider the 2+1d lattice models only with 1-symmetries. The
1-symmetries are present on the larger state space H as we observed in Section 4.4.2.
As such, we consider the 2+1d lattice models defined on H without projecting to the
subspace H0. On the other hand, in Section 5.3, we consider the 2+1d lattice models
with general fusion 2-category symmetries. Since such symmetries are present only on
the projected subspace H0, we need to consider the fusion surface models whose state
space is H0 rather than H. In the following, we use 1-symmetry and 1-form symmetry
interchangeably when no confusion can arise. For the 2+1d models with 0-form anomalous
finite group symmetries, see Section 4.4.3.

5.1 Lattice models with anomalous invertible 1-form symmetries

Let A be a finite abelian group. Anomalies of an invertible 1-form symmetry A are
characterized by the F -symbols and R-symbols defined by the following equations:

= F (a, b, c) , = R(a, b) . (5.1)

The quantum dimensions of invertible lines are all given by one, i.e., dim(a) = 1 for all
a ∈ A. In what follows, we will explicitly write down the Hamiltonian of a lattice model
with an anomalous 1-form symmetry A.

To define the model, we choose f and g in eq. (3.6) to be the sum of all group elements
a ∈ A, i.e., we have f = g =

⊕
a∈A a. For this choice of f and g, we can take the dynamical

variables on different edges independently. Therefore, the state space H of the model is
given by the tensor product of the local Hilbert spaces on all edges: H =

⊗
edgesC|A|. The

Hamiltonian is of the form H = −∑
T̂ ′
p, where the local Hamiltonian T̂ ′

p on a plaquette p
is generally given by eq. (4.36).
As an example, we consider the Hamiltonian that consists only of the following three

terms:

T̂ ′
p =

∑

a∈A
Jx(a) + Jy(a) + Jz(a) .

(5.2)
Because of the group-like fusion rules, the labels on the orange edges in the above equation
are uniquely determined by the configuration of dynamical variables on the honeycomb
lattice. A more general Hamiltonian can be obtained by adding the terms given by the
products of operators appearing on the right-hand side. For simplicity, we will focus on
the Hamiltonian (5.2) in the rest of this subsection.
Let us express the above Hamiltonian in terms of F -symbols and R-symbols. To this

end, we first resolve the 4-valent vertices in eq. (5.2) into trivalent vertices as follows:

= . (5.3)
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Figure 28: A honeycomb lattice has three types of edges that we call x-links, y-links, and
z-links. These edges are written in red, green, and blue in the above figure.

The labels Γijk on the dotted edges are uniquely determined by the fusion rule Γijk =
ΓjkΓij . The above resolution of 4-valent vertices enables us to compute each term in eq.
(5.2) as

=
R(Γ12, a)F (Γ26,Γ

−1
26 Γ246a

−1, a)F (Γ24a
−1,Γ12, a)

F (Γ46,Γ24a−1, a)F (Γ24a−1, a,Γ12)F (Γ14,Γ
−1
14 Γ124a−1, a)

,

=
R(Γ24, a)F (Γ46,Γ24, a)F (Γ48,Γ

−1
48 Γ468, a)

F (Γ26,Γ
−1
26 Γ246, a)F (Γ46, a,Γ24)F (Γ68,Γ46, a)

,

=
F (Γ48, a, a

−1Γ−1
48 Γ478)

F (Γ48, a, a−1Γ−1
48 Γ468)

.

If we write the above operators as Ôx(a), Ôy(a), and Ôz(a) respectively, the total Hamil-
tonian of the model can be written as

H = −
∑

a∈A


 ∑

x-links

Jx(a)Ôx(a) +
∑

y-links

Jy(a)Ôy(a) +
∑

z-links

Jz(a)Ôz(a)


 , (5.4)

where x-links, y-links, and z-links are depicted by red, green, and blue edges in Figure 28.

