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Abstract: The 1/N expansion of matrix models is asymptotic, and it requires non-perturbative
corrections due to large N instantons. Explicit expressions for large N instanton amplitudes are
known in the case of Hermitian matrix models with one cut, but not in the multi-cut case.
We show that the recent exact results on topological string instanton amplitudes provide the
non-perturbative contributions of large N instantons in generic multi-cut, Hermitian matrix
models. We present a detailed test in the case of the cubic matrix model by considering the
asymptotics of its 1/N expansion, which we obtain at relatively high genus for a generic two-cut
background. These results can be extended to certain non-conventional matrix models which
admit a topological string theory description. As an application, we determine the large N
instanton corrections for the free energy of ABJM theory on the three-sphere, which correspond
to D-brane instanton corrections in superstring theory. We also illustrate the applications of
topological string instantons in a more mathematical setting by considering orbifold Gromov–
Witten invariants. By focusing on the example of C3/Z3, we show that they grow doubly-
factorially with the genus and we obtain and test explicit asymptotic formulae for them.
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1 Introduction

In spite of its arcane nature, topological string theory on Calabi–Yau (CY) manifolds has been
extremely useful in addressing more mundane problems. Originally [1], topological strings were
constructed as physical counterparts of Gromov–Witten theory, and physics-inspired results in
topological string theory have had an enormous impact on algebraic geometry. It was later
understood in [2] that matrix models are in a sense a special case of topological string theory.
This opened the way to solve some important but difficult matrix models by using topological
string ideas. A remarkable example is the matrix model describing the free energy of ABJM
theory [3] on the three-sphere [4], which was solved in the 1/N expansion in [5, 6] by using
topological string theory on a non-compact CY manifold.

Perturbative topological string theory is relatively well understood, and it has provided
most of the applications that we have just mentioned. One of the most important tools in
formulating and calculating the perturbative expansion of topological string theory is the BCOV
holomorphic anomaly equations (HAE) [7, 8], which have been applied very successfully to both
toric [9] and compact [10] CY manifolds. When matrix models are realized as topological strings,
the perturbative string expansion corresponds to the 1/N expansion, which is governed as well
by the HAE. This was first pointed out in [11], and then proved in [12] as a consequence of the
topological recursion of [13].

– 1 –



The non-perturbative aspects of topological strings are less understood, and there are differ-
ent schools of thought on how to deal with them. In [14] it was suggested to address this problem
in a conservative way, by exploiting the well-known connection between non-perturbative sectors
and the large order behavior of perturbation theory. This connection is the basis of the theory of
resurgence [15–19], and in recent years many interesting results on topological string theory have
been obtained by applying the tools and ideas of resurgence. In the pioneering papers [20, 21] it
was proposed to use trans-series solutions to the HAE in order to obtain non-perturbative effects
in topological string theory. This idea has been further developed recently, and as consequence
exact formulae for multi-instanton amplitudes have been obtained both for local [22] and compact
[23] CY manifolds.

It is natural to ask what are the implications of these new non-perturbative results for the
1/N expansion of matrix models. This expansion is known to be asymptotic, and therefore it
is expected to have exponentially small, non-perturbative corrections, due to so-called large N
instantons (see [18, 24] for a detailed introduction). In the case of one-cut Hermitian matrix
models, large N instantons take the form of eigenvalue tunneling [25, 26]. Although this mecha-
nism has been known for a long time, the first detailed calculation of multi-instanton amplitudes
in one-cut Hermitian matrix models with polynomial potentials was only done in [27, 28] (see
also [29] for a generalization to the two-matrix model case). The results in [27, 28] were tested by
verifying that that the resulting amplitudes control the asymptotics of the 1/N expansion. How-
ever, in the case of general multi-cut matrix models, large N instanton corrections are not fully
understood. Naif expectations based on generalizations of eigenvalue tunneling fail to capture
the asymptotic behavior of the 1/N expansion, as shown in [30].

In this paper we argue that the topological string instanton amplitudes obtained in [22, 23]
provide the sought-for non-perturbative corrections due to large N instantons of Hermitian multi-
cut matrix models, at generic points in moduli space. This follows from the fact that the 1/N
expansion is governed by the HAE of [8], and the instanton amplitudes of [22, 23] are derived
based only on these equations and on boundary conditions which are also satisfied by matrix
models. We test our claim in detail by considering the simplest two-cut matrix model, based
on a cubic potential, and we show that the asymptotics of the 1/N expansion around generic
two-cut saddle-points is controlled by the instanton amplitudes of [22, 23].

There are matrix models which are not of the conventional form but are closely related to
topological string theory and governed by the HAE equations. These include Chern–Simons
type matrix models, like the ones considered in [31, 32]. An important related example, as we
mentioned above, is the ABJM matrix model, which was extensively studied in the context of
the AdS4/CFT3 correspondence. Non-perturbative aspects of this model were discussed in [33],
but precise large N instanton amplitudes were not known. This is a particularly interesting issue
since, as proposed in [33], some of these large N instantons correspond to D-brane instantons in
superstring theory. It is clear from the above that the large N instantons of the ABJM matrix
model should be also given by the topological string instanton amplitudes of [22, 23], and in this
paper we test this in detail, completing in this way the picture developed in [33].

This work is focused on the applications of topological string instantons to large N instantons
of matrix models, but there are more mathematical applications of the results in [22, 23]. As
an example of this type of applications, we also consider in this paper orbifold Gromov–Witten
invariants, which have been studied in both algebraic geometry and topological string theory.
We focus on the orbifold Gromov–Witten theory of C3/Z3, which is one of the most famous
examples, and we show that these invariants grow doubly factorially with the genus at fixed
degree, in contrast to conventional Gromov–Witten invariants [34]. In addition, we obtain explicit
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and detailed formulae for their large genus asymptotics from the topological string instanton
amplitudes of [22, 23].

This paper is organized as follows. In section 2 we briefly review the results on topological
string instantons obtained in [22, 23], building on [20, 21]. In section 3 we consider the application
to large N instantons in multi-cut, Hermitian matrix models, and we present detailed tests in
the two-cut, cubic matrix model. In section 4 we study large N instantons in the ABJM matrix
model. In section 5 we apply the results reviewed in section 2 to obtain the asymptotic behavior
of orbifold Gromov–Witten invariants, in the case of C3/Z3. Finally, in section 6 we present our
conclusions and some prospects for future developments. An Appendix includes some details on
the parametrization of the moduli space of the cubic matrix model, used in section 3.

2 Instantons in topological string theory

In this section we briefly review the results on topological string instantons obtained in [22, 23],
building on previous work in [20, 21, 35].

The basic quantities in topological string theory are the genus g free energies Fg(ta), where
ta, a = 1, · · · , n, are flat coordinates which parametrize the moduli space of a CY threefold. In
this paper we will restrict ourselves to non-compact CY threefolds, although as shown in [23] the
results in the compact case are very similar. The total free energy is given by the formal power
series

F(ta, gs) =
∑
g≥0

Fg(ta)g2g−2
s , (2.1)

where gs is the string coupling constant. It has been argued based on general arguments [18, 26]
that this series is factorially divergent: for fixed ta, one has

Fg(ta) ∼ (2g)!. (2.2)

We also recall that the free energies Fg(ta) depend in addition on a choice of electric-magnetic
frame, and the total free energies in different frames are related by generalized Fourier transforms
[36]. It is convenient to consider arbitrary coordinates in the CY moduli space, not necessarily
flat. These generic coordinates will be denoted as za, a = 1, · · · , n.

The asymptotics (2.2) indicates that the theory should contain non-perturbative amplitudes,
of the instanton type. In [22, 23], building on [20, 21], explicit results for these amplitudes were
obtained, as well as detailed conjectures on the so-called resurgent structure of the theory [37].
The first conjecture concerns the possible singularities of the Borel transform of F(ta, gs), and it
states that they occur at an integral lattice generated by the periods of the CY manifold, with
the appropriate normalization. This conjecture was stated in this general form in [23], refining a
previous statement [33]. To spell this out, we first recall that a choice of frame induces a choice
of so-called A- and B-periods. The A-periods are given by the flat coordinates ta, while the
B-periods are defined by

Fa =
∂F0

∂ta
. (2.3)

Then, instanton actions are of the form

A =
n∑
a=1

(caFa + data) + 4π2in, (2.4)
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where n is an integer. With appropriate normalizations for the periods, ca and da can be also
taken to be integers. However, in this paper we will not exploit the integrality properties of the
actions1.

