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Abstract

We devise new boundary conditions for the near-horizon geometries of extremal BTZ and
Kerr black holes, as well as for the ultra-cold limit of the Kerr-de Sitter black hole. These
boundary conditions are obtained as the higher-dimensional uplift of recently proposed
boundary conditions in two-dimensional gravity. Their asymptotic symmetries consist in
the semi-direct product of a Virasoro and a current algebra, of which we determine the
central extensions.
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1 Introduction and Outlook22

When formulating a physical problem, the equations of motion have to be supplemented by23

boundary conditions (BCs) on the dynamical variables. In fact, the latter turn out to be as24

important as the former [1] (cited in [2]). This is especially clear when the theory is for-25

mulated in terms of an action principle and the partition function defined through a path26

integral: the boundary conditions specify the off-shell configurations over which the integral27

has to be performed. Systems with identical field equations but different boundary conditions28

could describe significantly distinct physical phenomena and exhibit different contents (e.g.29

closed/open strings, Dirichlet vs Neumann BCs).30

Boundary conditions play a crucial role in gauge theories, in particular in theories of grav-31

ity. There, the set of metrics satisfying given equations of motion and boundary conditions32

constitute the configuration space of the theory, which can be identified with its phase space.33

The identification of the symmetries of the phase space are of crucial importance since one34

expects, upon quantization, that the Hilbert space of the corresponding quantum theory will35

fall into a representation of the symmetry group, for instance in the spirit of the geometric36

quantization program [3,4].37

In gauge theories, the symmetries of the phase space, mapping one solution onto another38

with distinct physical charges, are of great importance. These are called asymptotic symmetries39

and form the asymptotic symmetry group (ASG). The study of asymptotic symmetries in gravity40

theories has a long history that started in 1962 with the founding papers [5,6]which identified41

the BMS group of supertranslations and Lorentz transformations as ASG of four-dimensional42

asymptotically flat spacetimes. It was later extended to include superrotations in [7–9] and43

diffeomorphisms on the 2-sphere in [10, 11]. The renewed interest in BMS symmetries is44

largely due to recent work on BMS invariance of scattering amplitudes [12] and the “infrared45

triangle" relating BMS supertranslation symmetries, Weinberg’s soft graviton theorem and the46

displacement memory effect [13].47

Equally impactful is the discovery by Brown and Henneaux of two-dimensional confor-48

mal symmetry in the asymptotic structure of AdS3 gravity [14], an early precursor of the49

AdS/CFT correspondence [15]. It brought deep insights into the holographic nature of gravity50

and in particular the identification of microscopic degrees of freedom for specific classes of51

black holes, either asymptotically AdS3 (the BTZ black hole [16, 17]) [18] or with an AdS352

factor in their near-horizon geometry [19]. The three-dimensional situation in flat space has53

been addressed more recently, identifying the BMS3 asymptotic symmetry algebra at null infin-54

ity [20, 21] and at spatial infinity [22]. The flat limit from AdS3 to Minkowski was described55

in [21] for the symmetry algebra, and for the full phase space in [23]. The flat spacetime56

cosmologies [24,25] – the flat counterparts of the BTZ black holes – and their thermodynam-57

ical interpretation in terms of BMS3 symmetries were addressed in [26,27]. Interestingly, the58

non-uniqueness of the ASG given a vacuum solution and non-trivial zero-mode solutions has59

been brought to light only rather recently. Superrotations in four-dimensional asymptotically60

flat space have been introduced almost half a century after the works of Bondi, van der Burg,61

Metzner and Sachs. In three-dimensional gravity, a variety of alternative boundary conditions62

– allowing e.g. for a fluctuating boundary metric, in contrast with the Dirichlet-like Brown-63

Henneaux boundary conditions – have been proposed in recent years both for AdS3 [28–33]64

and Minkowski space [34–36] exhibiting in general different ASGs, hence potentially different65
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field theory dual interpretations. A particular way of relating different ASGs in three dimen-66

sions has been discussed in [37].67

Among holographic dualities involving AdS spaces, the two-dimensional case has always68

stood out as more challenging. The boundary of AdS2 consists in two disconnected pieces, and69

finite energy excitations have been observed to destroy the asymptotic geometry [38,39]. This70

has long been a hindrance for a microscopic understanding of extremal higher-dimensional71

black holes, as these generally exhibit a near-horizon geometry including an AdS2 factor72