Anomalous Z2 1-form symmetry. As the simplest example, we consider the case of
an anomalous Z2 1-form symmetry. There are four possible anomalies of a Z2 1-form
symmetry, which are specified by the following F -symbols and R-symbols:

(F (η, η, η), R(η, η)) = (1, 1), (1,−1), (−1, i), (−1,−i). (5.5)

Here, η denotes the generator of Z2. The other components of the F -symbols and R-
symbols are trivial. The Z2 1-form symmetries with the above anomalies are called bosonic,
fermionic, semionic, and anti-semionic Z2 1-form symmetries respectively.52 For each of
these Z2 1-form symmetries, we can write down the operators Ôx(η), Ôy(η), and Ôz(η) in
terms of the Pauli operators.

52The bosonic Z2 1-form symmetry is non-anomalous, whereas the others are anomalous.
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For a bosonic Z2 1-form symmetry, the operators Ôx(η), Ôy(η), and Ôz(η) are all given
by the Pauli X operator. Thus, the Hamiltonian (5.4) can be written graphically as

H = −
∑

x-links

Jx −
∑

y-links

Jy −
∑

z-links

Jz , (5.6)

where the parameters Jx := Jx(η), Jy := Jy(η), and Jz := Jz(η) are real numbers so
that the above Hamiltonian satisfies the Hermiticity condition (4.12). Here and in the
rest of this subsection, we set Jx(1), Jy(1), and Jz(1) to zero for the unit element 1 ∈ Z2

without loss of generality. The above model realizes a trivial phase with bosonic Z2 1-form
symmetry.

For a fermionic Z2 1-form symmetry, the Hamiltonian (5.4) can be written as

H = −
∑

x-links

Jx −
∑

y-links

Jy −
∑

z-links

Jz . (5.7)

The parameters Jx, Jy, and Jz are again chosen to be real due to the Hermiticity condition
(4.12). We note that the qubits on the z-links are decoupled from those on the x-links
and y-links. In particular, the qubits on the z-links have a uniquely gapped ground state
given by a trivial product state. Therefore, in the low-energy limit, the above Hamiltonian
reduces to the stacking of decoupled 1+1d quantum spin chains consisting of the qubits
on the x-links and y-links. These quantum spin chains can be coupled to the qubits on
the z-links by adding the terms such as Ôx(η)Ôz(η) and Ôy(η)Ôz(η).

For a semionic Z2 1-form symmetry, the Hamiltonian (5.4) can be written as

H = −
∑

x-links

Jx −
∑

y-links

Jy −
∑

z-links

Jz , (5.8)

where CZ denotes the controlled-Z operator that acts on the qubits on the two edges
connected by a small arc. The Pauli X operator in each term acts on the middle edge after
the sequence of the controlled-Z and the Pauli Z operators. We note that the Hamiltonian
(5.8) is not Hermitian when the Hermiticity condition (4.12) is satisfied, namely, when Jx,
Jy, and Jz are real numbers. This indicates that the Hermiticity condition (4.12) is invalid
for a semionic Z2 1-form symmetry. This is because the generator η of a semionic Z2 1-form
symmetry has a non-trivial Frobenius-Schur indicator, which violates the assumption used
in the derivation of the Hermiticity condition (4.12). We can make the Hamiltonian (5.8)
Hermitian by taking a linear combination of H and its complex conjugate H†. Adding H†

to the original Hamiltonian H does not break the semionic Z2 1-form symmetry because
H† commutes with the symmetry action when H does. Similar arguments apply to the
case of an anti-semionic Z2 1-form symmetry.

5.2 Kitaev honeycomb model without a magnetic field

The Kitaev honeycomb model without a magnetic field is an exactly solvable model of
qubits on a honeycomb lattice, which exhibits an abelian topological order or a gapless
excitation depending on the parameter of the model [166]. As we will see below, this
model can be obtained as a variant of the 2+1d fusion surface model.
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The fusion 2-category that we use as an input is the 2-category Mod(Ising) of Ising-
module categories, where Ising denotes the modular tensor category describing the Ising
TQFT. The Ising category consists of three simple objects {1, η, σ}, which are subject to
the following fusion rules:

η ⊗ η ∼= 1, η ⊗ σ ∼= σ ⊗ η ∼= σ, σ ⊗ σ ∼= 1⊕ η. (5.9)

The non-trivial F -symbols and R-symbols are summarized as follows [166]:

(F σησ
η )σσ = (F ηση

σ )σσ = −1, (F σσσ
σ )11 = (F σσσ

σ )1η = (F σσσ
σ )η1 =

1√
2
, (F σσσ

σ )ηη = − 1√
2
,

Rηη
1 = −1, Rησ

σ = Rση
σ = −i, Rσσ

1 = e−iπ/8, Rσσ
η = e3iπ/8.