Our second conjecture concerns the trans-series associated to these instanton actions. If all
the ca vanish, the multi-instanton amplitudes have the form obtained for the resolved conifold
in [38],

F (`)
A =

1

2πgs

(
A
`

+
gs
`2

)
e−`A/gs , (2.5)

where ` ∈ Z>0. If the ca are not all zero, we define a modified prepotential FA0 by

A =

n∑
a=1

ca
∂FA0
∂ta

. (2.6)

This prepotential differs from the one in (2.3) by a second order polynomial in the ta’s. Then,
the one-instanton amplitude associated to the action A is given by

F (1) =
1

2π

(
1 + gs

n∑
a=1

ca
∂F
∂ta

(tb − cbgs, gs)

)
exp [F(tb − cbgs, gs)−F(tb, gs)] . (2.7)

Here, F is the total free energy (2.1), in which F0 has been replaced by the modified prepotential
FA0 . In the one-modulus case n = 1 (the only one we will consider in this paper) we can write
the action as

A = c
∂F0

∂t
+ dt+ 4π2in, (2.8)

and we find, when c 6= 0,

F (1) =
1

2π

(
1 + gsc

∂F
∂t

(t− cgs, gs)
)

exp [F(t− cgs, gs)−F(t, gs)]

=
1

2πgs
e−A/gs exp

(
c2

2
∂2
tF0

)
×
{
A+ gs

(
1− c2∂2

tF0 −A
(
c∂tF1 +

c3

6
∂3
tF0

))
+O(g2

s)

}
.

(2.9)

We note that (2.7), (2.9) have to be regarded as formal trans-series, of the form

F (1) = e−A/gs
∑
n≥0

F (1)
n gn−1

s , (2.10)

where the F (1)
n can be read from (2.7), (2.9). In the one-modulus case we have, for the very first

coefficients,

F (1)
0 =

A
2π

e
1
2
c2F ′′

0 (t),

F (1)
1 = −

6c2F ′′0 (t) + F ′0(t)
(
c4F ′′′0 (t) + 6c2F ′1(t)

)
− 6

12π
e

1
2
c2F ′′

0 (t).

(2.11)

1Integrality issues are subtler to address in the local case, due to the noncompactness of the CY manifold.
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There is a similar instanton amplitude with action −A, and they add together to give the
asymptotic behavior

Fg(t) ∼
1

π
A−2g+1Γ(2g − 1)

∞∑
n=0

AnF (1)
n

Πn
k=1(2g − 1− k)

, g � 1. (2.12)

In practice, once the action has been identified, one considers the auxiliary sequence

πA2g−1

Γ(2g − 1)
Fg(t) = F (1)

0 +
AF (1)

1

2g − 2
+

A2F (1)
2

(2g − 2)(2g − 3)
+O

(
1/g3

)
, (2.13)

from where we can extract the instanton coefficients F (1)
n by using standard acceleration methods,

like Richardson transforms.
The expression (2.9) corresponds to the one-instanton amplitude. Explicit multi-instanton

amplitudes were also determined in [22], where one can find additional information, including
conjectural expressions for alien derivatives.

3 Large N instantons in multi-cut matrix models

3.1 Multi-cut matrix models and their 1/N expansion

In this section we review some basic aspects of matrix models and their connection to topological
string theory. For concreteness we will focus on Hermitian one-matrix models with a polynomial
potential, although many of the results below apply to more general cases. We refer to e.g. [39]
for a more detailed review. After reviewing these results, we will state our general results for
large N instantons in these matrix models.

The partition function of the one-matrix model is defined by the matrix integral

ZN =
1

vol [U(N)]

∫
dM exp

(
− 1

gs
TrV (M)

)
, (3.1)

where V (x) is a polynomial potential, and gs will be identified with the topological string coupling
constant. After reduction to eigenvalues we can write

ZN =
1

N !

∫ N∏
i=1

dλi
2π

∆2(λ) exp

(
− 1

gs

N∑
i=1

V (λi)

)
. (3.2)

Here, ∆(λ) is the Vandermonde determinant of the eigenvalues. We want to study the model in
the 1/N expansion, but keeping the total ’t Hooft coupling

T = Ngs (3.3)

fixed. Since the potential V (x) is a polynomial, it will have s critical points. The most general
saddle-point solution of the model, at large N , will be characterized by a density of eigenvalues
ρ(λ) supported on a disjoint union of s intervals or cuts,

AI = [x2I−1, x2I ], I = 1, · · · , s. (3.4)

If the endpoints are real we will order them in such a way that x1 < x2 < · · · < x2s, but in general
we can (and will) have complex cuts. When s > 1 this saddle-point is called an s-cut, or multi-cut
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solution, of the Hermitian matrix model. We can define the multi-cut solution by writing the
corresponding partition function as a multiple integral over eigenvalues. To do this, we note that
in a s-cut configuration, the N eigenvalues split into s sets of NI eigenvalues, I = 1, . . . , s, which
can be written as {

λ
(I)
kI

}
kI=1,...,NI

, I = 1, . . . , s. (3.5)

The eigenvalues in the I-th set are located in the interval AI , around the I-th extremum. We
can now choose s integration contours CI in the complex plane, I = 1, . . . , s. These contours go
to infinity along directions where the integrand decays exponentially, and they have the property
that each of them passes through one of the s critical points (see for example [40] for a detailed
argument for this). Due to this choice of integration contours, the resulting matrix integral is
now convergent, and the partition function can be written as

Z(N1, . . . , Ns) =
1

N1! · · ·Ns!

∫
λ
(1)
k1
∈C1
· · ·
∫
λ
(s)
ks
∈Cs

N∏
i=1

dλi
2π

∆2(λ) exp

(
− 1

gs

N∑
i=1

V (λi)

)
. (3.6)

In obtaining the overall factor in (3.6) we have taken into account that there are

N !

N1! · · ·Ns!
(3.7)

possibilities to choose the s sets of NI eigenvalues. We will assume that the so-called filling
fractions,

εI =
NI

N
, I = 1, 2, . . . , s, (3.8)

or equivalently the partial ’t Hooft couplings

tI = tεI = gsNI (3.9)

are fixed in the large N limit. The free energy of the multi-cut matrix model at fixed filling
fractions or partial ’t Hooft parameters has an asymptotic 1/N expansion of the form

F(NI) = logZ(NI) ∼
∞∑
g=0

Fg(tI) g2g−2
s . (3.10)

An important result in the theory of matrix models is that the large N saddle point described
by the multi-cut solution above can be encoded in a hyperelliptic curve known as the spectral
curve of the model,

y2 = σ(x), (3.11)

where

σ(x) =
2s∏
i=1

(x− xi) (3.12)

and xi are the endpoints of the cuts. The polynomial σ(x) is given by

σ(x) =
(
V ′(x)

)2
+ f(x), (3.13)

where f(x) is a polynomial of degree s − 1 that splits the s double zeroes of (V ′(x))2. Note in
particular that the cuts appearing in the saddle-point solution correspond to A-periods of the
spectral curve, and one has

tI =
1

4πi

∮
aI

y(x)dx. (3.14)
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Here, aI is a closed contour encircling the cut AI . Let us note that the total ’t Hooft coupling
(3.3)

T =

s∑
I=1

tI (3.15)

can be evaluated by residues as a polynomial in the parameters appearing in the spectral curve.
It is not really a modulus of the theory, but what is called in e.g. [42] a “mass parameter.” We
can then take n = s− 1 partial ’t Hooft couplings as flat coordinates parametrizing the moduli
space of the theory.