[40, 41] when the cosmological constant is non-positive (we will later discuss a situation73

where AdS2 in replaced by Mink2 for the near-horizon limit of the ultra-cold Kerr-de Sitter74

black hole [42]). It has however recently been found how to circumvent these obstructions75

and identify the relevant degrees of freedom describing the low energy physics driving a black76

hole away from extremality. It consists in considering nearly-AdS2 holography by including77

the leading corrections away from pure AdS2 [43,44] (for reviews, see e.g. [45,46] or App.B78

of [47]). The physics near the horizon of near-extremal black holes in higher dimensions can79

be shown to be universally described by a particular occurrence of two-dimensional dilaton80

gravity theory – JT gravity [48,49], with certain Dirichlet boundary conditions at the boundary81

of AdS2. The latter exhibit time-reparametrization invariance whose generators1 are reminis-82

cent of (one half of) the Brown-Henneaux ones [50–52]. Again, like in higher dimensions,83

different sets of boundary conditions with different symmetries can be considered [53]. Re-84

cently, new boundary conditions for AdS2 have been proposed [54], where the usual time-85

reparametrization symmetry is enhanced with an additional local U(1) symmetry, extending86

the symmetry algebra to a Virasoro-Kac-Moody U(1) algebra. The latter represent the sym-87

metries of a so-called Warped CFT (WCFT) [55,56], a two-dimensional non-relativistic theory88

with chiral scale invariance and SL(2, R)×U(1) global symmetry (see [29,57–62] for some of89

their properties).90

The goal of the present work will be to explore new boundary conditions for extremal91

black holes, in particular determine whether the boundary conditions of [54] can be uplifted92

to the near-horizon geometry in higher dimensions. Our work can thus be regarded as a proof93

of principle that certain boundary conditions existing in 2d gravity have a natural uplift to94

higher dimensions.95

Motivations stem from the ubiquity of AdS2 in the near-horizon geometry of extremal96

black holes, but also from the Kerr/CFT correspondence [63] – an attempt to relate four-97

dimensional extremal Kerr black holes to a chiral CFT in two dimensions. The argument there98

parallels the connection between AdS3 and 2d CFTs, where the AdS3 near-region throat geom-99

etry is replaced with the NHEK (near-horizon extreme Kerr) geometry found by Bardeen and100

Horowitz [64] via a near-horizon limit. Constant polar sections of the NHEK geometry consist101

in deformations of AdS3, termed Warped AdS3 (WAdS3) spaces [65–71], where the original102

undeformed SO(2,2) isometries get broken down to SL(2, R)× U(1). Holographic properties103

of WAdS3 spaces have been explored over the years [56,72–88] as a toy model for Kerr black104

holes. For generic Kerr black holes, the relevance of WCFTs was pointed out in [89] in the105

spirit of [90]. In the extremal limit, the question is still open.106

The Kerr/CFT proposal is based on boundary conditions extending the U(1) part of the107

isometry group into a Virasoro algebra, whose computed central charge allowed to reproduce108

the macroscopic Bekenstein-Hawking extremal Kerr entropy. This was one of the landmarks109

of the original proposal2. From a gravity perspective these boundary conditions might seem110

unnatural, as their symmetries do not include all the exact symmetries of the background.111

1Note that the reparameterisation symmetry is broken both spontaneously by pure AdS2 and explicitly due to
the non-trivial boundary condition for the dilaton

2This is currently being debated in recent works suggesting instead a vanishing entropy at low temperatures
[91,92].
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Soon after the Kerr/CFT proposal, other boundary conditions have been proposed extending112

instead the SL(2, R) part of the isometries, but found vanishing central extensions [93,94]. In113

this work, we will propose new boundary conditions for the NHEK geometry, inspired by the114

Godet-Marteau analysis in two dimensions [54]. One feature of these boundary conditions and115

their symmetries is the dependence of the generators on (retarded) time. Extracting a non-116

trivial symmetry algebra therefore requires to integrate charges over time instead of the usual117

constant-time, angular integration. This procedure has been applied both in two and higher118

dimensions [51,53,95,96]. Integration over time produces time-averaged charges which can119

be seen to give a canonical representation of the asymptotic symmetry algebra with non-trivial120

central extensions. The procedure can also be interpreted from the boundary perspective, in121

particular when the putative dual theory is two-dimensional (CFT, WCFT, or other) and enjoys122

modular invariance. A modular invariant field theory at finite chemical potentials is naturally123

defined on a torus with two cycles, the spatial one (angular identifications) and the thermal124

one (in particular, time has a period set by the inverse temperature). Its partition function can125

be expressed either as a trace over states defined on spatial cycles (with charges integrated126

over a spatial cycle) and evolved with the usual hamiltonian operator, or as states defined on127

thermal cycles (hence with time periodic in particular and charges integrated over a thermal128

cycle) and evolved with the angular momentum operator. This yields one possible boundary129

interpretation of a bulk time integration.130

The paper is organized as follows. As a warm-up, we devise in Sect. 2 new boundary131

conditions for the near-horizon limit of extremal BTZ black holes, the so-called selfdual orb-132

ifold. Kerr/CFT-like boundary conditions had appeared e.g. in [97]. Here we define a new133

phase space with WCFT symmetries of which we identify the non-trivial central extensions,134

the Virasoro one coinciding with the Brown-Henneaux central charge. In Sect. 3 we turn to135

boundary conditions including the NHEK geometry. Following a similar strategy, we define a136

phase space, identify their asymptotic symmetries, and compute the asymptotic charges. The137

latter are shown to satisfy through their Poisson bracket a WCFT algebra with non trivial cen-138

tral extensions both for the Virasoro and current algebra. The Virasoro central extensions is139

seen to match that of the original Kerr/CFT correspondence. We address a slightly different140

case in Sect. 4. It consists in boundary conditions including the near-horizon limit of the141

ultra-cold Kerr-de Sitter black hole in 4 dimensions (where the 3 horizons come to coincide).142