(5.10)
As discussed in full generality in Section 4.4.2, 1-endomorphisms of the unit object of the
fusion 2-category Mod(Ising) form the Ising category. In particular, simple 1-morphisms of
Mod(Ising) are labeled by simple objects 1, η, and σ of Ising. We note that the invertible
object η generates an anomalous Z2 1-form symmetry.

In order to obtain the Kitaev honeycomb model as a variant of the fusion surface model,
we choose both f and g in eq. (3.6) to be σ. Furthermore, we fix the labels on the edges
of the honeycomb lattice to σ, or in other words, we only consider the sector where all
edges are labeled by σ. We note that the restriction to this sector violates the Ising 1-form
symmetry, but still preserves the anomalous Z2 1-form symmetry generated by η. The
dynamical variables in this sector are living only on the vertices of the honeycomb lattice.
The local Hilbert space on each vertex is given by Hom(σ ⊗ σ, σ ⊗ σ) ∼= C2, which means
that we have a qubit on each vertex. The total Hilbert space of the model is given by the
tensor product of the local Hilbert spaces on all vertices.

We define the local Hamiltonian on each plaquette as

T̂ ′
p = Jx + Jy + Jz ,

(5.11)
where the green edges are all labeled by σ. Coupling constants Jx, Jy, and Jz have to be
real due to the Hermiticity condition (4.12). We note that the above Hamiltonian is an
example of the local Hamiltonian (4.36) except that the labels on the edges in eq. (5.11)
are fixed, whereas those in eq. (4.36) are dynamical. For computational purposes, we
resolve each 4-valent vertex into two trivalent vertices as follows:

= . (5.12)

Qubits on the left-hand side are living on the 4-valent vertices, whereas qubits on the right-
hand side are living on the black edges. The qubits on the right-hand side are denoted by
the same letters as the qubits on the left-hand side. After the resolution of the 4-valent
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vertices, we can evaluate each term on the right-hand side of eq. (5.11) as

= = − i(−1)δΓ124,η ,

= = i(−1)δΓ246,η ,

= = (−1)δΓ468,η
+δΓ478,η .

In terms of the Pauli operators, we can write the above operators as −Y124X246, Y246X468,
and Z468Z478 respectively, where Xijk, Yijk, and Zijk denote the Pauli X, Y , and Z
operators acting on the qubit Γijk. If we rotate the bases of qubits Γ124 and Γ468 by π/4,
the first and the second operators become X124X246 and Y246Y468 respectively. Therefore,
the Hamiltonian in the rotated basis can be written as

H = −
∑

x-links

JxXiXj −
∑

y-links

JyYiYj −
∑

z-links

JzZiZj , (5.13)

where x-links, y-links, and z-links are three different types of edges shown in Figure
28. The above is the Hamiltonian of the Kitaev honeycomb model without a magnetic
field [166]. Remarkably, our formulation makes the anomalous Z2 1-form symmetry of
the Kitaev honeycomb model manifest. The symmetry operator on a closed loop indeed
agrees with the loop operator defined in Kitaev’s original paper [166]. This symmetry
guarantees that the Kitaev honeycomb model without a magnetic field realizes non-trivial
phases everywhere in the phase diagram. We note that applying a magnetic field explicitly
breaks the anomalous Z2 1-form symmetry.