The planar free energy F0(tI) can be computed as follows. Let us consider the cuts BI ,
I = 1, · · · , s− 1, going from the end of the AI cut to the beginning of the AI+1 cut. Then, the
dual periods

tD,I =

∫
BI

y(x)dx , I = 1, . . . , s− 1 (3.16)

are related to the planar free energy as

tD,I =
∂F0

∂tI
− ∂F0

∂tI+1
. (3.17)

The higher genus free energies Fg(tI) appearing in the 1/N expansion (3.10) can also be obtained
in various ways. Perhaps the most powerful and deeper approach to this problem is topological
recursion [13, 43], although we will not need this method in this paper.

The series (3.10) has the form of an asymptotic expansion in topological string theory, and
indeed it was argued in [2] that it can be regarded as the free energy of topological string theory
on a non-compact CY of the form

uv = y2 − σ(x). (3.18)

The connection to topological strings suggests that the Fg(tI) can also be computed by using the
HAE of [8]. This was first used in [11], and then proved in full generality in [12] as a consequence
of the topological recursion of [13]. In order to actually compute the Fgs of multi-cut matrix
models, the HAE turn out to be more efficient than topological recursion, and this is the method
we will use in this paper, as we explain below.

The moduli space of CY threefolds has singular loci which lead to a singular behavior in the
genus g free energies. In the case of the CY geometry associated to matrix models, these are the
loci where the discriminant ∆ of the spectral curve (3.11) vanishes, and at least two of the roots
xi, i = 1, · · · , 2s come together. The loci with smaller codimension correspond to the case in
which one ’t Hooft coupling tJ vanishes, and the corresponding A-cycle shrinks to zero size, or
to the case in which one dual period tD,J vanishes, and the dual cut BJ shrinks. The effect of a
vanishing A-period in the genus g free energies is well-known, and leads to a singular behavior

Fg ∼
B2g

2g(2g − 2)
t2−2g
J +O(1), (3.19)

where B2g are Bernoulli numbers. This is the famous gap condition for the free energies, which
was much exploited in [11]. In general CY manifolds, the gap condition is a deep statement on
the universal behavior at the conifold point [44]. In the case of matrix models, the gap condition
follows from conventional perturbation theory and the structure of the Gaussian matrix model,
see e.g. [45]. When there is a vanishing B-cycle, one has to perform a symplectic transformation
to a frame in which the dual vanishing cycle tD,J becomes a flat coordinate. One then has the
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same behavior (3.19) for the dual free energies. This was exploited in [30] to obtain free energies
at large genus from the HAE in certain cases, as we will review below.

The series in the r.h.s. of (3.10) is factorially divergent, and one can ask what is its resurgent
structure, in the sense explained in [22, 37]. This means that we would like to know what are
the possible actions characterizing multi-instantons, and what are the corresponding amplitudes.
Since the 1/N expansion (3.10) is a particular case of a topological string free energy, it follows
that the results of [20–23] must describe the resurgent structure of the 1/N expansion in generic
multi-cut matrix models. A basis for the periods of the underlying CY manifold can be taken to
be a subset of s − 1 partial ’t Hooft couplings, ta, a = 1, · · · , s − 1, and the dual periods tD,a,
a = 1, · · · , s− 1. The general action characterizing an instanton sector will be given by

A =

s−1∑
a=1

(cata + datD,a) + 4π2iγ, (3.20)

and the corresponding instanton amplitudes are given by the general expression (2.7). This is our
proposal for large N instantons in generic matrix models. As we mentioned in the introduction,
the basis for this proposal is simply that the free energies appearing in the 1/N expansion of the
matrix model satisfy the HAE. The instanton amplitudes obtained in [22, 23] are trans-series
solutions to the HAE, and therefore they should apply as well to the case of matrix models.
There is an additional ingredient in the derivation of [22, 23], namely boundary conditions fixing
the holomorphic ambiguity in the trans-series. These boundary conditions lead to the expression
(2.5), and they are fixed, as first explained in [20, 21], by the behavior of the free energies at
singular loci. In the case of matrix models, this behavior is given by (3.19), which is the conifold
behavior of topological strings, and therefore it leads to the same boundary conditions and to
the behavior (2.5). In the remaining of this section, we will test our proposal in the simplest
multi-cut matrix model, namely the cubic, two-cut matrix model.

3.2 Testing the large N instantons

3.2.1 The cubic matrix model and its 1/N expansion

The simplest two-cut matrix model has a cubic potential. The one-cut case of the cubic po-
tential was already considered in [46], and the two-cut case has been studied intensively. A
non-exhaustive list of references includes [11, 41, 47–49]. We will closely follow [30].

Without lack of generality, we can take the potential of the cubic matrix model to be

V (x) =
x3

3
− x, (3.21)

which is represented in Fig. 1. Therefore, the most general two-cut phase of the cubic matrix
model is described by the spectral curve (3.11), where σ(x) is given by (3.13) and f(x) has degree
one. We write this curve as

y2 = (x2 − 1)2 + αx− z, (3.22)

where α and z are parameters. There are two cuts [x1, x2], [x3, x4] and two partial ’t Hooft
couplings, which we will denote as2

t2 =
1

2πi

∫ x2

x1

y(x)dx, t1 =
1

2πi

∫ x4

x3

y(x)dx. (3.23)

2For convenience we have exchanged their labels w.r.t. what we have in (3.14).
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N2

Figure 1: The potential (3.21) of the cubic matrix model, as a function of x. In the two-cut
configuration, N1 eigenvalues sit near the stable critical point at x = 1, and N2 eigenvalues sit
at the unstable critical point at x = −1.

The dual period (3.16) is given by

tD =

∫ x3

x2

y(x)dx. (3.24)

It turns out that α and z have a very different geometric meaning. α is related to the total ’t
Hooft parameter, and one can easily show by a contour deformation argument that:

T = t1 + t2 = −α
4
. (3.25)

As we mentioned before, α is a “mass parameter,” while z is a true modulus. We will denote
t = t1. Sometimes we we will only indicate the dependence of the free energies on the flat
coordinate corresponding to the true modulus, and we will write Fg(t).

The large N expansion of the cubic matrix model in the general two-cut phase has been
considered in many papers. The genus zero free energy was studied in e.g. [47]. The genus one
free energy was first obtained for generic two-cut matrix models in [50] and further studied e.g.
in [41]. It is given by the formula

F1 = −1

2
log

(
∂t

∂z

)
− 1

12
log ∆, (3.26)

where ∆ is the discriminant of the spectral curve. In our case it is easily computed to be

∆ = 256z2(1− z) + 32α2(9z − 8)− 27α4. (3.27)

In addition, we have
∂t

∂z
=

2√
(x1 − x3)(x2 − x4)

K(k), (3.28)

where K(k) is the elliptic function of the first kind with modulus

k2 =
(x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)
. (3.29)

The higher genus corrections were obtained with the HAE of [8]. In [11] explicit results were
presented for F2, while in [30] results were obtained up to g = 4. Both references regarded the
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geometry as a two-parameter problem. In order to explore the asymptotics of the 1/N expansion
we need more terms in the genus expansion than what was obtained in [11, 30]. To do this we will
regard the geometry as a one-modulus problem with a mass parameter α. This makes it possible
to calculate the genus expansion up to g = 18, which is enough to clearly see the asymptotics in
various regions. Before presenting our results, let us quickly review the formalism of the HAE,
in the one-modulus case, following [22].

In the HAE, the genus g free energies are regarded as functions of a complex coordinate z,
which parametrizes the moduli space, and of a propagator function S, which is a non-holomorphic
function of z. They can also depend on global parameters, like α in our case, but we will
not always indicate this dependence explicitly. The non-holomorphic free energies will then be
denoted by Fg(S, z), g ≥ 2, as opposed to their holomorphic counterparts Fg. The moduli space
can also be parametrized by a so-called flat coordinate, denoted by t. It is given by an appropriate
period of the CY and related to z by a mirror map t(z). In the case of the cubic matrix model, we
will take as complex parameter the z entering in the spectral curve (3.22), and as we mentioned
above, t is just the partial ’t Hooft parameter t1.

