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Understanding the influence of quenched random potential is crucial for comprehending the exotic
electronic transport of non-Fermi liquid metals near metallic quantum critical points. In this study,
we identify a stable fixed point governing the quantum critical behavior of two-dimensional non-
Fermi liquid metals in the presence of a random potential disorder. By performing renormalization
group analysis on a dimensional-regularized field theory for Ising-nematic quantum critical points,
we systematically investigate the interplay between random potential disorder for electrons and
Yukawa-type interactions between electrons and bosonic order-parameter fluctuations in a pertur-
bative epsilon expansion. At the one-loop order, the effective field theory lacks stable fixed points,
instead exhibiting a runaway flow toward infinite disorder strength. However, at the two-loop order,
the effective field theory converges to a stable fixed point characterized by finite disorder strength,
termed the “disordered non-Fermi liquid (DNFL) fixed point.” Our investigation reveals that two-
loop vertex corrections induced by Yukawa couplings are pivotal in the emergence of the DNFL
fixed point, primarily through screening disorder scattering. Additionally, the DNFL fixed point is
distinguished by a substantial anomalous scaling dimension of fermion fields, resulting in pseudogap-
like behavior in the electron’s density of states. These findings shed light on the quantum critical
behavior of disordered non-Fermi liquid metals, emphasizing the indispensable role of higher-order
loop corrections in such comprehension.
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I. INTRODUCTION

Despite significant advancements in the understanding of metallic quantum critical points (QCPs) [1, 2], the chal-
lenge of addressing metallic QCPs in the presence of quenched disorder persists. Early renormalization group (RG)
studies [3] on this issue applied the Hertz approach, wherein fermionic degrees of freedom are integrated out to derive
an effective bosonic theory [4, 5]. However, this approach proves inadequate in two-dimensional (2D) systems due to
uncontrolled quantum fluctuations associated with Fermi-surface electrons [6-8]. A contemporary perspective empha-
sizes equal treatment of fermionic and bosonic excitations [1]. Recent studies [9, 10] utilizing this modern approach
revealed that random potential disorder destabilizes the clean non-Fermi liquid (CNFL) fixed point for spin-density-
wave quantum criticality [11, 12]. However, finding a stable fixed point replacing this unstable fixed point, which we
term a “disordered non-Fermi liquid (DNFL) fixed point,” remains unresolved in these studies.

Identifying a DNFL fixed point is crucial for comprehending anomalous transport properties near metallic QCPs.
For instance, strange metallic behaviors, including linear temperature dependence of electrical resistivity, are com-
monly observed in strongly correlated materials like heavy fermion materials, iron-pnictides, and cuprates [13-15].
Accurate modeling of these transport properties necessitates consideration of momentum relaxation processes, such
as disorder scattering or Umklapp scattering. Previous studies calculated the temperature dependence of electrical re-
sistivity by incorporating disorder scattering, using either a Boltzmann equation [16-18] or a memory matrix method
[19-21]. A more recent study found a DNFL fixed point in the vicinity of a CNFL fixed point and derived scaling
equations for resistivity [22], which extends the Finkelstein-type RG analysis [23-26] toward quantum criticality. No-
tably, this study considered a matrix-type order parameter field for the large N controllability instead of vector-type
quantum critical fluctuations. In this respect, the discovery of a DNFL fixed point will facilitate a reevaluation of
these previous approaches and provide a more robust theoretical foundation for future advancements.

The existence of a Fermi surface in metallic systems presents a formidable challenge in the quest for the DNFL
fixed point. The Fermi surface essentially reduces the effective dimensionality of the system to unity [27] or so [6],
thereby classifying both interaction and disorder as “strong” or relevant in the RG sense [9, 10, 28]. The strong
coupling nature of these interactions hinders the direct application of standard theoretical frameworks, such as the
Hertz theory [4] or the Finkelstein theory [23], which inherently assumes a perturbative nature of the couplings.
This is in stark contrast to the analysis of commonly studied semimetallic systems [29-39], where both couplings are
deemed irrelevant or marginally relevant, at most. Consequently, the establishment of theoretical frameworks capable
of effectively addressing both interaction and disorder is imperative to propel advancements in the pursuit of the
DNFL fixed point.

One promising approach to address this challenge is to begin with CNFL fixed points, where interaction effects can
be systematically incorporated [7, 8, 12, 28, 40], and then introduce weak disorder. However, this strategy encounters



several obstacles. Firstly, the previous observation that the disorder causes the theory to flow to strong coupling at
the one-loop level [9, 10] may cast doubt on the viability of solving the problem within the weak disorder framework.
Secondly, elastic disorder scattering leads to an ultraviolet—infrared (UV-IR) mixing issue [9, 10], potentially chal-
lenging the patch description of the Fermi surface [41, 42]. Finally, there is a concern that the weak disorder approach
may overlook the disorder-driven localization effect responsible for Anderson localization [43].

Addressing these challenges, we establish a controlled RG framework tailored for 2D metallic QCPs in the presence of
random potential disorder. We employ a dimensional-regularized field theory developed by Dalidovich and Lee [28],
which allows for a systematic perturbative epsilon expansion for Yukawa couplings between electrons and bosonic
order-parameter fluctuations. By reformulating this theory, we develop an RG scheme that facilitates perturbative
treatments for both Yukawa couplings and random potential disorder for electrons. Key technical advancements
include:

1. Single Epsilon Expansion Scheme: Tailored for regularizing loop corrections from both interaction and disorder
using a unified epsilon parameter. Refer to Sec. II B for detailed explanations

2. Cutoff Regularization Scheme: Implemented to regularize divergent integrals arising from disorder, effectively
avoiding UV-IR mixing. Additional details can be found in Sec. 11 C.

3. Identification of Critical Two-loop Corrections: These corrections play a key role in the emergence of the DNFL
fixed point. Details are available in Sec. 111 B.

4. Large N Expansion: Employed to control the strong IR enhancement factors originating from disorder, as
detailed in Sec. 111 B.

In our study, we employ an effective two-patch model tailored to Ising-nematic QCPs, which are observed in various
strongly correlated materials such as cuprates [44-51], pnictides [52-61], and ruthenates [62]. Our investigation
focuses on the impact of the random potential disorder on two scattering channels: one involving small momentum
transfer (|q| < kp) and the other with 2kp-momentum transfer (|q| ~ 2kp). Here, kr denotes the characteristic
Fermi momentum of the two patches in our two-patch model. We assume short-range correlated disorder potentials
characterized by a white-noise Gaussian distribution. Our focus is specifically on the weak disorder limit, utilizing
a ballistic fermion propagator without an elastic scattering rate and an overdamped boson propagator with ballistic
Landau damping at the CNFL fixed point.

Conducting a two-loop-level RG analysis on this model, we illustrate the appearance of a DNFL fixed point that
governs the universal low-energy physics of 2D non-Fermi metals in the presence of random potential disorder. Addi-
tionally, we calculate various scaling exponents associated with this fixed point using a systematic epsilon expansion
up to two-loop order.

