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Abstract

Modern machine learning will allow for simulation-based inference from reionization-
era 21cm observations at the Square Kilometre Array. Our framework combines a con-
volutional summary network and a conditional invertible network through a physics-
inspired latent representation. It allows for an optimal and extremely fast determina-
tion of the posteriors of astrophysical and cosmological parameters. The sensitivity to
non-Gaussian information makes our method a promising alternative to the established
power spectra.
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1 Introduction

Cosmic Dawn (CD) and the Epoch of Reionization (EoR) mark the emergence of the first galax-
ies and stars and the ionization of the intergalactic medium (IGM) by early luminous sources.
Investigating these epochs, spanning redshifts from ∼5–6 to 20, helps us understand galaxy
evolution, cosmological structure formation, the thermal history of the Universe, possible pri-
mordial sources of radiation, and the interplay between radiation, gas dynamics, and dark
matter in the formation and evolution of observed structures.

An exciting way to explore the CD and EoR is through the redshifted 21cm line from the for-
bidden spin-flip transition of neutral hydrogen (HI). It is unique in its sensitivity to the spatial
distribution of neutral hydrogen and the ionization state of the IGM and offers an exceptional
avenue for mapping the large-scale structure. Experiments such as the Low Frequency Array
(LOFAR) [1], the Murchison Widefield Array (MWA) [2], the Hydrogen Epoch of Reionization
Array (HERA) [3], and the Precision Array for Probing the Epoch of Reionization (PAPER) [4]
strive for a statistical detection of the 21cm signal, while the Square Kilometre Array (SKA)*
promises 3D-tomography.

Intensity mapping of the 21cm line by SKA will allow investigations of dark energy and
modifications of gravity [5–8], inflation [9, 10], and dark matter [11–13]. Here, innovative
analysis methods are essential, given the inherent non-Gaussianity, foreground contamination,
and systematics. To simulate the 21cm signal during CD and EoR fast simulation frameworks
are available for different astrophysical [14–17] and cosmological scenarios [18]. They are
complemented by, albeit smaller, databases of radiative hydrodynamical simulations [19].

Recent progress in machine learning is transforming data-intensive analyses in fundamen-
tal physics and cosmology [20–22]. This is especially true when we can use simulations to re-
late fundamental parameters to observations and employ simulation-based inference [23–27].
Traditional simulation-based inference relies on pre-defined high-level observables, evaluated
as one-dimensional or at most low-dimensional histograms. This bottleneck prevents us from
using the full power of measurements or observations. The expected size of the SKA dataset,
hundreds of Petabytes per year archived, and its complexity makes SKA a perfect example for
the need to analyze data without this bottleneck.

For large cosmological surveys such as SKA we already know that convolutional neural
networks (CNNs) outperform standard methods for source detection and characterization [28,
29], classification [30–32], and are able to jointly derive astrophysical and cosmological prop-
erties without summary statistic [33,34]. First steps towards simulation-based 21cm inference
include variational inference [35] and direct density estimation [36–38], including alternative
approaches like wavelet transforms [39,40]. We show how coupling the 3D-21cmPIE-Net fea-
ture extraction [41, 42] with a conditional invertible neural network (cINNs) [43, 44] allows
for an optimal, fast, and robust inference of astrophysical and cosmological parameters.

We start by introducing the 21cm light cone dataset, the BayesFlow method for simulation-
based inference, the combination with the 3D-21cmPIE-Net feature extractor, the physics-
inspired training protocol, and a sizeable range of validation and quality control methods in
Sec. 2. In Sec. 3.1 we use marginalized 1-dimensional posteriors to control and confirm the cal-
ibration and the robustness of our 21cmPIE-INN setup. In Sec. 3.2 we show that its controlled,
excellent performance remains when we add noise to the pure simulations for a realistic mock
dataset. Finally, in Sec. 3.3 we show how the 21cmPIE-INN can extract a multi-dimensional
posterior for astrophysics and cosmological parameters from a single light cone. Additional
quality control measures and posteriors for more light cones are given in the Appendix.