5.3 Non-chiral topological phases with fusion 2-category symmetries

In this subsection, we will sketch out how to obtain the 2+1d fusion surface models that
realize non-chiral topological phases with fusion 2-category symmetries. As we discussed
in Section 4, the fusion surface model is the quantum counterpart of the 3d height model,
which is obtained by putting the 4d Douglas-Reutter TFT on a slab as shown in Figure
18. The dynamics of the fusion surface model is determined by the choice of a decorated
boundary condition on the right boundary of the slab. In particular, when the decorated
boundary is topological, the corresponding fusion surface model realizes a topological
phase with fusion 2-category symmetry.

Dirichlet boundary and spontaneous symmetry breaking. The simplest example of a
topological boundary condition is the Dirichlet boundary condition, which is defined by
the trivial coloring on the decorated boundary. Specifically, for the Dirichlet boundary
condition, the simple objects ρ, σ, λ, and the simple 1-morphisms f, g in eq. (3.6) are the
unit object I and the identity 1-morphism 1I respectively. This implies that the graphical
representation (4.13) of a state is given by a planar fusion diagram on a honeycomb
lattice. We note that all the plaquettes of the honeycomb lattice are labeled by the
same simple object because the simple objects on the adjacent plaquettes have to be
connected. Therefore, the state space H0 splits into sectors labeled by (representatives
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of connected components of) simple objects of a fusion 2-category C, namely, we have
H0 =

⊕
X∈π0C HX

0 . Each sector HX
0 is the image of the projector

∏
p B̂p, where B̂p is the

plaquette operator defined by

B̂p =
∑

x∈End(X)

∥x∥
dim(End(X))

. (5.14)

Here, ∥x∥ = dim(x)/dim(X) is the norm of a simple 1-morphism x, i.e., the quantum
dimension of x viewed as a simple object of a fusion 1-category End(X). The Hamiltonian
(4.20) acting on the state space H0 is (proportional to) the identity operator because
the weight A(Fint) is zero when the coloring Fint is non-trivial. Thus, the ground state
subspace of the model is H0 itself. Since the plaquette operator (5.14) is the same as
that of the Levin-Wen model for an input fusion 1-category End(X) [125], each sector
HX

0 of our model realizes a non-chiral topological order described by the Drinfeld center
Z(End(X)) of End(X).53 The non-chiral topological orders realized on different sectors
are mixed by the action of a fusion 2-category symmetry C. Physically, this means that
the fusion 2-category symmetry C is spontaneously broken.

We note that the projection to H0 can also be implemented dynamically by the Hamilto-
nianH = −∑

p B̂p acting on a larger state spaceH spanned by all possible fusion diagrams
on the honeycomb lattice. However, in this case, the fusion 2-category symmetry is not
exact on the lattice but emergent in the low-energy limit.

General topological boundaries and non-chiral topological phases. A more general
topological boundary condition gives rise to a more general topological phase with fusion
2-category symmetry. In general, topological boundaries of the Douglas-Reutter TFT
DR(C) that give rise to non-chiral topological phases with C symmetry are expected to be
in one-to-one correspondence with (the equivalence classes of) finite semisimple module 2-
categories over C.54 Since (the equivalence classes of) finite semisimple module 2-categories
over C are in one-to-one correspondence with (the Morita equivalence classes of) separable
algebras in C [169],55 there should also be a one-to-one correspondence between non-chiral
topological boundaries of DR(C) and separable algebras in C. In particular, the Dirichlet
boundary corresponds to the trivial algebra I ∈ C. A general non-chiral topological
boundary would be realized by condensing a separable algebra A ∈ C on the Dirichlet
boundary. In other words, the coloring F on a non-chiral topological boundary would be
given by the condensation of a separable algebra A, which is a fine mesh of topological
surfaces labeled by A [56, 171, 172]. Indeed, as we will see below, when the coloring F
is the condensation of a separable algebra A ∈ C, the corresponding 2+1d fusion surface
model has a commuting projector Hamiltonian, which suggests that the model realizes a
non-chiral topological phase with fusion 2-category symmetry C.
In order to obtain the 2+1d fusion surface models for general non-chiral topological

phases, we first briefly recall the definition of a separable algebra in a fusion 2-category
C [173]. An algebra A in C is an object equipped with a multiplication 1-morphism

53The constraints from the vertex terms of the Levin-Wen model are already imposed on the state space.
54This is a 4d analogue of the fact that topological boundaries of 3d Turaev-Viro TFT are in one-to-

one correspondence with (the equivalence classes of) finite semisimple module categories over the input
fusion 1-category [19,122,123,142,143]. For the 4d Dijkgraaf-Witten theory, the correspondence between
topological boundaries and module 2-categories over 2VecG is studied in, e.g., [167,168].