The remainder of this paper is organized as follows. In Sec. II, we introduce a controllable RG framework for 2D
metallic QCPs, offering insights into crucial technical aspects within our approach, including the implementation of a
single € expansion and a cutoff regularization scheme. Moving to Sec. III, we present the two-loop RG results, while
detailed technical information is deferred to the Appendix. Transitioning to Sec. IV, we explore the robustness of
our results against disorder scattering mechanisms not explicitly considered in our model and investigate potential
applications of our theory to other systems. Finally, in Sec. V, we summarize our findings.

II. MODEL
A. Effective field theory

We consider 2D metallic systems in the vicinity of Ising-nematic quantum phase transitions [44-62]. The scaling
behavior of these systems can be described using an effective two-patch model [7, 28]:
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FIG. 1. Schematic illustration of a two-patch model used for our renormalization group (RG) analysis. The blue circle represents
the entire Fermi surface, while the red curved segments depict two antipodal patches incorporated into the effective field theory.
The axes indicate the momentum coordinates of fermions near each patch. Additionally, the green and magenta arrows represent
the transfer of fermions in two disorder scattering terms: forward and backward disorder scattering, respectively.

Here, ¥; (k) represents a Nambu spinor given as:
Vi (k)
(k) = ( i : (2)
J Gl (—k)

and U, (k) = \I/;r-(k)yo represents the adjoint of ¥;(k). The gamma matrices associated with the spinor are defined
as Yo = 0y, Y1 = 0z, and 2 = o0,, where o, , . are the Pauli matrices. ¢i,j(k) represents fermion fields describing
low-energy fermions on the antipodal patches of the Fermi surface (Fig. 1). These chiral fermions have different
energy dispersions, represented as k, + kfl and —k, + kzz for ¢4 ;(k) and ¥_ ;(k), respectively. However, their energy
dispersion can be represented with a single term 0 = k, + kz within the Nambu spinor representation. j =1,--- | N
stands for the fermion flavor index. ®(q) represents a scalar boson field for Ising-nematic order-parameter fluctuations
or critical bosons. g represents the Yukawa coupling between fermions and critical bosons.

The effective field theory in Eq. (1) exhibits two U(1) symmetries: (i) the vector symmetry with W, (k) — €720, (k)
and (ii) the axial symmetry with W; (k) — =W, (k). It is essential to recognize that the presence or absence of 7, in
the vector and axial symmetry transformations, respectively, results from expressing the action in the Nambu spinor
basis. The vector symmetry implies the conservation of the total fermion number density, denoted as n =ny +n_.
Here, ny represents the number density of each chiral fermion, defined as:

N 2
ny = ;/% () (R)) 3)

Conversely, the axial symmetry signifies the conservation of the difference between the two fermion number densities,
denoted as m =ny —n_.
We introduce two random potential terms for fermions in our effective action as follows [63]:

N 21, 72
S =3 | R o @)t 0 + ()T 5+ )W) (@

Here, vf(q) and vy(q) denote forward and backward disorder scattering, respectively, wherein each term scatters
fermions within the same patch or between opposite patches. Notably, vf(q) upholds both U(1) symmetries, conserving
both n and m, which correspond to separately preserving ny and n_. However, v,(q) breaks the axial symmetry,
conserving only n but not m.

For disorder averaging, we assume Gaussian white-noise distributions for the random variables v/ (r), specifically
(Vgp(r)vg(r')) = 0(r — ')Ay, where Ay, represents the variances of these distributions. Employing the replica
trick [64, 65] to perform the disorder average for S;,,, we obtain the following disorder-averaged action:
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Here, a,b =0, --- , R denote the replica indices introduced for the replica trick. The disorder average transforms the

random potential terms in Eq. (4) into the four-point elastic scattering terms, represented by Ay and Ay.

B. Dimensional regularization

To establish a controllable RG framework, we adopt a dimensional-regularized theory [28] and tailor it to address
our disorder problem. By extending the codimension of the Fermi surface from 1 to d — 1, we adjust the fermion
kinetic term to W(k)(ikoyo + ik1 - v1 + i0k71)V(k), where k; = (k1, -+ ,kq_2) and v, = (71, ,V4_2) are newly
introduced momentum components and gamma matrices, respectively. All gamma matrices satisfy the Clifford algebra
as vy, + V% = 20;; with 4,5 = 0,---,d — 1. The other components of Eq. (5) should be adjusted accordingly.
Consequently, the full action of the (d + 1)-dimensional theory is expressed as:
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where the irrelevant ¢ and ¢2 terms are dropped in the bosonic action. Importantly, k| is exchanged, but kg is not
in the Ay and Ay terms as the disorder scattering is elastic. This anisotropic characteristic of the disorder scattering
disrupts the formal (d — 1)-dimensional symmetry within the vector space (ko, k) as described in the clean theory
[28], resulting in distinct rates of renormalization for kg and k_ .

The quadratic part of the action in Eq. (6) is invariant under the following scaling transformation:
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FIG. 2. (a) Schematic illustration of a cutoff-regularization scheme employed in this study. While the integral region for k
extends to the infinite range k, € (—00, 00), that for k, extends to the semi-infinite range k. € (—kys, 00). Here, ks represents a
cutoff introduced for regularizing divergent momentum integrals arising from disorder scattering. (b) Schematic illustration of
an alternative scheme, discussed in Sec. IV A. While the integral region for k, extends to the infinite range k; € (—o0, 00), that
for ky extends to the finite range ky, € (—A, A). Here, A represents a cutoff introduced for regularizing divergent momentum
integrals. In each plot, the red line denotes a Fermi surface segment within the two-patch model.

Under this scaling, the coupling constants undergo the following transformations:

.
g - ga
Ay =
Ay =b"7 A, ®)

It is crucial to note that all couplings become marginal at the upper critical dimension d = 5/2. Consequently, a
perturbative RG analysis can be conducted by tuning d as:

d=5/2—¢, (9)

where € serves as a small parameter in the perturbative expansion [28]. Utilizing this expansion parameter, we
investigate the scaling behavior of the theory in d < 5/2. Importantly, a single ¢ parameter suffices for both interaction
and disorder [63] due to the anomalous scaling law [k;] = 2[k,] = 1 and [E}] = [Ep] = 1 at the Ising-nematic QCP
[28, 66] ([x] denotes the mass dimension of x). For general interacting disordered systems lacking such a law, a double
epsilon expansion scheme is necessary [29-39, 67, 68].

C. Cutoff regularization for disorder scattering

The disorder scattering leads to integrals that necessitate additional cutoff regularization [Fig. 2(a)]. To illustrate
this, we consider the one-loop fermion self-energy diagram resulting from the forward disorder scattering [Fig. 3(c)]
[63]:

$1(p) = A1 Ak, /°° dks / dky —Povo + (ka + pa + k) va—1
W="N" | (2n)d—2 21 p§+ k3 + (ke + pa + k2)?