*https://www.skatelescope.org/
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2 Inference for 21cm tomography

Our goal is to use simulation-based inference to extract as much information as possible from
complex 21cm data and avoid the bottlenecks of classic analysis methods. This requires an ap-
propriate representation of the data, introduced in Sec. 2.1, the conditional generative neural
network described in Sec. 2.2, a physics-inspired data pre-processing introduced in Sec. 2.3,
a dedicated training protocol discussed in Sec. 2.4, and a detailed validation, Sec. 2.5. Our
framework will then allow for a fast, amortized inference of cosmological and astrophysical
parameters from a single 21cm light cone.

2.1 21cm light cone data

Our data consists of 5000 3D-light cones (LC) of 21cm brightness temperature fluctuations
δTb(x ,ν), with on-sky coordinates x and frequency ν. The LCs are produced with the semi-
numerical code 21cmFASTv3 [45].† It generates initial density and velocity conditions and
evolves them at first and second order perturbation theory using the Zel’dovich approxima-
tion [46]. A region is flagged as ionized, if the fraction of collapsed matter, fcoll, exceeds
the inverse ionizing efficiency of star formation, ζ−1. The fraction fcoll is calculated in an
excursion-set approach, where the density field is filtered with a top-hat of decreasing size.
The code accounts for partially ionized regions with an ionized fraction fcollζ.

Besides the ionization fraction, the 21cm signal at higher redshifts crucially depends on the
spin gas temperature TS, which in turn depends on couplings to kinetic gas temperature and
density. We do not assume the so-called post-heating regime and instead fully evolve spin tem-
perature boxes. To generate LCs, coeval cubes of 21cm brightness temperature fluctuations,
evolved with redshift, are stitched together in the last step.

The resulting 21cm brightness fluctuations depend on several cosmological and astrophys-
ical parameters. For our simple, proof-of-concept study we combine two parameters defining
our cosmological model, two parameters describing astrophysics during cosmic dawn, and two
parameters to account for EoR astrophysics [41]:

• Matter density Ωm ∈ [0.2,0.4]
It controls structure formation, where a wide range encompasses the Planck limits [47];

• Warm dark matter mass mWDM ∈ [0.3,10]keV
The conservative limit allows for a wide range of possible behavior, where the lower limit
exhibits a tension with Cold Dark Matter (CDM), and current astrophysical constraints point
towards values larger than a few keV [48, 49]. Here, structure formation looks more and
more similar to CDM, as the free-streaming length is inversely proportional to the WDM
mass;

• Minimum virial temperature Tvir ∈ [104, 105.3]K
The minimum virial temperature needed for cooling within halos to enable star formation;

• Ionization efficiency ζ ∈ [10,250]
It is represented by the composite parameter

ζ= 30
fesc

0.3
f⋆

0.05

Nγ/b

4000
2

1+ nrec
, (1)

where factors such as the escape fraction of ionizing photons into the intergalactic medium
fesc, the fraction of galactic gas in stars f⋆, the number of ionizing photons per baryon in stars
Nγ/b, and the typical number density of recombinations for hydrogen in the intergalactic
medium Nrec contribute to a versatile range of recombination scenarios;
†https://github.com/21cmFAST/21cmFAST
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• Specific X-ray luminosity LX ∈ [1038, 1042]erg s−1 M−1
⊙ yr

Integrated luminosity < 2 keV per unit star formation rate that escapes host galaxies;
• X-ray energy threshold for self-absorption by host galaxies E0 ∈ [100, 1500]eV

X-rays with energies below E0 do not escape the host galaxy.

All other cosmological parameters are fixed to the Planck measurements [50], assuming flat-
ness and a cosmological constant. This means Ωb = 0.04897, σ8 = 0.8102, h = 0.6766, and
ns = 0.9665.

To generate our training data, we randomly sample parameters from flat priors and then
simulate the corresponding light cone of 21cm brightness offset temperature. The box size is
200 Mpc at a resolution of 1.42 Mpc, and the redshift range simulated is z = 5 ... 35. Each light
cone has the shape of (2350,140, 140) voxels, keeping in mind that Ωm impacts the length of
each light cone in terms of redshift. Hence, only at Ωm = 0.4 the simulated light cone includes
z = 35, light cones for smaller Ωm stop at slightly lower redshifts, to keep the number of pixels
in temporal or redshift direction fixed.

Due to the wide parameter ranges some of the simulated reionization histories and light
cones are excluded by observations. We filter the light cones to exclude extreme reioniza-
tion histories, requiring that the optical depth τreio is within 5σ of the Planck measurement
0.054± 0.007 [47], and that the IGM mean neutral fraction at redshift 5 is below 0.1. From
5000 valid light cones in our dataset, we use 3600 for training, 400 for validation, and 1000
for testing the network.