The propagator S plays a central rôle in the theory of HAE. It is related to the non-
holomorphic genus one free energy through the equation

∂zF1 =
1

2
CzS + holomorphic. (3.30)

Here, Cz denotes the so-called Yukawa coupling in the z coordinate, which is defined by

∂3
tF0 = Ct =

(
dz

dt

)3

Cz. (3.31)

The holomorphic function in the r.h.s. of (3.30) can be regarded as a choice of “gauge” for the
propagator. The holomorphic free energies Fg(S, z) is obtained by taking the so-called holomor-
phic limit of the propagator, which will be denoted by S. It is a holomorphic function of z and
the parameters. We then have

Fg(t) = Fg (S = S(z), z) , (3.32)

after one expresses z as a function of t.
As we explained above, there are various choices of “frame” for the holomorphic free energies

Fg, which are characterized by different choices of flat coordinates t. Correspondingly, the
propagator S has different holomorphic limits depending on the frame one chooses. A convenient
aspect of the HAE is that the holomorphic free energies in a given frame can be obtained from the
same function Fg(S, z) by choosing different holomorphic limits for S and different inverse mirror
maps t(z). Of course, in the case of matrix models there is a preferred frame corresponding to
the large N expansion of the matrix integral, but there are other choices one can consider. As
we have mentioned, there are “dual” frames in which the flat coordinates include dual periods
like (3.24).

There is a very useful formula which expresses the holomorphic limit of S in terms of the
mirror map t(z) for the corresponding flat coordinate:

S = − 1

Cz

d2t

dz2

dz

dt
− s(z). (3.33)

Here, s(z) is a holomorphic function of z which is independent of the frame, and encodes the
choice of gauge for the propagator that we mentioned above. The propagator satisfies various
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important properties. The first one, which follows from the so-called special geometry of the CY
moduli space, is that its derivative w.r.t. z can be written as a quadratic polynomial in S:

∂zS = S(2), S(2) = Cz
(
S2 + 2s(z)S + f(z)

)
, (3.34)

where f(z) is again a universal, holomorphic function independent of the frame.
Let us now write down the HAE of BCOV, in the case at hand. These equations determine

the dependence of Fg(S, z) on the propagator, once the lower order functions Fg′(S, z), g
′ < g,

are known. They read,

∂Fg
∂S

=
1

2

(
D2
zFg−1 +

g−1∑
m=1

DzFmDzFg−m

)
, g ≥ 2. (3.35)

Here, Dz is the covariant derivative w.r.t. the metric on the Kähler moduli space. Its Christoffel
symbol is related to the propagator through

Γzzz = −Cz (S + s(z)) . (3.36)

In the case of the two-cut matrix model, a clever choice of the propagator simplifies the tasks
enormously. Such a choice is equivalent to a choice of function s in (3.33), which determines
uniquely the function f in (3.34). It turns out that the values

s(z, α) = −
6
(
−16α2 + 16z2 + 3α2z

)
16z − 9α2

,

f(z, α) =
36
(
3α4 + 16z3 − α2z2 − 16α2z

)
16z − 9α2

,

(3.37)

are very convenient, and this is what we used in our calculations. In addition, the Yukawa
coupling reads

Cz =
16z − 9α2

2∆
. (3.38)

The HAE determines the Fg(S, z) as a polynomial in the propagator, but one has an inte-
gration constant fg(z) at every genus g ≥ 2 which is usually called the holomorphic ambiguity.
Determining fg(z) is a subtle task. One usually needs an ansatz for it, as a rational function on
the moduli space with possible singularities at special points. In the case of the two-cut matrix
model, we expect the holomorphic ambiguity to be of the form

fg(z) =
1

∆2g−2
pg(z, α

2), (3.39)

where pg(z, α
2) is a polynomial. We will assign the degrees 2 and 3 to z and α2. Then, ∆ has

degree 6, and the denominator appearing in (3.39) has degree 12(g − 1). We will assume that
the numerator is a polynomial of the same degree, i.e.

pg(z, α
2) =

∑
i,j≥0

aijz
iα2j , 2i+ 3j ≤ 12(g − 1). (3.40)

This will be our ansatz for the ambiguity. We now consider the simultaneous limit t1,2 → 0,
where due to (3.19) one has the gap condition

Fg(t1, t2) ∼ B2g

2g(2g − 2)

(
1

t2g−2
1

+
1

t2g−2
2

)
+O(t1, t2). (3.41)
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It turns out that this behaviour fixes the ambiguity completely, as noted in [30]. In practice,
and in order to implement the gap condition (3.41), it is not convenient to use z and α, since
the expressions of t1,2 in terms of these parameters are complicated. There is a convenient
reparametrization, first introduced in [47] and reviewed in the Appendix, which uses two complex
parameters z1,2. The locus t1 = t2 = 0 corresponds to z1 = z2 = 0. By expanding everything in
power series in these two new parameters around z1 = z2 = 0, it is possible to fix systematically
the holomorphic ambiguities. One finds for example, for g = 2, and with the above choice of the
propagator,

p2(z, α2) = −2322α6

5
− 32256α4

5
− 524288α2

15
+

27200z5

3
− 1704α2z4 − 50176z4

+
135α4z3

4
+

115008α2z3

5
+

229376z3

3
− 1728α4z2 − 1091072α2z2

15

− 524288z2

15
+

42816α4z

5
+

425984α2z

5
.

(3.42)

The generic two-cut cubic matrix model is relatively involved, and this is the reason that we
can only obtain the genus expansion up to relatively low genus. It is therefore natural to search
for a simpler case which can be still regarded as a bona fide two-cut example. It turns out that
the theory simplifies enormously when α = 0. In this slice, the spectral curve becomes

y2 = (x2 − 1)2 − z, (3.43)

which as noted in [48], it is nothing but the Seiberg–Witten curve for pure N = 2 super Yang–
Mills theory [51]. It describes the cubic matrix model in which the partial ’t Hooft parameters
satisfy

t1 = −t2. (3.44)

There are various manifestations of the underlying simplicity of the theory at α = 0. For
example, the period t = t1 and its dual tD can be written explicitly in terms of elliptic integrals
of the first and second kind as

t =

√
1 +
√
z

3π

[
E

(
2
√
z

1 +
√
z

)
+ (
√
z − 1)K

(
2
√
z

1 +
√
z

)]
,

tD =
1

2πi

4
√

1 +
√
z

3

[
E

(
1−
√
z√

z + 1

)
−
√
zK

(
1−
√
z√

z + 1

)]
.

(3.45)

In addition, and most important to us, when α = 0 it is possible to solve the HAE to large genus.
This was already noted in [30]. As usual the key issue is to fix the holomorphic ambiguity, and
in this case this is done as follows. When α = 0 there are two singular points in the moduli space
parametrized by z. The point z = 0 corresponds to t = 0, and we can use the gap condition
(3.41), which on this slice reads

Fg(t) ∼
B2g

g(2g − 2)

1

t2g−2
+O(t). (3.46)

The other singular point occurs at z = 1, where the dual period vanishes: tD = 0. Let us
then consider the frame associated to the dual period tD, and let us denote by FDg (tD) the
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corresponding dual free energies. Then, near z = 1 the dual free energies have a singular behavior,
which is described by the dual gap condition [30]

FDg (tD) ∼ B2g

2g(2g − 2)

1

t2g−2
D

+O(1). (3.47)

By using these two gap conditions, one can compute the Fg(t) up to very high genus, say g ∼ 100.
This is very useful to do precision tests of our results for large N instantons.

3.2.2 Asymptotics and large N instantons

We will now test that the topological string instanton amplitude given in (2.7), (2.9) provides
the appropriate large N instanton amplitude, in the case of the two-cut matrix model at generic
points in moduli space.