There is no known way to associate a CFT or any other boundary theory for that matter to143

the ultracold limit [42] (see however [98] studying the response of ultracold black holes to144

small perturbations). The latter does not fall in the geneal category of AdS2 near-horizon ge-145

ometry. Instead, the AdS2 factor is replaced by two-dimensional Minkowski space. As it turns146

out, boundary conditions for Mink2 have been proposed and their asymptotic symmetries de-147

termined [99,100]. We uplift these boundary conditions to 4 dimensions, demonstrating that148

they yield well defined charges and asymptotic symmetry algebras, again consisting in a WCFT149

algebra of which we compute the central extensions. This provides a first step towards building150

a holographic dual for ultracold Kerr-dS black holes. The implications of these new boundary151

conditions from a boundary perspective and black hole thermodynamics in particular is left152

for future work.153
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2 Extremal BTZ154

2.1 Geometry and Near-horizon Limit155

The metric of the extremal BTZ black hole is156

ds2 = −
(r2 − r2

h )
2

r2
d t2 +

r2

(r2 − r2
h )

2
dr2 + r2

�

dφ −
r2
h

r2
d t

�2

, (1)

where rh is the horizon radius and where the AdS radius l has been set to one. We consider157

the change of coordinates158

t =
τ

ε
, r2 = r2

h + ερ , φ = ϕ +
τ

ε
(2)

and then study the near-horizon limit (NHL) by taking ε → 0. The extremal BTZ metric159

becomes [101]160

ds2 =
1
4

dρ2

ρ2
+ 2ρdτdϕ + r2

h dϕ2

=
1
4

dρ2

ρ2
−
ρ2

r2
h

dτ2 + r2
h

�

dϕ +
ρ

r2
h

dτ

�2

. (3)

In order to apply Godet-Marteau boundary conditions on this metric, we will write it in a161

system of coordinates that is similar to the Bondi gauge described in [54] for AdS2. We thus162

define new coordinates (u, r̂, ϕ̂) such that163

τ=
u
2
−

1
2r̂

, ρ = rh r̂ , ϕ =
1

2rh
(ϕ̂ − ln r̂) (4)

and the metric becomes164

ds2 =
1
4
(−r̂2du2 − 2dud r̂) +

1
4
(r̂du+ dϕ̂)2. (5)

From now on, we will omit "^" of the coordinates, keeping in mind that the new coordinates165

are different from the ones in (3).166

2.2 Phase Space and Asymptotic Killing Vectors167

Inspired by the Godet-Marteau boundary conditions for AdS2 [54], we consider the following168

family of metrics169

ds2 =
1
4

�

(−r2 + 2P(u)r + 2T (u))du2 − 2dudr
�

+
1
4
(rdu+ dϕ)2 , (6a)

= ds2
2d +

1
4
(rdu+ dϕ)2 (6b)

where P and T are arbitrary functions of u. Here, the first part of the metric ds2
2d corresponds170

to boundary conditions that were previously imposed for 2d gravity [54]. The boundary con-171

ditions (6) can be obtained from (5) by applying the finite coordinate transformation172

u→ F(u) , r →
1
F ′
(r + G′(u)) , ϕ→ ϕ − G(u) . (7)
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The functions P, T,F and G are related by173

P(u) = −G′(u) + F ′′(u)
F ′(u)

, (8)

T (u) = −
1
2
G′(u)2 + G′(u)F

′′(u)
F ′(u)

− G′′(u) . (9)

The asymptotic Killing vectors generating the transformations (7) are given by174

ξ= ε(u)∂u + (−rε′(u)− ζ′(u))∂r + ζ(u)∂ϕ , (10)

where ε(u) and ζ(u) are two arbitrary functions of u. By applying the Lie derivative on the175

metric (6), we can also find the variations of P(u) and T (u)176

δξP = εP ′ + ε′P + ε′′ + ζ′ , (11)

δξT = εT ′ + 2ε′T − ζ′P + ζ′′ . (12)

Alternatively, we can define a perturbation hµν on the background metric (5) such that177

huu =O(r) , hur =O(r−2) , huϕ =O(r−1) , (13a)

hr r =O(r−3) , hrϕ =O(r−2) , hϕϕ =O(r−1) (13b)

and the vectors solving the asymptotic Killing equation are given by178

ξ= (ε(u) +O(r−2)) ∂u + (−rε′(u)− ζ′(u) +O(r−1)) ∂r + (ζ(u) +O(r−2)) ∂ϕ . (14)

