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Abstract: Spontaneous breaking of symmetries leads to universal phenomena. We

extend this notion to (−1)-form U(1) symmetries. The spontaneous breaking is diag-

nosed by a dependence of the vacuum energy on a constant background field θ, which

can be probed by the topological susceptibility. This leads to a reinterpretation of the

Strong CP problem as arising from a spontaneously broken instantonic symmetry in

QCD. We discuss how known solutions to the problem are unified in this framework

and explore some, so far unsuccessful, attempts to find new solutions.
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1 Introduction and summary

Symmetries are extremely useful for understanding quantum theories. In quantum

field theory, symmetries have traditionally been taken to act on local operators and

to obey a group law multiplication, but recent years have seen many generalizations,

starting with p-form generalized global symmetries [1, 2]. The subsequent literature

is too large to comprehensively cite here; instead, we refer readers to several recent

pedagogical reviews [3–9]. Generalized symmetries have proved to be useful for char-

acterizing phase transitions, strong dynamics, and other nonperturbative aspects of

quantum field theory. Quantum gravity, in contrast to quantum field theory, is be-

lieved to lack such symmetries (though approximate symmetries are common). The

absence of global symmetries has powerful implications, for example requiring a com-

plete spectrum of charged objects in quantum gravity [10–14]. Our goal in this paper is

to argue that an apparently degenerate case of generalized symmetry, namely the case

of (−1)-form U(1) global symmetry, is a useful concept that provides a unifying lan-

guage for discussing many interesting dynamical phenomena in quantum field theory.

Although this degenerate case has received relatively little attention in the literature,

it has previously made an appearance in [15–19], and our discussion will build on ideas

introduced therein.1

The case of p-form invertible global symmetries in d-dimensional quantum field

theory, with 0 ≤ p ≤ d− 2, is well-established. A p-form global symmetry with group

G is associated with a family of topological operators U(g,Σ), known as symmetry

operators, labeled by a group element g ∈ G and a closed (i.e., compact and without

boundary) (d − p − 1)-manifold Σ. These operators are topological, in the sense that

correlation functions are invariant under deformations of Σ provided that Σ does not

cross another operator insertion when deformed. The symmetry operator U(g,Σ) acts

on p-dimensional charged operators living on p-manifolds that are linked by Σ. Al-

though the symmetry charge in general is defined on a (d − p − 1)-manifold, in many

cases it is localized to the (p+1)-dimensional worldvolumes of massive charged objects

created by the charged p-dimensional operators. In the special case of a U(1) symmetry,

the symmetry operators take the form

U(eiα,Σ) = exp

(
iα

∫
Σ

⋆jp+1

)
, (1.1)

where jp+1 is a conserved (p+ 1)-form current. In other words, jp+1 is co-closed:

d⋆jp+1 = 0 . (1.2)

1Other recent discussions of (−1)-form global symmetries, with less overlap with our current focus,

appear in [20–22]. (d− 1)-form global symmetry is another interesting special case; see [23].
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The topological nature of the operator follows from this local conservation equation.

(In some literature, the (d − p − 1)-form operator Jd−p−1 = ⋆jp+1 is referred to as the

conserved current, and it is closed rather than co-closed. Here we follow the classic

convention in which an ordinary conserved current for a symmetry acting on local

operators is a 1-form.) For a U(1) symmetry, the charge Q =
∫
Σ
⋆jp+1 is an integer,

which is equivalent to saying that the right-hand side of (1.1) is invariant under α 7→
α+2π, a necessary condition for the operator to be a well-defined function of eiα ∈ U(1).

Every symmetry is associated with topological operators, even if it is a traditional

Noether symmetry that is conserved only on the equations of motion. The topolog-

ical nature of the operator is a statement about correlation functions in the theory.

However, in special cases the symmetry itself is topological in nature. For example, in

Maxwell theory, the magnetic flux 1
2π

∫
Σ
F ∈ Z is an integer topological invariant for

any U(1) bundle and any closed 2-manifold Σ, without the need to use equations of

motion. In such cases, the path integral decomposes into topological sectors, and the

symmetry operator insertion is identical for all field configurations in a given sector.

Whether a symmetry is topological in this sense can depend on the duality frame in

which one works, so it is not a physical invariant. On the other hand, many ordinary

symmetries are not topological in any duality frame. In this paper, we focus on sym-

metries that are topological in the strong sense, in the duality frame in which we define

the theory.

A p-form U(1) global symmetry (without an ’t Hooft anomaly) can be coupled to

a background (p + 1)-form gauge field (U(1) connection) Ap+1 by adding a coupling

Ap+1∧⋆jp+1. We can gauge the symmetry by making Ap+1 dynamical, i.e., by summing

over U(1) bundles with connection Ap+1 in the path integral (and generally including

a kinetic term for Ap+1, which will typically be generated by loops). In this case,

Maxwell’s equation 1
e2
d⋆Fp+2 = ⋆jp+1 indicates that the would-be co-closed current has

become co-exact, and as a result the symmetry operators become trivial.

1.1 Defining a (−1)-form U(1) global symmetry

The special case p = −1 of p-form global symmetry is somewhat degenerate, in a few

senses. At first glance, one may reasonably be skeptical that it is a useful notion at all.

A standard p-form global symmetry acts on p-dimensional charged operators. There

is, apparently, no such thing as a (−1)-dimensional operator, so a (−1)-form symmetry

would appear to have nothing to act on. On the other hand, a p-form symmetry is

also associated to dynamical charged objects with a (p+ 1)-dimensional worldvolume,

and we do have a notion of a dynamical object with a 0-dimensional worldvolume,

namely, an instanton. (For example, it is common to speak interchangeably of D(−1)-

branes or D-instantons in Type IIB string theory [24].) A related concern is that the
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symmetry operators U(g,Σ) for a (−1)-form symmetry are associated with closed d-

dimensional spacetime manifolds Σ; in other words, they are integrated over the entire

spacetime. In this case, the question of whether the operator’s correlation functions

are topological is not obviously meaningful, because we cannot locally deform Σ while

keeping the spacetime background of our theory fixed.2 Similarly, in the case of a

continuous symmetry, a (−1)-form symmetry is associated with a conserved 0-form

current, d⋆j0 = 0. However, this condition is trivial, because ⋆j0 is a top form in the

theory. Thus, every scalar operator in the theory defines, in some sense, a (−1)-form

global symmetry, which threatens to render the concept vacuous. There may still be

some merit to this concept, even in the extremely general case, where the absence of

such (−1)-form global symmetries has been identified with the longstanding claim that

there are no free parameters in quantum gravity [18].

In this paper, we focus on the case of (−1)-form U(1) global symmetries, which

retain enough structure to be a useful concept [15–17, 19]. The U(1) case is associated

with integer charges,
∫
Σ
⋆j0 ∈ Z. Correspondingly, these theories can be coupled to a

background axion field, i.e., a compact scalar θ(x) ∼= θ(x) + 2π, which we think of as

a 0-form U(1) gauge field. The gauge redundancies of θ are simply θ(x) 7→ θ(x) + 2πn

for n ∈ Z. These are the analogues of “large” or winding gauge transformations Ap 7→
Ap + 2πnωp with [ωp] ∈ Hp(M,Z) for a p-form gauge field; the axion has no analogue

of the local gauge transformations Ap 7→ Ap + dλp−1.
3

We will follow the pragmatic approach of taking the possibility to couple a theory to

a background axion field as our working definition of a (−1)-form U(1) global symmetry:

Definition. We say that a theory has a (−1)-form U(1) global symmetry when it

contains an operator j0 that can be consistently linearly coupled to a background field

θ(x) taking values in a circle (θ ∼= θ + 2π),

e−SE 7→ e−SE exp

(
i

∫
M

θ(x) ⋆j0(x)

)
. (1.3)

We refer to j0(x) as the (−1)-form U(1) symmetry current and (for the case of orientable

spacetime manifolds M) we refer to
∫
M
⋆j0(x) ∈ Z as the (−1)-form symmetry charge.

The canonical example, and the case of greatest relevance to particle physics, is a

4d gauge theory with

⋆j0 =
1

8π2
tr(F ∧ F ) , (1.4)

2There may be useful perspectives in which the deformation occurs in configuration space, or in

some type of auxiliary extra dimension. We will not make use of such perspectives in this paper.
3See for instance [25].
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for which the (−1)-form symmetry charge is the instanton number of a gauge field

configuration. We will point out a number of other examples as we go along.

A few comments about our definition are in order. We require that the theory

can be defined on arbitrary orientable spacetime manifolds M for arbitrary θ(x) back-

grounds, which in general are bundles over spacetime—i.e., they admit configurations

in which θ(x) winds around a cycle.4 In some cases, turning on other background fields

can clash with turning on general θ backgrounds; in that case, we say that there is a

mixed ’t Hooft anomaly involving the (−1)-form symmetry, or an anomaly in the space

of coupling constants, as discussed extensively in [15, 16].

We have referred to orientable spacetime manifolds because in a theory with an

orientation-reversing spacetime symmetry like parity (by which we mean reflection of

an odd number of spatial dimensions) or time reversal, there are additional subtleties.

Such theories may be defined on non-orientable manifolds (see, e.g., [27–29] for recent

discussions). In this case, the quantity that we can integrate over M is a pseudoform

or twisted form, i.e., one that transforms with an extra minus sign under parity. If

⋆j0 is an ordinary form, then θ(x) must be a pseudoscalar in order for (1.3) to make

sense. Our definition is valid in that case, but the charge
∫
M
⋆j0(x) is not defined on

arbitrary spacetime backgrounds, and in particular it does not make sense to couple

the theory to a constant θ-term on a general background. This is as expected: such a

term violates parity.

The definition of a (−1)-form U(1) global symmetry that we have chosen is useful,

because theories with this property have many features in common with theories with p-

form U(1) global symmetries for higher p. For example, the symmetry can be gauged.

