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We investigate the quantum and classical quench dynamics of a one-dimensional strongly chaotic
lattice with L interacting spins. By analyzing the classical dynamics, we identify and elucidate
the two mechanisms of the relaxation process of these systems: one arises from linear parametric
instability and the other from nonlinearity. We demonstrate that the relaxation of the single-
particles energies (global quantity) and of the onsite magnetization (local observable) is primarily
due to the first mechanism, referred to as linear chaos. Our analytical findings indicate that both
quantities, in the classical and quantum domain, relax at the same timescale, which is independent
of the system size. The physical explanation for this behavior lies in the conservation of the L spin
angular momenta. We argue that observables with a well-defined classical limit should conform
to this picture and exhibit a finite relaxation time in the thermodynamic limit. In contrast, the
evolution of the participation ratio, which measures how the initial state spreads in the many-body
Hilbert space and has no classical limit, indicates absence of relaxation in the thermodynamic limit.

I. INTRODUCTION

Much attention has recently been devoted to the relax-
ation process of isolated many-body quantum systems
toward statistical equilibrium and how their relaxation
time depends on model parameters. Different investiga-
tions have yielded contradictory conclusions with respect
to the dependence of the relaxation time on the system
size L: some suggest that it decreases with L [1, 2], de-
pends weakly on L [3, 4], does not depend on L [5], or
increases with L [1, 6–18] either polynomially or expo-
nentially, depending on the observable [19]. The problem
remains open due to the absence of a general theoretical
framework and the inherent difficulty in simulating quan-
tum systems with a large number of particles.

Recently, we proposed a new approach [20] for de-
scribing the statistical properties of interacting many-
body quantum systems with a well-defined classical limit.
The premise is that, under the condition of strong chaos
in both the quantum and classical models, some global
characteristics of the eigenstates can be derived from
the classical equations of motion. Given that the the-
oretical analysis of classical systems is relatively simpler
than that of quantum systems, one can readily obtain
semi-analytical results based on the properties of classi-
cal chaos and apply them to the quantum systems. In
Ref. [20], we demonstrated the effectiveness of this ap-
proach using a one-dimensional (1D) spin model with
varying short-range interactions. Through detailed nu-
merical analyses, we showed that quantities that serve
as building blocks of physical observables coincide in the
classical and quantum descriptions. One such quantity is
the local density of states (LDoS).

The LDoS determines the energy distribution of the
initial state in quench dynamics. In nuclear physics, it
is known as strength function and is used to study the

scattering properties of particles in nuclear reactions [21].
The width of the quantum LDoS characterizes the growth
rate of the participation ratio, that is of the number of
many-body states participating in the evolution of an ini-
tially excited state [22, 23], and the absolute square of the
Fourier transform of the LDoS is the survival probability
of the initial state. As detailed in [20], in cases where the
system exhibits a well-defined classical limit, the LDoS
can be obtained from the classical trajectories associated
with the non-interacting Hamiltonian H0 by projecting
them onto the total Hamiltonian H = H0 + V , where
V represents the inter-particle interaction. The classical
LDoS coincides with the quantum one when the system
is strongly chaotic even for small quantum number.

The goal of the present paper is to investigate the
QCC for many-body systems out of equilibrium. This is
challenging, because the phase space of classical many-
body models is multidimensional and the Hilbert space
of the quantum many-body models grows exponentially
with the number of spins, which makes the QCC anal-
ysis nearly intractable. Recent studies in this direction
have been done in the context of the out-of-time-ordered
correlator [24, 25], and have involved spin models [26–28]
and a p-spin glass model [29], though numerous questions
remain open. Our approach is inspired by the QCC es-
tablished for many-body spin models in [20], which we
now explore for the analysis of the dynamical properties
of those systems. The focus is on the different timescales
identified along the relaxation process of various observ-
ables. With our approach, we can use the classical model
to obtain semi-analytical expressions that successfully de-
scribe the quantum evolution.

Our study concentrates on the classical and quantum
evolution toward equilibrium of both global and local
observables, aiming at estimating their relaxation time.
Specifically, we consider a 1D model of L interacting spins
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in the chaotic regime and investigate the evolution of the
energy associated with the non-interacting Hamiltonian,
which is a global quantity, and of the onsite magnetiza-
tion, which is a local quantity. Our numerical results and
analytical estimates reveal that the evolution of the en-
ergy variance shows excellent QCC and increases linearly
over time, which indicates a diffusive-like spreading.

Due to the strong chaos and ergodicity of the classical
motion of the individual spins on 3D spheres, the energy
spread leads to the ergodic filling of the energy shell.
Surprisingly, we find that the timescale for the diffusive
spread of energy is independent of the number of spins.
The same holds for the relaxation time of the magneti-
zation of individual spins. We attribute this result to
the existence of L local integrals of motion and to choice
of uncorrelated single particles frequencies. The latter
condition leads to the linear dependence of the frequen-
cies variance on the system size L, which results in the
system-size-independence of the relaxation time. We ar-
gue that, in this case, classical chaos is primarily caused
by linear parametric instability rather than by the inter-
action between nonlinear resonances.

We also investigate the evolution of the participation
ratio (aka number of principal components), PR(t). In
contrast to the energy and magnetization, PR(t) does not
have a classical limit. This quantity measures the number
of many-body states that characterize the spread of the
initial state in the Hilbert space, being thus equivalent
to the exponential of a participation entropy. Our nu-
merical data confirm that PR(t) exhibits an exponential
growth over time, with a rate determined by the width
of the LDoS, and demonstrate that this quantity even-
tually reaches saturation at a time that grows with the
number of spins L. This observation aligns with existing
results for interacting fermions and bosons [22, 30]. Our
analytical analysis shows that the relaxation time is pro-
portional to

√
L. This means that the dynamics of the

participation ratio does not saturate in the thermody-
namic limit (L → ∞), which means that thermalization
defined in terms of this quantity does not occur in the
thermodynamic limit.