Fixing the coordinate system, by setting gur = −1/4, gr r = 0 and grϕ = 0, and assuming that179

the remaining components admit an expansion in powers of r180

guu = r guu1(u,ϕ) + guu0(u,ϕ) +O(r−1) , (15a)

guϕ =
r
4
+

guϕ0(u,ϕ)

r
+O(r−2) , (15b)

gϕϕ =
1
4
+

gϕϕ−1(u,ϕ)

r
+O(r−2) , (15c)

one readily obtains that (6) is the unique class of metrics that solves the vacuum Einstein181

equations with a negative cosmological constant and the fall-off conditions (13). It is in this182

sense, that (13) and (14) are equivalent to (6) and (10). In the following, we will always work183

with a class of metrics instead of directly working with boundary conditions.184

From now on, we assume that u is periodic with period L and define the modes of the185

vectors (10) as186

ln = ξ
�

ε=
L

2π
e2πinu/L , ζ= 0
�

, jn = ξ
�

ε= 0, ζ=
L

2πi
e2πinu/L
�

, (16)

where n ∈ Z. These modes satisfy a warped Witt algebra under the Lie bracket:187

i[lm, ln] = (m− n)lm+n , (17a)

i[lm, jn] = −n jm+n , (17b)

i[ jm, jn] = 0 . (17c)

6
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2.3 Charge Algebra188

The infinitesimal charge difference between two geometries gµν and gµν + hµν, where hµν is189

an infinitesimal perturbation, is given by190

δQξ[h, g] =

∫

∂Σ

kξ[h, g] . (18)

The differential form kξ associated to an asymptotic Killing vector ξ is defined by3
191

kξ[h, g] =
p
−g

8πG
(dn−2 x)µν
�

ξµ∇σhνσ − ξµ∇νh+ ξσ∇νhµσ +
1
2

h∇νξµ − hρν∇ρξµ
�

, (19)

where n is the space-time dimension, ∇ is the covariant derivative of gµν and h = gµνhµν.192

One readily checks that integrating (18) along the direction of ϕ over a constant u surface and193

taking the limit r →∞, yields zero – all surface charges vanish. One may obtain non-zero194

surface charges by integrating (18) along the direction of u over a constant ϕ surface and then195

taking the limit r →∞, which is what we will do in what follows.196

We begin by defining the variation of the metric (6) as197

hµν ≡ δgµν =
∂ gµν
∂ P

δP +
∂ gµν
∂ T

δT . (20)

Computing the variation of the charges, we find198

δQξ =
1

16πG

∫ L

0

du(εδT − ζδP) . (21)

We see that this expression can be directly integrated in order to obtain the finite charges199

Qξ =
1

16πG

∫ L

0

du(T (u)ε(u)− P(u)ζ(u)) , (22)

where the metric of the extremal black hole in the NHL, which has P(u) = T (u) = 0, has been200

chosen as the background metric. In particular, we define201

Ln =Q ln =
1

16πG

∫ L

0

du T (u)
L

2π
e2πinu/L , (23)

Jn =Q jn = −
1

16πG

∫ L

0

du P(u)
L

2πi
e2πinu/L , (24)

Computing the algebra of these charges under the Dirac bracket yields202

i{Lm, Ln}= iδln Lm = (m− n)Lm+n , (25a)

i{Lm, Jn}= iδ jn Lm = −nJm+n −
L

16πG
m2δm+n,0 , (25b)

i{Jm, Jn}= iδ jn Jm =
L2

32π2G
mδm+n,0 . (25c)

The algebra described by the relations (25) corresponds to a Virasoro-Kac-Moody U(1)203

algebra, the symmetry algebra of a WCFT,204

i{Lm, Ln}= (m− n)Lm+n +
c

12
m3δm+n,0 , (26a)

i{Lm, Jn}= −nJm+n − iκm2δm+n,0 , (26b)

i{Jm, Jn}=
k
2

mδm+n,0 . (26c)

3See e.g. [102] for a pedagogical account and references
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with central charges c, κ and k205

c = 0 , κ=
L

16πiG
, k =

L2

16π2G
. (27)

2.4 Boundary Conditions in Schwarzschild-like Coordinates206

Previously, we applied the Godet-Marteau boundary conditions on the extremal BTZ black hole207

by introducing a new system of coordinates (with a retarded time u). With this system of coor-208

dinates, the metric was written in a form that was similar to the Bondi gauge for AdS2. Here,209

we perform our analysis in the Schwarzschild-like system of coordinates. In these coordinates,210

the metric of the extremal BTZ black hole (in the NHL) reads (3). Upon rescaling ρ→ (rhρ)/2211

and ϕ→ ϕ/(2rh), the metric (3) becomes212

ds2 =
1
4

�

dρ2

ρ2
−ρ2dτ2

�

+
1
4
(dϕ +ρdτ)2 . (28)

We now impose Godet-Marteau boundary conditions on this metric by applying a finite coor-213

dinate transformation given by214

τ→ F(τ) , ρ→
1
F ′
(ρ + G′(τ)) , ϕ→ ϕ − G(τ) . (29)

Defining a function H(τ)≡ F ′′(τ)/F ′(τ), this transformation yields the metric components215

gττ = −
1
2
ρG′(τ)− 1

4
G′(τ)2 +

((ρ + G′(τ))H(τ)− G′′(τ))2

4(ρ + G′(τ))2
, (30a)

gτρ =
−(ρ + G′(τ))H(τ) +G′′(τ)

4(ρ + G′(τ))2
, gτϕ =

ρ

4
, (30b)

gρρ =
1

4(ρ + G′(τ))2
, gρϕ = 0 , gϕϕ =

1
4

. (30c)