In our context, we can do this by making the field θ(x) dynamical, summing over

θ field configurations in the path integral. In some theories we can also gauge the

symmetry by introducing massless chiral fermions [19]. In theses cases, as in ordinary

electromagnetism, gauging the symmetry renders the current co-exact instead of merely

co-closed. The central point of this paper is that the analogy also extends to the notion

of spontaneous breaking of the global symmetry, and correspondingly, to higgsing (and

dual confinement) when the symmetry is gauged.

For an ordinary U(1) global symmetry, it is possible to gauge a subgroup Zk ⊂ U(1).

This operation also extends to the (−1)-form case, where it corresponds to summing

4One might wonder if a weaker notion of (−1)-form symmetry is of interest, in which a theory need

only admit a coupling to a constant background θ term. An interesting candidate is discussed in [26]:

the CP1 sigma model in 3d has a topological invariant characterized by π3(CP1) ∼= Z, which one might

expect can be coupled to a constant θ, but this topological invariant is not given by an integral of a

local term. It turns out that the theory is only consistent with the choices θ = 0 and θ = π. We do

not know any theory admitting a coupling to generic constant θ but not to a background axion.
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over only field configurations with topological charge a multiple of k [17, 30–33].

1.2 Spontaneous breaking of a (−1)-form U(1) symmetry

The spontaneous breaking of p-form global symmetries for p ≥ 0 has been exten-

sively discussed in the literature [2, 34–36]. A standard diagnostic for breaking of

an ordinary 0-form symmetry is that a charged operator obtains a vacuum expec-

tation value. When the symmetry is continuous, we also find massless, propagating

Nambu-Goldstone bosons that nonlinearly realize the symmetry. This picture extends

to higher-form symmetries: for example, a Wilson loop generally has an expectation

value that obeys a perimeter law or an area law. In the case of a perimeter law, a

counterterm in the definition of the Wilson loop can cancel the perimeter dependence,

leaving behind a constant expectation value even for arbitrarily large loops. This is

the case of spontaneous breaking of a 1-form global symmetry, and the photon can be

viewed as a massless Nambu-Goldstone mode. For a confining theory with an area law

for the Wilson loop, on the other hand, the expectation value decays for large loops,

and the 1-form global symmetry is considered to be unbroken.

Such diagnostics cannot be extended to the case of (−1)-form global symmetries,

because there is no (−1)-dimensional charged operator that can obtain a vacuum ex-

pectation value. Similarly, there is no possibility of a propagating Nambu-Goldstone

boson created by a (−1)-form field nonlinearly realizing the symmetry. Nonetheless, we

will argue that there is a useful notion of spontaneous symmetry breaking for a (−1)-

form U(1) symmetry, and even a sense in which there is an emergent Nambu-Goldstone

field in the infrared (though not a propagating boson).

We propose that a useful diagnostic of spontaneous symmetry breaking for a (−1)-

form global symmetry is that the vacuum energy for the theory in Minkowski space

depends on the value of a constant θ background. In particular, one order parameter

for such spontaneous symmetry breaking is the topological susceptibility, defined as

X = −i

∫
ddx ⟨T{j0(x)j0(0)}⟩conn. =

∂

∂θ
⟨j0⟩ =

∂2

∂θ2
V (θ) , (1.5)

where, conn. denotes the connected two-point function. One suggestive link between

this expression and familiar cases of spontaneous symmetry breaking is that of the

Kogut-Susskind pole [37, 38], which we briefly review here. Specifically, in many the-

ories, the (−1)-form topological charge density j0 is a total derivative of a (gauge-

dependent) quantity vµ(x),

j0(x) = ∂µvµ(x) . (1.6)
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In this context, a nonzero value of X signals the existence of a pole in the two-point

function of vµ(x):

X = lim
q→0

−i qµqν
∫

ddx eiq·x⟨T{vµ(x)vν(0)}⟩conn. , (1.7)

which implies that

lim
q→0

∫
ddx eiq·x⟨T{vµ(x)vν(0)}⟩conn. = i

qµqν
q2

X
q2
. (1.8)

That is, the topological susceptibility is the residue of a pole at q2 = 0 in a (gauge-

dependent) two-point function. Because of the gauge dependence, this pole does not

signal the existence of a propagating particle, but it does relate to important long-

distance correlations in the theory [38].

An interesting perspective on the Kogut-Susskind pole is that it signals that the

infrared theory has a description in terms of an emergent (d− 1)-form gauge field [39–

43]:

⋆j0 →IR dCd−1 . (1.9)

A (d − 1)-form gauge field has no propagating degrees of freedom, but there can be

domain walls carrying a gauge charge under it, and such fields prove useful in various

applications (see, e.g., [44–47]).

We would like to propose a reinterpretation of the emergent (d − 1)-form gauge

theory. In general, spontaneous breaking of a p-form U(1) global symmetry is associated

with the emergence of a p-form Nambu-Goldstone gauge field in the IR. In the standard

case of a 0-form symmetry, we think of this simply as a compact boson, but as we have

argued, such bosons can also be thought of as 0-form gauge fields. A p-form gauge field

has a complementary description in terms of a magnetic dual (d − p − 2)-form gauge

field, whose field strength is the Hodge dual of the original field strength:

⋆dap ∼ dbd−p−2 . (1.10)

It is unclear what it would mean to seek a (−1)-form gauge field emerging in the IR

description of a spontaneously broken (−1)-form global symmetry, but the magnetic

dual makes perfect sense: it should be a (d− 1)-form gauge field, precisely as in (1.9).

Thus, we argue that the Kogut-Susskind pole can be thought of as signaling that the

IR theory admits an emergent description in terms of a (d−1)-form Nambu-Goldstone

gauge field. There is no Nambu-Goldstone boson, because there are no propagating

degrees of freedom; nonetheless, the Nambu-Goldstone field can be useful.

One example of the utility of such a description arises when we gauge the (−1)-form

global symmetry. When we gauge a spontaneously broken p-form global symmetry, the
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resulting theory is in the Higgs phase. We can summarize the phenomenon of higgsing

and its magnetic dual, confinement, by saying that in this phase electrically charged

worldvolumes have boundaries (they can end on a vacuum insertion) and magnetically

charged worldvolumes are boundaries (they are confined by a higher-dimensional ob-

ject). Many of the consequences of higgsing have analogues when we couple a dynamical

axion field to a spontaneously broken (−1)-form global symmetry. To name a few:

• The gauge field acquires a mass. For the axion, this is apparent: there is a

potential V (θ) and the axion mass is proportional to X at the minimum of the

potential.

• Electric charges are screened. In the axion case, the electrically charged objects

are instantons. We can think of the local operator eiθ(x) as the analogue of a

Wilson line: it inserts a static instanton configuration at a point. The effects of

this insertion in correlation functions fall off at long distances, because the axion

is massive.

• Magnetic charges are confined. In the axion case, these are vortices, codimension-

two objects in spacetime around which the axion field winds. They are charged

under the gauge field Bd−2 dual to θ. This field is eaten by the emergent (d− 1)-

form gauge field via a Stueckelberg structure of the form |dBd−2 − Cd−1|2 [43].

Equivalently, axion vortices are the boundaries of domain walls, which carry

charge under Cd−1.

We consider this set of parallels to be a strong argument that our definition of sponta-

neous breaking of a (−1)-form global symmetry is a useful one, allowing us to success-

fully apply intuition from more standard cases in a different context.

1.3 Application to the Strong CP problem

The language that we have introduced above provides a useful framework for thinking

about the Strong CP problem. The Strong CP problem is the puzzle that the Standard

Model admits a CP-violating term of the form 1
8π2 θ̄

∫
tr(G∧G),5 but experiment finds

that this term is extraordinarily small, |θ̄|≲ 10−10 [48, 49]. This cries out for some

explanation in terms of symmetries or dynamics. Because the CKM phase in the quark

mixing matrix has been measured to be an O(1) number, the simplest answer that our

universe respects CP is not a viable one. A number of solutions to this puzzle have

been proposed over the years.

5The physical quantity θ̄ in fact is a linear combination of the coefficient of tr(G∧G) and the phase

of the determinant of the quark mass matrix; here we assume we have rephased the quarks to move

the physical quantity entirely into the gluonic term.
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From our perspective, the Strong CP problem is closely related to the existence of

a spontaneously broken (−1)-form U(1) global symmetry of the Standard Model, with

charge the QCD instanton number. The symmetry itself allows us to turn on a θ̄ term

(in the absence of an additional symmetry like CP, which would forbid a constant θ(x)

background field on generic spacetimes). The spontaneous breaking of the symmetry

allows θ̄ to affect physical observables like the neutron EDM. This suggests that a

useful strategy for solving the Strong CP problem is to seek mechanisms for eliminating

this global symmetry. A global symmetry can be eliminated by effects that explicitly

break the symmetry, or by gauging. As already noted in [19], two different classic

solutions to the Strong CP problem, the QCD axion and the massless up quark, can

be understood as different ways of gauging the (−1)-form global symmetry. Explicitly

breaking the symmetry is more challenging, since the underlying charge is topological.

Nonetheless, there are physical mechanisms that can break such symmetries. We will

discuss some of these mechanisms, and see that for the most part they do not offer a

satisfactory resolution of the Strong CP problem. A final, classic set of solutions to

the Strong CP problem rely on the spontaneous breaking of an orientation-reversing

spacetime symmetry (parity or CP). These mechanisms, again, are linked to the fate

of the (−1)-form symmetry, since the topological charge is not defined on the non-

orientable spacetime backgrounds that are allowed in such theories.

1.4 Outline

The remainder of this text is structured as follows. In section 2 we present a discussion

on how generic abelian gauge theories in the Coulomb phase can be understood as

describing spontaneously broken higher form symmetries. We argue that this still

holds in 2d, where Maxwell theory realizes a spontaneously broken (−1)-form U(1)

symmetry. We examine several deformations of this theory and propose universal

features of spontaneously broken (−1)-form symmetries. In section 3 we argue that

the instantonic symmetry of SU(N) Yang Mills and QCD is spontaneously broken and

link this fact with the Strong CP problem. In section 4 we explore solutions to the

Strong CP problem from this point of view. We list some open questions and provide

an outlook in section 5.