Going beyond the idealized, pure simulations, we generate mock observed light cones us-
ing 21cmSense [51,52].‡ Our 5000 simulated light cones are transformed by coevally evolved
simulation boxes at fixed redshifts. These boxes are split at certain redshift values, and ther-
mal noise is calculated for each box using 21cmSense. The resulting noise is added to the
Fourier-transformed box, and the mock light cone is reconstructed in real space. The ther-
mal noise assumptions are based on 1080 hours of integrated SKA-Low stage 1 observations
with specific instrument characteristics and baseline distribution. Three foreground settings
(optimistic, moderate, pessimistic) in 21cmSense account for different scenarios, where the
optimistic scenario considers the 21cm foreground wedge in k-space covering only the primary
field-of-view of the instrument. In this work, we use this optimistic foreground scenario. Mock
light cones with this noise setting are mainly affected at higher redshifts.

2.2 BayesFlow

Conditional generative networks have shown great promise for Bayesian inference in funda-
mental physics and cosmology [53–56]. The BayesFlow [57,58] package allows for simulation-
based inference without assuming a likelihood shape. It combines a summary network, to
reduce simulated or observed data to an appropriate latent representation, with a conditional
generative network. Specifically, we use the invertible neural network (INN) [43] version of
a normalizing flow [59,60]. Conditional on an observation, this cINN generates the posterior
in parameter space. For 21cm tomography, its input is the full signal light cones of the 21cm
offset brightness temperature, without reducing the 3D-maps to summary statistics, like the
power spectrum.

This inference method is illustrated in Fig. 1. The two networks are trained on simulations,
providing the model parameters and paired simulated data. The simulated data is passed
through the summary network, to provide the condition for the cINN. This cINN maps the
model parameters to a Gaussian latent distribution by minimizing a likelihood loss. For the

‡https://github.com/rasg-affiliates/21cmSense
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Figure 1: Illustration of Bayesian inference with conditional generative networks,
specifically BayesFlow.

inference, the summarized data is again the condition for the cINN, which now samples from
the Gaussian to generate the posterior in model space.

The simulation uses the model parameters θ1:D to generate data x1:N , where the elements
x i can be scalars or vectors. To simplify our notation, we first omit the summary network, so
the data x is fed directly to the cINN. This cINN links a latent Gaussian distribution and the
posterior over model space [21],

latent r ∼N0,1

Gφ(r|x)→
←−−−−−→
← Gφ(θ |x)

model space θ ∼ p(θ |x) . (2)

Here Gφ(θ |x) denotes the inverse transformation to Gφ(r|x), both encoded in the network
parameters φ. The training goal is to approximate the true posterior,

pφ(θ |x)≈ p(θ |x) (3)

for all possible parameters θ and data x . To this end, we minimize the Kullback-Leibler (KL)
divergence between the approximate and true posteriors

DKL[p(θ |x), pφ(θ |x)] =
¬

log p(θ |x)− log pφ(θ |x)
¶

p(θ |x)
, (4)

or the weight-dependent loss function

LcINN = −
¬

log pφ(θ |x)
¶

p(θ |x)
. (5)

This loss function is evaluated over pairs of model parameters and the corresponding simulated
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data. The posterior is encoded in the cINN through a Jacobian of Gφ ,

pφ(θ |x) =N0,1(Gφ(θ |x))

�

�

�

�

�

∂ Gφ(θ |x)
∂ θ

�

�

�

�

�

⇒ LcINN = −
�

logN0,1(Gφ(θ |x)) + log

�

�

�

�

�

∂ Gφ(θ |x)
∂ θ

�

�

�

�

�

�

p(θ |x)

= −
�

|Gφ(θ |x)|2

2
+ log

�

�

�

�

�

∂ Gφ(θ |x)
∂ θ

�

�

�

�

�

�

p(θ |x)
. (6)

The first term regularizes the network, while the second term trains the Jacobian of the cINN.