We first consider the slice where α = 0, since in this case we can compute many terms in
the 1/N expansion. As noted in [20, 21], the gap behavior (3.46) implies that there is a Borel
singularity with action given by

A = 2πit. (3.48)

This leads to “trivial” instanton amplitudes of the form (2.5). The effect of this singularity can
be completely subtracted by simply considering

Gg(t) ≡ Fg(t)−
B2g

g(2g − 2)

1

t2g−2
. (3.49)

In order to look for Borel singularities of Fg(t) other than (3.48), one simply considers the
Borel singularities associated to the series of subtracted free energies Gg(t). An additional Borel
singularity is obtained by considering the behavior of the dual free energy (3.47). It occurs at

AD = 2πitD. (3.50)

This leads to a non-trivial instanton amplitude, since

AD = ∂tF0, (3.51)

and we have c = 1 in (2.6). The amplitude is given by the general expression (2.9), and it
leads to a prediction for the large genus asymptotics of the Fgs which can be tested with high
precision. In practice, as in [27], we construct auxiliary sequences like (2.13) which asymptote to

the values F (1)
n , for n = 0, 1, · · · . After using standard acceleration methods we obtain numerical

estimates of the asymptotic values, which can then be compared with the instanton predictions
in e.g. (2.11). In Fig. 2 we make such a comparison, finding excellent agreement. The red line

is the theoretical prediction for F (1)
n , n = 0, 1, 2, as a function of the modulus z, while the black

dots are numerical estimates obtained from the perturbative series up to g = 135. The error bars
in the numerical results are estimated from the difference between two successive Richardson
transforms. To find the best asymptotic estimate for F (1)

n , we perform a number of Richardson
transforms so that this error is minimized. We note that, for points sufficiently close to z = 1,
the relative error of our numerical asymptotic estimates is as small as 10−28, but it increases as
we approach the point z = 0. This is related to the fact that, near z = 0, the action AD becomes
larger.

Although the slice α = 0 is a generic submanifold of the moduli space of the two-cut matrix
model, it is important to make sure that the topological string instanton amplitudes describe
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Figure 2: Coefficients F (1)
n , for n = 0, 1, 2, as a function of z, for the cubic matrix model

at the slice α = 0. The red line is the analytic result predicted from (2.9). The black dots
are the numerical approximations extracted from the large order behaviour of the sequence Fg,
g = 2, · · · , 135.

the appropriate large N instantons for arbitrary values of α. Fortunately, we have computed
the general Fg(t1, t2) up to g = 18, and this is enough to check quantitatively that its large
genus asymptotics is still controlled by (2.9). We note that the derivatives w.r.t. t in (2.9) are
computed at constant α, therefore t2 depends on t1, as follows from (3.25), and

∂tF(t1, t2) ≡ ∂tF(t,−t− α/4). (3.52)

Due to the gap condition (3.41), there are singularities at A1,2 = 2πit1,2. We can remove
their effect by considering the subtracted quantity

Gg(t1, t2) = Fg(t1, t2)− B2g

2g(2g − 2)

(
1

t2g−2
1

+
1

t2g−2
2

)
. (3.53)

There will be a Borel singularity at the dual action (3.50), as in the case of α = 0 (although
tD will be given by a more complicated formula than the one in (3.45)). When comparing the
asymptotics with the instanton predictions there are two cases to consider. The simplest one is

when the action A is real. We can then extract numerical estimates for the coefficients F (1)
n , for

– 14 –



0.1 0.2 0.3 0.4 0.5 0.6

0.0002

0.0004

0.0006

0.0008

0.0010

(a) n = 0

0.1 0.2 0.3 0.4 0.5 0.6

-0.05

0.05

0.10

0.15

(b) n = 1

Figure 3: Coefficients F (1)
n for n = 0, 1 in the cubic matrix model, as a function of z2, for

fixed z1 = 2/5. The red line is the analytic result predicted from (2.9). The black dots are
the numerical approximations extracted from the large order behaviour of the sequence Fg, for
g = 2, · · · , 18.

different values of the moduli, and compare them to the prediction. It is useful to parametrize
the moduli space with the coordinates z1,2 introduced in the Appendix. For convenience, we fix

the value of z1 and we vary the value of z2. In Fig. 3 we plot F (1)
0,1 as a function of z2, and we

indicate the numerical estimates obtained from the asymptotics. z1 is taken to be 2/5, while the
numerical estimates are made for values of z2 of the form

z2 =
3i

100
, i = 1, · · · , 20. (3.54)

We note that these values of the parameters lead to t1 > 0, t2 < 0. As we can see, the agreement
between the prediction and the empirical data is excellent. With our data for the Fgs, 0 ≤ g ≤ 18,

we obtain estimates for F (1)
n , n = 0, 1 with a relative error not worse than 10−6.

The other case to consider is when the dual action is complex. This happens for example
when z1 > 0 and z2 < 0 and both are sufficiently small. It corresponds to the case in which
t1,2 > 0. As it is well-known, when the action is complex, both the action and its complex
conjugate A contribute to the asymptotics, which is oscillatory. Let us write

A = |A|eiθA , F (1)
n =

∣∣F (1)
n

∣∣eiθ
F(1)
n . (3.55)

When the asymptotics is oscillatory, it is more difficult to use acceleration methods. To perform
our tests, we consider the normalized free energies:

Ĝg(t1, t2) =
πGg(t1, t2)|A|2g−1∣∣F (1)
0 (t1, t2)

∣∣Γ(2g − 1)
. (3.56)

They have the asymptotic behavior

Ĝg(t1, t2) ∼
∞∑
n=0

|A|n
∣∣F (1)

n (t1, t2)
∣∣∣∣F (1)

0 (t1, t2)
∣∣Πn

k=1(2g + b− k)
2 cos

(
−(2g − 1− n)θA + θF(1)

n

)
∼ 2 cos

(
−(2g − 1)θA + θF(1)

0

)
+O(1/g).

(3.57)
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Figure 4: Normalized free energies Ĝg(t) for the cubic matrix model (black dots) as compared to
the prediction (3.57) for the asymptotics (lines). In grey, we include the leading term; in orange,
the subleading term; and, in red, we include the subsubleading term.

so we simply compare the prediction obtained by truncating the r.h.s. of (3.57), to the sequence
in the l.h.s. This is done in Fig. 4 for two points in the moduli space, which we label by the
parameters z1,2 introduced in the Appendix. We see that, as we add more terms in the sum of

the r.h.s. of (3.57), we find better approximations for Ĝg(t1, t2). This is specially clear for low
values of g, in which the corrections lead to a substantial improvement.

In this paper we have focused on one-instanton amplitudes, but there are Borel singularities
at e.g. integer multiples `AD, with ` ∈ Z>0, leading to `-instanton amplitudes. Explicit expres-
sions for these amplitudes can be found in [22, 23]. In the case of the cubic matrix model with
α = 0, we have verified the expression for the two-instanton amplitude of [22, 23] by calculating
numerically the Stokes discontinuity of the free energies.

3.2.3 On the one-cut limit

When there are no eigenvalues in the unstable critical point of the cubic matrix model, t2 = 0
and one recovers the one-cut matrix model studied in the seminal paper [46]. The one-cut free
energies are obtained as

Fg(t) = lim
t2→0

{
Fg(t, t2)− B2g

2g(2g − 2)

(
1

t2g−2
+

1

t2g−2
2

)}
, g ≥ 2, (3.58)

and a similar formula holds for g = 0, 1, where one has to subtract logarithmic divergences. The
large genus asymptotics of the one-cut free energies was studied in [27], where one-instanton
amplitudes were studied by using eigenvalue tunneling. It is therefore natural to try to obtain
the one-instanton amplitudes of [27] as a limit of the generic multi-cut instanton amplitude (2.7)
studied in this paper. However, one should note that the instanton results of [27] are qualitatively
different from the ones found here for the generic two-cut case. For example, the large genus
asymptotics obtained in [27] in the one-cut case involves a factorial growth of the form Γ(2g−5/2),
while in the two-cut case we find the growth Γ(2g − 1).

What one finds is that the one-cut limit of the generic two-cut instanton amplitude is singular.
This is because it involves derivatives of the free energies Fg(t1, t2), which are singular due
precisely to the polar terms that are being subtracted in (3.58). In addition, we have evidence
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that the large genus asymptotics of the free energies Fg(t1, t2) changes discontinuously as we take
the one-cut limit. Our results seem to indicate that, for any t2 6= 0, no matter how small, the
asymptotics is controlled by (2.9), and it is only when we set t2 = 0 and we subtract the polar
part as in (3.58) that the asymptotics is governed by the one-instanton amplitude of [27]. In this
sense, it does not seem possible (or at least, straightforward) to interpolate smoothly between
the generic two-cut case studied in this paper and the one-cut case of [27].