The metric of the extremal BTZ black hole (in the NHL) corresponds to (30) with G′(τ) = 0216

and H(τ) = 0.217

The asymptotic Killing vectors generating the transformations (29) are given by218

ξ= ε(τ)∂τ − (ρε′(τ) + ζ′(τ))∂ρ + ζ(τ)∂ϕ , (31)

where ε(τ) and ζ(τ) are two arbitrary functions of τ. By applying the Lie derivative on the219

metric, we find the variations of G′(τ) and H(τ):220

δξG′(τ) = ε′(τ)G′(τ) + ε(τ)G′′(τ)− ζ′(τ) , (32)

δξH(τ) = ε′(τ)H(τ) + ε′′(τ) + ε(τ)H′(τ) . (33)

In the following, we assume that τ is periodic with period L. We define modes as221

ln = ξ
�

ε=
L

2π
e2πinτ/L , ζ= 0
�

, jn = ξ
�

ε= 0, ζ=
L

2πi
e2πinτ/L
�

. (34)

Under the Lie bracket, these modes satisfy the warped Witt algebra (17).222

Here, the integral considered in (18) for the computation of the charges is taken over τ223

while ρ→∞ and ϕ is constant. Explicitly computing the charges yields224

Qξ =
1

32πG

∫ L

0

dτ
�

2ζ(τ)G′(τ)− ε(τ)G′(τ)2 + 2ε′(τ)H(τ) + ε(τ)H(τ)2
�

, (35)

8
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where the metric of the extremal black hole in the NHL, which has G′(τ) = H(τ) = 0, has225

been chosen as the background metric. We define226

Ln =Q ln =
1

32πG

∫ L

0

dτ
�

−G′(τ)2 + 4πin
L

H(τ) +H(τ)2
�

L
2π

e2πinτ/L , (36)

Jn =Q jn =
1

32πG

∫ L

0

dτ(2G′(τ)) L
2πi

e2πinτ/L . (37)

The algebra of the charges Ln and Jn is given by (26a)-(26c) with central charges227

c∗ =
3

2G
, κ∗ = 0 , k∗ =

L2

16π2G
, (38)

which are different from those found in (27). We would like to know if it is possible to relate228

algebras (26) with different central charges, given by (27) and (38), respectively. By defining229

new surface charges [54]230

L∗n := Ln +
2iκ
k

nJn (39)

it is possible to go from an algebra with central charges c, κ and k to a new algebra with central231

charges given by232

c∗ = c −
24κ2

k
, κ∗ = 0 , k∗ = k . (40)

Using this relation, the central charges found here, (c∗, κ∗, k∗), can be related to those found233

in (27), (c, κ, k). Explicitly, we have234

c∗ = 0− 24

�

−L2

(16π)2G2

�

16π2G
L2

=
3

2G
(41)

and the relations for κ∗ and k∗ are trivial. Note that c∗ is recognized as the Brown-Henneaux235

central charge for AdS3 gravity [14].236

3 Extremal Kerr237

3.1 Geometry and NHEK238

The analysis of the previous sections can also be applied to extremal Kerr black holes. The239

metric of the extremal Kerr black hole in Boyer-Lindquist coordinates reads240

ds2 = −
∆

ρ2
(d t − a sin2 θdφ)2 +

sin2 θ

ρ2
((r2 + a2)dφ − ad t)2 +

ρ2

∆
dr2 +ρ2dθ2 , (42)

where241

∆= (r − a)2 , ρ2 = r2 + a2 cos2 θ , a = GM . (43)

We consider the change of coordinates242

r̂ =
r − GM
λGM

, t̂ =
λt

2GM
, φ̂ = φ −

t
2GM

(44)

and take the limit λ→ 0, yielding the near-horizon extremal Kerr (NHEK) geometry243

ds2 = G2M2(1+ cos2 θ )

�

d r̂2

r̂2
+ dθ2 − r̂2d t̂2

�

+
4G2M2 sin2 θ

1+ cos2 θ
(dφ̂ + r̂d t̂)2. (45)

9
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Hereafter, we will omit "^" of the coordinates. In order to apply Godet-Marteau boundary244

conditions to this metric, we write it in a system of coordinates similar to the Bondi coordinates245

t = u−
1
r

, φ = ϕ − ln r , (46)

such that the metric becomes246

ds2 = G2M2(1+ cos2 θ )(−r2du2 − 2dudr + dθ2) +
4G2M2 sin2 θ

1+ cos2 θ
(dϕ + rdu)2. (47)

3.2 Phase Space and Asymptotic Killing Vectors247

Inspired by the Godet-Marteau boundary conditions for AdS2 [54], we consider the following248

family of metrics249

ds2 = G2M2(1+ cos2 θ )((−r2du2 + 2P(u)r + 2T (u))du2 − 2dudr + dθ2)

+
4G2M2 sin2 θ

1+ cos2 θ
(dϕ + rdu)2 , (48)

where P and T are arbitrary functions of u. They can be obtained from (47) by applying a250

finite coordinate transformation given by251

u→ F(u) , r →
1
F ′
(r + G′(u)) , ϕ→ ϕ − G(u) , θ → θ . (49)

