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Abstract

Analyzing complex experimental data with multiple parameters is challeng-
ing. We propose using Singular Value Decomposition (SVD) as an effective
solution. This method, demonstrated through real experimental data analy-
sis, surpasses conventional approaches in understanding complex physics data.
Singular value amplitudes and vectors distinguish and highlight various phys-
ical mechanisms and scales, revealing previously challenging elements. SVD
emerges as a powerful tool for navigating complex experimental landscapes,
showing promise for diverse experimental measurements.
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1 Introduction11

Singular value decomposition (SVD) finds extensive applications, primarily in data com-12

pression [1–4] and machine learning [5, 6]. While physicists recognize its crucial role in13
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defining entanglement entropy [7], its utilization in analyzing and interpreting experi-14

mental data has often been confined to niche applications [8–11]. However, SVD holds15

significant potential for the analysis of complex experimental data, particularly data aris-16

ing from distinct physical mechanisms concurrently influencing the experimental results.17

By adjusting a control parameter, one can modulate these mechanisms to varying degrees.18

Leveraging SVD eliminates the need for prior assumptions in modeling the contributions19

of these mechanisms to the measurements.20

In recent numerical studies, researchers have employed SVD analysis to examine the21

numerically calculated energy spectra of complex chaotic quantum systems [12–22]. The22

energy spectra of quantum chaotic systems are influenced by both universal and system-23

specific features, presenting a challenging task commonly referred to as ”unfolding” within24

the field. Various unfolding methods have been utilized, and SVD has demonstrated a25

distinct advantage in revealing universal properties of the spectrum, particularly on larger26

energy scales.27

SVD, a linear algebra technique, allows the rewriting of any matrix with dimensions28

M × P as a sum of amplitudes (termed singular values) multiplied by an outer product29

of two vectors, where the number of terms is determined by min(M,P ). Details of this30

process will be discussed in Sec. 2. The singular values, being positive, can be ordered31

by size, enabling the approximation of the original matrix through a sum over a reduced32

number of the larger terms, significantly fewer than min(M,P ).33

Why does this mathematical exercise matter for experimental measurements? After34

all, most experimental data isn’t structured like a matrix. However, if the results of35

the measurements depend on two parameters where at least one of them is equidistantly36

sampled (or interpolated), one can organize the data by performing M measurements of37

one parameter where for each such measurement the second parameter is measured P38

times (see Fig. 1a), into an M × P matrix.39

We will showcase the effectiveness of the SVD model through experimental measure-40

ments of differential current conducted on both one- and two-dimensional arrays of su-41

perconducting dots on a graphene substrate. By sweeping the dc voltage at various gate42

voltages, the measured conductivity exhibits a pronounced dependence on both bias and43

gate voltages. Oscillations in relation to the dc voltage, with seemingly distinct periods in44

different regions, are observed. Through SVD analysis, we aim to untangle this intricate45

data, gaining valuable insights into the dependence of experimental measurements on the46

two parameters.47

The paper unfolds in the subsequent sections. In Sec. 2, we delve into an exposition48

of the SVD method, elucidating its application to data analysis. Sec. 3 is dedicated49

to detailing the experiment and the acquired experimental data, along with speculative50

insights into the underlying physics. Motivated by the discernible oscillations in the data51

concerning the dc voltage, we embark on Fourier analysis in an attempt to glean an52

interpretation; however, the results prove inconclusive. Subsequently, in Sec. 4, we harness53

the power of SVD analysis, revealing its capacity to yield a markedly clearer interpretation54

of the data. The final section (Sec. 5) undertakes a discussion on the broader application55

of SVD analysis to other experimental measurements.56

2 The SVD method57

As discussed in the introduction, the initial step in applying SVD analysis involves trans-58

forming the experimental measurement X(U, V ), dependent on parameters V and U ,59

into a matrix. Without loss of generality, let us assume that V is swept (or interpolated)60
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Figure 1: The SVD procedure. A schematic cartoon of the SVD procedure.
In (a), a physical observable X, dependent on two parameters U and V , is
measured. The procedure involves setting Ui (i = 1, 2, . . .) while changing
V , resulting in the curves for X(Ui, V ) illustrated in the graph. In (b), to
represent the data as a matrix X, V is discretized into Vj , and each value of
X(Ui, Vj) is inserted as the matrix element Xi,j . Thus, each row corresponds
to the measurements for a given value of Ui. The SVD procedure is applied,
yielding a series of matrices X(k), with the original matrix expressed as a sum
of modes X =