2 Gauge theories as spontaneously broken phases

Standard lore holds that abelian gauge theories in the Coulomb phase describe spon-

taneously broken higher form symmetries. The lore further specifies that the Nambu-

Goldstone bosons realizing the spontaneously broken symmetries nonlinearly are the
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photons themselves.6 This section aims to show that this lore holds even in 2d theories,

where the higher-form symmetry is a (−1)-form symmetry. To gain some intuition we

review Maxwell’s theory in 4d and 3d, making our way to the two-dimensional world.

Then we describe abelian gauge theories in 2d and give explicit realizations of the con-

cepts introduced in Sec. 1. As we will describe, 2d gauge theories have instantons that

are charged under a (−1)-form symmetry that is spontaneously broken.

2.1 4d Maxwell theory

Free electromagnetism is a theory of a U(1) gauge field A with field strength F = dA

and the following action,

S =

∫
− 1

2e2
F ∧ ⋆F . (2.1)

The equation of motion for the gauge field is d⋆F = 0. This equation signals the

existence of a conserved 2-form current Je = 1
e2
F that generates a 1-form U(1)(1)e

symmetry. The topological symmetry operator can be constructed by exponentiation

of the current,

Uα(Σ2) = e
iα
e2

∫
Σ2

⋆F
. (2.2)

This symmetry operator counts the electric charge inside Σ2 and acts by linking on non-

dynamical probe electric charges dubbed Wilson lines. If massless electrically charged

dynamical matter, such as the electron, is added to this theory, the electric charge of

Wilson lines is screened and the U(1)(1)e symmetry is explicitly broken. Provided that

the gauge group is U(1), electric charge is quantized and α ∈ [0, 2π), as befits a U(1)(1)e

symmetry. The gauge field obeys a topological constraint, the Bianchi identity dF = 0.

As before, this equation signals the existence of a conserved 2-form magnetic current

Jm = ⋆F that generates a U(1)(1)m symmetry. Exponentiation of the current yields the

symmetry operators Ũα(Σ2) that measure the magnetic charge inside of Σ2. If the

gauge group is U(1),
∮

F
2π

∈ Z, which is a topological invariant labeling gauge bundles

by their monopole number. The topological nature of the magnetic symmetry makes

explicitly breaking it a non-perturbative statement in the action in Equation (2.1).

In other words, no modification of the Lagrangian, no matter how drastic it is, can

explicitly break this symmetry as long as A is a U(1) gauge field.

A 1-form symmetry is generated by codimension 2 topological operators. There

is no invariant way of defining an action of an operator of such dimensionality on

local operators. This implies that a local operator can’t transform under a 1-form

symmetry. This is not true for local operators that are not gauge invariant, which

6This also holds for the compact scalar, which we understand as a gauge boson for a (−1)-form

U(1) symmetry. It nonlinearly realizes a spontaneously broken 0-form symmetry.
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do not correspond to physical observables. In fact the action of the electric 1-form

symmetry can be encoded as a shift of the gauge field by a closed but not quantized

1-form Λ1, A→ A+Λ1,
∮
Λ1 ∈ [0, 2π). Note that if Λ1 was quantized this shift would

correspond to a large gauge transformation. The gauge invariant operator transforming

under the symmetry is the Wilson line, defined as Wq(γ) = eiq
∫
γ A for some integer q

and its transformation rules follow from those of A. This is one of the nice features of

gauge fields: they allow for the description of line operators in terms of local (but not

gauge invariant) ones. A further important lesson follows from the transformation of

A; it realizes the 1-form symmetry non-linearly. This is a familiar property of Nambu-

Goldstone bosons ϕ in phases with spontaneously broken U(1) 0-form symmetries.

Given a symmetry transformation with compact parameter c ∈ [0, 2π) the Nambu-

Goldstone boson shifts as ϕ → ϕ + c. The lesson that follows from this observation is

that A is the Nambu-Goldstone boson of a spontaneously broken U(1)(1)e symmetry [2].

This heuristic observation can be made precise by computing the expectation value

of an object charged under U(1)(1)e , a Wilson line. It obeys a perimeter law in the

Coulomb phase, signaling the spontaneous breaking of the symmetry. The Goldstone

theorem implies that, in a phase with a spontaneously broken U(1) 0-form symmetry,

the conserved current creates Nambu-Goldstone bosons from the vacuum, which prop-

agate a massless excitation. In the case at hand the conserved current creates a 1-form

Nambu-Goldstone boson, the photon [2],

⟨0|Je,µν(x)|λ, p⟩ = (λµpν − λνpµ) e
ipx . (2.3)

The equation of motion and the Bianchi identity are exchanged under 1
2π
F ↔ 1

e2
⋆ F .

One can introduce a magnetic photon Ã by defining a Hodge dual field strength 1
2π
F̃ =

1
e2
F and a dual coupling ẽ = 2πe−1 and the action remains invariant. In the electric

frame an ’t Hooft line is defined as a boundary condition for the gauge field along a

1-dimensional locus. In the dual frame however it can be defined in terms of the dual

gauge field Hq(γ) = eiq
∫
γ Ã. If one substitutes U(1)(1)e with U(1)(1)m , A with Ã and the

Wilson lines with ’t Hooft lines all the discussion regarding the spontaneous breaking

of the symmetry remains unchanged. It follows that both U(1)(1)e and U(1)(1)m are

spontaneously broken in the Coulomb phase giving rise to a single Nambu-Goldstone

boson in either the electric or magnetic frame.

It is interesting to note that the photon remains exactly massless even if both

symmetries are explicitly broken at some scale by adding fundamental matter and

dynamical monopoles. Indeed this is plausibly what happens in our universe. Since

local operators may not carry 1-form charge, no relevant (or irrelevant) couplings can

spoil the emergent 1-form symmetry, making it exact at low energies. This fact protects

the masslessness of the photon. For related references see for instance [36, 50–56].
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2.2 3d Maxwell theory

The symmetries of 3d electromagnetism follow a similar pattern to its 4d counterpart.

There is a U(1)(1)e 1-form symmetry under which Wilson lines are charged. In this

case, however, the magnetic symmetry is 0-form U(1)(0)m . Magnetic charge is sourced

by local operators called monopole operators which are defined by excising a point of

spacetime and prescribing a boundary condition for A sourcing magnetic flux. Due

to the change in dimensionality the gauge field A is dual to a compact scalar field

σ. In terms of this field the monopole operator is defined as Mp(x) = eipσ(x). In

the 3d world a continuous 1-form symmetry can’t spontaneously break and give rise to

Nambu-Goldstone modes, a result which follows from a generalization of the Hohenberg-

Mermin-Wagner-Coleman theorem [2, 34, 57, 58]. This implies that the electric 1-

form symmetry can’t be spontaneously broken in 3d. This result is made apparent by

introducing dynamical monopoles which give rise to a confining force between electric

particles [59]. The Wilson line then follows an area law, which in the large area limit

vanishes, and the U(1)(1)e symmetry remains unbroken. This means that the 3d photon

can’t be understood as the Nambu-Goldstone boson for the spontaneous breaking of

the electric symmetry. This result follows from monopole proliferation, which in turn

implies that the vacuum is magnetically charged and the magnetic 0-form symmetry

is spontaneously broken. Furthermore, explicit computation in the magnetic frame

shows that the matrix element between the magnetic current Jm,µ = (⋆F )µ and the

dual photon is,

⟨0|Jm,µ(x)|p⟩ = pµe
ipx . (2.4)

The lesson is that 3d electromagnetism can be understood as in the magnetic Coulomb

phase and describes a spontaneously broken U(1)(0) symmetry.

As already mentioned, addition of magnetic monopoles leads to their proliferation

and the onset of confinement of electric charges. A further effect of this proliferation

is to give the photon a mass exponentially small in the monopole action Smon. This is

understood by noticing that once dynamical monopoles are included, the magnetic 0-

form symmetry is only emergent at energies below Smon. An emergent 0-form symmetry,

unlike an emergent 1-form symmetry, is not enough to protect the masslessness of the

photon. This was beautifully exemplified by Polyakov in [59]. He studied how the

photon, when embedded in SU(2) through adjoint Higgsing gets a mass from vortices.

The magnetic symmetry is absent in the SU(2) theory and, correspondingly, the U(1)

photon is massive.
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2.3 2d Maxwell theory

We are now ready to tackle the wacky two dimensional world. In 2d the Maxwell theory

admits a θ-term, which we omitted in the 4d case. It will play a starring role in our

discussion, so let us spell it out,

S =

∫
− 1

2e2
F ∧ ⋆F +

1

2π

∫
θF . (2.5)

The equation of motion is unchanged, d⋆F = 0, and gives rise to a conserved 2-

form current Je. The Bianchi identity is more subtle than in the higher dimensional

counterparts. It still reads dF = 0 but it is a tautological equation, since every top

form is closed. As in higher dimensions, the first Chern class of a U(1) gauge bundle

in 2 dimensions is quantized
∮
F = 2πZ. This is what allows for the introduction of

the θ-term in the first place. We can use this fact to identify 2πF = ⋆j0 as a magnetic

(−1)-form U(1) current and the θ-term as the coupling to a background gauge field

for it,7 following our definition in Equation (1.3). In our terminology the symmetry

of 2d Maxwell theory is then U(1)(1)e × U(1)(−1)
m .8 Furthermore, in analogy with the

higher dimensional counterparts, it is natural to expect the (−1)-form symmetry to be

spontaneously broken. In the following we explore this possibility in detail. The field

strength in 2d has a single component F01, and the action can be rewritten.

S =

∫
d2x

[
1

2e2
F 2
01 +

1

2π
θF01

]
. (2.6)

It is useful to quantize the theory by choosing the space manifold to be a circle S1

of radius R. By a suitable choice of gauge A0 = 0 one can argue that only the zero

mode survives and the theory can be rewritten in terms of an angular variable ϕ(t) =∫ 2πR

0
dxA1(x, t). The angular nature follows from the large gauge transformations of A

winding along the circle, which become ϕ→ ϕ+2π. In terms of ϕ the action becomes,

S =

∫
dt

[
1

4πe2R
ϕ̇2 +

θ

2π
ϕ̇

]
. (2.7)

This is just the action for a particle in a circle in the presence of a magnetic field. The

system can be quantized and has energy eigenstates ψl = eilϕ with energy,

El = πe2R

(
l − θ

2π

)2

. (2.8)

7Given that θ is a background gauge field, the meaning of the transformations θ → θ + 2π is

clear, they are just the large gauge transformations of the background gauge field. These large gauge

transformations shift the scalar background gauge field by a closed but not exact 0-form: a constant.