The paper is organized as follows. In Sec. II, we de-
scribe the spin model in the quantum and classical do-
main. In Sec. III, we analyze the quantum and classi-
cal spread of the single-particles energies, identifying the
timescales for ballistic and diffusive behaviors, before sat-
uration, and comparing the diffusion time with the Lya-
punov time. In Sec. IV, we study the dynamics of the
magnetization in the z-direction of individual spins and
find agreement with the timescales for the energy spread-
ing. In Sec. V, we clarify the concept of linear chaos and
how it helps to explain why the relaxation time for en-
ergy and magnetization does not depend on the system
size. In Sec. VI, we investigate the evolution of a quan-
tity that has no classical limit and whose relaxation time
does depend on system size. Conclusions are provided in
Sec. VII.

II. QUANTUM AND CLASSICAL MODEL

We consider the same model explored in Ref. [20]. The
total Hamiltonian of the model,

H = H0 + V, (1)

consists of two parts.

The first part,

H0 =

L∑
k=1

BkS
z
k , (2)

describes L non-interacting spins on a 1D lattice in a
slightly non-homogeneous magnetic field along the z-axis.
Bk are the local frequencies associated with each spin.
We consider an almost homogeneous distribution of the
single particle frequencies Bk = B0 + δBk, where B0 = 1
and δBk are small random entries, |δBk| ≤ δW ≪ B0.
Nevertheless, we show in Sec. IV that this particular
choice does not affect the generality of our results, pro-
vided classical chaos is strong enough to guarantee the
ergodicity of the motion of the single spins on 3D-unit
spheres.

The second part of the total Hamiltonian,

V = J0

L−1∑
k=1

L∑
i=k+1

1

|i− k|ν
Sx
i S

x
k , (3)

describes the spins interaction. They are subjected to
a two-body interaction V of strength J0 and a variable
interaction range determined by ν. We set J0 > B0,
which guarantees strong chaos [20] both in the quantum
and classical descriptions. In what follows, we mostly
consider ν = 1.4, which corresponds to short-range inter-
action and is also referred to as “weak long-range” inter-
action [31]. Additional results for different ranges ν > 1
are also provided in Sec. IV and show that the outcomes
are independent of ν in the short-range regime.

A. Quantum Model

The spins are quantized with an integer value S and
the effective Planck constant is ℏ = 1/

√
S(S + 1), so

that the semiclassical limit is achieved for S ≫ 1. The
“non-interacting many-body basis” (in which H0 is a di-
agonal matrix) corresponds to the eigenstates of H0 and
is denoted by |k⟩ ≡ |s1, ..., sj , ..., sL⟩, where −S ≤ sj ≤ S
and j = 1, ..., L. The interaction V couples basis vectors
that differ by two excitations, so there are two symmetry
sectors, each of dimension dim = (2S + 1)L/2.

The quantum dynamics starts after a quench from H0

to H, so that the initial state |Ψ(0)⟩ is a many-body basis
vector |k0⟩. The components of the evolving wave func-
tion at time t, written in the many-body noninteracting
basis, are

⟨k|Ψ(t)⟩ =
∑

α Cα
k

(
Cα

k0

)∗
e−iEαt/ℏ, (4)
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where

Cα
k ≡ ⟨k|α⟩ (5)

and |α⟩ is an eigenstate of the total Hamiltonian H with
energy Eα.

We consider initial states with energy in the middle
of the spectrum, E0 = ⟨Ψ(0)|H|Ψ(0)⟩ ≃ 0, where the
system has been found to be maximally chaotic [20].

B. Classical Model

The starting point for the classical model are the clas-
sical equations of motion,

Ṡx
k = −BkS

y
k ,

Ṡy
k = BkS

x
k + Sz

k

∑
i ̸=k

JikS
x
i , (6)

Ṡz
k = −Sy

k

∑
i̸=k

JikS
x
i ,

which automatically guarantee the conservation of the

angular momentum |S⃗k|2 = 1 for each k.
The motion of each spin occurs onto a 3D unit sphere,

as explained in [20]. However, the motion of Sx and
Sy is principally different from that of Sz. If the in-
teraction is very weak, the k-th spin rotates around the
z-axis with frequency Bk, keeping the Sz-component al-
most constant. In contrast, if the interaction is strong,
one expects the full coverage of the unit sphere. An im-
portant question is then how the chaotic properties of
the motion of individual spins emerge with the increase
of the spin-spin interaction. The detailed analysis per-
formed in [20] revealed the following.

Since the trajectory of any spin is confined to the
unit sphere, the instability of the motion is defined by
only one positive Lyapunov exponent λ+ instead of the
Kolmogorov-Sinai entropy, which is the sum of the pos-
itive exponents associated with the many-dimensional
phase space of the model. The value of λ+ can be found
numerically from the second-order differential equation
for Sz

k obtained from Eq. (6),

S̈k
z +Ω2

k(t)S
k
z = Fk(t), (7)

where both

Ω2
k(t) = J2

0

[∑
j ̸=k

Sx
j (t)

|j − k|ν

]2
, (8)

Fk(t) = J0
∑
j ̸=k

BjS
y
j (t)S

y
k(t)−BkS

x
j (t)S

x
k (t)

|j − k|ν
(9)

are quasi-periodic functions defined by the motion of all
other spins. In first order of perturbation theory (in
J0) the two functions above do not depend on the Sk

z -
component. This means that the motion in Eq. (7) is
described by a linear parametric oscillator with an ex-
ternal quasi-periodic force with many frequencies origi-
nated from the set of unperturbed frequencies Bk. Thus,

for a relatively weak perturbation J0, the mechanism
of chaos is the same known to emerge in linear time-
dependent models. The analysis shows that the effect
of non-linearity, which is a common mechanism of clas-
sical chaos, occurs in the next order approximation. As
one sees, the instability of the spin-motion is due to both
linear and non-linear mechanisms, but the latter plays a
minor role in the short-time relaxation of the system, as
will be clear below.
Note that the instability of the motion of the indi-

vidual spins can be measured numerically in a relatively
easy way, in contrast with the very difficult procedure
of finding the Lyapunov spectra. Our numerical anal-
ysis in [20] has shown that the Lyapunov exponent λ+