∑
k σkX

(k), where σk is the singular value amplitude, and the
modes are ordered by magnitude from the largest. In (c), the matrix for the
largest mode, k = 1, is represented. Due to the structure of the SVD procedure

(see text), each matrix element in X(k=1) is equal to U⃗
(k=1)
i V⃗

(k=1)
j . Thus, each

row is equivalent to the same vector V⃗ (k=1) multiplied by a different constant

U⃗
(k=1)
i . This relationship is illustrated in the plot (d), corresponding to the

curves X(Ui, V ) for the first mode.
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at equidistant increments, such that Vj = j∆V for j = 1, 2, . . . P . On the other hand,61

the second parameter, U , may not necessarily increase at equidistant intervals or even be62

ordered. It suffices for U to be set at M different values, denoted as Ui. Consequently, a63

M × P matrix Xij = X(Ui, Vj) can be constructed as schematically illustrated in Fig.64

1.65

In the SVD procedure, the matrix X is expanded as a sum of amplitudes σk multiplied66

by M × P matrices X(k). These matrices are constructed by an outer product of two67

vectors U⃗
(k)
i and V⃗

(k)
j of sizes M and P , respectively. Explicitly, X is decomposed into68

X = UΣVT , where U and V are M ×M and P ×P matrices, respectively, and Σ is a69

diagonal matrix of size M × P with a rank r = min(M,P ). The r diagonal elements70

of Σ are the singular values (SV) amplitudes σk of X. These SVs are positive and can be71

ordered by magnitude as σ1 ≥ σ2 ≥ . . . ≥ σr. As discussed, X can be expressed as a72

series of matrices X(k), i.e., Xij =
∑r

k=1 σkX
(k)
ij , where X

(k)
ij = UikV

T
jk = U⃗

(k)
i V⃗

(k)
j .73

The sum of the first m modes provides an approximation X̃ =
∑m

k=1 σkX
(k) to X,74

representing the minimal departure between the approximate measurements, X̃, obtained75

using m(M +P +1) independent variables compared to the full energy spectrum, which76

requires MP variables. This forms the basis for the use of SVD as a data compression77

method. Since, for most cases (including those discussed here), the SVs drop rapidly as78

a function of k, a good approximation of X is achieved. Indeed, examining the SVs as a79

function of k, typically involving a Scree plot plotting λk = σ2
k vs. k on a logarithmic80

scale, serves as the first step in analyzing the data.81

The SV amplitudes, σk, corresponding to significant modes (typically with k ∼ O(1)),82

along with the associated vectors U⃗ (k) and V⃗ (k) for these modes, play a crucial role in in-83

terpreting experimental data. This importance can be illustrated through an analogy with84

one of the most widely used experimental data analysis methods, the Fourier transform.85

In the case of a Fourier transform, the experimental results X(Ui, Vj) can be expressed86

as
∑

ki,kj
fki,kj sin(ki) sin(kj). Superficially, the structure bears similarity to the SVD87

sum, as both involve an amplitude multiplied by two vectors or functions. In both meth-88

ods, the goal is to identify amplitudes significantly larger than others to characterize the89

data. Furthermore, the general dependence of these amplitudes on the mode or frequency90

can offer insights into the overall characteristics of the system, such as the presence of91

1/f noise.92

Nonetheless, significant distinctions exist. The SVD sum involves just r = min(M,P )93

amplitudes, a stark contrast to the MP amplitudes present in the Fourier transform. This94

reduction in the number of terms in the SVD sum arises because, unlike the fixed vectors95

involved in the outer multiplication of the Fourier transform, the vectors in SVD are opti-96

mized to achieve the best fit with a minimal number of modes. Consequently, in contrast97

to the Fourier transform, valuable insights are gained not only from the amplitudes but98

also from the optimized vectors U⃗ (k) and V⃗ (k) associated with contributing modes.99