In the (−1)-form symmetry case this is all there is, since small gauge transformations, described by

shifts by an exact 0-form, are trivially zero.
8A SymTFT realization of this symmetry can be found in appendix C.
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The ground state is ψ0, which we denote |0⟩ = |ψ0⟩. The system in state ψl is charac-

terized by a constant electric field,

F01 = e2
(
l − θ

2π

)
. (2.9)

The ground state is the state with lowest electric field,

⟨F01⟩0 = −e
2θ

2π
. (2.10)

This result is hardly surprising since the classical equations of motion for A0, A1 in

eq. (2.6) are ∂0F
01 = ∂1F

01, whose only solution is a constant electric field. This also

agrees with the photon not propagating any degree of freedom in 2d. In free Maxwell

theory there are no electric particles but one can consider adding heavy particles, or

Wilson lines, to probe the theory. On the circle we must add at least two, of opposite

charge and separated by a distance L. Regardless of the chosen state, the electric field

between them will increase by one unit, giving rise to an energy that grows linearly

with L. This shows that, even if the photon does not propagate any degree of freedom

there is a long range force that confines probe charges classically.

Classic confinement implies that large Wilson loops obey an area law and the elec-

tric 1-form symmetry is not spontaneously broken. A similar check is not available for

the magnetic (−1)-form symmetry. We would need a charged operator that is analo-

gous to the ’t Hooft loop in 4d or the monopole operator in 3d but such a thing does not

seem to exist. As discussed in Sec. 1, we propose instead that the spontaneous breaking

of the (−1)-form symmetry is diagnosed by an explicit dependence of the vacuum en-

ergy V (θ) on the value of the background θ. The leading measure of such dependence

is the topological vacuum susceptibility X = ∂2

∂θ2
V (θ). Given the topological density

⋆F , the topological susceptibility can be rewritten as,

X = −i 1

4π2

∫
d2x⟨T (⋆F (x) ⋆ F (0))⟩conn. =

1

2π

∂

∂θ
⟨⋆F ⟩ = e2

4π2
, (2.11)

which is nonzero in the present case, signaling spontaneous breaking of the (−1)-form

symmetry. So far we have linked the spontaneous breaking of the (−1)-form symmetry

with a physical dependence on its gauge background. A further motivation for this

definition is the relation between a non-vanishing X and the appearance of a double

pole at zero momentum in the 2-point function of the photon. By considering the

gauge-dependent two point function ⟨Aµ(x)Aν(y)⟩, one can show that it is written in

terms of a propagator G(q2) that satisfies,

lim
q2→0

q2G(q2) ∼ X . (2.12)
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Although G(q2) is gauge dependent, this limit matches the manifestly gauge invariant

quantity (2.11) and so the pole at q2 = 0 is independent of the gauge [38]. While

in higher dimensions the Kogut-Susskind pole is somewhat mysterious, there is no

mystery in the abelian two dimensional case where the role of the non-propagating

photon field is well understood. In particular, it is responsible for the long-range force

that confines probe particles. In this sense, the gauge field Aµ mediates a long range

force thanks to a pole in its “propagator,” in complete analogy with Maxwell theory in

higher dimensions. We conclude that the non-vanishing of the topological susceptibility

signals the spontaneous breaking for the (−1)-form symmetry giving rise to a Nambu-

Goldstone field that creates a long range force, even if it does not propagate.

After explicitly establishing the connection between free 2d Maxwell theory and

the (−1)-form symmetries introduced in sec. 1, in the following we explore the fate of

these universal features in theories with fermions, both massless and massive. We have

also considered two other 2d models displaying interesting low energy dynamics that

can be understood in terms of the magnetic (−1)-form symmetry but, for deference to

the exhausted reader, those discussions are left to the appendices. In appendix A we

review the 2d Abelian-Higgs model while in appendix B we review the CPN−1 model.

2.4 The Schwinger model

If we couple the 2d U(1) gauge theory with a charge 1 massless Dirac fermion we obtain

the Schwinger model. The action is,

S =

∫
− 1

2e2
F ∧ ⋆F +

1

2π
θF + iψ̄ /Dψ . (2.13)

Explicit computation of the equation of motion shows that the electric current is no

longer conserved. On the other hand there is still a θ-term consistent with our definition

of (−1)-form symmetry. There is also a would-be chiral U(1) symmetry that is ABJ

anomalous. The symmetry of this theory is just U(1)(−1)
m . In the following we argue

that this model does not realize the features that we associated with a spontaneously

broken (−1)-form symmetry. The explanation will be that the U(1)(−1)
m symmetry has

been gauged.

The gauge coupling is dimensionful in two dimensions and the theory is strongly

coupled in the IR. Nonetheless, it is simple enough for Schwinger to be able to solve

it explicitly using the operator formalism [60]. If you are not Schwinger, a simpler

approach was pioneered by Coleman [61] taking advantage of 2d bosonization. This

duality states that a strongly coupled fermion can be exchanged with a weakly coupled
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boson, provided that a dictionary is used.9 The fermion theory confines classically at

low energies but it is equivalently described by a theory of a free compact scalar which

only couples to the gauge field through a topological term. In the present case the

bosonized version of the theory takes the following form,10

S ′ =

∫
− 1

2e2
F ∧ ⋆F +

1

2π
(θ + ϕ)F +

1

8π
(dϕ)2 , (2.14)

with ϕ a scalar of period 2π. One could naively think that there is still a ground state

electric field given by,

F01 = − e2

2π
(θ + ϕ) . (2.15)

However, we can redefine ϕ→ ϕ−θ to absorb θ, signaling that θ is unphysical. In fact,

this was already apparent in the original formulation of the theory, which has an ABJ

anomaly that allows θ to be absorbed in a chiral rotation. The bottom line is that the

electric field in the ground state, which was proportional to θ in the free Maxwell case,

can now relax to a vanishing value.

⟨0|(⋆F )|0⟩ = 0 . (2.16)

In more detail, in 2d the ABJ anomaly is computed by the vacuum polarization diagram.

The vacuum polarizes and the electric field is screened. We highlight that this screening

is not mediated by Schwinger pair production since the electric field to be screened

is fractional in units of the charges of the massless fermions.11 Consequently, the

topological susceptibility X vanishes and the Schwinger model does not spontaneously

break the (−1)-form symmetry. By virtue of eq. (2.12) the vanishing of the topological

susceptibility implies that the pole disappears from the gauge 2-point function, signaling

that the Nambu-Goldstone field has been lifted and we are no longer in the Coulomb

phase. Hence we also expect the long-range force between probe particles to vanish.

Indeed the polarized vacuum can also screen the electric field sourced by probe

particles and the long-range force is well known to be absent in the Schwinger model

9An interesting comment, made to us by a SciPost referee is the following. In general the bosoniza-

tion dictionary involves gauging the fermion parity in the fermionic theory. In the present case the

fermion parity is already gauged in the Schwinger model and the equivalence with the bosonic theory

is faithful.
10The dictionary fixes the periodicity of the canonically normalized compact scalar. A free Dirac

fermion bosonizes to a canonically normalized compact scalar with period
√
π [62], hence the factor

of 1/(8π) in the kinetic term in (2.13).
11One can also argue for this by noticing that the constant electric field becomes F01 = −e2

2π ϕ, which

gives a non-zero energy. Another way to argue for the field relaxing to zero is by integrating out

F = dA from 2.14. One finds a quadratic potential for ϕ, which naturally relaxes to zero setting

F01 = 0. For related discussions see for instance [63, 64].
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[60, 65]. We see that all our expectations regarding a theory that spontaneously breaks

a (−1)-form symmetry are negated in this model.

We finish our discussion by noting that the Schwinger model is equivalent, through

the bosonization dictionary, to a theory where the (−1)-form symmetry has been

gauged. In eq. (2.14) the (−1)-form symmetry current J0 = ⋆F has been coupled

to a dynamical gauge field ϕ (a compact scalar), which is the canonical way of gauging

symmetries associated to conserved currents. From this point of view, it is very natural

that the Schwinger model cannot possibly realize a spontaneously broken (−1)-form

symmetry, since it has been gauged! This observation will be useful when we leverage

the knowledge gained from this toy model to understand QCD and the Strong CP

problem.

2.5 The massive Schwinger model

A further twist can be made by adding a mass to the Dirac fermion in the Schwinger

model. In the massless Schwinger model the vanishing of the topological susceptibility

was intimately tied with the ABJ anomaly, which is absent in this case due to the

fermions having a mass. For this reason, we expect this model to realize a spontaneously

broken (−1)-form global symmetry. If the fermion is massive enough m2 ≫ e2, we

recover free Maxwell theory in the IR and our expectation is trivially satisfied. A more

interesting question is what happens in the opposite case of m2 ≪ e2. Consider the

following action of a massive Dirac fermion coupled to a U(1) gauge field,

S =

∫
− 1

2e2
F ∧ ⋆F +

1

2π
θF + iψ̄ /Dψ − imψ̄ψ . (2.17)

In the m2 ≪ e2 regime the theory is strongly coupled in the IR. Luckily, Coleman

taught us how to solve it using the bosonization dictionary. The bosonized theory is

[61, 66],

S ′ =

∫
−1

2
F ∧ ⋆F +

1

2π
(θ + ϕ)F +

1

8π
(dϕ)2 +

m

πϵ
cosϕ , (2.18)

where ϵ is a UV regulator [62, 67, 68]. The only difference with the bosonized action

of the massless Schwinger model is the last term in Equation (2.18) which is absent in

Equation (2.14). This term obstructs the absorption of θ by a ϕ field redefinition, so

we expect θ to be physical and to give rise to a vacuum electric field. As discussed in

[61, 66], this is precisely what happens. There is a non-zero electric field in the vacuum,

which can’t be screened in this case,

⟨0|(⋆F )|0⟩ = e2

2π
(θ + ϕ) . (2.19)
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From Equation (2.11) it follows that there is a non-zero topological susceptibility and,

consequently a zero momentum pole in the 2-point function of the gauge field. Further-

more, this theory displays a long-range force between probe particles. The bottom line

is by now clear, the magnetic (−1)-form symmetry, which was gauged in the massless

case, is now ungauged and spontaneously broken, giving rise to a Nambu-Goldstone

field and a long-range force.