The summary network hψ transforms the input data before it enters the cINN as the condi-
tion. It does not have to be big and can be trained together with the cINN, using the BayesFlow
loss function

LBayesFlow = −
�

|Gφ(θ |hψ(x))|2

2
+ log

�

�

�

�

�

∂ Gφ(θ |hψ(x))
∂ θ

�

�

�

�

�

�

p(θ |x)
. (7)

The number of instances we train the network on is free, as long as we evaluate the network
on the same number of instances of the observed or test data x o

1:N .

The loss in Eq.(6) assumes that the Jacobian relating the model parameters θ and latent
random variables r can be evaluated fast [61]. The classic choice is a stack of affine cou-
pling blocks [62] and rotational layers. These affine layers are simple and extremely fast. In
case we need a more expressive invertible network, we can replace them by cubic [63] or
rational quadratic splines [64], if needed with learned rotations [65] or periodic boundary
conditions [66].

2.3 21cmPIE-INN

As described above, our summary network hψ(x) compresses a large three-dimensional data
object, the light cone. We choose a strong compression to the six parameters used for light
cone simulation in CD and EoR astrophysics and cosmology, as described in Sec. 2.1. In this
case, the network needs to be very expressive. We use a 3D-convolutional network (CNN), the

Figure 2: Schematic representation of the 21cmPIE-INN, combining the physics-
inspired summary network [41] and the BayesFlow cINN.
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3D-21cmPIE-Net introduced for parameter regression [41,42]. The 3D-21cmPIE-Net provides
fast and optimal convergence at a moderate size of the required training dataset, compared to
alternative networks [36,37]. It has been shown to efficiently provide unbiased parameter es-
timates for both astrophysical and cosmological parameters, outperforming for example larger
Long Short Term Memory networks, and requiring smaller training datasets. The architecture
is summarized in Tab. 1 and schematically shown in Fig. 2. The asymmetric (3×3×102)-kernel
of the first filter reflects the difference between fluctuations in temporal z-direction and spatial
direction. The (1× 1× 102)-stride reduces the dimensionality of the following layers, while
still capturing the relevant physics. The kernel size of the hidden layers is set to (3×3×2) and
max pooling layers are applied only in the spatial direction. In front of three fully connected
layers is one global average pooling layer to impede overfitting. The hidden layers use a ReLU
activation function.

The summary network condenses each LC with its complex physics information to a six-
dimensional latent distribution. In the next section, we will see that the first stage of our
training protocol pushes the network to identify this vector with the cosmological and astro-
physical parameters

θ = {Ωm, mWDM, Tvir,ζ, LX, E0} . (8)

The cINN uses this physics-inspired latent LC representation as a condition for linking the six-
dimensional model space to a Gaussian of the same dimensionality. Each of the six model
parameters in Eq.(8) is normalized to the range [0, 1].

The idea behind this setup is that the summary network extracts the relevant physics pa-
rameters from the complex data representation, a standard regression task, and that the cINN
only needs to learn the correlations and the uncertainties for the posterior estimation. In case
this intermediate representation of Eq.(8) is not optimal, the joint training of the summary
network and the cINN corrects for a potential shortcoming to find the optimal latent represen-
tation.

Nevertheless, this simple cINN task only requires a small number of simple coupling lay-
ers. We stack 8 affine coupling layers, where each of the internal fully connected networks

Layer Shape

3D-CNN

Input Layer (1,140,140,2350)
3x3x102 Conv3D (32,138,138,23)
3x3x2 Conv3D (32,136,136,22)
2x2x1 Max Pooling (32,68,68,22)
3x3x2 Conv3D (64,66,66,21)
1x1x0 Zero Padding (64,66,66,20)
3x3x2 Conv3D (64,66,66,20)
2x2x1 Max Pooling (64,33,33,20)
3x3x2 Conv3D (128,31,31,19)
1x1x0 Zero Padding (128,33,33,19)
3x3x2 Conv3D (128,31,31,18)
Global Average Pooling (128)
3 x Dense (128)
Dense (6)

cINN
Number of inferred parameters 6
Coupling layers 8
Fully connected coupling layer architecture 256, for all layers

Table 1: 3D-CNN and cINN architectures and hyperparameters.
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Figure 3: MSE of the summary network (left) and the cINN loss (right) during the
three training stages, for training and validation datasets.

has 256 nodes with one hidden layer and ReLU activation. For the INN we use FrEIA (Frame-
work for Easily Invertible Architectures) [67], all our training and evaluation is performed in
PyTorch [68] with the Adam optimizer [69].