approximately equals the maximal Lyapunov exponent
in the total spectrum of exponents. This significantly
simplifies the derivation of the characteristic timescale
defined by the Lyapunov spectra. On the other hand,
the question of whether the Kolmogorov-Sinai entropy
has any relation with the global dynamical properties of
spin models remains open, in our opinion.
Since local instability determined by the Lyapunov ex-

ponent is not enough to characterize global chaos, which
is typically associated with ergodicity, we carefully ana-
lyzed the problem of classical ergodicity in Ref. [20]. As
explained there, a very efficient and simple way to rigor-
ously define classical ergodicity in spin systems is to ver-
ify the ergodicity of the motion of each individual spin
on its unit sphere. This significantly simplifies the nu-
merical analysis of ergodicity, because we do not need to
consider the full many-dimensional phase space. Specifi-
cally, ergodicity means that the distribution of each one
of the three Cartesian components of each single spin,
Sx(t), Sy(t), and Sz(t), should follow the expression for
each component of the random eigenstates of 3D random
matrices. In this way, we numerically obtained that our
model is completely ergodic and chaotic for J0 ≳ 3. This
value marks the crossover from a partially chaotic to an
ergodic system with strong chaos both in the quantum
and classical description.

III. RELAXATION IN THE ENERGY SHELL:
GLOBAL OBSERVABLE

Our goal in this paper is to establish, both semi-
analytically and numerically, the timescales that char-
acterize the quantum evolution after a quench toward
equilibrium and how they depend on the parameters of
our spin model. To this end, we compare the quantum
and classical dynamics of a global observable in this sec-
tion and of a local observable in the next section. The
analysis of the evolution of a quantity that has no clas-
sical limit is left for Sec. VI.
In both the quantum and the classical model, the dy-

namics takes place in the energy shell, which is defined by
the projection of H onto H0 [20]. The width of the shell
is restricted by the strength of inter-particle interaction,
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FIG. 1. (a) Classical and quantum energy spread (∆E0)
2(t) in time for two interaction strengths: strong interaction J0 = 3

(upper curves) and weak interaction J0 = 0.6 (lower curves) ones. Red curves correspond to the classical data and black
curves, to quantum data. (b) Same as (a) but in the log-log scale to better show the different behaviors at different timescales.
Dashed blue line indicates ballistic behavior (∆E0)

2 ∝ t2, dashed green lines indicates diffusive behavior (∆E0)
2 ∝ t, and the

saturation of the dynamics (∆E0)
2 ∝ const is marked in magenta. The vertical arrows indicate the approximate values of τb,

where the behavior changes from ballistic to diffusive, and τd, where the diffusive dynamics saturates. The parameters are:
L = 9, B0 = 1, δW = 0.2, ν = 1.4. For the classical case, the average is done over 104/L initial conditions with |E0| < 0.01.
For the quantum case, the average is done over 50 initial basis states with energy |E0| < 0.01. For the quantum simulation, we
use the spin quantum number S = 1.

not by the whole energy space.

The global observable that we consider in this section
is the variance in the energies of the single particles given
by H0. This quantity spreads in the energy shell due to
the inter-particle interaction. In the quantum model, it
is defined by the following relation

(∆E0)
2(t) = ⟨Ψ(t)|H2

0 |Ψ(t)⟩ − ⟨Ψ(t)|H0|Ψ(t)⟩2. (10)

The corresponding classical quantity is obtained by sub-
stituting the quantum average ⟨...⟩ with the average over

many initial conditions, indicated as (. . .), with the same
energy E0 ≃ 0.

Notice that in the quantum case, the energy of the
initial state, which is an eigenstate of H0, can be equiva-
lently computed in terms of the total Hamiltonian or of
the noninteracting Hamiltonian,

E0 = ⟨Ψ(0)|H|Ψ(0)⟩ = ⟨Ψ(0)|H0|Ψ(0)⟩, (11)

because the two-body interaction between spins has zero
diagonal matrix elements in the basis of H0. To keep
the quantum-classical description as close as possible, we
therefore choose a set of initial conditions for the classical
spins in such a way that each of them has null interacting
energy and null average total energy. In practice, this
means to choose Sz

k(0) such that H0(0) =
∑

k BkS
z
k(0) =

0 and random −1 < Sx,y
k (0) < 1, so that H(0) = 0.

To identify the different timescales emerging during the

dynamical process, let us first compare in Fig. 1 the clas-
sical and quantum results for (∆E0)

2(t) numerically ob-
tained for two interaction strengths, weak (J0 = 0.6) and
strong (J0 = 3) interaction. The spin quantum number
considered is S = 1. One sees that the correspondence
between the quantum and classical results is extremely
good even for such small spin number.

The curve for strong interaction (J0 = 3) in Fig. 1(b)
exhibits three different dynamical regimes. The dynam-
ics is initially ballistic (blue dashed line), then it be-
comes diffusive (green dashed line), before finally relax-
ing to equilibrium (magenta dashed line). On the other
hand, the diffusive regime is absent for weak interac-
tion (J0 = 0.6), so saturation happens after the ballistic
spread. In Ref. [20], it was numerically proved that for
strong interaction, the motion is not only chaotic (defined
by a maximal positive Lyapunov exponent), but also er-
godic on the unit sphere of each spin. In contrast, for
weak interaction, where diffusion is absent, the dynam-
ics is not ergodic, even though the presence of a maxi-
mal positive Lyapunov exponent signals the presence of
classical chaos. Despite these differences, we observe in
Fig. 1, that the QCC occurs independently of the interac-
tion strength and over all timescales, ballistic, diffusive,
and stationary.
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FIG. 2. (a) Classical energy spread in time, (∆E0)
2(t), for a strong interaction strength, J0 = 3, and different number of spins

L, as indicated in the legend. Dashed and dot-dashed lines indicate, respectively, the ballistic and the diffusive behavior. The
dashed vertical line marks the time τb in Eq. (21) at which the dynamics switches from ballistic to diffusive, thus demonstrating
the independence on L for this timescale. (b) Classical energy spread as a function of J0t for L = 96 and different values of J0.
The curves collapse on each other and the intersection between the ballistic and diffusive regimes is a single point J0τb = const,
thus indicating that τb ∝ 1/J0. The purple dashed line corresponds to Eq. (13), obtained for the ballistic behavior at short
times in the limit of large system size. The orange dashed line indicates the diffusive behavior and is obtained using Eq. (19).
The vertical solid line corresponds to Eq. (21). The average was performed over 104/L initial conditions with |E0| < 0.01. The
other parameters are B = 0 = 1, δW = 0.2, ν = 1.4.