4 Large N instantons in ABJM theory

4.1 The ABJM matrix model and its 1/N expansion

ABJM theory [3] is an important example of a large N duality, relating string/M-theory on an
AdS4 compactification to a superconformal Chern–Simons–matter theory. It turns out that the
free energy on the three-sphere of the field theory realization can be computed in terms of a
matrix model, by using localization [4] (see [52] and the collection of articles [53] for an extensive
discussion). It was found in [5, 6] that the resulting matrix model is equivalent to topological
string on a toric geometry, called the local F0 geometry, and this allows to determine its 1/N
expansion at all orders by using the HAE. Non-perturbative aspects of the matrix model of
ABJM theory were addressed in [33], which studied in particular the large order behavior of the
1/N expansion. However, a precise determination of the large N instantons of this theory was
not available in [33]. We will now show that the topological string instantons of [22] describe
the large N instantons of the ABJM matrix models. It was conjectured in [33] that some of
the large N instantons of the ABJM matrix model correspond to D2-branes in the large N dual
string background. Therefore, the instanton amplitude obtained in [22] should provide a precise
prediction for the D2-brane amplitude, at all orders in the string coupling constant.

Let us first summarize some relevant facts on the ABJM matrix model and its 1/N expansion,
and refer to [5, 6, 33, 52–54] for more details. The partition function is given by the matrix integral

Z(N, gs) =
1

(N !)2

∫ N∏
i=1

dµidνi

(2π)2

∏
i<j

(
2 sinh

(
µi−µj

2

))2 (
2 sinh

(
νi−νj

2

))2

∏
i,j

(
2 cosh

(
µi−νj

2

))2 e
− 1

2gs

∑
i(µ2i−ν2j ). (4.1)

The string coupling constant gs is related to the Chern–Simons coupling k by

gs =
2πi

k
, (4.2)

and the ’t Hooft coupling is usually taken to be

λ =
N

k
. (4.3)

The matrix model free energy has a 1/N expansion of the form

F(λ, gs) =
∑
g≥0

Fg(λ)g2g−2
s . (4.4)

It was found in [5] that this expansion corresponds to the topological string on the so-called local
F0 geometry, and in a special frame called the orbifold frame. The moduli space of this geometry
is parametrized by a complex coordinate that we will denote again by z (the local F0 geometry
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also has a “mass parameter” m, but in order to obtain the ABJM theory we have to set it to
m = 1; more general values of m correspond to a generalization of ABJM theory called ABJ
theory [55], which we will not consider in this paper).

The geometric ingredients which are needed to obtain the 1/N expansion of the ABJM
matrix model from the HAE are the same ones introduced in the previous section on the cubic
matrix model. The discriminant and Yukawa coupling are given by

∆ = 1− 16z, Cz =
1

4z3∆
. (4.5)

The orbifold coordinate, appropriate for the ABJM matrix model, is given by

to =
1

4
√
z

3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2

∣∣∣∣ 1

16z

)
, (4.6)

and it gives the ’t Hooft parameter as a function of the modulus z,

to = Ngs =
λ

2πi
. (4.7)

Together with (3.31), the data above determine the large N free energy F0(λ) or prepotential
(up to a quadratic polynomial in λ). They also determine the genus one free energy through the
expression

F1(λ) = −1

2
log

(
−dto

dz

)
− 1

12
log
(
z7∆

)
. (4.8)

To obtain the higher genus free energies we have to solve the HAE. A convenient choice of
propagator is specified by the functions

s(z) = −2

3
z2 (128z − 7) ,

f(z) =
4

9
z4
(
256z2 − 16z + 1

)
.

(4.9)

The holomorphic ambiguity is of the form

fg(z) =

∑3g−3
n=0 anz

n

∆2g−2
, (4.10)

and to fix it we impose, as usual, gap conditions. The orbifold point, where to = 0, occurs at
z =∞, and we have [6, 32]

Fg(to) ∼
2B2g

2g(2g − 2)

1

t2g−2
o

+O(t2o). (4.11)

Since the expansion contains only even powers of to, this gives just g conditions. The remaining
conditions are obtained by going to the conifold point at z = 1/16 and the corresponding conifold
frame. The flat coordinate in this frame is given by

tc =
2

π

∫ ∆

0

K (y)

1− y
dy, (4.12)

The gap condition in this frame is

Fg(tc) ∼
B2g

2g(2g − 2)

(
2i

tc

)2g−2

+O(1). (4.13)

This gives 2g − 2 conditions. Combining the orbifold and the conifold conditions, we get 3g −
2 conditions in total, which completely fix the holomorphic ambiguity. By using the above
ingredients, one can easily compute the Fgs up to very high genus.
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4.2 Testing the large N instantons

As it was found in [33], in the study of the large order behavior of the genus expansion (4.4) one
finds three competing instanton actions. These are given by

Aw = −2πi to, (4.14)

Ac = − 1

4π
√
z
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, −1
2

∣∣∣∣ 1

16z

)
+ π2, (4.15)

As = Ac + 2Aw, (4.16)

where Gm,np,q is the Meijer G-function. The first instanton trivially arises from the singular term
in (4.11), so we will subtract its effect by removing the polar part in (4.11), as we did in (3.49).
The resulting free energies will be denoted as Gg. When we write the instanton actions Ac and
As as in (2.8), in orbifold coordinates, we find c = 2. This gives all the ingredients that are
needed to compute the instanton amplitudes from (2.9).

We can now check that these instanton amplitudes provide the correct large order behavior
of the subtracted free energies Gg. We consider two different cases, z > 1/16 and z < 0, and
avoid the region 0 < z < 1/16, in which the Fgs acquire an imaginary part. For z > 1/16, the
closest singularity to the origin of the Borel plane is Ac, which is real. In Fig. 5 we consider

z =
i

15
, i = 1, · · · , 20, (4.17)

and compare the exact instanton coefficients F (1)
n with the numerical value extracted from the

large order behavior.
Next we consider the case z < 0. Now the large order behavior is dominated by the instanton

action As, which is complex, so we will find an oscillatory asymptotics. In Fig. 6 we plot the
coefficients Ĝg(t), normalized as in (3.56), as a function of g, for different values of z. We compare
the result to the asymptotic approximation at large g, including one, two and three cosine terms
of the asymptotic expansion (3.57). We see that, as more terms are included, the approximation
becomes better.

In [33], the action As was identified with a D2-brane wrapping a three-cycle in the type IIA
string compactification. The expression (2.9), applied to this action, and which we have used to
obtain the large genus behavior of the 1/N expansion, gives the full quantum amplitude due to
this D2-instanton in type IIA theory. It might be possible to test some aspects of this prediction
directly in string theory.

5 Asymptotics of orbifold Gromov–Witten invariants

5.1 Orbifold Gromov–Witten invariants

In topological string theory on a CY manifold, the holomorphic free energies Fg(t) are generating
functions of enumerative invariants. When computed in the large radius frame, they provide
conventional Gromov–Witten invariants. If the underlying CY geometry has an orbifold point,
there is a corresponding orbifold frame, and the genus g free energies in that frame are generating
functionals of orbifold Gromov–Witten invariants. In this section we will focus on a particular
example: the CY given by the local P2 geometry, which can be understood as a resolution of the
C3/Z3 orbifold. We will now summarize some basic facts about local P2 and its orbifold limit,
and refer to e.g. [36, 56] for more details.
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Figure 5: Coefficients F (1)
n , n = 0, 1, 2, 3 in the ABJM matrix model, as a function of z. The red

line is the analytic result extracted from (2.9). The black dots are the numerical approximations
extracted from the large order behaviour of the subtracted free energies. For n = 0, the relative
errors are at most of order 10−24. For n = 1, the relative error is at most of order 10−21.