In the subsequent sections, we will elaborate on these somewhat vague ideas by imple-100

menting them using concrete experimental data. This data is derived from conductance101

measurements performed on one- and two-dimensional superconducting grain arrays de-102

posited on graphene.103

3 Experimental results104

We analyze results obtained on single-layer-graphene (SLG) films decorated by ordered105

arrays of disordered superconducting indium oxide (InO) dots. We compare two geome-106
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Figure 2: Raw data for the 1D (top panels) and 2D (bottom panels)
samples. (a) and (f) show optical microscope images of a 1D and 2D SLG/SC-
dot-array configurations respectively. The respective conductance, G, versus gate
voltage, Vg, curves are depicted in (b) and (g) showing a conductance dips at
the Dirac points of the underlying graphene. Corresponding sets of differential
conductance, dI/dV , versus bias voltage, Vdc measurements at different gate
voltages, are shown in (c) and (h). Typical dI/dV −Vdc curves are singled out
in (d) and (i) for which FT analysis are shown in (e) and (j).
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Figure 3: SVD analysis of the 1D sample. (a) A scree plot of SV amplitude
squared (λk = σ2

k) as function of the mode number k for the 1D sample. The first
mode is orders of magnitude larger than the rest, while the second mode deviates
from the power-law behavior seen for larger modes for which λk ∼ k−1.3. (b,c,d)
Top panels: the contribution of the first mode (k = 1), second mode (k = 2)
and fourth mode (k = 4) respectively to the measured data. Note that a distinct
feature of the second mode, seen for both 1D and 2D samples is the fact that they
intersect at a distinct value of voltage V ′

dc = ±12mV for the 1D sample, and
Vdc = ±9mV for the 2D sample, indicated by the dashed red lines. For k = 4
the values connected to the superconducting V ′

dc are depicted by the dashed red

line. Bottom panels: the vector V⃗ (k=1/2/4) (left) and U⃗ (k=1/2/4) (right). The
curves in the main panels are calculated by multiplying the SV amplitude times

V⃗ (k=1/2/4) by the appropriate U⃗
(k=1/2/4)
Vg

for each curve.

tries: (i) A one-dimensional row of 17 sequential dots shown in Fig. 2a (1D sample) and107

(ii) a two-dimensional array of 16 × 5 dots shown in Fig. 2f (2D sample). The SLGs108

were fabricated either by flake-exfoliation or CVD growth on top of a Si/SiO substrate.109

The graphene layers were etched to create rectangles with dimensions of 1µm × 18µm110

(1D) and 17µm×6µm (2D) using standard lithography followed by RIE process. Suit-111

able Cr/Au contacts were deposited on the samples for electric measurements and an112

additional electrode was fabricated on the back side of the Si substrate to act as a gat-113

ing electrode. The superconducting dot arrays were prepared by e-beam evaporation of114

50nm thick InO film patterned to produce 1µm diameter dots with 200nm inter-dot115

distance. The InO was e-beam evaporated at a partial oxygen pressure of ≈ 1 × 10−5
116

mbar, resulting in disordered superconducting film with a Tc of ∼ 3.5K. All electronic117

measurements were conducted in a He3 system at T = 0.33K.118

Fig. 2 c,h show differential conductance versus bias voltage (dI/dV − Vdc) curves119

at different gate voltage, Vg, for a 1D and a 2D sample. It is evident that the data for120

both the 1D and 2D samples is rather complex. The measurements reveal an intricate121

dependence on both Vdc and Vg. As illustrated in Fig. 2 b,g, which show the conductance,122

limVdc→0 G = dI/dV plotted as a function of Vg, it is observed that G exhibits a dip in123

the proximity of Vg ∼ 0. Conversely, at higher values of Vdc, Vg has a weaker influence124

on dI/dV . Oscillations are observed at certain values of Vg, whereas at others, they are125

less pronounced. Furthermore, these oscillations appear to depend on Vdc.126

The complex structure of the curves is expected to be a result of three main contribu-127

tions:128

1. A depletion of the electronic DOS around the Fermi level due to the Altsuler-Aronov129

(AA) mechanism of electron-electron interactions in disordered films [23].130

2. A Superconducting gap, ∆ in the graphene regions below the InO dots due to the131

proximity effect [24], each with an expected bias scale of ∆InO ≈ 0.7mV [25].132
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Figure 4: SVD analysis of the 2D sample. similar to those presented in Fig.
3. Note that for this sample, λk ∼ k−4.