A. Ballistic regime

In this subsection, we perform a semi-analytical study
of the shortest timescale, which is characterized by ballis-
tic propagation. To do this, we turn to the classical model
to derive analytical estimates, which are then compared
with numerical data.

For short time, the variance (∆E0)
2(t) is proportional

to t2. To find the time τb at which the spreading of energy
switches from ballistic to diffusive, we first need to find
the velocity vb defined by the equation ∆E0 = vbt. This
in turn can be obtained from the classical equations of
motion by expanding Sz

k(t) for short time,

Sz
k(t) = Sz

k(0) + tṠz
k(0) + (1/2)t2S̈z

k(0) +O(t3)

and taking into account that we choose initial conditions
to have E0(0) = 0. As mentioned before, this means
that the z-component of all spins, Sz

k(0), initially leads
to
∑

k BkS
z
k(0) = 0 and the x and y components are

chosen to be completely random (keeping fixed the unit
length for the spin vector).

Taking the ensemble average over the initial random

conditions and using Eq. (6), we can show that

(∆E0)
2(t) = t2

 L∑
k=1

Bk

∑
j ̸=k

Jk,jS
y
k(0)S

x
j (0)

2

+O(t3)

=
t2

9

 L∑
k=1

B2
k

∑
j ̸=k

J2
k,j

+O(t3), (12)

where the last equality is due to our choice of completely
random x and y components, so that the non-zero terms

are Sy
k(0)

2 = Sx
j (0)

2 = 1/3. The analytical expression in

Eq. (12) is plotted in Fig. 2(a) (dashed lines) and com-
pared with numerical results (full curves) for different
system sizes L and a strong interaction strength that
guarantees the ergodic motion. We reiterate that the
dashed lines characterizing the short time dynamics are
not fitting lines, but Eq. (12).

In the limit of large system size, Eq. (12) can be further
simplified as

(∆E0)
2(t) ≡ v2b t

2 =

(
L∑

k=1

B2
k

∑
j ̸=k

J2
k,j

)
t2

≃ 2
L∑

k=1

B2
kJ

2
0

∞∑
j=1

1

j2ν
t2 ≃ 2

9
L⟨B2⟩J2

0 ζ(2ν)t
2,

(13)

where in the last equality, we defined implicitly the Rie-
mann zeta function ζ(2ν), which is finite for ν > 1/2,
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and the second moment of the single-particle frequencies

⟨B2⟩ = 1

L

L∑
k=1

B2
k. (14)

The ballistic velocity is therefore

vb = J0

√
2L⟨B2⟩ζ(2ν)

9
. (15)

For our particular choice for the single-particle frequen-
cies, Bk = B0+δBk, where δBk is a small random shift in
the interval (−δW, δW ), we can further simplify Eq. (14)
as

⟨B2⟩ ≃ 1 +
δW 2

3
. (16)

We test Eq. (13) in Fig. 2(b) for a sufficiently large
system size (L = 96) and different interaction strengths.
The collapse of the curves, indicate good agreement
with that equation. In addition to strong interactions
(J0 ≥ 3), we also include an example of moderate in-
teraction strength (J0 = 1.5) to show that, in this case,
since ergodicity is not fully achieved, the energy shell is
not completely filled (compare the black curve with the
red one).

To summarize, the ballistic motion is described by the
following relation,

(∆E0)
2(t) = v2b t

2 with vb = v0J0
√
L, (17)

where we stress the dependence of vb on the system size
L and the interaction strength J0. The constant

v0 =
1

3

√
2ζ(2ν)⟨B2⟩ (18)

depends only on the interaction range ν and on the sec-
ond moment ⟨B2⟩ of the single-particle frequencies. For
our choices of parameters, v0 ≃ 0.53.

In what follows, we use vb to find the ballistic time τb
at which the ballistic regime ends and the diffusion pro-
cess starts, provided that chaos is strong. To estimate τb,
we also need the analytical dependence of the diffusion
coefficient D on the model parameters, which is the sub-
ject of the next subsection. It is interesting to see how
the dependence of vb and D on L combine to guarantee
that τb is independent of system size. Furthermore, as
we will see in Sec. III C, the diffusion time τd also turns
out to be independent of L.

B. Diffusive regime

As seen in Fig. 1(b), the variance of the single-particles
energies after t ≈ τb grows linearly in time when the in-
teraction is strong, which allows us to write a “diffusion-
like” relation,

(∆E0)
2(t) ≃ Dt, (19)

and associate D with a diffusion coefficient. In Fig. 3 we
use quantum number S = 2 and show the time depen-
dence of (∆E0)

2(t) for a fixed system size L varying the

interaction strength J0 [Fig. 3(a)] and for a fixed strong
interaction J0 varying the system size L [Fig. 3(b)].
In Fig. 3(a), the system size is relatively small (L =

6) to make possible the comparison with the quantum
dynamics. We deduce from this figure that the slope
of the linear growth is proportional to the interaction
strength, so D ∝ J0. By rescaling the variance to the
system size, we observe in Fig. 3(b) that the curves for
large values of L are superimposed. This indicates that
for large system sizes, we also have D ∝ L, while for
small L, finite-size effects are relevant. Combining these
results one gets the dependence

D = c0J0L, (20)

where c0 ≈ 0.2 is a constant obtained with a linear fit-
ting. We stress that the diffusion-like spreading in the
energy shell is independent of the choice of parameters,
provided they ensure strong quantum chaos. The under-
lying mechanism of this diffusion-like dynamics may have
a similar origin to that of the celebrated kicked rotator
model, which is a 1D time-dependent system [32]. In
this model, quantum diffusion, characterized by the lin-
ear increase in time of the second moment of the energy,
follows closely the classical diffusion up to a certain time.
Nevertheless, while classical diffusion is irreversible [33]
due to local exponential instability associated with the
classical dynamics, quantum diffusion is reversible, due
to the linearity of Schrödinger equation. It is an open
question whether a picture similar to the one developed
for the kicked rotator could be extended to our many-
dimensional system.
Equating Eq. (17) and Eq. (19),