The moduli space of local P2 is parametrized by a complex coordinate z. The point z = 0
is the large radius point, while at z = ∞ one has the orbifold C3/Z3. To parametrize the
neighbourhood of the orbifold point it is useful to consider the coordinate ψ defined by

ψ3 = − 1

27z
. (5.1)

The flat coordinate corresponding to the orbifold frame is given by [36, 57]

σ(z) = 3ψ 3F2

(
1

3
,
1

3
,
1

3
;
2

3
,
4

3

∣∣∣∣ψ3

)
. (5.2)

The dual coordinate is

σD(z) = −9

2
ψ2

3F2

(
2

3
,
2

3
,
2

3
;
4

3
,
5

3

∣∣∣∣ψ3

)
, (5.3)

and it defines a genus zero orbifold free energy, or prepotential, through the relation

σD = 3
∂F0(σ)

∂σ
. (5.4)
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Figure 6: Normalized free energies Ĝg(t) for the ABJM matrix model (black dots) as compared
to the prediction (3.57) for the asymptotics (lines). In grey, we include the leading term; in
orange, the subleading term; and, in red, we include the subsubleading term.

The higher genus orbifold free energies Fg can be computed by using the HAE, since as shown
in [9] there are gap conditions which fix the holomorphic ambiguities uniquely. As noted in [36],
the Fgs have a series expansion around σ = 0 in integer powers of

τ = σ3, (5.5)

of the form

Fg(τ) =
∑
d≥0

Ng,d
(3d)!

τd. (5.6)

We have, for example,

F0(τ) = − τ

18
− τ2

19440
− τ3

3265920
− 1093τ4

349192166400
− 119401τ5

2859883842816000
+O

(
τ6
)
. (5.7)

The coefficients Ng,d appearing in this expansion are the orbifold Gromov–Witten invariants of
C3/Z3 at genus g and “degree” d. In the orbifold theory, d does not refer to a homology class of
a curve in the CY target, but indicates that the invariant calculates a correlator of 3d twisted
fields in the orbifold 2d CFT coupled to gravity. The orbifold Gromov–Witten invariants can be
defined independently in algebraic geometry, as integrals over appropriate moduli spaces, and it
has been verified that they agree with the results obtained from (5.6) in topological string theory.
We refer to [57, 58] for a review and references to the literature.

We note that, in our conventions, we do not include the contribution of constant maps in
Fg(τ). In particular, the degree zero orbifold GW invariants Ng,0 are given by

− 1

2160
,

1

544320
, − 7

41990400
, · · · (5.8)

for g = 2, 3, 4, · · · . In contrast, the degree zero invariants calculated in [36, 58] are given by

Ng,0 + 3
(−1)g−1B2gB2g−2

4g(2g − 2)(2g − 2)!
, (5.9)

where the second term is the contribution of constant maps. For our asymptotic considerations
it is reasonable to define Ng,0 as we have done, since the large genus asymptotics of the constant
map contributions can be easily worked out in closed form and it is very different from the large
genus asymptotics of Ng,0.
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5.2 Asymptotics from instantons

Since the spacetime instantons considered in [20–23] provide the precise large genus asymptotics
of the free energies Fg, one could think that they also lead to precise formulae for the asymptotics
of the corresponding Gromov–Witten invariants. In the case of conventional Gromov–Witten
invariants, this issue was studied in some detail in [34]. The results turn out to be more subtle
than expected, however. One finds, for example, that at fixed degree, the conventional Gromov–
Witten invariants only grow exponentially with the genus, and precise formulae for this growth
can be obtained from the Gopakumar–Vafa invariants [59], without using the asymptotic formulae
(2.9), (2.12). This is probably related to the fact that, near the large radius point, the leading
Borel singularity is the flat coordinate in the large radius frame, the instanton amplitude is of
the form (2.5), and the asymptotics is typically oscillatory [23, 35].

However, in the case of orbifold Gromov–Witten invariants, the spacetime instanton ampli-
tudes (2.9), (2.12) give precise predictions for the behavior of Ng,d at fixed d and large g. The
reason is that, in this case, both the free energies and the instanton amplitudes have a regular
expansion around the orbifold point σ = 0, and one can reorganize the full trans-series in powers
of τ . Let us see in detail how this goes.

In order to understand the relevant instantons in the theory, we have to find which are the
Borel singularities which are closest to the origin as we approach ψ → 0. To do this, we have
generated many Fgs in the orbifold frame and studied numerically the singularities of their Borel
transform, by using standard techniques of Padé approximants. For simplicity, we have worked
with real negative values of z. As a result of this analysis, one finds six singularities, related by
conjugation and reflection. The first one occurs at

A0 = α
∂F0

∂σ
+
αβ

3
σ + iγ. (5.10)

where3

α = − 4π2i

Γ3(1/3)
, β =

(
Γ(1/3)

Γ(2/3)

)3

, γ =
4π2

3
. (5.11)

We note that A0 is proportional to the period vanishing at the conifold point at z = −1/27, and
it is equal to the action Ac which appeared in the analysis of local P2 in [22]. As noted in section
2, since α 6= 0, the relation (5.10) defines a modified prepotential

FA0
0 = F0 +

β

6
σ2 + i

γ

α
(5.12)

so that

A0 = α
∂FA0

0

∂σ
. (5.13)

The other singularities occur at

A1 = αe−2πi/3∂F0

∂σ
+
αβ

3
e−4πi/3σ + iγ,

A2 = αe2πi/3∂F0

∂σ
+
αβ

3
e4πi/3σ + iγ,

(5.14)

and we note that
A2 = −A1. (5.15)

3This α should not be confused with the one appearing in (3.22).
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Figure 7: Singularities in the Borel plane for z = −2, as obtained from the poles of the Borel–
Padé transform. The black dot in the positive imaginary axis is A0, while the two other black
dots are A1 and A2.

We also have singularities at −A`, ` = 0, 1, 2. A plot of the singularities for z = −2 is shown in
Fig. 7. We note that, as we go to the orbifold point σ = 0, the three singularities in the upper
half plane coalesce at the value

A0(σ = 0) =
4π2i

3
. (5.16)

The singularities in the lower half plane coalesce at the conjugate point. In contrast, the large
genus asymptotics of the constant map contribution in (5.9) is controlled by an action at ±4π2i,
which is subleading w.r.t. the singularities ±A`(σ = 0) considered above. Therefore, although
the quantities Ng,0 are often combined with the constant map contribution as in (5.9), they have
a very different asymptotics at large g.

An important symmetry is that

A1(σ) = A0

(
e2πi/3σ

)
, A2(σ) = A0

(
e4πi/3σ

)
. (5.17)

This says that A0,1,2 form an orbit under the orbifold group Z3. A similar observation has been
made in [23] in the case of the Borel singularities near the orbifold point of the quintic CY. It
follows from (5.17) that any symmetric function in the A`, ` = 0, 1, 2, will only contain integer
powers of τ = σ3. This will be useful in the following. We also define

FA1
0 = F0 +

β

6
e−2πi/3σ2 + i

γ

α
,

FA2
0 = F0 +

β

6
e2πi/3σ2 + i

γ

α
.

(5.18)
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The corresponding instanton amplitudes, obtained from (2.9), will be denoted by FA`,(1)
n . In

order to obtain the asymptotics of Fg(σ), we have to consider the contributions of the three
different Borel singularities. Each of them is given by the expression (2.12), and we find in total

Fg(σ) ∼ 1

π

2∑
`=0

∑
k≥0

A−2g+1+k
` FA`,(1)

k Γ(2g − 1− k). (5.19)

Due to the Z3 symmetry, the r.h.s. has a regular expansion in powers of τ = σ3, and by
comparing powers of τ in both sides we can obtain the large genus asymptotics of the orbifold
Gromov–Witten invariants at fixed d. For example, for the degree zero invariants we find

Ng,0 ∼
3

2π2
(−1)g−1γ−2g+2Γ(2g − 1) exp

(
α2β

6

){
1 +

18− 6α2β + iα3γ

18

1

2g
+ · · ·

}
, (5.20)

while for the degree one invariants we obtain

Ng,1
3!
∼ 3

2π2
(−1)gγ−2g(2g)3Γ(2g − 1)

iα3β3

162γ
exp

(
α2β

6

){
1 +O

(
g−1
)}
. (5.21)

Note that, since α is purely imaginary, the r.h.s of the above asymptotic equalities is real, as
it should be. It is straightforward to extend these formulae to all orders in 1/g, by simply
considering higher order corrections in gs in the instanton amplitudes. Similarly, we can obtain
results for all degrees d by simply expanding the r.h.s. of (5.19) in powers of τ .