_ Ay / / dk, T'(2 = 2) —poYo + (ka + P + k2)va—1
o —2 -2 -
2 (4m)' T [P + (ko + pa + k2)?] 2

(10)

Setting ky — oo from the outset makes the integral divergent for any d since the integrand loses its dependence
on k, upon integrating over k.. In this scenario, the dimensional regularization fails, and epsilon poles responsible
for renormalization cannot be isolated. On the other hand, adopting a finite value of k; keeps the dimensional
regularization valid, and the epsilon poles can be determined from the expansion of ¥ (p) given as %1 (p) = —iApoyo —



iBpzYa—1 — iCvq—1 + O(p?). The coefficients A, B, and C are explicitly given by:
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These expressions result from integrating out k; and converting the k, and &, integrals into an energy integral over

dkm o0 dk‘ya(g _ 5k) — V4 £+kf

27 J—o0o 27 272

¢ using a density of states given by v(§) = ffzf . The epsilon poles can be obtained

by expanding A, B, and C' with respect to € as:

A SV2
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where S = i . Importantly, the epsilon poles of A and B, contributing to the beta functions, are independent

TG
of ky. This indicates that the resulting beta functions and low-energy effective theory at the fixed point remain
independent of the cutoff scale ky. In other words, a UV-IR mixing does not occur in our regularization scheme.
It is worth noting that the epsilon pole of C' proportional to £y does not renormalize the theory but merely shifts
the chemical potential. This term should be eliminated with a counterterm [27], and then the theory remains cutoff-
independent.

The absence of UV-IR mixing is attributed to the renormalizability of the theory at d = 5/2. While integrals for-
mally display cutoff dependence, dimensional analysis dictates that epsilon poles manifest as dimensionless numerical
constants due to the marginal nature of disorder scattering at d = 5/2 [69]. Consequently, the isolation of epsilon poles
remains achievable regardless of the cutoff scale. However, caution is warranted in selecting a cutoff regularization
scheme to avoid altering the upper critical dimension. Specifically, we observed that introducing a cutoff scale in the
k, integral, fi\A dk,, modifies the upper critical dimension, leading to UV-IR mixing. Refer to Sec. IV A for details.

The other one-loop corrections from disorder scattering (e.g., Fig. 3(f)) share the same structure as 3;(p) and
undergo similar treatment. However, certain two-loop corrections (e.g., Fig. 3(j—k)) necessitate a distinct cutoff
regularization scheme. Nevertheless, epsilon poles persist independently of the cutoff. Refer to Appendix C for
further details.

Our regularization scheme is outlined as follows:

1. Introduce a cutoff in divergent momentum integrals arising from disorder scattering.

2. Compute the momentum integrals while maintaining a finite cutoff value.

3. Expand the resulting integrals using an epsilon parameter to extract epsilon poles.

4. Epsilon poles remain cutoff-independent if the cutoff regularization respects the theory’s renormalizability.

It is noteworthy that we exclude cutoff regularization in the Yukawa coupling, as momentum integrals stemming from
this coupling are convergent.

III. RENORMALIZATION GROUP ANALYSIS
A. Renormalized action and beta functions

We adopt a field-theoretic RG approach where loop corrections are computed order by order in € [69]. The divergent
parts in the limit ¢ — 0 are absorbed into renormalization factors in the minimal subtraction scheme. The resulting
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FIG. 3. Selected Feynman diagrams for two-loop RG analysis. (a) One-loop self-energy corrections for bosons stemming
from the Yukawa coupling. (b—c) One-loop self-energy corrections for fermions. (d) One-loop vertex corrections for backward
disorder scattering. (e—f) One-loop vertex corrections for forward disorder scattering. (g) Two-loop vertex corrections for
backward disorder scattering. (h-k) Two-loop vertex corrections for forward disorder scattering. (1) A two-loop boson-self
energy correction leading to diffusive Landau damping. In all diagrams, the solid and wave lines stand for the fermion and
boson propagators, respectively. The single and double dashed lines represent forward disorder scattering and backward disorder
scattering, respectively. Refer to the Appendix for the full library of Feynman diagrams up to two-loop order.

renormalized action has the same form as the bare action in Eq. (6) while momenta and fields are renormalized as
[28]:

Z
ko= p =2k
0 M ZO 0,B>
Zy
ki=p"'""k
1 1% Z1 1,B,
kz:/lilkx,B»
ky = p"2ky 5,

The coupling constants of the renormalized action are given by

1 d—2
e 1 ZQ T2 ZQ Tz
=u 27 17,722 = =
g=Hp g 23(ZO> <Z1) 9B,

172 2o B
Ay =p Zx, 7 (Zl> At,B,
i\
Ny =p = Z5 73 <Z1) Ay B, (14)

where g, Ay, and Ay (9B, Af,B, and A, g) denote the renormalized (bare) coupling constants.
The RG flow of the theory is characterized by the beta functions: 8, = 8‘?—5“, Ba; = %, and fa, = %. Here,

1 — 0 denotes the low-energy limit. Using the relationship between the bare and renormalized couplings in Eq. (E9),



we represent the beta functions as [63]:

iy, - v} (15)

Here, z and z are the dynamical exponents, v, and 7, are the anomalous dimensions of fields, and 7,4, ya,, and 4,
are the anomalous dimensions of couplings, respectively. These critical exponents are defined as

Z:1+81D(ZO/Z2),
Olnp
Z:1+81n(Z1/Z2)
Olnp
_19InZy
Tv T Olnp’
_10InZs
Te =5 Olnp’
_0lnZz,
o = Olnp’
. aanAf
AT Oln
aanAf
= — ].
1A Oln (16)

For the computation of the counterterms, we utilize the bare fermion propagator and the dressed boson propagator,
which includes the Landau damping derived from the one-loop self-energy correction [Fig. 3(a)]. These propagators
are expressed as:

_ LThkoyo+ ki -7 +0kva

Go(k)

i k3 + k3 + 03 ’
1
Dl(‘]) S P (17)
|Q[d—1
q12/ + 92Bd 2]

r(34)r(4)
Here, By = 27r(4rr)2(‘l*1)/221“(d)7

D1 (q). Using these propagators is appropriate in the weak-disorder regime of our interest: Ay, Ay < Ep, where Ep
represents the Fermi energy.

and I'(x) represents the gamma function. Refer to Appendix A for the computation of

We compute all renormalization factors of Zy, Z1, Za, Z3, Zy, Za,, and Za, up to two-loop order [63]. Refer to
the Appendix for calculation details. We insert them into Eq. (16) and solve the resulting equations order-by-order



10

in €. As a result, we obtain the critical exponents up to two-loop order as:

-1

7= [1 —0.667 +0.5A7 + 0.5A, — 0.575 — 215“/% —21&,,,/% ] ,
1+Af+Abf20(Af+Ab)\/% ],

2=z

vy = 2|0.25A 7 + 0.25A, + 0.085° |,
Yo =0,
’Yg:’y\pa
=4y, 4+ Z| — 0.04A +075§—35~A +5.5A ,/£+55§,/2
Va, =40 WA+ 0 R -gf~fN~AfN7
Vo, = zl 4G — 0.14A; — 245% — 2.3GA; — 11AM/% ] (18)

Here, g, Af, and A, are defined as:

4
_ g3 ~ Af ~ Ab
— A= — L Ay = —— . 19
758 6N T T arirdy T T arir(d) (19)

It is noteworthy that v, = 0 is sustained up to the two-loop order while challenged in the third order, as noted in
Ref. [70].
Substituting Eq. (18) into Eq. (15), we finally obtain the beta functions as:

B; = %j [ — 0.66¢ + 0.66g + 0.17A ¢ + 0.17A, + 0.575% + 7.3A; % +7.3A, % ] ,

Ba, =7Ap| —e+0335 — 0218 +0.205° + 3.56A; + 5.05“/% ]
— 20y |0.25AF + 0.75A, + 5.5A,4/ g _ 11A; g
N N |
Bx, = ZAy | — € +4.335 + 0.89A 1 + 0.75A, + 245° + 2.35Af + 1174/ % + 227, % ] ,

—1
7= [1 — 0.665 + 0.5A; + 0.5A, — 0.575% — 21A 14/ % — 2174/ % ] . (20)

Notably, the beta functions are expanded using an “effective” Yukawa coupling § ~ ¢g*/3, deviating from a typical factor
¢%. This modification arises due to an IR enhancement factor of g~2/3 resulting from Landau damping in the boson
propagator [28]. Additionally, certain two-loop terms involving interaction and disorder in the beta functions exhibit

a fractional power of § as \/—‘/%, exhibiting a more pronounced IR enhancement factor of g—*/3. As an illustration,

consider the two-loop vertex correction in Fig. 3(i). After integrating out the fermion propagators, this vertex
22 d—1\ —1
correction is expressed as dAy ~ g T Jdp [ dky% (k‘; +¢?By |IT,1 ‘ ) , where p denotes internal momenta except
Y Y

for k,. The extra factor of |k, | in the denominator introduces an additional factor of g~2/3 during the integration over

ky, resulting in a total enhancement factor of g~*3. Consequently, §A ¢ acquires a fractional power of §, expressed
ZOSINN ¥
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FIG. 4. (a) RG flow diagram for (e, N) = (0.1,00) in the §-A; parameter space (Ay is set to zero). Here, € = d.. — d represents
the deviation of the system’s actual dimension (d) from the upper critical dimension (d. = 5/2), and N represents the fermion’s
flavor number. The green dot at (§, As) = (0.093,0) denotes the clean non-Fermi liquid (CNFL) fixed point [28], which becomes
destabilized after the introduction of A;. The RG flow culminates in a non-interacting, strong disorder (NISD) fixed point
at (3,A7) = (0,00). (b) RG flow diagram for (e, N) = (0.5,00). The red dot at (§,As) = (0.31,0.43) represents a stable
disordered non-Fermi liquid (DNFL) fixed point. The blue dot denotes a saddle point at (g, As) = (0.16,1.22) separating the
DNFL fixed point from the NISD fixed point. The CNFL fixed point (the green dot) is now located at (g, Af) = (0.38,0).

B. Disordered non-Fermi liquid fixed point

We commence our analysis by examining the beta functions in an infinite fermion flavor limit (i.e., N — 00), where
the beta functions take on simplified forms:

Bs = 2§ [ —0.66¢ + 0.667 + 0.17A; + 0.17A;, + 0.5792] ,

—e+0.335 — 0.21A; +0.295° + 3.55A ;| — ZA, [0.25Af + 0.75&,] ,

BAf = ZAf

Bx, = ZAy | — € +4.335 + 0.89A 1 + 0.75A, + 247% + 2.3A |,

-1

zZ= [1 —0.66§ + 0.5A; + 0.5A, — 0.575* (21)

To examine the fixed point structure of these equations, it is crucial to analyze two distinct cases separately: (i) the
small € case (0 < € < ¢.) and (ii) the large € case (e, < € < 0.5). The threshold value €, = 0.41 serves as a demarcation
point, separating the two cases.

In the scenario of small ¢, the beta functions yield a single non-Gaussian fixed point, as illustrated in Fig. 4(a).
This fixed point is expressed as:

(7%, A%, Ap) = (- 0.58 + /034 + 1.17¢,0,0), (22)

which corresponds to the previously identified CNFL fixed point [28]. The variation of §* with respect to € is illustrated
by a green line in Fig. 5(a). To investigate the stability of this fixed point, we utilize linearized beta functions:

Ba 09 o
Ba, | =M | 04y | +O(65%,6A%,6A). (23)
BR, dA

Here, 63, 6A s, and 8\, represent the deviations of the coupling constants from their fixed point values, defined as
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FIG. 5. (a—b) Depiction of the values of g and Af at the three non-Gaussian fixed points, illustrated in Fig. 4(b), as a function
of €. (c—d) Depiction of the values of the dynamical critical exponent (z) and the anomalous dimension of fermion fields (vy,,)
at the three fixed points as a function of e.

follows:
6g=g-3"
0A; = Ay — A3,
6A, = Ay — A} (24)

The matrix M incorporates derivatives of the beta functions to the coupling constants:

983 9B OB
95 0A; OA,
985, 085, 0B,
93  AA; A,
96, OBs, 0Pa,
09 0Ar A/ l(3.8,.80)=(3"87.5;)

Substituting Eqs. (21) and (22) into Eq. (25), we calculate the eigenvalues of M at the CNFL fixed point as:

0.665" +1.14(3*)?  —e40.333"+0.29(3*)> —e+4.335" +24(5%)* . N <.
T=0.665 —057(G )2 1-0.663=0572 > M T=4665* —o.57(¢7)z> Which govern the RG flow of dg, 0A¢, and 0Ay in the

vicinity of the fixed point. Here, the value of §* is specified in Eq. (22). The negativity of the second eigenvalue signifies

the relevance of A #, while 6g and §A\, are deemed irrelevant as indicated by their positive eigenvalues. Consequently,

introducing oA ¢ destabilizes the CNFL fixed point, ultimately driving the theory towards an infinite-disorder regime,
as depicted in the left top in Fig. 4(a):

(5%, A%, Ap) = (0,00,0), (26)

which we term a “non-interacting, strong disorder (NISD) fixed point.” As a result, we deduce the absence of a stable
fixed point in the small € scenario.

In the large € scenario, the beta functions yield three non-Gaussian fixed points, as illustrated in Fig. 4(b). One
is the unstable CNFL fixed point given by Eq. (22). The other two are determined by solving the following cubic



13
equation:
32 +1.075% — (0.10 + 1.16€)§ — g + 0.15¢ = 0. (27)

One of the two fixed points corresponds to a DNFL fixed point, which is given by:
3 C

A% = 3.88¢ — 3.885" — 3.35(5")?,
A =0. 2

g = —1<1.07+§C+ AO),

Here, &, Ag and C' are defined as follows:
£= —1+V3i
-—
Ap = 1.44 + 3.48¢,
Ay = 3.41 4 15.22¢,

2 _ 3
C:\S‘/A“W;ll M5 (29)

By substituting Eqgs. (21) and (28) into Eq. (25), it is straightforward to show that all eigenvalues of M have positive
real parts, i.e., all perturbations 6g, 0Ay, and §A; are deemed irrelevant at the fixed point, indicating that this fixed
point is stable. The stable nature is also visible in the RG flow diagram, as depicted by the red dot in Fig. 4(b).