A difference with the pure Maxwell case is that the long range force between two

particles vanishes if the difference of their charges is a multiple of 2. The reason is that

a Schwinger pair of massive fermions may nucleate, screening the electric field created

by the particles. We learn that the long range characteristic of spontaneously broken

(−1)-form symmetries may be dynamically screened but will be present for improperly

quantized probes. A similar phenomenon happens with the vacuum electric field, giving

a physical explanation for the periodicity of θ in this model.

An explicit, numerical computation of the topological susceptibility was carried out

in the recent work [64] by using a tensor network approach in the lattice, where it was

indeed found to be non-vanishing.

3 A different look at the Strong CP problem

While 2 dimensions are fun, they are somewhat detached from the high energy physics

of our universe. In this section we present two 4d gauge theories whose low energy dy-

namics are governed by a spontaneously broken (−1)-form symmetry. Namely, SU(N)

Yang-Mills theory and QCD. We will see how the low energy dynamics in these theo-

ries have similarities with the physics of 2d Maxwell theory, particularly in the large N

limit of Yang-Mills. In the last part of this section we use this insight to reformulate

the Strong CP problem as a consequence of the spontaneous breaking of a (−1)-form

symmetry.

3.1 Low energy effective theory in 4d Yang-Mills theory and QCD

For concreteness, let us consider SU(N) Yang-Mills theory with no light matter, which

serves us as a toy model for QCD. The action is,

S =

∫
tr

(
− 1

g2
F ∧ ⋆F +

θ

8π2
F ∧ F

)
. (3.1)

An important property of SU(N) YM theory, is that the θ-term leads to physical effects.

Note that this property lies at the core of the Strong CP problem. Such a physical

dependence on θ is probed by the topological susceptibility of the vacuum X which can
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be defined as [69],

X ≡
(
d2E

dθ2

)
= lim

q→0
−i
(

1

16π2

)2 ∫
d4x eiqx⟨0|T (tr(FµνF̃

µν(x))tr(FρσF̃
ρσ(0)))|0⟩ .

(3.2)

The low energy dynamics of 4d Yang-Mills theory is strongly coupled and notoriously

difficult to study. Nonetheless, the non-vanishing of the topological susceptibility for

generic θ gives us important hints about the vacuum structure. As noticed by Lüscher

in [38], the 2-point function above can be recast in terms of a 2-point function of the

Chern-Simons 1-form current K1, which is the Hodge dual of the Chern Simons 3-form

K1 = ⋆C3, at vanishing momentum. Using the fact that ∂µKµ = 1
16π2 tr(FµνF̃

µν) one

can rewrite eq. (3.2) as,

X = lim
q→0

−iqµqν
∫

eiqx⟨0|TKµ(x)Kν(0)|0⟩d4x . (3.3)

As discussed in the introduction, the non-vanishing of the topological susceptibility

implies that the two point function has a pole at q2 = 0. Given that the 2-point

function in question is not gauge invariant, one may be wary that this pole may be

unphysical. Luscher argued that the pole remains in any gauge and, as we will explain,

its physical implications are profound. The existence of this pole at zero momentum

signals the appearance of a massless mode for C3 in the IR. Since we believe that

Yang-Mills theory is otherwise gapped, it is natural to expect the vacuum structure of

SU(N) Yang-Mills theory to be captured by an effective theory of a massless 3-form

gauge field C3. In fact, this observation should hold for QCD as well, since X is also

nonzero in that case. For related discussions in Yang-Mills and QCD see [40, 70–72].

The precise form of the Lagrangian describing this effective theory will depend on

strongly coupled dynamics and is, in general, not available to us. In the large N limit

matters are simpler, as discussed in [40, 41, 70, 71]. At small momenta only terms

with less than two derivatives will be relevant. One can assume that a kinetic term is

generated and all other 2-derivative terms are in fact suppressed in the large N limit.

In this limit the effective theory takes the following form,

L = − 1

2X
F4 ∧ ⋆F4 +

1

2π
θF4 . (3.4)

Where F4 = dC3 is an abelian 4-form field strength that should not be confused with F ,

the 2-form non-abelian field strength. This action describes a 3-form gauge field in 4d

with a topological coupling or θ-term. This theory is reminiscent to electromagnetism

in 2d, see 2.3. In fact, the physics of both theories is very similar, as explored in, for
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instance [73]. Like its 2d counterpart, a 3-form gauge field in 4d does not propagate

and the different vacua are characterised by a constant electric field,

⟨⋆F4⟩l = (θ + 2πl)X . (3.5)

The energy density of these vacua is

El(θ) =
1

2
(θ + 2πl)2X . (3.6)

The true vacuum, or ground state, is selected by minimizing the expression above. One

then finds a non-zero electric field in the ground state,

⟨⋆F4⟩0 = X θ . (3.7)

Reassuringly these results match the expectations that one infers from holography [74].

Away from the largeN limit, the precise form of the action for such a field is unknown.12

In general the Lagrangian will take the following form,

L = −1

2
|F4|2+

1

2π
θF4 +K(F4) , (3.8)

where K(F4) denotes higher order contributions with F4. For instance, in QCD θ and

K(F4) will depend explicitly on the quark masses. Regardless of the precise form of the

Lagrangian the equations of motion still admit a constant solution for ⋆F4 such that

the physical picture remains unchanged.

3.2 SSB of the (−1)-form U(1) symmetry in 4d Yang-Mills theory and QCD

An important property of any theory with a Lagrangian of the form 3.8 is that it has a

magnetic (−1)-form U(1) symmetry. The existence of this symmetry follows from the

Bianchi identity of the C3 gauge field and the quantization of
∮
F4. From the Biachi

identity we identify the conserved current as,

j0 = ⋆F4 , (3.9)

which we can couple to a background gauge field θ which is periodic. This symmetry

in the IR effective theory is already present in the UV of both SU(N) Yang-Mills and

QCD: it is a Chern-Weil symmetry with conserved current [19],

⋆j0 =
1

8π2
tr(F ∧ F ) , (3.10)

12Its form may be determined in some approximations such as the dilute instanton gas; see [43].
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where now F is the non-abelian field strength. This symmetry is sometimes called the

instantonic symmetry, as it measures the instanton number. The non-vanishing of the

topological susceptibility in SU(N) YM and QCD implies that the physics depends non-

trivially on the value of the background field θ. Following our discussion in section 2.3

we take this dependence to signal the spontaneous breaking of the (−1)-form U(1)

symmetry. Finally, we identify the 3-form gauge field C3 as the Nambu-Goldstone field

of the spontaneously broken (−1)-form symmetry.

A further way of arguing that the (−1)-form symmetry is spontaneously broken is

by considering its gauging. It can be explicitly gauged by introducing a kinetic term

for the gauge field θ(x) and summing over it in the path integral. This is equivalent to

coupling the Chern-Weil current to an axion. Importantly, the axion has a non-trivial

potential arising from the θ dependence of the vacuum energy density, i.e., the non-

vanishing X . This potential endows the axion with a non-zero mass, signaling that the

gauged (−1)-form symmetry is spontaneously broken giving rise to a Higgs mechanism.

Furthermore, an electric Higgs phase is dual to magnetic confinement. This can be

explicitly checked in this case by replacing θ(x) by its Hodge dual 2-form gauge field

dθ ∼ ⋆dB2. The 3-form field C3 is no longer massless as it picks up a mass from a

Stueckelberg-like mass term of the form,

|dB2 − C3|2 , (3.11)

which implies that the would-be Nambu-Goldstone field C3 is eaten by the gauge field

B2. A similar Stueckelberg-like mass is obtained in, e.g., the dual description of gauging

the magnetic 1-form U(1) symmetry. From 3.11 it follows that, to preserve gauge

invariance, axion strings must be attached to C3 domain walls. These domain walls

have a finite tension, giving rise to a confining force between strings. We conclude

that axionic strings are confined, in agreement with the gauge (−1)-form symmetry

being spontaneously broken and Higgsed. Note that, were X to vanish, the effective

field theory would not have a massless 3-form gauge field which we have associated

with the spontaneous breaking of the (−1)-form U(1) symmetry. Furthermore, in the

gauged (−1)-form symmetry theory, the axion would remain massless and the (−1)-

form symmetry unhiggsed. These two facts, together with similar considerations in

section 2 lead us to propose X as an order parameter for the spontaneous breaking of

the (−1)-form symmetry.
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Spontaneous Breaking of a (−1)-form U(1) symmetry.

A (−1)-form U(1) symmetry with background gauge field θ is spontaneously

broken if the vacuum energy in Minkowski space V depends on θ. An order

parameter for such spontaneous breaking is the topological susceptibility:

X =
∂2

∂θ2
V (θ) . (3.12)

3.3 Reformulation of the Strong CP problem

An important consequence of the non-vanishing of X in QCD is that physical observ-

ables can depend on θ̄ = θ + Arg(detM), where M is the quark mass matrix. An

example of such observable is the neutron electric dipole moment (nEDM). Experi-

mental measurements of the nEDM place stringent constraints,

|θ̄|≲ 10−10 . (3.13)

In the following we will refer to θ̄ as θ. That is, we take θ to be the physical parameter.

Given that θ is a free angular parameter of the quantum theory, its experimental value

is unnaturally small, giving rise to the Strong CP problem. We have argued that

the non-vanishing of X and, more generally, a partition function13 that depends on

θ signals the spontaneous breaking of the (−1)-form U(1) Chern-Weil symmetry of

QCD. More broadly, a theory with a spontaneously broken (−1)-form symmetry has a

physical dependence on a circle valued background field θ. If θ is measured to be too

small, a naturalness problem arises. The Strong CP problem is the QCD avatar of this

naturalness problem. We can now extract a necessary condition for the QCD Strong

CP problem to arise.