We have explicitly verified many of these instanton predictions by studying the large genus
asymptotics of the invariants Ng,d, for different values of d. Let us mention two of these two
checks, for d = 0 and d = 1. The sequence

2g

{
Ng,0

(−1)g−1γ−2g+2Γ(2g − 1)
− 3

2π2
exp

(
α2β

6

)}
(5.22)

should asymptote the number

3

2π2
exp

(
α2β

6

)
18− 6α2β + iα3γ

18
=

3

2π2
e−
√

3π

(
1 + 2

√
3π − 128π8

27Γ9(1/3)

)
≈ 0.0036573...

(5.23)
Similarly, the sequence

Ng,1
(−1)g−1γ−2g+2(2g)3Γ(2g − 1)

(5.24)

should asymptote the number

3

2π2

iα3β3

162γ
exp

(
α2β

6

)
=

3

2π2
e−
√

3π 5832π4

Γ9(−1/3)
≈ −0.00124176... (5.25)

We plot these sequences, up to g = 39, together with their second Richardson transform, in
Fig. 8. By using further transforms we can match the theoretical predictions with a relative
error of 10−11.
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Figure 8: On the left, the sequence (5.22) and its second Richardson transform (black and red
dots, respectively), as compared to its predicted asymptotic limit (5.23) (blue line). On the right,
the sequence (5.24) and its second Richardson transform (black and red dots, respectively), as
compare to its asymptotic limit (5.25) (blue line).

6 Conclusions

In this paper we have shown that the instanton amplitudes for topological strings obtained in
[20–23] give the correct non-perturbative corrections due to large N instantons in Hermitian
matrix models. Our results solve in part the puzzle raised in [30]. In that paper it was checked
that, in the two-cut cubic matrix model with α = 0, the large genus asymptotics of the Fgs was
controlled by the dual instanton action (3.50). However, the subleading coefficients appearing in
the asymptotic formula (2.12) were not known explicitly. A naif eigenvalue tunneling analysis
suggests that the instanton amplitude is given, in the one-modulus case, by an expression of the
form (see e.g. [28])

exp [F(t− cgs, gs)−F(t, gs)] . (6.1)

This does not lead to the correct asymptotics, as it was noted in [30]. In view of the results of
this paper, it is clear that the expression (6.1) is missing the non-trivial prefactor appearing in
(2.9). From the point of view of [20–23], the problem with (6.1) is that it does not satisfy the
appropriate boundary conditions due to the gap behavior (3.19).

What we are still lacking is a microscopic derivation of (2.7) and (2.9) from the dynamics of
the matrix model eigenvalues, in the same way that (6.1) is explained by eigenvalue tunneling.
In [30] it was suggested, based on the results of [60], that to go beyond (6.1) one has to take into
account a new type of instanton. This new instanton has found an eigenvalue description very
recently [61] in terms of super matrix models (see [62] for its applications), and this makes it
possible to provide a rationale for (2.9) in terms of eigenvalue instantons and “anti-eigenvalue”
instantons [63].

In this paper we have addressed very simple aspects of the full resurgent structure of the
1/N expansion of matrix models. The conjectures of [22, 23] give information about e.g. multi-
instanton amplitudes, and we have verified some of them, but more work remains to be done in
this direction. We also note that the conjectures of [22, 23] do not give detailed information on the
structure of Borel singularities and on the Stokes constants. We expect the resurgent structure
of matrix models with polynomial potentials to be simpler than in the case of topological string
theory on toric or compact CY threefolds, and perhaps one can find a complete description of
these missing ingredients.

As we have seen in this work, the large N instantons of the ABJM matrix model are also
described by the topological string instanton amplitudes. This is perhaps not so surprising, since
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the 1/N expansion of the ABJM matrix model coincides with the genus expansion of topological
string theory on the local F0 geometry [5, 6]. There is another class of non-conventional matrix
models, associated to quantum mirror curves [54, 64], whose large N instantons are described by
(2.7), due essentially the same reasons; namely, their 1/N expansion is conjectured to be given
by the genus expansion of a topological string. In all these cases, we are lacking a microscopic
picture of the large N instantons in the matrix models themselves. It would be also interesting
to see whether the large N instantons of the matrix models appearing more generally in the
localization of Chern–Simons–matter theories are also described by (2.7).

Another interesting question is the following. It was found in [65] that the Borel resummation
of the 1/N expansion of the ABJM matrix model is not enough to reproduce its exact value,
and non-perturbative corrections are needed. It is likely that the large N instantons of the
ABJM matrix model described in this paper provide the sought-for non-perturbative corrections.
Eventually, one would like to have a complete “semiclassical decoding” of the exact matrix model
in terms of a Borel resummed trans-series. Some first steps in this decoding were achieved in
[35] for a close cousin of the ABJM matrix model, namely the local P2 matrix model introduced
in [64], but much remains to be understood.

Finally, we note that the results we have obtained for the asymptotics of orbifold Gromov–
Witten invariants in C3/Z3 are perhaps the simplest ones that can be derived from the topological
string instanton amplitudes (2.7). They give new results in Gromov–Witten theory and provide
at the same time precision tests of the instanton amplitudes. It would be interesting to generalize
these results to other Calabi–Yau orbifold points, both in the toric and the compact cases.
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A A useful parametrization of the cubic matrix model

In this Appendix we review the parametrization of the two-cut cubic matrix model which we use
to fix the holomorphic ambiguities.

One problem of the parameters z, α appearing in the spectral curve (3.22) is that the roots
xi have very complicated expressions in terms of them. It is therefore useful to introduce some
intermediate parameters z1,2, first considered in [47]. They are defined by

1

4
(x2 − x1)2 = z2,

1

4
(x4 − x3)2 = z1,

x1 + x2 + x3 + x4 = 0,

1

4
[(x3 + x4)− (x1 + x2)]2 = 4− 2(z1 + z2).

(A.1)
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The modulus z and parameter α are then given by:

z =
1

4

(
8(z1 + z2)− 3(z2

1 + z2
2)− 10z1z2

)
,

α = 2(z2 − z1)

√
1− z1 + z2

2
.

(A.2)

The periods t1,2 can be calculated in a power series around z1 = z2 = 0 [47], and one finds

t1 =
z1I

4
− z1z2

2I
K(z1, z2, I),

t2 = −z2I

4
+
z1z2

2I
K(z1, z2, I),

(A.3)

where [49]

K(z1, z2, I) =
∑
m,n≥0

2−2m−2n−1(m+ n)Γ(2m+ 2n)

Γ(m+ 1)Γ(m+ 2)Γ(n+ 1)Γ(n+ 2)

zn1 z
m
2

I2(n+m)
(A.4)

and

I = 2

√
1− z1 + z2

2
. (A.5)

We note that the point t1 = t2 = 0 where we implement the gap condition (3.41) corresponds to
z1 = z2 = 0.

It is convenient to find a formula for the holomorphic propagator as a function of z1,2 which
allows us to make fast expansions around z1 = z2 = 0. Let us introduce the functions

λ = 4z1z2, a = 4− 3(z1 + z2), (A.6)

as well as the elliptic modulus

k2
1 =

λ(
a+
√
a2 − λ

)2 , (A.7)

which is analytic at z1 = z2 = 0. Then, one finds

S = σ(z1, z2)− δ(z1, z2)

{
a+
√
a2 − λ

a2 − λ
E(k2

1)

K(k2
1)
− 1√

a2 − λ

}
, (A.8)

where

σ(z1, z2) =
1

2

(
32− 24(z1 + z2) + 3(z2

1 + z2
2) + 10z1z2

)
, (A.9)

and
δ(z1, z2) = 4(a2 − λ). (A.10)
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[20] R. Couso-Santamaŕıa, J. D. Edelstein, R. Schiappa and M. Vonk, Resurgent transseries and the
holomorphic anomaly, Annales Henri Poincaré 17 (2016) 331–399, [1308.1695].
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