(∆E0)
2 = v2b τ

2
b = Dτb,

and using Eq. (20), we can get an estimate for the time
τb at which the diffusion starts,

τb =
c0

J0v20
=

9c0
2ζ2(2ν)

1

J0⟨B2⟩
, (21)

where the latter equality is obtained by substituting the
value of v0 given in Eq. (18). This estimate indicates
that the time at which diffusion starts is independent of
L and is inversely proportional to the interaction strength
J0. While it is understandable that the diffusion process
should start earlier if one increases the inter-particle in-
teraction, the independence of τb on the system size L
might seem unexpected at a first sight. As we show in
the next section, this is not a peculiarity of our model,
but should be a common feature of spin systems.
Our results are numerically confirmed in Fig. 2. In

Fig. 2(a), where the interaction strength is large and dif-
ferent values of L are considered, we mark the intersec-
tion between the lines that give the ballistic and the dif-
fusive behaviors. As indicated with a vertical solid, these
crossing points and therefore τb are independent of the
system size L. On the other hand, in Fig. 2(b), where
a large system size (L = 96) and different interaction
strengths are considered, one sees that τb depends on J0.
In this panel, the energy spreading is shown as a function
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FIG. 3. (a) Energy spread (∆E0)
2 as a function of the renormalized time J0t for a fixed number of spins, L = 6, and different

interaction strengths J0, and (b) renormalized energy spread vs J0t for a fixed interaction strength, J0 = 3, and different system
sizes L. Quantum (dashed lines) and classical (solid lines) are shown. The black dashed line in both panels indicates the linear
(diffusive) growth with slope given by the fitted diffusion coefficient D in Eq. (20) for J0 = 10 in (a) and L = 200 in (b). The
vertical dashed line in (b) marks the diffusion timescale τd. For the classical case, we average over 104/L initial conditions with
|E0| < 0.01. For the quantum case, we average over 50 initial basis states with energy |E0| < 0.01.

of the renormalized time J0t. The fact that all curves col-
lapse into a single one, so that one can draw a single line
for the ballistic behavior and a single line for the diffusive
behavior, indicates that J0τb is a constant, so τb ∝ 1/J0.
The analytical expression for τb in Eq. (21) is shown in
Figs. 2(a)-(b) as a vertical red line.

To estimate at which time the diffusion stops and equi-
libration sets in, we first need to estimate the saturation
value. In the next subsection, we find an approximate
expression for the saturation value as a function of the
interaction strength J0.

C. Relaxation to the steady state

In Ref. [20] we showed that for a sufficiently large inter-
action strength, J0 ≳ 3, and a sufficiently large number
of spins, L > 50, the classical motion of each single spin
in the unit sphere is ergodic. We now use this result
to compute the maximal energy spreading in the energy
shell due to ergodicity.

Under complete ergodicity, Sz
k can be thought as a ran-

dom independent variable with Sz
k(t) = 0 and Sz

k(t)
2 =

1/3. Using this result in the definition of the energy for
non-interacting spins,

E0(t) =

L∑
k=1

BkS
z
k(t), (22)

we obtain the maximal classical energy spreading,

(∆E0)
2
erg = E2

0(t)− E0(t)
2
=
∑
k

B2
kS

z
k(t)

2 =
1

3
L⟨B2⟩

(23)

where we set Sz
k(t)S

z
j (t) = 0 for k ̸= j. We can further

approximate this expression using Eq. (16),

(∆E0)
2
erg =

L

3

(
1 +

δW 2

3

)
. (24)

This is the energy spreading for completely random vari-
ables, as in the case of fully ergodic motion. Inserting
our parameters B0 = 1 and δW = 0.2, we obtain that

∆Erms ≡
√
(∆E0)2erg ≃ 0.58

√
L.

Notice that the width of the ergodic spreading of energy,
which is ∝

√
L, is much smaller than the range of possible

values obtained for E0(t), which is [−
∑

k Bk,
∑

k Bk] and
thus proportional to L.

In Fig. 4, we compare the numerical results obtained
for the stationary value

(∆E0)
2
stat = lim

T→∞

1

T

∫ T

0

dt (∆E0(t))
2 (25)

with the analytical result in Eq. (23) as a function of
J0. The saturation value of the energy spreading agrees
with the analytical calculation for the ergodic spin mo-
tion when J0 ≳ 3, thus confirming once more the er-
godicity of the motion for strong interaction. For smaller
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godic spreading (∆E0)

2
stat = (∆E0)

2
erg as given in Eq. (24).

The red curve is the fitting with the function f(x) = 1−ae−bx,
where a = 1.09 and b = 1.19 are the best fitting parameters.

values of the interaction strength, when the motion is not
fully ergodic, we achieve an approximate expression for
the saturating value of the energy spreading by fitting our
data with a two-parameters function, f(J0) = 1−ae−bJ0 ,
which gives

(∆E0)
2
stat = (1− ae−bJ0)(∆E0)

2
erg. (26)

The fitting is very accurate for all J0 values, as shown
with the red curve in Fig. 4.

All said, now we have the necessary ingredients to es-
timate the relaxation time, τd, for the energy spreading
from the relation

Dτd = (∆E0)
2
stat.

In the case of the fully ergodic motion, we can substi-
tute (∆E0)

2
stat with the analytical expression in Eq. (24),

(∆E0)
2
erg, leading to

τd =

∑L
k=1 B

2
k

c0LJ0
=

⟨B2⟩
3c0J0

, (27)

This estimate shows that the relaxation time for the en-
ergy spreading is independent of the system size, which
is numerically confirmed in Fig. 3(b).