The functions P, T,F and G are related by252

P(u) = −G′(u) + F ′′(u)
F ′(u)

, (50)

T (u) = −
1
2
G′(u)2 + G′(u)F

′′(u)
F ′(u)

− G′′(u) . (51)

The asymptotic Killing vectors generating the transformations (49) are given by253

ξ= ε(u)∂u − (rε′(u) + ζ′(u))∂r + ζ(u)∂ϕ , (52)

where ε(u) and ζ(u) are two arbitrary functions of u. By applying the Lie derivative on the254

metric (48), we can also find255

δξP = εP ′ + ε′P + ε′′ + ζ′, (53)

δξT = εT ′ + 2ε′T − ζ′P + ζ′′. (54)

From now on we assume that u is periodic with period L. We define the modes256

ln = ξ
�

L
2π

e2πinu/L , 0
�

, jn = ξ
�

0,
L

2πi
e2πinu/L
�

, (55)

where n ∈ Z. Under the Lie bracket, these modes satisfy the warped Witt algebra (17).257

3.3 Charge Algebra258

We can now compute the surface charges by using the expression (18). For this, we integrate259

over u and θ while keeping ϕ fixed and taking r →∞. Defining260

hµν ≡ δgµν =
∂ gµν
∂ P

δP +
∂ gµν
∂ T

δT , (56)

10
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we compute261

δQξ =
G2M2

4πG

∫ L

0

du

∫ π

0

dθ sinθ (δT ε−δP ζ) , (57)

which upon integration yields262

Qξ =
GM2

2π

∫ L

0

du(T (u)ε(u)− P(u)ζ(u)) , (58)

where the NHEK geometry, which has P(u) = T (u) = 0, has been chosen as the background263

metric. In particular, we define264

Ln =Q ln =
GM2

2π

∫ L

0

duT (u)
L

2π
e2πinu/L , (59)

Jn =Q jn = −
GM2

2π

∫ L

0

duP(u)
L

2πi
e2πinu/L . (60)

The charges Ln and Jn respect the algebra (26) with central charges given by265

c = 0 , κ=
LGM2

2πi
, k =

L2GM2

2π2
. (61)

3.4 Boundary Conditions in Boyer-Lindquist Coordinates266

So far, we studied the NHEK geometry by writing it in a new system of coordinates (with a267

retarded time u). Now, we perform the same analysis in Boyer-Lindquist coordinates. Again,268

we obtain a phase space of metrics from (45) by applying the finite coordinate transformation269

t → F(t) , r →
1
F ′
(r + G′(t)) , φ→ φ − G(t) . (62)

Defining H(t)≡ F ′′(t)/F ′(t), yields270

gt t =
4r2G2M2 sin2 θ

1+ cos2 θ
− G2M2(1+ cos2 θ )(r + G′(t))2

+
G2M2(1+ cos2 θ )
(r + G′(t))2

((r + G′(t))H(t)− G′′(t))2, (63a)

gt r =− G2M2(1+ cos2 θ )
((r + G′(t))H(t)− G′′(t))

(r + G′(t))2
, (63b)

gtθ =0 , gtφ =
4rG2M2 sin2 θ

1+ cos2 θ
, (63c)

gr r =
G2M2(1+ cos2 θ )
(r + G′(t))2

, grθ = 0 , grφ = 0 , (63d)

gθθ =G2M2(1+ cos2 θ ) , gθφ = 0 , gφφ =
4G2M2 sin2 θ

1+ cos2 θ
, (63e)

where the NHEK geometry is obtained by setting G′(t) = 0 and H(t) = 0. Hence, the order of271

the non-zero fluctuations of the boundary metric is given by272

ht t =O(r) , ht r =O(r−1) , hr r =O(r−3) . (64)

The asymptotic Killing vectors generating the transformations (62) are given by273

ξ(ε,ζ) = ε(t)∂t + (−rε′(t)− ζ′(t))∂r + ζ(t)∂φ , (65)

11
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where ε(t) and ζ(t) are two arbitrary functions of t.274

We recall that the group of exact isometries of the NHEK geometry, SL(2,R) × U(1), is275

generated by the Killing vectors276

ξ−1 = ∂t , ξ0 = t∂t − r∂r , ξ1 =
�

t2 +
1
r2

�

∂t − 2t r∂r −
2
r
∂φ , (66)

ξφ = ∂φ . (67)

Comparing these vectors with (65), we find that ξ−1 = ξ(ε = 1,ζ = 0), ξ0 = ξ(ε = t,ζ = 0),277

ξφ = ξ(ε = 0,ζ = 1) and that ξ1 correspond to ξ(ε = t2,ζ = 0) up to subleading terms278

in r. Hence, the asymptotic symmetry group contains all the exact isometries of the NHEK279

geometry, which was not the case for the boundary conditions studied in [63].280

By applying the Lie derivative on (63), we find281

δξG′(t) = ε′(t)G′(t) + ε(t)G′′(t)− ζ′(t) , (68)