The variations of §* and A’} with respect to € are illustrated by red lines in Fig. 5(a) and (b), respectively. Our
findings reveal that g* increases as € rises, while A;‘c displays an opposing decreasing trend. One possible explanation
for this behavior is that the increase in € leads to the growth of g*, followed by a subsequent reduction in A? due to
an amplified screening effect within the term 3.5gA .

The other fixed point is found to be:

§20
A% = 3.88¢ — 3.885" — 3.35(7")°,
Ao (30)

1 A
7 =-3 (1.07+§20 + °>,

where £, Ag, and C are given in Eq. (29). The variations of §* and A; with respect to € are illustrated by blue
lines in Fig. 5(a) and (b), respectively. By substituting Egs. (21) and (30) into Eq. (25), specifically for e = 0.5,
we determine the eigenvalues of M as —0.11, 0.45, and 1.5. The corresponding eigenvectors, or scaling fields, are
found to be —0.0896g + dA ¢, 0.0470G 4+ 6Af, and A,. Notably, the first scaling field is relevant, while the other two
are irrelevant, indicating the saddle point nature of this fixed point. Consequently, we deduce that this fixed point
represents a demarcation point between the DNFL fixed point from the NISD fixed point, as depicted by the blue dot
in Fig. 4(b), embodying a critical surface separating these fixed points.

Based on these discoveries, we conclude that the DNFL fixed point, as presented in Eq. (28), governs the quantum
critical behavior observed in 2D metallic systems near Ising-nematic QCPs. Furthermore, our investigations reveal
that the previously identified CNFL fixed point, given in Eq. (22), loses stability in the presence of random potential
disorder, limiting its significance to an ideal clean limit. Additionally, considering a large ¢ value (i.e., € > €., which
encompasses the physical value ¢ = 0.5) proves crucial for comprehending the critical behavior at the QCPs, despite
the formal classification of € as a small expansion parameter.
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C. Role of two-loop corrections

At the one-loop order, the beta functions, as presented in Eq. (20), are simplified as [63]:

By = 2G| — 0.66¢ + 0.667 + 0.17A; + 0.17A, |,
Ba, =205 | —e+0.33§ — 02175 | — 24, |0.25A; + 0.75Ab] :
Bx, = ZAy | — €+ 4.335 + 0.89A 1 + 0.75A, |,
-1
Z={1-0.66 + 0.5A; +0.5A, (31)

These one-loop beta functions lack the DNFL fixed point for any e, instead exhibiting a runaway flow to the NISD
fixed point. Thus, it is evident that two-loop corrections play a pivotal role in the emergence of the DNFL fixed point,
highlighting the necessity of considering them for its identification.

To delve deeper into this aspect, we note that among the various two-loop order terms outlined in Eq. (21), the
presence of 3.5§A fin f A, is crucial for the screening of A f, as its absence results in the disappearance of the DNFL

fixed point. This pivotal term arises from two-loop order vertex corrections stemming from the Yukawa coupling, as
illustrated in Fig. 3(h-i). In contrast, the contribution from the one-loop correction, depicted in Fig. 3(e), does not
impact the beta functions due to cancellation with fermion self-energy corrections (Fig. 3(b)), as dictated by the Ward

identity. Consequently, the two-loop corrections represent the leading screening effect for Ay within loop expansions.

In contrast, A, begins to acquire this screening effect from the one-loop order correction, presented in Fig. 3(d).
The two-loop corrections, such as Fig. 3(g), primarily enhance this screening effect. Consequently, the RG flow to
Ay = 0 appears consistently in both one-loop and two-loop order analyses.

D. Physical quantities at fixed points
1. Critical exponents

In the limit N — oo, the critical exponents z and 7, , as presented in Eq. (18), exhibit simplified forms:

L 1+A; + A,
1—0.667 +0.5A; +0.5A, — 0.575%’
0.25A ¢ +0.25A, + 0.087>

= = = . 32
T T 10,66 + 058, + 0.5A, — 0.573 (32)
Upon substituting Eq. (22) into Eq. (32), we derive the critical exponents at the CNFL fixed point:
3
7= —
3 — 2
0.16 + 0.28¢ — 0.28+/0.34 4+ 1.17¢
Yo = 3_ 2 : (33)

These expressions are illustrated by green lines in Fig. 5(c¢) and (d), respectively. For d = 2 or € = 0.5, these values
simplify to:
z=1.5,
vy = 0.017. (34)

The critical exponents at the DNFL fixed point be obtained by substituting Eq. (28) into Eq. (32), although the
resulting expressions are too intricate to be presented. Their values are depicted by red lines in Fig. 5(c) and (d),
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‘ a « B ¥ 1) v z

DNFL 017 —1/2 3/4 1 7/3 1 3/2
CNFL 0.023 —1/2 3/4 1 7/3 1 3/2

FL o - . . - - 1

TABLE I. Critical exponents of the Ising-nematic quantum criticality in two-dimensional metals. The DNFL and CNFL fixed
points primarily differ in the exponent a, which describes the pseudogap-like behavior of the fermion’s density of states, as
defined in Eq. (39). «, 83, v, and d represent the critical exponents for thermodynamic quantities defined in Eq. (43). v and
z are the correlation length and dynamical exponents, respectively. For comparison, the exponents for the fermi liquid (FL)
phase are also provided.

respectively. For d = 2 or € = 0.5, these values simplify to:

z=1.5,
vy = 0.13. (35)

Notably, v, = 0.13 at the DNFL fixed point significantly exceeds v, = 0.017 at thNe CNFL fixed point. This
discrepancy arises from the substantial correction contributed by the forward scattering Ay at the DNFL fixed point.

2. Fermion’s density of states
We compute the fermion’s density of states resorting to the following formula [7]:

N(w) = —% / %Im [tr{G(mo —w z’otk)}}, (36)

where G(k) stands for the full fermion’s Green function. The scaling behavior of G(k) is described by the following
scaling function:

1 p
G(k,p, F) = Wﬂ(ko/wﬂ )s (37)

which can be obtained by solving the Callan-Symanzik equation [k -Viy—0Br-Vp+1-— 2%} G(k,p, F) = 0, where

k-Vi= zkoa%o +zk, Vi, +(5k6—§k, F = (g,AfAb) and Vg = (2@ 9 ‘?b). Refer to the Appendix E for the
derivation. Substituting Eq. (37) into Eq. (36), we obtain

oo A
1 |w]
N ~Y ~Y a
(w) /_Oodkm/_[\dky5k|1—2ng(|5k|z) |w|?, (38)

where the exponent a is given by

27,
a=—=*. (39)
Note that the k,-integral should be regularized with a cutoff A so that it does not contribute to the scaling [7].