A necessary condition for the Strong CP problem in QCD.

A necessary condition for Quantum Chromodynamics to have a Strong CP prob-

lem is that the global (−1)-form U(1) symmetry is spontaneously broken.

In the next section we will use this necessary condition for the Strong CP problem

to arise in QCD to provide a new perspective on the problem and its solutions.

4 Solutions to the Strong CP problem and its analogues

We have argued that the Strong CP problem is intimately tied with a spontaneously

broken (−1)-form U(1) symmetry that arises in the Standard Model. If the physics

13That is a generating “functional” with θ-term as an external source term.
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associated with this spontaneous breaking is prevented in some way, the Strong CP

problem should be solved. This problem has direct analogues in various other theories

with spontaneously broken, global (−1)-form symmetries, some of which are easier to

analyze because they are low-dimensional, as we have discussed above. In this section,

we discuss various solutions to the Strong CP problem from this perspective.

4.1 Solving the problem by gauging with an axion

The classic Peccei-Quinn-Weinberg-Wilczek solution to the Strong CP problem [75–78]

may be thought of as gauging the (−1)-form global U(1) symmetry with a dynamical

axion field θ(x). The existence of a (−1)-form global U(1) symmetry means that our

theory can be consistently coupled to a background axion field θ(x); we now simply

sum over all such possible backgrounds in the path integral.

In the analogue problem in 2d Maxwell theory, we have already introduced the

relevant action in (2.14), where the field ϕ plays the role of the dynamical axion. Such

a coupling explicitly removes the physical dependence on θ by polarizing the vacuum

and screening the constant electric field. In this case, the original 0-form U(1) gauge

symmetry is Higgsed. One can see this explicitly by dualizing ϕ to ϕ̃. The resulting

kinetic term is ∼ |dϕ̃ − A|2, which shows that A is made massive by a Stueckelberg

mechanism. However, the (−1)-form U(1) gauge symmetry is also higgsed, eliminating

the Kogut-Susskind pole. We can see this by dualizing the field strength F = dA to a 0-

form integer field strength n, which acquires a Stueckelberg-type “kinetic term” |n−ϕ|2
that can also be interpreted as a potential that makes the gauge field ϕ for the (−1)-

form symmetry massive. In general, we expect higgsing of a (−1)-form gauge symmetry

to correspond to confinement of axion vortices by domain walls. In the (1+1)d case, the

domain walls are simply particles charged under A, while the operator eiϕ̃ inserts a static

vortex at a point in spacetime. Because ϕ̃ shifts under A gauge transformations, such

a vortex must have an attached domain wall. This is the expected dual confinement

phenomenon. Higher-dimensional analogues of this have been extensively discussed in

the literature on inflation [46, 47].

For the Strong CP problem in QCD, the relevant coupling takes the following form:

S ⊃ 1

8π2

∫
θ(x)tr(G ∧G) . (4.1)

The Vafa-Witten theorem [79] ensures that the axion potential generated by QCD

dynamics sets the effective low-energy θ angle to zero. As in the 2d case, this term

describes the coupling of the (−1)-form symmetry current j0 = 1
8π2 ⋆ tr(G ∧ G) to a

dynamical gauge field, the axion. The net effect is that the (−1)-form symmetry is

gauged. The axion equation of motion then shows that the instanton number current
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becomes co-exact,

f 2d⋆dθ =
1

8π2
tr(G ∧G) . (4.2)

This exactness condition is equivalent to gauging: an exact current integrates to zero on

any closed manifold, implying that there are no charged operators that may link with

the symmetry operators ei
∮
⋆j. There are thus no objects charged under a symmetry

generated by an exact current. This is the chief property of a gauge symmetry in gauge

theory. As discussed in §3.2, the gauged (−1)-form symmetry is in a higgsed phase,

which is reflected in the confinement of magnetically charged objects (axionic strings)

by axion domain walls.

It is worth noting that the Strong CP problem may not be solved if the axion

potential has additional contributions beyond the QCD one. In this case one says that

the axion suffers a quality problem. In our language the failure boils down to the fact

that the (−1)-form U(1) global symmetry is not automatically gauged anymore. Indeed

eq. (4.2) ceases to hold generically. For a discussion in greater detail see [19].

4.2 Solving the problem by gauging with massless fermions

A second canonical solution to the Strong CP problem is to postulate a chiral massless

fermion. In the case of 2d Maxwell theory the resulting theory is the Schwinger model,

whose action we wrote in (2.13). Such a massless chiral fermion comes with an ABJ

anomaly for the chiral symmetry that allows the θ angle to be rotated away, making

it an unphysical parameter. This effect is particularly explicit in the 2d case thanks to

the 2d bosonization by which the Schwinger model is equivalent to the bosonic theory

in eq. (2.14), where the θ is absorbed by a redefinition of the compact scalar field. It

is now clear what is happening in terms of the (−1)-form symmetry. The (−1)-form

symmetry has been gauged, making its spontaneous breaking innocuous. It follows that

the ground state electric field is screened by a polarized vacuum and the Strong CP

problem is avoided. In 2 dimensions it is clear that these two solutions to the Strong

CP problem are really the same. Furthermore, the lesson that adding massless fermions

gauges (−1)-form symmetries holds more generally. For instance, in Yang-Mills, adding

a massless fermion produces an ABJ anomaly for the chiral current Jc,

d⋆Jc =
1

8π2
tr(F ∧ F ) . (4.3)

This equation implies that ⋆j0 =
1

8π2F ∧F is (globally) exact, and hence (as explained

in [19]) the (−1)-form symmetry is gauged. As in Sec. 4.1, this gauged (−1)-form

symmetry is in a Higgs phase. In this case, although there is no elementary axion

field, there is still a magnetic confinement phenomenon. The confined vortices are the
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boundaries of η′ domain walls, which have chiral excitations carrying baryon number,

as described in [80].

4.3 Solving the problem with non-compact symmetries

An alternative solution to the CP problem was proposed in [81]. As discussed there,

if one considers a 2d abelian gauge theory with gauge group R instead of U(1), the

analogue of the Strong CP problem is immediately solved. The reason for this to work

is most easily understood in terms of the (−1)-form symmetry, which we recall, is the

magnetic symmetry of the U(1) gauge theory in 2d. As is well known, for the gauge

group R the would-be magnetic symmetry operators act trivially.14 In more detail,

there is a topological constraint that
∫
M
F = 0 for any closed 2-manifoldM , so a

∫
M
θF

term for constant θ does not affect the physics. In particular, the vacuum energy is

independent of constant θ and so we would not say that the theory spontaneously breaks

a (−1)-form symmetry. Physically, a background electric field on a non-compact space

can be screened by combinations of particles with mutually irrational electric charges.

An analogous 4d setup to this 2d theory requires modifying the instanton sum by

coupling to a topological theory (TQFT) with a non-compact 3-form gauge field [33].

As in the 2d theory however, a dynamical mechanism, i.e., adding mutually irrationally

charged domain walls, is needed to relax θ and fully solve the Strong CP problem.

For the Strong CP problem of the Standard Model, [81] also proposed a related

mechanism, relying on a non-compact axion field a(x), which has couplings∫
1

8π2
[ξHa(x)tr(GH ∧GH) + ξa(x)tr(G ∧G)] . (4.4)

Here G(x) is the usual Standard Model gluon field strength, while GH is the field

strength of a hidden Yang-Mills group that confines at a much higher scale. This

confinement generates a potential with a set of minima for a(x). If ξH and ξ are

mutually irrational, then the infinite set of minima of the GH-generated potential allows

the effective theta term of QCD to scan over a dense discretuum of values, some of

which will be very small. One then must invoke a cosmological argument for why

we find ourselves in a universe with such a small value. In our language, this model

14Equivalently one may say that an R gauge theory is obtained from the U(1) theory by performing a

topological gauging of the U(1) magnetic symmetry. This gauging is enforced by coupling the magnetic

current to a non-dynamical (i.e. with no kinetic term) U(1) gauge field with only flat connections and

summing over it. In the present case this auxiliary field is a flat compact scalar. From this point

of view, the Strong CP problem is avoided also in this case by gauging the (−1)-form symmetry. A

SymTFT discussion of this model and the topological gauging can be found in appendix C. We thank

Andrea Antinucci for comments on this point and for careful explanation of his recent paper [82].
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has gauged a (−1)-form R global symmetry, which is an irrational combination of two

(−1)-form U(1) global symmetries. This is only possible with an axion field that is

non-compact.

The common feature of the models of [33, 81] is the introduction of non-compact

gauge fields (either an ordinary gauge field, or an axion, or a three-form field). This

can enable novel solutions of CP problems in quantum field theory, but we expect that

such models do not have consistent UV completions in quantum gravity (see, e.g., [11]).

4.4 Failing to solve the problem with explicit breaking

As we have discussed, standard solutions to the Strong CP problem rely on gauging the

(−1)-form global symmetry. One might wonder if, instead, we could simply break the

symmetry explicitly. In the following we discuss a couple of strategies that implement

this idea but that ultimately fail to solve the problem.

4.4.1 Explicit breaking via gauging and mixed anomalies

First, it is often the case that we can break a symmetry by gauging a different symmetry

with which it has a mixed anomaly.15 One can attempt this strategy for solving the

2d Maxwell theory analogue of the Strong CP problem, as follows. A well known fact

about Maxwell theory in any number of dimensions is that it has a U(1)(1)e ×U(1)(d−3)
m

symmetry under which Wilson lines and ’t Hooft operators are charged. There is an

obstruction to gauging these two symmetries at the same time, or a mixed ’t Hooft

anomaly, that can be succinctly encapsulated in terms of the background gauge fields

Be and Bm by its anomaly polynomial,

A =
1

2π
dBe ∧ dBm . (4.5)

In the 2d case these facts also hold, with the background field for the magnetic sym-

metry being θ itself. In this case the anomaly polynomial is,

A2d =
1

2π
dBe ∧ dθ . (4.6)

It follows that an easy way of breaking the magnetic (−1)-form symmetry is to gauge

the electric symmetry. The gauging is implemented by coupling the electric symmetry

to a background gauge field Be, adding suitable local counterterms and summing over

15There are many exceptions to this statement when gauging gives rise to a 2-group structure or

non-invertible symmetries, see for instance [83–87]. Here we restrict to anomalies that break the

ungauged symmetry.