δξH(t) = ε′(t)H(t) + ε′′(t) + ε(t)H′(t) . (69)

From now on we assume that t is periodic with period L. We define modes as282

ln = ξ
�

L
2π

e2πint/L , 0
�

, jn = ξ
�

0,
L

2πi
e2πint/L
�

, (70)

with n ∈ Z, which satisfy (17).283

Here, the integral considered in (18) for the computation of the charges is taken over t284

and θ while r →∞ and φ is constant. Computing the charges explicitly, we find285

Qξ =
GM2

4π

∫ L

0

d t(2G′(t)ζ(t)− G′(t)2ε(t) + 2ε′(t)H(t) + ε(t)H(t)2) , (71)

where the NHEK geometry, which has G′(t) = H(t) = 0, has been chosen as the background286

metric. In particular, we define287

Ln =Q ln =
GM2

4π

∫ L

0

d t
�

−G′(t)2 + 4πin
L

H(t) +H(t)2
�

L
2π

e2πint/L , (72)

Jn =Q jn =
GM2

4π

∫ L

0

d t 2 G′(t) L
2πi

e2πint/L . (73)

The charges Ln and Jn fulfill the algebra (26) with central charges given by288

c∗ = 12GM2 = 12J , κ∗ = 0 , k∗ =
L2GM2

2π2
=

J L2

2π2
. (74)

The algebra (26) with central charges (74), (c∗,κ∗, k∗) can be related to the one with289

central charges (61), (c,κ, k), by the transformation (39) and (40). Indeed, we have290

c∗ = 0− 24

�

LGM2

2πi

�2
2π2

L2GM2
= 12GM2 (75)

and the relations for κ∗ and k∗ are trivial. Here c∗ is recognized as the Kerr/CFT central291

charge [63].292
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3.5 Comparison to other Boundary Conditions for extremal Kerr Black Holes293

We now compare our results with those obtained in [93]. There, the perturbations defined on294

the background metric (45) were295

ht t =O(r0) , ht r =O(r−3) , htθ =O(r−3) , htφ =O(r−2) , (76a)

hr r =O(r−4) , hrθ =O(r−4) , hrφ =O(r−3) , (76b)

hθθ =O(r−3) , hθφ =O(r−3) , hφφ =O(r−2) (76c)

and the vectors solving the asymptotic Killing equation took the general form296

ξ=
�

ε(t) +
ε′′(t)
2r2

+O(r−3)
�

∂t +
�

−rε′(t) +
ε′′′(t)

2r
+O(r−2)
�

∂r

+
�

C − ε
′′(t)
r
+O(r−3)
�

∂φ +O(r−3)∂θ , (77)

where ε(t) is an arbitrary function of t and C is an arbitrary constant. The boundary conditions297

(76) are different from ours, compare equation (64). Neglecting the subleading terms, we see298

that (65) reduces to (77) upon setting ζ(t) = C = const. Hence, in both cases the expression299

(77) contains the vectors (66)-(67) generating the SL(2,R)× U(1) group of isometries.300

In [93] it is claimed that the charges associated to the vectors (77) with C = 0 form a301

Virasoro algebra with vanishing central extension, contrary to our result. Indeed, restricting to302

a subset of our charges by considering only asymptotic Killing vectors (65) that have ζ(t) = 0,303

we obtain a Virasoro algebra (26a) with non-zero central charge.304

Different boundary conditions encompassing the NHEK geometry were also presented in305

[103,104]. Starting from the background metric (45), a phase space of metrics was obtained306

by applying a finite coordinate transformation307

t → f (t) +
2 f ′′(t) f ′(t)2

4r2 f ′(t)2 − f ′′(t)2
,

r →
4r2 f ′(t)2 − f ′′(t)2

4r f ′(t)3
, (78)

φ→ φ + log
�

2r f ′(t)− f ′′(t)
2r f ′(t) + f ′′(t)

�

,

yielding the line element308

ds2 =G2M2(1+ cos2 θ )

�

−r2
�

1+
{ f (t), t}

2r2

�2

d t2 +
dr2

r2
+ dθ2

�

+
4G2M2 sin2 θ

1+ cos2 θ

�

dφ + r
�

1−
{ f (t), t}

2r2

�

d t
�2

(79)

with the Schwarzian derivative309

{ f (t), t}=
�

f ′′

f ′

�′

−
1
2

�

f ′′

f ′

�2

. (80)
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Equivalently, the components of this metric read310

gt t =
4r2G2M2 sin2 θ

1+ cos2 θ

�

1−
{ f (t), t}

2r2

�2

− G2M2(1+ cos2 θ )r2
�

1+
{ f (t), t}

2r2

�2

, (81a)

gt r =0 , gtθ = 0 , gtφ =
4G2M2 sin2 θ

1+ cos2 θ
r
�

1−
{ f (t), t}

2r2

�

, (81b)

gr r =
G2M2(1+ cos2 θ )

r2
, grθ = 0 , grφ = 0 , (81c)

gθθ =G2M2(1+ cos2 θ ) , gθφ = 0 , gφφ =
4G2M2 sin2 θ

1+ cos2 θ
, (81d)