2.4 Training

For the training, we use 3600 simulated light cones, in 450 batches of eight. As the numbers
of network parameters in the cINN and PIE-Net differ (#CNN parameters: 651526, #cINN
parameters: 33488), the summary network needs to be pre-trained to provide a sensible basis
for the cINN training. We use a 3-stage training:

1. First, we pre-train the summary network as a regression network with an MSE-loss, since
the parameter labels in Eq.(8) are known. The learning rate is initially set to 4 · 10−4 and
halved after 15 and 20 epochs. The training ends after 32 epochs. We do not require
perfect convergence for this first stage.

2. Next, we only train the cINN with the pre-trained summary network. The learning rate
is constant at 4 · 10−4, and the training stops after 150 epochs, when the cINN starts to
overfit. Adapting the learning right might slightly improve this pre-training, but without
any effect on the final training.

3. Finally, both networks are trained together, so they can optimize the latent representation.
The learning rate is reduced by a factor of 0.3 every five steps, starting from 4 · 10−4, and
stays constant after epoch 20. We stop the training after 32 epochs for the simulations and
after 68 for the mocks.

Examples of the loss evolution for pure simulation and mock data in the three stages are shown
in Fig. 3. The left panel shows the MSE between the true labels and the output of the summary
network. During the first stage, it defines the training objective and therefore decreases to the
point where training and validation loss slightly deviate. The second stage does not affect the
summary network and its latent LC representation. In the third stage, when both networks
are trained with the cINN likelihood loss in Eq.(7), the MSE remains constant for the pure
simulation and increases again for the mock data. The reason is that now the 6-dimensional
output of the summary network can be corrected, away from the physical parameters given
in Eq.(8). For the pure simulation, such an adjustment is not needed. However, for mock
data, the increased MSE indicates a significant change in the optimal latent representation
when the two networks are trained jointly in stage 3. This difference is expected from a pure
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machine learning perspective — adding noise to the data makes it easier for the training to
move around the loss landscape, including adjustments of the summary network required for
optimal inference. We have checked that, indeed, the inference of cosmological parameters
from mock data outperforms the pure simulations. This is why in the following we consider
inference from pure simulations critical for understanding the behavior of the networks, but
use the mock data to benchmark the 21cmPIE-INN performance.

The right panel in Fig. 3 shows the evolution of the cINN loss from Eq.(7). It is not defined
in the first stage. In the second stage, it decreases and approaches the respective plateaus
quickly. However, the loss values on the plateaus for the pure simulation and the mock data
are different. Only when we also adjust the summary network in the third stage, the loss for
the mock data reduces to the same level as for the pure simulation, indicating that at this stage
both setups work at a similar level. As mentioned before, we still stick to the more realistic
mock data performance whenever possible.

On an NVIDIA GeForce GTX 1080 Ti the training time per epoch is about 1 hour in stage
1, 1 minute in stage 2, and 1.3 hours in stage 3. These times reflect that in stages 1 and 3 the
summary network is updated, so we need to read the LC dataset. As it is large (900 GB), we
we cannot load it into memory and instead read the files for every batch. In stage 2 we use
the fixed output of the summary network. The total training time is around 74 hours. The
architecture and hyperparameters are summarized in Tab. 1. For the simulated mock light
cones we train another set of identical networks in the same way.

2.5 Validation

To assess the network performance we use a set of standard metrics. First, we evaluate the
parameter recovery. For a perfect posterior approximation, the mean of the marginalized pos-
terior should statistically coincide with the true value of the parameter. To quantify the de-
viation, we use two metrics that measure if a sample of true parameters θ j corresponds to a
sample of estimated parameters θ̂ j . First, the coefficient of determination

R2 = 1−
J
∑

j=1

(θ j − θ̂ j)2

(θ j − θ̄ j)2
(9)

measures the proportion of variance. The estimated parameters are the means of the sampled
parameters and θ̄ denotes the mean of the true parameter samples. For perfect parameter
recovery, we find R2 = 1. Alternatively, the normalized root mean square deviation (NRMSE),

NRMSE=

s

1
J

∑J
j=1(θ j − θ̂ j)2

θmax − θmin
, (10)

includes a different normalization to make it scale-independent and to allow for comparison
throughout all parameter ranges.