We evaluate the exponent a by utilizing the values of z and v, in Egs. (34) and (35) for the CNFL and DNFL
fixed points, respectively. At the CNFL fixed point, we obtain a = 0.023, which is almost indistinguishable from that
of an ordinary non-interacting fermion gas, a = 0. On the other hand, at the DNFL fixed point, we obtain a = 0.17,
which is anomalously large due to the sizable correction from v, = 0.13. As a result, the fermion’s density of states
is substantially suppressed near the Fermi energy as N(w) ~ |w|®!7 at the DNFL fixed point.

8. Thermodynamic quantities

We consider the following additional coupling terms [63]:

58 = / A"z [rd? () — h®(z) — AN ()], (40)
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where r is the tuning parameter for the quantum phase transition, h is an external field, and N(z) = ¥(x)y, ¥ (z).
Note that h is coupled to both boson field ®(z) and fermion field ¥(x) since they have the same symmetries [71].
Considering 6.5, we find the homogeneity relation of a free energy density f = —(7/V)1In [ DUDPe~ " as

f(r,h) = b~ P f(rb'Y, hove TH?), (41)

where b is the scaling parameter that scales a system size L as L — bL or temperature T as T — b*T. Here, D is the
effective scaling dimension of the space-time given as

D=z+(d—-2)z+1. (42)

When counting D, we should ignore momentum coordinate k, since it becomes redundant when the whole Fermi
surface is considered [28]. v = [r] is the correlation length exponent. yp = [h] represents the scaling dimension of h.
We find yj, as y, = 3(D + 1) — 7, from the coupling term for ® or y, = 1 — 27, from that for ¥. It turns out that
the former has a larger value than the latter at the DNFL fixed point. This indicates that the former determines the
leading critical behavior, as explicit calculations confirm. Refer to the Appendix E for further details. Therefore, we
conclude y;, = £(D + 1) — ,.

From Eq. (41), we find thermodynamic quantities showing critical behaviors as

_ P
=" T
of
m=—- —— ~ (=1)P,
oh h—0
0% f
X= 575 ~ |,',.|—’Y7
ahZ h—0
h o [, (43)

where ¢, is the specific heat, m is the Ising-nematic order parameter, and x is the susceptibility. The exponents are
given by

a=2— Dv,

B=5(D-1+2y,),

7 =(1=27,)r,

5= H. (44)

We evaluate the exponents by focusing on d = 2. Up to two-loop order, we find D =2+1=5/2, v =1, and v, = 0.
Substituting them into Eq. (44), we obtain « = —1/2, 8 = 3/4, v =1, and § = 7/3. The calculated critical exponents
are summarized in Tab. I.

E. DNFL fixed point at a finite NV

We expand our RG analysis to finite values of N. Figure 6 showcases our numerical computation results obtained
by solving Eq. (20) numerically. Our findings reveal the persistence of the DNFL fixed point for N < N, where
N, denotes a threshold value. Beyond this threshold, the DNFL fixed point destabilizes, and the RG flow exhibits a
runaway flow toward the NISD fixed point. The threshold value IV, tends to increase with ¢, as delineated by the red
lines in each panel of Fig. 6, separating the DNFL and NISD regions.

Within the DNFL region, we observe that for a given N, the value of g at the DNFL fixed point increases with
¢ [Fig. 6(a)], while the value of Ay shows an opposing decreasing trend [Fig. 6(b)]. These trends align with those
observed in the infinite-N case, as illustrated in Fig. 5(a—b). Furthermore, for a given €, the values of § and Af exhibit
opposing trends of increase and decrease, respectively, as IV increases. One possible explanation for this behavior is
that the increase in N amplifies the screening effect within the term 7.3A;+/g/N for g, leading to a reduction in §.
This reduction, in turn, amplifies Af by weakening the screening term 3.5§Af, leading to an increase in Af.

Additionally, we compute the values of z and =y, at the DNFL fixed point, as presented in Fig. 6(c—d). Our findings
reveal that the value of z increases with an increase in € while remaining largely unaffected by N [Fig.6(c)]. Conversely,
the value of 7, shows increasing trends as N increases, while remaining largely unaffected by e [Fig. 6(d)]. Notably,
these variations mirror those of § and A t, respectively. These trends suggest that g and A ¢ are primary factors in
determining the values of z and 7, , respectively, through the relationship presented in Eq. (18).
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FIG. 6. (a—d) Depiction of the values of g, Af, z, and v, at the DNFL fixed point as a function of (e, N71/2). Each panel
utilizes a color scale to represent the corresponding quantity, with the empty region denoting the absence of the DNFL fixed
point, characterized instead by a runaway RG flow toward the NISD fixed point. The red line, marking N~Y2 = (.168¢—0.0669,
delineates the boundary separating these two regions.

F. Stability of DNFL fixed point
1. Higher-order corrections

We demonstrate that the DNFL fixed point remains robust against higher-order corrections in the small € and large
N limit. General higher-order loop corrections, computed using the fermion and boson propagators in Eq. (17), can
be represented as N~*/2gk/25! AT AR Here, k and [ represent the number of boson propagators leading to strong
and weak IR enhancement factors, denoted as g~*/% and g—2/3, respectively. m and n denote the numbers of forward
and backward scattering vertices, respectively. Corrections for £ = 0 can be controlled by the small € parameter. The
other corrections for k > 0 accompanying N ~%/2 can be neglected in the large N limit. Consequently, the DNFL
fixed point obtained at the two-loop order remains robust against higher-order corrections in the small € and large N
limit.

It is crucial to carefully consider the impact arising from modifications in the forms of the fermion and boson

propagators due to higher loop corrections. Specifically, the boson propagator undergoes alterations due to the two-
loop self-energy correction [Fig. 3(1)], acquiring diffusive Landau damping. This modification is expressed as Ds(q) =

s -1 . .
[qg + 2Bl Hg(q):| . Here, Tl5(q) is given by Iz(q) = —g2Ade|q|2d ® (By ~ 0.05) (refer to the Appendix

lay] lgy|?
C for the computation), corresponding to diffusive Landau damping [3]. The effect of Hg(q) can be investigated by

expanding Ds(g) with respect to Ilx(q) as Da(q) = D1(q) > oo [— D1(q)g QAde lal*® |2 } . The scaling analysis tells

us that all higher-order terms in the expansion have the same superﬁ(:lal degree of dlvergence as the zeroth-order term.
This indicates that loop corrections can still be regularized using dimensional regularization. For example, using D2(q),

we find the first-order fermion self-energy correction from the Yukawa coupling as ¥y = §= 22 3°° q,, |:Nl/A+gl/2] ,

where a,, is a numerical coefficient independent of the coupling constants. Note that the expansion parameter has a
negative power of N. As a result, this correction can be dropped by taking the large N limit, at least, in the low but
intermediate temperature scale.
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FIG. 7. Schematic illustration of an extended multiple-patch model with interpatch disorder scattering. This model comprises
N, pairs of two antipodal patches (e.g., N, = 6 in this illustration), including the original patches (depicted in red) and
additional segments stemming from the entire Fermi surface (depicted in blue). The green and magenta arrows represent the
original forward (Ay) and backward disorder scattering (A), respectively, while the cyan arrows depict interpatch disorder

scattering (A‘flg)