– 26 –



the background field configurations in the path integral. The resulting action is16

S =

∫
− 1

2e2
(F −Be) ∧ ⋆(F −Be) +

1

2π
θ(F −Be) . (4.7)

A first observation is that the kinetic term for the gauge field becomes a Stueckelberg-

like coupling and the U(1) gauge field is “eaten” by Be. This mass term removes the

pole from the photon 2-point function, destroying the long range force. Thus, the

infrared physics of the theory is trivial, and X = 0. Whether one considers this to be

a solution of the 2d CP problem or not is perhaps a matter of semantics: the problem

is gone, but so is all of the physics, since the photon is gapped.

Even this pyrrhic victory is lost in the case of the actual Strong CP problem for

QCD. The analogue would be to gauge a U(1) 3-form symmetry that has an anomaly

polynomial of the form

A4d =
1

2π
dB4 ∧ dθ , (4.8)

with B4 a background gauge field for the 3-form symmetry. However, QCD has no

such 3-form symmetry! The 3-form gauge field associated with the Kogut-Susskind

pole emerges in the IR, rather than existing as a fundamental UV field. There is no

electric 3-form global symmetry associated with it that we can gauge.

4.4.2 Explicit breaking in the UV

It is possible that the (−1)-form U(1) global symmetry associated with QCD instantons

is explicitly broken in the UV. Because the symmetry is topological, we expect that this

will occur only when the gauge group itself is somehow modified in the UV. An example

was discussed in [19]. Suppose that the Standard Model gauge group is embedded in

SU(5) (and let us ignore fermions for the moment, which slightly complicate the story

without changing the punchline). The UV theory has a single (−1)-form Chern-Weil

symmetry with current

j0 SU(5) =
1

8π2
⋆ tr(FSU(5) × FSU(5)) . (4.9)

In the IR however, there are three such Chern-Weil symmetries, one for each field

strength. Clearly, two linear combinations thereof are emergent in the low energy

theory, and explicitly broken in the UV. One could then ask: could the UV breaking of

an emergent (−1)-form symmetry be sufficient to remove the Nambu-Goldstone pole

and solve the Strong CP problem? From one point of view, the answer should be no,

as it would be a dramatic failure of decoupling if physics at the GUT scale could set

16A similar computation has recently appeared in section 4.1.2 of [88].
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the topological susceptibility computed in the infrared limit of QCD to zero. From a

different point of view, however, one may have the intuition that Nambu-Goldstone

poles are fragile and easily removed by UV effects. Thus, it is worth discussing this

point in more detail.

A well-known fact about Nambu-Goldstone bosons parametrizing the degenerate

vacua of a spontaneously broken 0-form symmetry is that, if the symmetry is not

exact in the UV, they get a small mass [89]. Consider for instance a symmetry that

is explicitly broken by some irrelevant coupling with a characteristic scale ΛUV. If

the emergent symmetry is spontaneously broken at a scale ΛIR, the pseudo-Goldstone

boson will typically have a mass scaling like ∼ (ΛIR/ΛUV)
p, where p is some power

depending on the specific details.

A surprising feature of Nambu-Goldstone bosons for spontaneously broken 1-form

symmetries is that their masslessness remains protected even if the symmetry is only

approximate in the sense above. In other words, 1-form symmetries (and higher) are

exact emergent symmetries [56]. An example of this fact is the electromagnetic field

that we observe in nature. At low energies there are two U(1) symmetries, electric and

magnetic. At high energies these two symmetries are explicitly broken by the presence

of electric fermions and, presumably, magnetic monopoles. Those two symmetries are

spontaneously broken and the Nambu-Goldstone boson is the photon, which is exactly

massless despite the explicit breaking in the UV. More detailed examples were given

in [56]. A difference with 0-form symmetries is that no local operator can be charged

under a 1-form symmetry, which implies that emergent 1-form symmetries are exact

in perturbation theory. The standard lore is that this helps in keeping the photon

massless.

For the case of (−1)-form symmetries one can pose a similar question: If the (−1)-

form symmetry is emergent in the IR, is the massless nature of the emergent gauge field,

i.e., the pole, protected? In other words, are emergent (−1)-form symmetries exact?

This question is relevant because the pole is behind all the features of spontaneously

broken (−1)-form symmetries and, in particular, if there is no pole, there is no vacuum

electric field and, thus, no Strong CP problem. If (−1)-form symmetries behave like

0-form symmetries it should be possible to lift the pole by changing the UV physics in

such a way that the (−1)-form symmetry is explicitly broken.

Again, it is useful to consider the case of Maxwell theory in various dimensions.

In 3d, where the photon is dual to a compact scalar, Maxwell theory has an electric

1-form symmetry and a magnetic 0-form symmetry. The magnetic 0-form symmetry

can be explicitly broken in the UV by embedding U(1) gauge theory in SU(2) gauge

theory, higgsed by a real adjoint scalar field. This theory admits a famous semiclassical

analysis of confinement due to Polyakov [59], in which magnetic monopoles (which are
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instantons in 3d) produce an exponentially small mass for the dual photon. Thus, in

this case, the would-be Nambu-Goldstone boson is removed by the explicit breaking of

a 0-form symmetry.

On the other hand, in 2d Maxwell theory, the magnetic symmetry is a (−1)-form

symmetry. Again, the magnetic symmetry can be explicitly broken by embedding the

U(1) gauge theory in SU(2); no axion coupling that UV completes 1
2π
θF is possible

in that theory, because the SU(2) field strength is not gauge invariant. There are no

instanton effects in this theory, and the photon should remain massless. Thus, in this

case we expect that the pole associated with the spontaneous breaking of the (−1)-form

symmetry is still present in the IR, despite the explicit breaking of the symmetry in

the UV. We expect a similar behavior in the case of SU(5) breaking into the SM gauge

group in 4d, and leave a detailed investigation for a future study.

We expect that the lesson here generalizes: a Nambu-Goldstone pole can be re-

moved only in the case where the Nambu-Goldstone is protected by a 0-form symmetry

that is explicitly broken in the UV. The Kogut-Susskind pole is associated with an emer-

gent (d−1)-form gauge field, and can be protected by either a (d−1)-form symmetry or

a (−1)-form symmetry, and hence its existence is robust against UV symmetry break-

ing in d > 1 spacetime dimensions. Thus, embedding the Standard Model in a GUT

should not have any impact on the Strong CP problem.

4.5 Solving the problem with gauged reflection symmetries

Aside from the axion, the most well-studied solution to the Strong CP problem assumes

a fundamental spacetime reflection symmetry, which is either a generalized parity sym-

metry [90] or CP symmetry [91–94]. Here we will refer to the latter case, generally

known as Nelson-Barr models, though our remarks will apply more broadly. Theories

with a spacetime reflection symmetry can be defined on non-orientable manifolds. On

such a space, 1
8π2 tr(F ∧ F ) is not defined, because F ∧ F is an ordinary differential

form, but only pseudo-forms can be integrated without a choice of orientation. Thus,

the instanton number is not well-defined (although a topological invariant valued in Z2

survives). However, by our definition, these theories still have a (−1)-form U(1) global

symmetry, because they can be consistently coupled to a background pseudoscalar axion

field θ(x), which transforms with a minus sign under spacetime reflections. Further-

more, the symmetry is still spontaneously broken, because on Minkowski space we can

still turn on an arbitrary constant θ̄ term and evaluate a nonzero topological suscep-

tibility (3.2). However, the only constant θ(x) backgrounds that can be defined on an

arbitrary space are θ̄ = 0 and θ̄ = π. Thus, the reflection symmetry requires that the

theory be defined with one of these two special θ̄ terms, and the Strong CP problem

could, in principle, be solved.
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The difficulty begins when we recall that the world in which we live is not CP

symmetric, and indeed the CP-violating phase in the CKM matrix is an O(1) number.

Thus, if we live in a universe with an underlying CP symmetry, the symmetry must be

spontaneously broken, and (at least as measured by the CKM phase) badly so. Below

the scale of CP breaking, we should match the fundamental theory onto a theory

without CP, and such a theory in principle admits an arbitrary constant θ̄ term. The

low-energy value of θ̄ need not be one of the special values θ̄ = 0 or π defining the

theory in the ultraviolet, because integrating out massive particles that couple to CP-

breaking can generate effective contributions to θ̄ in the IR. Nelson-Barr models are

engineered so that such effects are small, whereas the CKM phase is large. It is difficult

to give a purely symmetry-based explanation of how they work, without delving into the

detailed structure of the quark mass matrices, which must be enforced with additional

(model-dependent) gauge symmetries.

5 Outlook

In this work we have extended the notion of spontaneous breaking to (−1)-form U(1)

symmetries and started the exploration of its applications. We finish this text with

some open questions.

• We have provided a useful working definition of a (−1)-form U(1) symmetry and

its spontaneous breaking, but it would be useful to put (−1)-form symmetries

in general on a more similar footing to other p-form symmetries in QFT. For

example, the SymTFT approach could be a useful way to formulate (−1)-form

symmetries. It would also be interesting to gain a better understanding of whether

(−1)-form R symmetries are a useful concept in QFT.

• We have explored several solutions to the Strong CP problem which, broadly

speaking, aim at removing the Nambu-Goldstone field by either gauging or ex-

plicitly breaking the (−1)-form symmetry. It turns out that gauging has been

extensively covered in the literature. On the other hand, it seems to us that ex-

plicit breaking is still poorly understood and we hope to study it further in future

work. Besides, the explicit breaking of the (−1)-form symmetry by monopoles has

not been thoroughly investigated except in the case of U(1) gauge theory [19]. It

would be interesting to examine the case of more general gauge groups, including

Grand Unified Theories.