55This is a categorified version of Ostrik’s theorem [170].
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m : A□A → A that is associative up to coherence 2-isomorphism µ satisfying56

= . (5.15)

An algebra A ∈ C is called a rigid algebra if the multiplication 1-morphism m : A□A → A
has a dual 1-morphism m∗ : A → A□A. There are a lot of coherence conditions associated
with this duality, which we assume implicitly in the following, see [173,174] for the precise
definition. A rigid algebra A ∈ C is called a separable algebra if the multiplication 1-
morphism m and its dual m∗ satisfy the following conditions:

= . (5.16)

= = . (5.17)

The 2-morphisms in eq. (5.17) should be regarded as appropriate duals of the associativity
2-isomorphism µ and its inverse µ−1. By a slight abuse of notation, we write these 2-
isomorphisms simply as µ and µ−1 in the above equation.57 It is conjectured in [175]
and is proven in [176] that rigid algebras in a fusion 2-category over C are automatically
separable. We note that separable algebras are closely related to the orbifold data of 3d
topological field theories [171,172].
Based on the above definition of a separable algebra, we now write down the Hamilto-

nians of the fusion surface models that realize non-chiral topological phases with fusion
2-category symmetry C. As we mentioned above, the fusion surface model for a non-chiral
topological phase is obtained by choosing the coloring F to be the condensation of a sep-
arable algebra A ∈ C, i.e., Fij = A,Fijk = m, and Fijkl = µ. The Hamiltonian of this

model is given by H = −∑
p T̂p, where the local Hamiltonian T̂p is represented by the

following fusion diagram:

T̂p = . (5.18)

56Precisely, an algebra in a fusion 2-category is also equipped with a 1-morphism i : I → A that satisfies
the unitality condition up to coherence 2-isomorphism. We will not use this datum explicitly in the
following discussions.

57These 2-isomorphisms are denoted by ψl and ψr in [173].
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Here, we suppose that the state space of the model is H0 rather than H so that the
model has an exact fusion 2-category symmetry. It is obvious that the plaquette term T̂p

commute with another plaquette term T̂p′ when the plaquettes p and p′ are apart from

each other. The commutativity of T̂p and T̂p′ for adjacent plaquettes also follows from eqs.
(5.15) and (5.17). For example, we have

T̂pT̂p′ = = = = T̂p′ T̂p. (5.19)

Furthermore, the plaquette term T̂p is a projector, which means that it satisfies

T̂ 2
p = = = T̂p. (5.20)

Here, we used eqs. (5.15) and (5.16) in the first and the third equalities respectively. The
second equality follows from the identity µ−1µ = µµ−1 = id. Thus, we find that the 2+1d
fusion surface model obtained from a separable algebra A ∈ C has a commuting projector
Hamiltonian, which strongly suggests that this model realizes a non-chiral topological
phase with fusion 2-category symmetry C.

Let us finally consider some simple examples. When C is the 2-category 2Vec of finite
semisimple 1-categories, separable algebras are given by multifusion 1-categories [173].
In this case, we expect that eq. (5.18) reduces to the Hamiltonian of the Levin-Wen
model, which realizes the most general non-chiral topological order without symmetry.58

More generally, when C is the 2-category 2VecG of G-graded finite semisimple 1-categories,
separable algebras are given by G-graded multifusion 1-categories [173]. In this case, we
expect that eq. (5.18) reduces to the Hamiltonian of the symmetry enriched Levin-Wen
model [178,179], which realizes the most general non-chiral topological order enriched by
a finite group symmetry G [3].
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