2. Interpatch disorder scattering

Up to now, our focus has centered on the two-patch model, which incorporates two antipodal segments among the
entire Fermi surface, as depicted in Fig. 1. While this minimal model naturally extends the previous clean model [6]
to account for random potential disorder, broadening our approach to encompass the entire Fermi surface becomes
crucial for understanding physical phenomena involving its entirety, such as Cooper pairing [72]. Hence, we now turn
our attention to an extended multi-patch model [72], characterized by a Lagrangian density given by:

NP NP
L= Lo+ Y L3 (45)
a=1 a,=1(a<p)
Here, the indices o, 5 = 1,--- , N, denote N,, pairs of antipodal patches across the Fermi surface [Fig. 7]. The first

term in Eq. (45) represents the original Lagrangian, as presented in Eq. (1), which is replicated for each pair of
patches denoted by a. The second term represents a newly introduced “interpatch disorder scattering” term that
mixes fermions from different patches (a # (5):

. N AS
Kilﬁb = Z Z Z aﬂwa,s,j(k—’_q) as,j( )ql)ﬁs ]( _q)wg,s/,j(k/)

N
A
= 30 DY S @) R — 0wt o ()

R N A
30 DS S a8, (WL (O — 0t (1) 1o

Here, Ai 5 shift fermions within their respective patch, while Af; transfer fermions from one to another. These two
terms conserve the sum of Fermi momenta of fermions, making their influence more significant compared to other
nonconserving terms for low energy fermions near the Fermi surface [27].

We investigate the stability of the DNFL fixed point concerning the introduction of interpatch disorder scattering.
Utilizing Eq. (15), we formally express the beta function for A(’;g as follows:

I R
5A£,§ = Ai’ﬁ —€Z + 5(2 = 1)+ 4y, — WAf; ; (47)

where the critical exponents Zz, v, , and Y 5o T€ defined in Eq. (16). Evaluating these exponents generally poses chal-

afB
lenges as relevant Feynman diagrams intricately involve fermion propagators from different patches, not representable
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in global momentum coordinates. However, one-loop self-energy diagrams are manageable despite the challenge, as
all propagators are confined within a single patch. Here, we calculate Z and +,, considering these one-loop self-energy
diagrams. The contributions from §, A f, and Ay are provided in Eq. (18). The relevant diagrams for Aig resemble
Fig. 3(c), leading to the following evaluations up to one-loop order in the N — oo limit:

P = [1 —0.66 +0.5A 7 4 0.5A, + 0.5A + O (92, AZ)} -

L =0.252 (Af A, + Aaﬁ) o) (92, AQ) , (48)
where we denote A = m Z,@;éu (Agﬂ + AZ,B)' Utilizing this result, we derive ﬂﬂi}f as:

~ fs A fs fs
Bare = FALS +0.7580,005 - Vs Alg, (49)

where F'| the coefficient of the linear term, is given by F' = Z(—e + 0.33g + 0.75Af + 0.75Ab). At the CNFL fixed
point, F' remains large (e.g., F' = —0.33 for ¢ = 0.41 and F =~ —0.43 for ¢ = 0.5), indicating the strong coupling
nature of Aig . However, at the DNFL fixed point, its sign reverses or weakens significantly (e.g., F' ~ 0.12 for
e =041 or F ~ —0.021 for e = 0.5), attributed to a large contribution from the anomalous dimension of fermion fields
(4, ~ A 7~ 0.46). This suggests the potential irrelevance of AL ; at the DNFL fixed point, maintaining the stability

of the DNFL fixed point against their introduction. Nonetheless, as Afe includes additional linear-order contributions
Sap
concerning g and A 1, the analysis remains inconclusive. Identifying the relevance of the interpatch disorder scattering,

necessitating the evaluation of ~y Ahe and potentially higher-order RG analysis, represents a significant future research
a[:\‘
direction.

IV. DISCUSSION
A. Alternative cutoff regularization scheme

One may employ the following alternative cutoff regularization:

i(p) =

zAf A2k, / / y —P0%0 + (kx4 pe + k) Va1 (50)

27T (27)d—2 A 27T po + |kj_|2 (kg; +px +k5)2

In this scenario, we derive B = %Ll and A = C = 0. The upper critical dimension for the disorder
(4m) = [p3] 2
scattering is now d. = 3, distinct from d. = 5/2 for the Yukawa coupling. Consequently, to determine the e-pole of

B, we need to introduce a double epsilon expansion scheme [38], where d = 3 — € — €; and both € and ¢, are regarded

N(SA_:ET) \2/—‘7\? + O(1). The e-pole now depends on the

UV-cutoff A, resulting in UV-IR mixing as observed in the prior studies of the spin-density-wave QCP problem [9, 10].
Therefore, our original regularization scheme offers a more robust framework for capturing the scaling behavior of the
system compared to this alternative scheme without UV-IR mixing, remaining insensitive to cutoff dependencies or
microscopic details.

as small expansion parameters. Using this scheme, we find B =

B. Random mass disorder for critical bosons

In this study, our focus has been on the inclusion of random potential terms for fermions. However, it is impor-
tant to recognize that random terms for bosons could also be significant and warrant consideration [73]. To shed
light on how such terms can be incorporated into our framework, we examine the following random T, disorder [38]:

-L Za o1 | w@“(lﬁ—q)@“(l@)@b(k’ —q)®b(k’). This term leads to a first-order boson self-energy correc-

tion of the form: T’ f ("2;‘)13”% q§+g2Bdlz|d*1/|qy| ~T(32) [ dzi;. Notably, the integral for ¢, cannot be regularized

since the remaining integral is independent of ¢,. One possible solution is to reintroduce the omitted g2 term in the
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boson propagator. In this scenario, the self-energy becomes I' f qzququy +q2+g231d|q\d*1/\q P~ F(%d), indicat-
z T4y ] v

ing that this correction is UV-finite near d ~ d. = 5/2. However, retaining the ¢2 term might potentially interfere
with the anomalous scaling law described in Eq. (7) at the Ising-nematic QCP. In consideration of this possibility,
we tentatively conclude that the influence of random terms on bosons may not be thoroughly investigated within the
limitations of our dimensional regularization scheme.

C. Extension to other quantum phase transitions

Our RG framework is potentially applicable to other metallic quantum critical systems, characterized by an order
parameter with zero center-of-mass momentum and critical fluctuations coupled to a finite density of fermions via
a Yukawa coupling. In these systems, the two-patch model description, combined with a parabolic dispersion, is
appropriate, and the dimensional regularization presented in Egs. (7) and (8) remains valid. Notable examples
include itinerant ferromagnetic quantum phase transitions [3], U(1) spin liquids [74-78], and the half-filled Landau
level [79-83].

As an illustration, consider the case of the U(1) spin liquid [74-77]. In this scenario, the Yukawa coupling term
in the action of Eq. (6) requires modification: jgﬁtl)(q)\i?(k‘ + @)va-19§ (k) — \}gﬁ(l)(q)\il?(kz + @) ¥§(k) while the
other components remain unchanged [7]. The transition from 74_1 to 7o in the vertex alters the sign of the primary
screening term 3.5§A fin g A Notably, the sign alteration invalidates the screening of A ¢ through this term. Conse-

quently, we speculate that the RG flow may exhibit a runaway flow to the strong disorder regime, and a DNFL fixed
point might not manifest in this case, at least within the scope of the two-loop order.