which are different from the components (63) that we obtained from applying the transfor-311

mation (62). The order of the non-zero fluctuations of the boundary metric312

ht t =O(r−2) , htϕ =O(r−1) (82)

are different from (76) and ours, compare equation (64). Furthermore, while here the com-313

ponents only depend on one free function of t, our class of metrics (63a)-(63e) depends on314

two. Expanding f (t) = t + ε(t) +O(ε2), the asymptotic Killing vectors generating the trans-315

formations (78) are given by316

ξ=
�

ε(t) +
ε′′(t)
2r2

�

∂t − rε′(t)∂r −
ε′′(t)

r
∂φ , (83)

where ε(t) is an arbitrary function of t. Again, up to subleading terms, these vectors are a317

subset of the vectors (65), obtained by setting ζ(t) = 0.318

4 Ultra-cold Kerr-dS319

4.1 Geometry and Phase Space320

In this section, we study the near horizon geometry of the Kerr-dS black hole in the ultracold321

limit where the inner, outer and cosmological horizon coincide. In this limit, the metric takes322

the form [42]323

ds2

ℓ2
= Γ (θ )
�

− d t2 + dr2 +α(θ )dθ2
�

+ γ(θ )(dφ + k̄rd t)2 (84)

with324

Γ (θ ) =

p

2
p

3− 3
��

3− 2
p

3
�

cos2(θ )− 1
�

2
�p

3− 3
� , α(θ ) =

2
p

14
p

3− 24
�

7
p

3− 12
�

cos2(θ ) +
p

3
, (85)

γ(θ ) =
sin2(θ )
��

15
p

3− 26
�

cos2(θ ) +
p

3− 2
�

3
�

4
p

3− 7
�

cos(2θ ) + 8
p

3− 15
, k̄ = −

p
3 , (86)

where the bar has been introduced to avoid possible confusions between the parameter k̄ with325

the central extension k. Here, we have chosen our units such that the cosmological constant326

Λ= 3/ℓ2, with ℓ being the dS radius. The sign of k̄ is arbitrary and can be changed by sending327

t →−t. We change to Eddington-Finkelstein-like coordinates328

u= t − r , φ = ϕ̄ −
k̄r2

2
, (87)
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yielding329

ds2

ℓ2
= Γ (θ )(−du2 − 2dudr +α(θ )dθ2) + γ(θ )(dϕ̄ + k̄rdu)2 . (88)

Upon setting330

ϕ̄ = k̄ϕ , γ(θ ) =
γ̄(θ )
k̄2

, (89)

we get331

ds2

ℓ2
= Γ (θ )(−du2 − 2dudr +α(θ )dθ2) + γ̄(θ )(dϕ + rdu)2 . (90)

Inspired by [99], we consider the following family of metrics332

ds2

ℓ2
= Γ (θ )
�

2
�

P(u)r + T (u)
�

du2 − 2dudr +α(θ )dθ2
�

+ γ̄(θ )(dϕ + rdu)2 , (91)

where P and T are arbitrary functions of u. This family can be obtained by applying the finite333

coordinate transformation334

u→ F(u), r →
1
F ′
(r + G′(u)), ϕ→ ϕ − G(u) (92)

to (90). The functions P, T,F and G are related by335

T (u) = −
1
2
F ′(u)2 − G′′(u) + G′(u)F ′′(u)

F ′(u)
, P(u) =

F ′′(u)
F ′(u)

. (93)

4.2 Asymptotic Killing Vectors336

The asymptotic Killing vectors generating the transformations (92) read337

ξ= ε(u)∂u − (rε′(u) + ζ′(u))∂r + ζ(u)∂ϕ , (94)

where ε(u) and ζ(u) are two arbitrary functions of u. We take the retarded time u to be periodic338

with period L, and define the generators339

ln = ξ(ε=
L

2π
e2πinu/L ,ζ= 0) , jn = ξ(ε= 0,ζ=

L
2πi

e2πinu/L) , (95)

which obey (17). By applying the Lie derivative on the metric (91), we find the variations of340

T (u) and P(u)341

δξT (u) =
�

2T (u)ε′(u) + ε(u)T ′(u)− P(u)ζ′(u) + ζ′′(u)
�

, (96a)

δξP(u) =
�

P(u)ε′(u) + ε(u)P ′(u) + ε′′(u)
�

. (96b)

4.3 Charge Algebra342

We compute the surface charges from (18), yielding343

Q =
ℓ2

8πG

∫ L

0

du(
p

3− 1)(ε(u)T (u)− ζ(u)P(u)) , (97)

where we have integrated over a constant r,ϕ surface and taken the limit r →∞. Defining344

Ln =Q ln =
L ℓ2

16π2G

∫ L

0

du(
p

3− 1)e2πinu/L T (u) , (98a)

Jn =Q jn = −
L ℓ2

16π2iG

∫ L

0

du(
p

3− 1)e2πinu/L P(u) , (98b)

one readily computes that the charges Ln, Jn obey (26) with c = k = 0 and345

κ=
1
i

L ℓ2

8πG

�p
3− 1
�

. (99)
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