Second, simulation-based calibration [70] is a self-consistency check to visually detect sys-
tematic biases. Given a sample from the prior θ̃ ∼ p(θ ) and one from the forward model
x̃ ∼ p(x |θ ) one can integrate out the θ̃ and x̃ to recover the prior

p(θ ) =

∫

d x̃dθ̃ p(θ | x̃)p( x̃ |θ̃ ) . (11)

This equation allows us to check for self-consistent sampling. If one samples from the correct
posterior, Eq.(11) holds for any form of the posterior. Any violation of this equality indicates
a problem in the sampling. The authors of Ref. [70] propose the algorithm
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1: for m= 1, ..., M do:
2: Sample θ̃m ∼ p(θ )
3: Simulate a dataset x̃m

4: Draw posterior samples θ̂l ∼ pφ(θ | x̃m)
5: Compute rank statistic r(m) =

∑L
l=1 I[θ̂l<θ̃l ]

6: Store r(m)

7: end for
8: Create a histogram of {r(i)}Mm=1 and inspect for uniformity.

Third, latent space examination allows us to trace the learned connection between model
parameters and a unit Gaussian during the training. As training progresses, we can evalu-
ate the cINN in the forward direction rather than the inference direction, to see if the latent
distribution approaches a Gaussian shape.

Finally, the calibration error [71] quantifies how well the coverage of an approximate poste-
rior matches the coverage of an unknown true posterior. For each parameter, the marginalized
approximate posterior is given and the α-credible intervals can be calculated, with α ∈ (0,1).
For each α the fraction of true parameter values lying in the interval is denoted with αθ . A
perfectly calibrated approximate posterior is given by αθ = α. The calibration error is then
defined as

Errcal =
∑

j

|αθ , j −α j| , (12)

with equally spaced α j . A vanishing calibration error indicates perfect calibration.

3 Results

After training the 21cmPIE-INN in three stages, it can be used for inference, as illustrated in
Fig. 1. The BayesFlow construction extracts the full posterior by first reducing the dimension-
ality of the LC to a summary vector and then sampling from a Gaussian into model space,
conditioned on this summary vector. By examining the posterior and comparing it with the
true labels, we can determine the performance of the network. We always discuss the results
on the pure simulations first, followed by mock data including noise.

3.1 Performance and calibration

Before looking at the correlated posterior for the combination of cosmological and astrophysi-
cal parameters, we analyze the performance of the 21cmPIE-INN for the individual marginal-
ized posteriors. In Fig. 4 we first show the recovered values for our six key parameters and
their marginalized error bars from the cINN for pure simulation. The errors generally increase
away from the diagonal line of perfect parameter recovery, as expected. However, for the
different parameters we see a range of patterns, from near-perfect recovery to a significant
fraction of outliers and the appearance of degeneracies.

First, the matter density Ωm is extracted almost perfectly, with small uncertainties and a
diagonal calibration curve. In Tab. 2 we show the corresponding values for R2, the NRMSE,
and the calibration error of the approximate posterior.

The most difficult parameter to infer is mWDM, especially for large masses. First, for small
mWDM the network-derived parameter value is perfectly calibrated and very certain. For larger
masses, the decreasing free-streaming length of WDM means that the signal looks more and

10
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Figure 4: Calibration or parameter recovery for simulations, showing the mean of
the marginalized posterior (red dots) and the 68% credible intervals (light blue).

more like CDM. This means we lose the relevant physics information, so the flat calibration
curve is not a problem of the summary network or cINN. As a matter of fact, the huge error
bars on the plateau account for this loss of information, and a likelihood analysis using power
spectra comes to a similar result [72]. The metric to check for the coverage of the posterior,
Errcal(mWDM) = 0.011 is unexpectedly small, because it is not well-suited to capture this failure
mode, where an overestimation for medium-sized mWDM and an underestimation for large
values cancel each other.

For Tvir the truth is again recovered well, albeit with a small group of outliers. They are
explained by a degeneracy with mWDM [41]. A threshold for early star formation is set by Tvir,
but also by

MJeans∝ (Ωmh2)1/2
�mWDM

keV

�−4
M⊙ . (13)

For large mWDM the Jeans mass limit becomes more important and the minimum virial tem-
perature has little effect on the era of reionization, resulting in a degeneracy for Tvir. However,
the posterior for these parameter combinations is wide enough and does not underestimate
the error budget.