3. Electronic quantum interference effects resulting from the periodic structure of superconducting-133

normal region interfaces. These effects depend on the Fermi velocity of graphene, vF ≈ 106134

m/s, and the inter-dot distance, ≈ 200nm, leading to an expected period as function of135

Vdc of ≈ 2mV .136

In order to appropriately analyze these results, one would like to decompose the dif-137

ferent physical contributions to the data. A naive way to do so would be to employ a138

simple Fourier transform. However, the intricacies involved largely rule out a 2D Fourier139

transform of both Vdc and Vg. Even when attempting a Fourier transform solely for Vdc140

at a fixed Vg where oscillatory behavior is unmistakable, no distinct peak in frequency141

is evident (see Fig. 2 e,j). This lack of clarity in frequency peaks makes it challenging142

to draw meaningful conclusions from the Fourier transform analysis. In addition, such143

analysis method requires separate calculation for each individual Vg value in an attempt144

to identify repeating patterns. Clearly, a more useful and efficient analysis tool is required.145

4 SVD Analysis146

Hence, we apply SVD analysis to the experimental data presented in the previous section147

(Sec. 3). As outlined in Sec. 2, the initial step involves examining the behavior of the148

SV amplitudes. In Figs. 3a and 4a, a scree plot illustrates the squared SV amplitudes149

(λk = σ2
k) in relation to the mode number k. Notably, the largest SV amplitude (k = 1)150

is orders of magnitude greater than subsequent modes for both samples. Beyond k = 3,151

a power-law behavior emerges. Specifically, the 1D chain exhibits a power law described152

by λk ∼ k−1.3 (Fig. 3a), while the 2D sample follows a steeper power law, λk ∼ k−4
153

(Fig. 4a). This disparity in power laws is significant; as demonstrated in the appendix154

of Ref. [15], a power law of λk ∼ k−1 corresponds to 1/f noise. Consequently, modes155

k = 3−15 for the 1D sample appear to align with characteristics of 1/f noise. In contrast,156

the 2D sample seems well-characterized by the initial few modes, as the contribution157

from subsequent modes rapidly diminishes. This observation is reinforced by noting that158

measurements of the 1D sample exhibit greater noise compared to those of the 2D sample159

(Fig. 2).160

Now, let us delve into an examination of the contributions from individual modes.161

The contributions of the first mode (k = 1) to the measured data are shown in Fig. 3b162

for the 1D sample and Fig. 4b, for the 2D sample, along with the associated vectors163

V⃗ (k=1) and U⃗ (k=1). The differential conductance, dI/dV , as a function of Vdc for164

various values of Vg is plotted, where the various values are coded with the same color165

code as in Fig. 2. As discussed in Sec. 2, X(k=1) = σ1V⃗
(k=1) ⊗ U⃗ (k=1). The outer166

7



SciPost Physics Core Submission

multiplication between these two vectors has a transparent interpretation. Specifically,167

the vector V⃗ (k=1) captures the first mode’s dependence of the differential conductance,168

dI/dV , on Vdc. Consequently, the vector V⃗ (k=1) is multiplied by the term of the vector169

U⃗ (k=1) that corresponds to the appropriate value of Vg. This relationship is visually170

evident in the main panels of Figs. 3b and 4b, where the multiplication of V⃗ (k=1) by the171

corresponding value of U⃗ (k=1) is plotted for each term of U⃗ (k=1), i.e., for each value of172

the gate voltage Vg.173

Hence, the first mode derived from the SVD provides an overall insight into the behav-174

ior of the differential conductance. For our samples, we associate this gross feature with175

AA depletion in disordered metals. AA depletion manifests in a logarithmic increase in the176

differential conductance, which is truncated at low voltage due to temperature. Indeed, in177

the case of the 1D sample, the first mode vector V⃗ (k=1) exhibits a broad minimum around178