To close this section, let us remark that the linear be-
havior of the quantum spreading cannot be treated as the
fingerprint of “true” diffusion in the energy shell. Indeed,
a close inspection in Fig. 5 of the stationary energy dis-
tribution shows that it is Gaussian for the classical case,
but not for the quantum model, where there are 2LS+1
peaks enveloped by the Gaussian distribution.

Due to the finite size of the energy shell, the variance
(∆E0)

2(t) for time t ≫ τd saturates. For a real diffu-
sive process, we expect the energy distribution to be-
come Gaussian with a variance proportional to Dt. This
is indeed what happens for the classical model, as seen
in Fig. 5, with the exception of the far tails [Fig. 5(b)],
which cannot be described by the Gaussian, because the
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FIG. 5. Comparison between classical and quantum station-
ary distributions of the non-interaction energy for L = 6, J0 =
3. The initial states are the same as those reported in Fig.1 .

energy shell where the spreading occurs is finite. The
quantum distribution, on the other hand, exhibits a band
structure, as seen in Fig. 5. This is why we say that the
linear spread of (∆E0)

2(t) in the quantum domain is not
“true” diffusion. Yet, since there are 2LS + 1 bands and
the total size of the energy shell is ∼ 2L, the quantum
distribution approaches the classical one in the semiclas-
sical limit, S ≫ 1 at fixed L.
To summarize the results of this section, we have found

that there are two timescales, one at which the diffusive
behavior starts and the other where it ends. Both times
are proportional to 1/J0, which is physically understand-
able, and both are independent of the number of spins
L.

D. Local instability: The Lyapunov timescale

Since the single-particle energy spreading occurs in a
diffusive-like manner, one could expect it to be governed
by local instabilities of the motion. Instability is the
main mechanism for diffusion, because it is associated
with random trajectories and chaos.
Motivated by the role of the Lyapunov timescale, τλ,

in chaotic systems [29, 34–38], we investigate whether
this timescale plays any role in the description of the
relaxation to equilibrium of (∆E0)

2(t). Despite the link
between chaos and diffusion, these two timescales, τλ and
τd, do not need to be necessarily equal.
Even though the many-body system is characterized

by the spectrum of all Lyapunov exponents (see [20]),
the maximal exponent sets the smallest time scale for
instability. For this reason, we study the maximal Lya-
punov λmax exponent averaged over many different initial
conditions with the same single-particle energy E0 = 0.
We stress that even though the maximal Lyapunov ex-
ponent decreases as the interaction strength decreases, it
remains nonzero for weak interaction, J0 < 1. It is only
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at the integrable limit, J0 = 0, that λmax = 0. For weak
interaction, there is absence of classical ergodicity, but
the model is still chaotic [20].

In Fig. 6 we plot the Lyapunov time, which is the in-
verse Lyapunov exponent, τλ = 1/λmax, as a function of
the interaction strength J0 for different system sizes L.
We see that τλ is almost independent of L, especially for
large interaction strengths J0 ≳ 3. The figure suggests
that the behavior of the Lyapunov time τλ as a function of
J0 is comparable to that of τd. The discrepancy between
the two may be caused by the fact that the timescale for
local instability is defined up to some constant, since it
is related to the time at which the distance ∆ between
close trajectories becomes of the order ∆ < 1.

IV. LOCAL OBSERVABLE: SINGLE SPIN
RELAXATION

Having established the timescales for the energy spread
in the energy shell, we now move our attention to a local
observable, namely, to the Sz component of an individual
spin. The initial many-body state that we choose for the
quantum model is

|Ψ(0)⟩ = |0, ..., 0, S, 0, ..., 0⟩,
where only the spin m = ⌊L/2⌋ in the middle of the chain
has maximal value S along the z-direction, while all other
L − 1 spins have zero value for the z-component. The
corresponding classical initial condition is Sz

⌊L/2⌋(0) =

S/
√

S(S + 1) for the central spin, Sz
k(0) = 0 for the

other spins, and the x, y components are randomly cho-
sen keeping the length of the spins fixed. We investigate
the time that it takes for the “excitation” on site ⌊L/2⌋
to get shared with the other L− 1 spins and whether the
characteristic time for the relaxation is the same τd as
the one obtained in Eq. (27).

We show the evolution of the onsite magnetization of

the central spin m for different ranges ν of the interaction
in Fig. 7(a), for different system sizes in Fig. 7(b), and for
different interaction strengths in Fig. 7(c). The results
in Fig. 7(a) indicate that when the interaction is short
range, the relaxation time does not depend on the value
of ν. The excellent quantum-classical correspondence in
all panels gives us access to large system sizes through
the classical dynamics, as done in Fig. 7(b). This plot
makes it evident that the timescale for the relaxation is
independent of L. Figure 7(c) shows that the relaxation
time does depend on the interaction strength, as it also
does for the energy spreading.
To compare the relaxation time for the onsite mag-

netization with that for the energy spreading, we mark
with a vertical dashed line in Figs. 7(a)-(c), the diffusion
time τd obtained in Eq. (27) and find good numerical
agreement with it. Therefore, our results presented in
Fig. 3 and Fig. 7 confirm that both the local and the
global quantity considered here exhibit the same relax-
ation timescale, independently of the length L.
To test the robustness of our results, we study the

classical dynamics of a large chain by changing the fre-
quencies of each single spin from approximately con-
stant, Bk ∼ B0, to completely random inside an interval
(0,W ). This interval is chosen to reproduce the same
second moment ⟨B2⟩ as in the almost constant case, so
that we can verify whether the relaxation time in the
new scenario still coincides with τd given in Eq. (27).
We compare the two cases for the global observable (en-
ergy spreading) in Fig. 8(a) and for the local observable
(single spin z-component) in Fig. 8(b). In both pan-
els, both curves (for almost constant frequencies and for
random frequencies) follow the same evolution charac-
terized by the same relaxation time. The fact that the
dynamics for both observables, global and local, does not
change when we change the spin frequencies can be un-
derstood from the following physical point of view. Even
if initially only the Sz component of a single spin is ex-
cited, Sz

m(0) ≈ 1, the components Sx
k (0) and Sy

k(0) of all
other spins cannot be zero due to the spin conservation,
(Sx

k )
2 + (Sy

k)
2 + (Sz

k)
2 = 1 (i.e. L additional constants of

motion, apart from the total energy) . This means that
for any initial excitation, the interaction immediately ex-
cites all spins in the chain.