• A fundamental ingredient in our understanding of spontaneous breaking of con-

tinuous (higher form) symmetries is the Goldstone Theorem. While we have
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established the presence of a pole in the 2-point function of a Nambu-Goldstone

field whenever a (−1)-form U(1) symmetry is spontaneously broken, we have

not been able to explicitly prove a theorem that follows the reasoning of the

usual Goldstone theorem. Difficulties arise because the symmetry operator fills

the entire spacetime and cannot be deformed, and because there are no (−1)-

dimensional charged operators that can obtain vacuum expectation values. A

better understanding of the formalism of (−1)-form symmetries may overcome

these obstacles and provide a more direct Goldstone Theorem.

• While most of the solutions to the Strong CP-problem that are discussed in

our paper are concentrated on lifting the (−1)-form U(1) symmetry, Nelson-Barr

models are conceptually different. Unlike the other solutions that lead to no

dependence of the vacuum energy on θ, Nelson-Barr models are constructed such

that the value of θ is small. It remains an open question to understand a generic

symmetry-based explanation for such models.

• Axion-like fields play a role in several solutions to longstanding naturalness prob-

lems in particle physics. A prime example is the hierarchy problem, which sees

potential mitigation through the relaxion model [95, 96]. This model introduces

an axion-like field having a coupling with the Higgs mass term. Another example

is the axion monodromy framework for inflation [45]. In these models the axion

couplings appear to violate the axion periodicity but it is restored by monodromy,

much as in the 2d Maxwell example we discussed in Sec. 2.3. Understanding the

interplay between monodromy and SSB of (−1)-form symmetries in such models

would be interesting.

We hope that this novel case of spontaneous symmetry breaking will prove a useful

unifying tool for physical phenomena.
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A The 2d Abelian-Higgs model

A nice exposition of this model, which we follow, may be found in [68, 97]. Consider

the action,

S =

∫
d2x

1

2e2
F 2
01 +

θ

2π
F01 + |Dϕ|2−m2|ϕ|2−λ

2
|ϕ|4 . (A.1)

As already mentioned, in 2d the gauge coupling is dimensionful and the theory is

strongly coupled in the IR. Hence, the regime |m2|≲ e2 will be complicated to solve.

Consider instead |m2|≫ e2. There are then two regimes to consider,

• m2 ≫ e2: In this case the gauge symmetry is not spontaneously broken and the

theory is just electrodynamics with a heavy scalar meson. The behaviour is similar

to the massive Schwinger model. In particular, there is a vacuum electric field, a

non-zero topological susceptibility and a long range constant force mediated by

the photon. We conclude that there is a magnetic (−1)-form symmetry in the IR

which is spontaneously broken.

• m2 ≪ −e2: In this case the gauge symmetry is spontaneously broken by the

condensation of the scalar field. The naive expectation is that the photon becomes

massive, the long-range force is screened, the topological susceptibility vanishes

and there is no electric field in the vacuum. We therefore expect that the (−1)-

form symmetry is not spontaneously broken. It turns out that this expectation

is wrong. Due to non-perturbative effects mediated by instantons (which are

vortices in 2 dimensions), the gauge symmetry is restored, there is a long-range

force between probe particles and there is a vacuum electric field which depends

linearly with θ. In fact the physics is the same as in the m2 ≫ e2 regime but all

effects are exponentially suppressed. We learn that the (−1)-form symmetry is,

contrary to expectation, realized in the IR and spontaneously broken!
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B The CPN−1 model

This model has been extensively discussed in the literature, we follow [98, 99]. The

CPN−1 model can be defined by the following Euclidean action,

S =

∫
d2x

1

2e2
|F |2+i θ

2π
F +

N∑
a=1

|Dϕa|2+
λ

2

(
N∑
a=1

|ϕa|2−v2
)2

, (B.1)

which describes a set ofN massive complex scalar fields with an SU(N) global symmetry

and coupled to a U(1) gauge field. Classically we expect the scalar potential to be

minimized, spontaneously breaking the SU(N) symmetry to SU(N − 1)× U(1),

|ϕa|2= v2 . (B.2)

Thus, classically, the low energy is described by N −1 massless scalar fields (Goldstone

bosons) with target space,

CPN−1 =
SU(N)

SU(N − 1)× U(1)
. (B.3)

This is of course in contradiction with the MWC theorem and it is well known that

strong dynamics radically change the low energy physics of this theory. We will not

review the computations but merely state the result. It turns out that the low energy

dynamics is that of N massive scalar fields coupled to a U(1) gauge field, whose dy-

namics is emergent in the IR17. The mass is given by a dynamically generated scale

ΛCPN−1 analog to ΛQCD. The resulting dynamics are pretty much the same as the ones

of the abelian-Higgs model in the unbroken phase:

• There is an electric field in the vacuum. In the large N limit it was computed in

[38, 100],

⟨F01⟩ ∼
Λ2

CPN−1

N
θ +O (1/N) . (B.4)

• It follows that the topological susceptibility, which is the order parameter for the

(−1)-form symmetry SSB, takes a non-zero value,

X ∼
Λ2

CPN−1

N
. (B.5)

17In fact, if one starts with no kinetic term for the UV gauge field a nonzero kinetic term is dynam-

ically generated in the IR. In this sense, the U(1) dynamics are emergent.
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• There is a long range force between fractionally quantized probe particles. Inte-

ger quantized particles don’t experience such force because they are screened by

Schwinger pair production.

• The spectrum is composed of mesons. As the θ angle is dialed from 0 to 2π a ϕϕ⋆

pair is created and the spectrum undergoes a flow.

• Interestingly all these phenomena are not exponentially suppressed as befits an

instanton effect, signaling that one can’t hope to explain them using semiclassical

techniques.

• We conclude that there is a (−1)-form symmetry which is spontaneously broken

and all the expected features are present.

Note that this model has many of the salient features of QCD. It is well-known that

it has θ-vacua, a dynamically generated scale and instantons that are insufficient to

explain the low energy physics. We learn now that it shares a further feature with

QCD, namely an (−1)-form symmetry which is spontaneously broken.

C A SymTFT for 2d Maxwell theory.

The SymTFT [101–103] of a given d dimensional Quantum Field Theory Td is a d+ 1

TQFT that encodes the (categorical) symmetry of Td and of all other theories that can

be obtained from Td by a topological manipulation. The SymTFT is placed on a (d+1)

slab with two boundaries. On one of them the boundary condition is not topological

and the local degrees of freedom live. On the other boundary a topological boundary

condition is imposed that prescribes the symmetry of Td once the slab is collapsed to

recover Td. Different topological boundary conditions encode the symmetry of theories

obtained from Td by a topological manipulation.

This construction has recently been extended to abelian continuous symmetries

in [82, 104]. In this appendix we present the SymTFT for 2d abelian gauge theories,

which is an application of [82]. This construction puts (−1)-form U(1) symmetries in

the same footing as more familiar symmetries and also clarifies the relation between

the (−1)-form symmetries of abelian gauge theories with different global forms of the

gauge group.

Consider a 3d BF theory with action,

S =
1

2π

∫
ϕ db2 , (C.1)
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where both ϕ and b2 are R gauge fields18. This means that they don’t have any large

gauge transformations and charged operators with arbitrary real coefficients are al-

lowed. In this case there are local operators and surfaces,

Uα(x) = eiαϕ(x), Ũβ(Σ2) = e
iβ

∫
Σ2

b2 , (C.2)

where α, β are real-valued. The braiding between these operators is,

⟨Uα(x)Ũβ(Σ2)⟩ = e2παβ·Link(x,Σ2) . (C.3)

This SymTFT encodes the symmetry of continuous free abelian gauge theories in 2d.

Different topological boundary conditions correspond to a choice of mutually transpar-

ent bulk operators that can terminate on the boundary, i.e. their braiding is trivial.

Different boundary conditions give different symmetries on the boundary. Here we

mention those corresponding to the global forms that we have encountered in the main

text19.

• Dirichlet Boundary Conditions (DBC’s) for b2 allow the Wilson surfaces Ũβ(Σ2) =

e
iβ

∮
Σ2

b2 to end on the boundary, giving rise to a R 1-form symmetry. The topolog-

ical symmetry operators on the boundary are Uα(x). For the variational problem

to be well posed ϕ must obey Neumann Boundary Conditions (NBC’s), which

imply that it must be summed over in the 2d theory. This sum explicitly imple-

ments the topological gauging mentioned in footnote 14. The total symmetry of

the 2d theory is an R 1-form symmetry, which is the symmetry of the R 2d gauge

theory that we met in section 4.3.

• Mixed boundary conditions are allowed. In particular, one may impose NBC’s

for the Z piece of both fields and DBC’s for the remaining U(1) ≃ R/Z pieces

[104]. These boundary conditions allow operators Ũβ(Σ2) with β ∈ Z to end on

the boundary. The endpoints become the charged lines under a U(1)(1) symmetry.

The remaining operators Ũβ(Σ2) with β ∈ U(1) can be placed on the boundary

and correspond to symmetry operators generating a U(1)(−1) symmetry. The

operators Uα(x) = eiαϕ(x), α ∈ Z can’t end on the boundary because they are zero-

dimensional, so the U(1)(−1) symmetry does not have charged operators. Finally,

the operators Uα(x) = eiαϕ(x), α ∈ U(1) are topological on the boundary and

generate the U(1)(1) symmetry. We conclude that the total symmetry is,

U(1)(1) × U(1)(−1) , (C.4)

18For the case of ϕ this means that it is a non-compact scalar field.
19The different boundary conditions can be expressed in terms of a variational problem that must

be well-defined, see [87, 104] for a similar discussion. We refrain from going into such details and

merely state the results here.
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which matches the symmetry of the U(1) gauge theory discussed in section 2.3.

The SymTFT of the gauge theories with electric matter can be similarly realized by

turning ϕ into a compact scalar. Through this exercise we see that (−1)-form symme-

tries are very similar to more usual symmetries, at least from the SymTFT point of

view. We plan to return to these considerations in more generality and depth in future

work.
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