Next, ζ and LX show almost perfect parameter recovery with small network-derived er-
ror bars, as confirmed by high R2 values, low NRMSE values, low calibration errors of the
approximate posterior.

Finally, the recovery of E0 degrades towards large values. The reason is that E0 describes
the threshold of self-absorption for host galaxies where this X-ray background is generated
by compact X-ray binaries. Radiation below this threshold cannot escape the host galaxies.
Our prior range is deliberately wide and motivated by the column density of the interstellar
medium (ISM) in simulated high-redshift galaxies [73]. For large E0, corresponding to high
ISM column densities within high-redshift galaxies, only a small fraction of X-ray radiation
can escape the galaxies, leading to a similarly small X-ray heating background for all scenarios
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Figure 5: Calibration or parameter recovery for mock data, showing the mean of the
marginalized posterior (red dots) and the 68% credible intervals (light blue).

above around 700 eV. The fact that high-E0 scenarios become indistinguishable is reflected in
the calibration curve and confirmed by the wide error bars.

One more performance test from Sec. 2.5, latent space examination is described in the
Appendix. It checks consistency and convergence, giving more confidence in the network
without having to know the true parameters. It confirms that the network is well-calibrated
and that we are sampling from the correct posterior.

3.2 Mock data

It is important to check that our inference does not break down when the realistic data becomes
noisy. This is why we repeat the performance and calibration study for the mock measurements
introduced in Sec. 2.1. These more realistic results are shown in Tab. 2 and Fig. 5. The
features, challenges, and patterns are similar to the pure simulation. Especially, the inference
of the matter density Ωm remains very robust and almost perfectly calibrated. This aligns well

Ωm mWDM Tvir ζ LX E0

Simulation
R2 0.981 0.621 0.764 0.969 0.987 0.803

NRMSE 0.039 0.181 0.135 0.048 0.032 0.130
Errcal 0.007 0.011 0.050 0.028 0.016 0.025

Mock
R2 0.990 0.663 0.716 0.969 0.973 0.045

NRMSE 0.028 0.171 0.149 0.048 0.047 0.286
Errcal 0.045 0.017 0.086 0.066 0.025 0.064

Table 2: Various performance metrics for the 21cmPIE-INN, shown for pure simula-
tions and for mock data. R2, NRMSE, and Errcal are calculated according to Eq.(9),
Eq.(10), and Eq.(12).
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with previous findings that even when transfer learning between different noise levels present
in 21cm LCs a recovery of Ωm remains feasible [41].

The main physics effect of the noise added to the mock data is that the network now
fails to infer E0 altogether. This effect is completely unrelated to the effect of noise on the
network training, discussed in Sec. 2.4. Because it removes information from the dataset, it
has the opposite effect of the improved training performance, and both aspects have to be
considered together. Confidence in the inference method is restored by the fact that the error
bar on the posterior correctly accounts for this. If anything, the estimated error bars indicate
that the network is slightly under-confident, as can be seen from the low calibration error
Errcal = 0.025.

The same bottom line can also be extracted from the simulation-based calibration in Fig. 6.
We show histograms for a sample size of 10000 and 15 bins. Self-consistent sampling leads
to a uniform distribution. The shaded region is the expected variation based on the 99%
quantile of a Binomial. Common failure modes are overestimation, leading to a ∪-shape, and
underestimation, leading to a ∩-shape. An asymmetry points towards a systematic bias. In
our case, the histograms for the pure simulation show the expected variance, implying self-
consistent sampling. After adding noise, all parameters except for E0, and to a much smaller
degree ζ, remain well-calibrated. For E0 the∪-shape, implies under-confidence, corresponding
to the issues observed in Fig. 5.

3.3 Inference from 21cm light cones

Finally, we show the full posterior derived for one fiducial model from the corresponding
simulated 21cm LC, with and without noise. The parameter values of our fiducial model are

Ωm = 0.316 mWDM = 3.5keV Tvir = 104.70 K

ζ= 30 LX = 1040 erg/s
M⊙/yr

E0 = 500eV . (14)

Within the prior parameter ranges, any fiducial model parameter set can be chosen to extract
the posterior fast from the trained model. Even though we sample the cINN 100.000 times,
to ensure a reliable modeling of the tails of the multi-dimensional posterior, the analysis of a
single fiducial takes only a few seconds. The numerical bottleneck is loading the data for the
light cone.