V. LINEAR CHAOS AND THE PARAMETRIC
OSCILLATOR

Having demonstrated that the diffusion time τd for the
global and local observables are independent of the sys-
tem size L, we now provide insight into the properties of
the classical model and use them to justify those results.
To do this, we concentrate on the evolution of Sz

k(t), de-
scribed by Eq. (7), where the time-dependent frequency
Ω2

k(t) and the driving nonlinear force Fk(t) are given in
Eq. (8) and depend on all other spin components.
Equation (7) describes a parametric oscillator with fre-
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√
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k(0) = 0 for k ̸= m = ⌊L/2⌋, and the x, y-components are chosen at random, apart from

the m− th spin for which Sx
m = Sy

m = 0. We use 104/L classical initial conditions. For all quantum data S = 2.
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FIG. 8. Slightly random vs fully random spin-frequencies.
The energy spreading (a) and the evolution of the z-
component of the spin in the middle of the chain, m = ⌊L/2⌋
(b) for the classical model. Here L = 100, ν = 1.4, J0 = 3.
The average is done over 103 different initial conditions with
|E0| < 0.01.

quency Ωk(t) and driving force Fk(t). The system dy-
namics can be understood in the following way. Let us
first consider a very small interaction strength J0 in such
a way that it can be considered a perturbation of the
linear oscillations. In this case, even neglecting the non-
linearity contained in Ωk and Fk, the motion of the k-th
spin can still be strongly chaotic. This behavior finds a
parallel in the motion of charged particles in magnetic
traps [39] and linear maps [40] and is referred to as “lin-
ear chaos”. This term refers to the parametric instability
of the classical equations of motion due to the presence of

a time-dependent frequency. Thus, in the first order ap-
proximation in J0, the mechanism for the onset of chaos
is linear.

To better explain the notion of linear chaos [41], let
us consider the evolution of Sz

k(t) in the first order ap-
proximation in J0 by inserting in the expressions for
Ωk(t) and Fk(t) the unperturbed solutions of Sx

k , S
y
k de-

scribed by linear rotations with frequency Bk. In this
way, Eq. (7) for each spin describes a linear oscillator with
time-dependent frequency and linear force. The instabil-
ity of this oscillator can be inferred from the integration
of the equations of motion. This picture still holds ap-
proximately on increasing the perturbation strength J0
as shown in Figs. 9(a)-(b), where the results for the spin
in the middle of the chain are compared with the exact
full dynamics for two different system sizes L. One sees
that the timescales for the relaxation of the linear para-
metric oscillator are effectively the same as that for the
full dynamics and clearly do not depend on L.

Therefore, taking the property of linear chaos of our
model into account, it becomes clear that increasing the
system size L simply implies adding more harmonics in
the expression of the driving force Fk and the time-
dependent frequency Ωk(t). Since even a small number
of incommensurate frequencies Bk is enough to produce
effective randomness, adding more frequencies does not
change much the results. This is why increasing L does
not affect significantly the dynamics of single spins in
their motion on the unit sphere.
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FIG. 9. Comparison between the evolution of the spin in the
middle of the chain described by a linear parametric oscillator
(red curve) and by the full dynamics (black curve) for L =
21 (a) and L = 51 (b). The classical initial condition has

Sz
m(0) = S/

√
S(S + 1) and Sz

k(0) = 0 for k ̸= m = ⌊L/2⌋,
and the other components are chosen randomly. The average
is done over 104/L classical initial conditions. The parameters
are J0 = 3, ν = 1.4, B0 = 1, δW = 0.2.

VI. QUANTUM OBSERVABLE WITH NO
CLASSICAL LIMIT

In the previous sections, we investigated quantities
that had a classical limit. We now analyze a quantum
observable that has no classical limit, namely the partic-
ipation ratio,

PR(t) =
1∑

k |⟨k|Ψ(t)⟩|4
. (28)

This quantity is purely quantum, because it measures the
effective number of many-body basis states |k⟩ occupied
by the evolved state |Ψ(t)⟩ at time t. Changing the basis
representation changes the value of PR(t), so no classi-
cal limit can be defined. This quantity describes global
relaxation in the Hilbert space.

Knowledge of the energy distribution of the initial
state, the so-called LDoS, helps with the description of
the evolution of PR(t). The LDoS is defined as

Wk0
(E) =

∑
α

δ(E − Eα)|Cα
k0
|2, (29)

where the coefficients Cα
k0

= ⟨α|k0⟩, as in Eq. (5) and
|k0⟩ is an initial state corresponding to a non-interacting
basis state, typically taken in the middle of the energy
spectrum. The width of the LDoS is given by

σ =
∑
k ̸=k0

⟨k|H|k0⟩ =
∑
α

|Cα
k0
|2E2 −

(∑
α

|Cα
k0
|2E

)2

.

(30)
When the initial state is composed of many chaotic

eigenstates of the total Hamiltonian, PR(t) grows expo-
nentially in time with a rate given by the width of the
LDoS [23], as shown, for instance, in Fig. 10(a). To ex-
tract a reliable estimate for the relaxation timescale, in
Fig. 10(b), we rescale PR(t) to the dimension of the sub-
space associated with the initial state and verify that all
curves saturate at the same point. For values of J0 that
ensure quantum chaos, the saturation point of PR(t) is

roughly dim/2 = (2S+1)L/4. Due to this result, we can
find an analytical estimate of the timescale τN for the
relaxation of PR(t) using the equality

PR(τN ) ≃ e2στN /ℏ = (2S + 1)L/4, (31)

which gives

τ
N
∝ Lℏ ln(2S + 1)/σ. (32)