Vdc = 0, followed by a logarithmic increase. For the 2D sample, the behavior is more179

intricate, and a sharp minimum at Vdc = 0 appears, revealing a more distinct structure180

that needs further explanation. It’s noteworthy that, unlike modes in the Fourier trans-181

form, SVD tailors its vectors to the specific measurements, as exemplified by the contrast182

between V⃗ (k=1) for the 1D and 2D samples.183

Additionally, while V⃗ (k=1) captures the fundamental features of the experiment for184

the 1D sample, it misses notable features observed in the 2D sample, such as the trans-185

formation of the minimum at Vdc = 0 into a maximum for certain values of Vg. An186

examination of the behavior of U⃗ (k=1) as a function of Vg reveals a close correlation with187

the behavior of G, as depicted in Fig. 2 b,g.188

Next we turn to the second mode of the SVD analysis. The mode is plotted in Figs.189

3c and Fig. 4c. A very clear feature of X(k=2) of both samples is that distinct regions of190

behavior as function of Vdc are revealed. All curves cross at two values of V ′
dc = ±12mV191

for the 1D sample and at V ′
dc = ±9mV for the 2D sample. These values of V ′

dc correspond192

to the estimation of the superconducting gap in these systems, and they are unequivocally193

revealed by the second mode of the SVD. Considering the simpler 1D, which includes 17194

junctions (dots) in series, one can expect to observe structure at ∆InO ×17 = 11.9mV .195

Remarkably, this aligns exactly with the point where the curves of the second mode of196

the 1D sample intersect. For the 2D sample the shortest path across the sample is of 12197

junctions, corresponding to ∆InO × 12 = 8.4mV , not far from the estimation garnered198

from the width of the second mode.199

The higher modes expose more intricate effects on the differential conductance, evident200

in the oscillations with respect to Vdc. Complicating the analysis is the observation that201

these oscillations seem to exhibit a different period within the region of the superconduct-202

ing gap compared to outside of it. Moreover, this phenomenon is more pronounced for203

specific values of Vg. As illustrated in Figs. 3d and Fig. 4d, where one of the typical204

higher modes (k = 4) is presented, it is apparent that the amplitude and frequency of205

the oscillations differ for |Vdc| < V ′
dc compared to |Vdc| > V ′

dc. In the 1D sample case,206

those frequencies found to be 2.5mV for |Vdc| < V ′dc, inside the superconducting gap,207

and 1.9mV for |Vdc| > V ′
dc, outside of it. Other high modes, such as k = 3, 5, 6, show208

a similar, although somewhat noisier periodicity. As noted above, such a voltage scale is209

expected for electronic interference effects due to the dot periodicity. For the 2D, which210

includes more than one single dot periodicity, the electronic interference effects are washed211

out and the oscillations are much slower, of order of 10mV which fits the gap energy.212
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5 Conclusion213

In this work, we demonstrated the strength of the SVD technique, beyond its conventional214

applications, to assist in analyzing complex physics experimental data. We showed that215

the SV amplitudes and the different modes effectively separate and highlight distinct216

physical mechanisms that construct the results, which were otherwise difficult to isolate .217

Hence, the SVD is found to be an excellent tool for navigating through experimental data218

complexities, successfully reducing the dimensionality while preserving crucial information.219

It stands as a valuable asset for sophisticated experimental data analyses and holds further220

promise for unveiling valuable insights of real physics properties.221

The potential of utilizing the SVD method for experimental data is vast, as it can222

essentially be employed to any experiment where data depends on two variables. For in-223

stance, it may be a most useful tool for analyzing mesoscopic systems where resistivity as224

a function of voltage and magnetic fields exhibits repeatable fluctuations with no clear pe-225

riod [26]. Similarly, optical spectra often shows non trivial structure as a function of e.g.,226

wavelength and temperature. Alternatively, SVD may be effective for analyzing scanning227

images of a physical property as a function of lateral X and Y axes where one would like228

to deconvolute real physics from scanning noise and effects of the scanning probe kernel.229

SVD has also recently been used in network data analysis [27]. These are few examples230

for the immense potential of SVD applications in experimental physics data analysis. Its231

utility extends far and wide, making SVD an invaluable asset for diverse scientific disci-232

plines.233
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