The extracted posterior, with 2-dimensional correlations and 1-dimensional marginalized
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curves, is depicted in Fig. 7. We only show the realistic mock data, including noise. The
fiducial parameter values fall within the 1σ region for all parameters. The posterior for the
mock data comes out comparable to what we would get from the pure simulation. The pa-
rameter degeneracies expected from our discussion in Sec. 3.1 appear in the 2-dimensional
correlations. For instance, mWDM and Tvir show the degeneracies expected from Eq.(13). Also,
the degraded inference of E0 for the mock data can be traced to the strong degeneracy with
typical X-ray luminosities LX. Most interestingly, the cosmological parameters and especially
the matter density Ωm are inferred extremely robustly when it comes to adding noise. More
results for different light cones are shown in App. B.

A direct comparison with other methods, such as a comprehensive and much slower MCMC
analysis [74], is challenging, due to variations in the included noise models and set of param-
eters. However, our credibility intervals are qualitatively similar to those reported in Ref. [74].
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4 Outlook

21cm experiments such as the SKA promise precise measurements of brightness temperature
fluctuations of neutral hydrogen, offering a new tomographic perspective on the high-redshift
universe and cosmological structure formation. To make optimal use of this complex and
vast dataset, we need inference methods beyond simple summary statistics or power spectra.
For this purpose, we developed a simulation-based inference method for a joint analysis of
Cosmology (Ωm, mWDM), the Epoch of Reionization (Tvir, ζ), and Cosmic Dawn (LX, E0). Our
modern machine learning setup combines an advanced CNN summary network with a cINN
to generate a multi-dimensional correlated posterior by sampling, linked by a physics-inspired
latent representation of the complex SKA light cones.

We assessed the validity of this inference method through calibration curves and a range of
metrics, coefficient of determination (R2) and normalized root mean square error (NRMSE) for
parameter recovery, as well as simulation-based calibration and calibration error. Aside from
known correlations, which limit the possible inference, we found exceptional performance for
pure simulation and for mock measurements with added noise. Only the energy threshold
of self-absorption in galaxies E0 becomes a challenge once noise is added to the dataset, be-
coming strongly degenerate with the typical X-ray luminosity as the second key CD parameter.
Notably, the matter density Ωm as the key cosmological parameter is robustly inferred even in
the presence of noise.

The summary vector that links the two networks of the 21cmPIE-INN is initialized to the
parameters of interest, but adapted by the joint training with the cINN to guarantee an opti-
mal inference. This optimization, the impact of the form and size of the summary vector, its
stability, and its benefits in terms of explainable AI is an interesting avenue for further inves-
tigation. Similarly, the BayesFlow methodology allows for training on single light cones or on
combinations of light cones, for example with different experimental performance, opening
further possibilities to analyze realistic SKA data.

Ultimately, the proposed approach facilitates rapid and straightforward simulation-based
inference of likelihood constraints for cosmology. The generation of full posteriors from a
given 21cm light cone takes a few seconds, most of this time used for reading in the complex
data. This speed, combined with the ability to capture non-Gaussian information optimally,
distinguishes this method from alternative inference approaches.
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A Latent space examination

As the learning objective of the cINN is to map the input to normal Gaussian distributions,
for a converged network one would expect it to be distributed as such. This is quite easy
to check visually, by sampling from the latent space and comparing it to a six-dimensional
normal Gaussian. In our two cases of simulations-only and mocks with noise, both trained
cINN networks pass this test. The distribution for the simulation-only case is shown in Fig. 8.
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Figure 8: Distribution of the latent space variables and a unit Gaussian as comparison.

B Further posterior examples

The fast generation of the full posterior from one fiducial model allows a quick exploration
of the parameter space within training prior ranges. To illustrate this fast inference from full
21cm LCs, we show three more posteriors for simulation and mock data in Figs. 9-11. The
fiducial parameters are chosen at random and include combinations in the parameter space
that are expected to be challenging for inference due to physical reasons, such as i.e. large
mWDM. As can be seen from the marginalized 2D posterior contours the inference results are
unbiased at the 1-2σ level, both with and without noise, and independently of degeneracies
or increased errorbars.
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