In the equation above, σ is the width of the quantum
LDoS written in Eq. (30)
It is difficult to obtain analytical estimates for the

width of the quantum LDoS, because it requires the ex-
act diagonalization of Hamiltonian matrices that are ex-
ponentially large in L. Nevertheless, using the quantum-
classical correspondence exploited in Ref. [20], it is pos-
sible to build numerically the classical LDoS. The agree-
ment between the classical and quantum LDoS in the
quantum chaotic regime is impressive even for small spin
quantum numbers S = 1, 2 as shown in Fig. 11. We can
then use the classical LDoS to estimate the width σcl for
large system sizes. This is a crucial result, because it im-
plies that instead of the diagonalization of huge matrices,
we can get information about the LDoS by simply inte-
grating 3L differential equations, which can be done for
systems as large as L = 102 spins with a standard laptop.
This “semi-quantal” approach was also discussed in [42].
Using the classical equations of motion, we arrive at

σ2
cl =

J2
0

9

L∑
k=1

∑
j>k

1

|j − k|2ν
≡ J2

0

9
ζ(ν, L), (33)

where the symbol “≡” defines implicitly the function
ζ(ν, L) for any ν and finite L. For large values of L,
this function can be approximated as

ζ(ν, L) ≃ (L− 1)

∞∑
k=1

1

k2ν
= (L− 1)ζ(2ν), (34)

where ζ(2ν) is the Riemann zeta function. Thus, for
sufficiently large L, we get that

σcl ≃
J0

√
L− 1ζ(2ν)

3
. (35)

This result holds for any ν > 1/2, when the Riemann
zeta function converges.
In Fig. 12, we compare numerical results for the clas-

sical width of LDoS with with the exact expression for
finite L in Eq. (33) and with the approximate expression
in Eq. (35). As one can see, even for L ≳ 10, the approx-
imate expression matches extremely well the numerical
data.
Using the analytical result for the classical width of

LDoS in Eq. (35), we finally get the estimate for the
relaxation time for PR(t),

τ
N
∝

√
L

1

J0

ln(2S + 1)√
S(S + 1)

. (36)

The above equation indicates that for any fixed S, the
relaxation time grows with L, as indeed noticeable in
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Fig. 10(a). On the other hand, for a fixed L, Eq. (36)
indicates that τ

N
slowly decreases τ

N
as S increases (see

also [43]). This means that for PR(t), the thermodynamic
and the semiclassical limit of Eq. (32) lead to opposite
conclusions, a result that requires a further analysis.

VII. CONCLUSION

We explored the quantum-classical correspondence
(QCC) of many-body spin systems to investigate their
relaxation dynamics after a quench. In the regime of
strong chaos, we verified that the quantum and classi-
cal dynamics are analogous even for spins as small as
S = 1, 2. The QCC allows for the use of the classical
system to compute the timescales of very large quantum
systems. This is what we did to derive semi-analytical re-
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action strength, σcl/J0, as a function of the system size L.
Full (black) line is the ergodic approximation for finite L in
Eq. (33) and the red dashed curve stands for the expression
for the ergodic approximation for large L in Eq. (35).

sults for the timescales governing the spread of the single-
particles energies, (∆E0)

2(t), and the relaxation of the
z-magnetization of individual spins, ⟨Sz

k(t)⟩.
The analysis of (∆E0)

2(t) revealed three distinct time
regions. The first one, arising from perturbation the-
ory, corresponds to the ballistic spread of energy up to
τb. Subsequently, the energy spread exhibits a diffusive-
like behavior that persists until τd, when the dynamics
saturates due to the finite width of the energy shell. Sup-
ported by the results in Ref. [20], where we showed that
for strong interaction the classical motion of each spin
is ergodic in its unit sphere, we verified that both the
ballistic and diffusion timescales are independent of the
system size L.
The fact that diffusion is conditioned to the existence

of chaos prompted the question of how the Lyapunov
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timescale, τλ, measured as the inverse value of the Lya-
punov exponent, compares with the diffusion time τd.
The Lyapunov time characterizes the local instability of
the motion of individual spins, while the diffusion time
determines the global energy spread in the energy shell,
so, in principle, there is no reason why the two timescales
should coincide. Yet, our numerical data revealed that
τλ is of the same order as τd, and once again does not
depend on the system size.

Our analysis of the classical and quantum evolution
of ⟨Sz

k(t)⟩ demonstrates that the relaxation time for this
local quantity, just as for the global quantity (∆E0)

2(t),
does not depend on L either. We expect this result to
be general and confirmed for other physical observables
with a well-defined classical limit.

We found that the diffusion time depends on the single-
particle frequencies Bk and the interaction strength J0 as
τd ∝ ⟨B2⟩/J0. We showed that the lack of dependence
of this timescale on system size is robust whether the
frequencies are nearly constant or completely random.
Nevertheless, the expression for τd naturally raises the
question of whether one could engineer the frequencies to
induce a system-size dependence on the relaxation pro-
cess. This would provide a tool to control the properties
of the dynamics.

A closer look at the classical equations of motion al-
lowed us to better justify why the relaxation time ⟨Sz

k(t)⟩
does not depend on system size. The second-order differ-
ential equation for Sz

k describes a parametric oscillator.
The nonlinearities contained in the time-dependent fre-
quency and force of the oscillator are small and are not
significantly affected by the system-size increase. Indeed,

our results show that neglecting the nonlinearities lead to
a similar relaxation time as that of the full dynamics in-
dependently of L.
Motivated by various studies [19, 22, 23, 30] of the

relaxation process of the participation ratio, PR(t), we
decided to include it in this paper despite its lack of a
classical limit. As demonstrated analytically and verified
numerically, in the region of strong quantum chaos, PR(t)
grows exponentially before reaching saturation. The ex-
ponential growth is governed by the width of the Lo-
cal Density of States (LDoS). As explained in [20], this
width can be obtained from the classical counterpart of
the model, which gives us access to large system sizes.
We find that the relaxation of the participation ratio
is proportional to

√
L. This implies that this quantity

does not thermalize in the thermodynamic limit, L → ∞.
This outcome underscores the significance of the chosen
quantity in defining the timescales for thermalization. It
may also provide an explanation for the diverse results
for the relaxation times found in the literature, where
different L-dependencies are reported for quantities such
as survival probability [15] and participation ratio [19].
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