V. CONCLUSION

We have investigated the impact of random potential disorder for fermions on the scaling behavior of the two-patch
model for two-dimensional Ising-nematic quantum critical points. Employing a controllable renormalization group the-
ory, we systematically incorporate quantum corrections stemming from the random potential and the Yukawa coupling
between electrons and bosonic order-parameter fluctuations through a perturbative epsilon expansion. Extending our
analysis beyond the conventional one-loop level to the two-loop order, we have unveiled a stable disordered non-Fermi
liquid fixed point for the two-patch model and computed critical exponents up to the two-loop order. Our investiga-
tion sheds light on the scaling characteristics of two-dimensional metallic quantum critical points in the presence of
random potential disorder. Furthermore, our findings highlight the essential role of higher-order loop corrections in
elucidating the intricate interplay between quantum criticality and quenched randomness in two dimensions.
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A. ONE-LOOP SELF-ENERGY CORRECTIONS

Diagram No. BS1-1 FS1-1 FS2-2 FS1-3
Feynman Diagram ) . . oo :\\‘
St L——>
Renormalization = _g 1Qa—t Ao = —g, Ao = fﬁj, Ag = —Ay,
factors Ii(q) = Ba lay] Al = Ao *%Af Ao

damping term for the dressed boson propagator

TABLE A2. Feynman diagrams for one-loop self-energy corrections. Here, Ag, A1, and Az represent the coefficient of the e
poles computed from the corresponding Feynman diagrams (see Eq. (E10) for the definitions). II;(g) represents the Landau

1. Boson self-energy

a. Feynman diagram BS1-1

The boson self-energy correction in Tab. A2 BS1-1 is given by

I (q) = —92/ 7k

Ak Sktqk — (K+Q)-K
Wtr[’Yd—lGo(k+Q)’Yd—1Go(k)] = 292/ lerqdk — Q)

@M [0k q + (K + Q][5 +K2]
Integrating over k and k,, we obtain II;(q) as

[ dKdk, (K+ Q|+ K| (1 - )
Hl(q)_g / (27_r)dy (2kyqy)

+ (K+ Q|+ K|)? 4qu|/27rd1< (K+Q).K>'

K+ QK|
Using the Feynman parametrization method [69], we obtain

L / / 2[e(1 — )] K>
@ 47T|qy| 2m)*- 1K2+x(1—x)Q2

where K = K 4 Q. Integrating over K, we obtain

QIR
(o) =~ [l

Integrating over z, we finally obtain




2. Fermion self-energy

a. Feynman diagram FS1-1

The fermion self-energy correction in Tab. A2 FS1-1 is given by
zg dik —(P+K) T + 0pikYi-1

At
= N/ d+1’Yd 1Go(p + k)va—1D1(k) = N | @it 2, 1 (P LK) Dy (k).

Integrating over k, and k,, we obtain 3(1) as
dKdk, —(P+K)-T _ig? dK -P+K)-T

1) = = -
2N ot P K[k + BN 3VEN S 2 P4 K [g2 By K|

/3"

Using the Feynman parametrization method, we obtain

ig/3 1 a 3(1—2)% r(di) dK —(1—z)(P-T)
3\/3301/3N/o 4 rlr(&l) /(

Integrating over K and x, we obtain

£(1) =

d+2 *

20T (K 4 2P) 4+ 21— 2)P2] ¢

(1) = ig" T (>3 (P -T) /1dx ) I - PT o0
3VBB/NIPI"S Jo T (am) T TR)T(4)  6VBBYAN e ’
S’ g4/3

where S’ = m and B = limg_,5/3 By. Defining g = 6\/31%71/31\17 we finally obtain

2(1) = %(ip.r).

b. Feynman diagram FS1-2

The fermion self-energy correction in Tab. A2 FS1-2 is given by

ditig dk —poyo — (PL + k1) 7L + OpikVa-1
Y(2) = -A /75,% _1Go(p + k)yg_1 = iA / b )
® 7] @ryd (Fo)a-1Got S 7] (2m)d po+(PL+ki)?+0

where d% = dk | dk,, dk,. To find renormalization factors, we expand X(2) for p as X(2) = iXo + X4 (ipoyo) + Zp(ipLL -

Y1) + Xe(i0pVa—1) + (’)( 2), where ¥o, ., ¥y, and X, are, respectively, given by

N / dk —ki v+ 6cva—1
)] @md K2 +02+pe

)

dik 1
Yo=—-A )
f/ (2m)? k2 + 62 + p?
A / dik —2k% ; + K5 + 6 +pj
7] @) (k2 + 62 + p3]°

A%k —K2 + 62 —
Zcz—Af/ L b/
m)? K2 + 02+ p3]

Integrating over k, , we obtain

_ Af/dkxdky oxva—1T(1 —%
@ (4) 5" [5ic + 3]

/ dkdk, re-9
T] (2n) (471’)%[512(+p3}27%’

Do = —

A / dkydk, (2202 — £2a08) T~ §)
= —Ay = — ,
(2m)? (4w)%[6§+p3]3 d
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where X, vanishes.
It turns out that these integrals diverge when integrated over k,, k, € (—00,00). For example, 3, is calculated as

> dkydk, T(2-3) < dk,  T(*3%)
[mdkdk r(2 :[ dk(l“

@m)* 52 +p3)° am) |po|=”

which integral trivially diverges since the integrand is independent of k,. Thus, the dimensional regularization fails
in this case. Integrating over k, first does not help, either. The problem here is that there are infinitely many points
of (kg, ky) in the integral region for the contour dx = ¢, where c is a constant including ¢ = 0.

Note that this is an artifact of the patch theory. If the whole Fermi surface had been taken into account, such
divergence would have not arisen. In this respect, we regularize the integral for X, by introducing a cutoff scale as
ky € (=ks,00). Then, X, becomes

/°° dk, / re-4  Val@-9re - d)a(f22t)
Ky 2m 52+p] 2-¢ 4m2T (4 — d)(—ky)© ’

where ¢q4(z) = 2F1(5_4—2d, 7_72‘1, 5%‘1, —(EQ) is a hypergeometric function of x. Expanding this expression with €, we
find an € pole as 271'1'\‘/(%)5 - 27{‘1{?;) In (—|po|/|ks|) + - --. The finite part still diverges in the limit of k; — oo but an e
4 4

pole can be extracted out regardless of ky.
Then, the problem is whether we can find singular corrections corresponding to € poles regardless of ky or

not in general. For this matter, we consider a general expression for the integral of [ d(k;’:)];y f(0k), where the

integrand depends on k only with dx. Otherwise, there would be no divergence associated with k. Convert-
ing the momentum integral into an energy integral, we obtain [ dfv(f‘sz) f(&), where the density of states is

v(& ky) fozf S oo dky 0(§ —o0x) = 27r2 &+ kp. We split the 1ntegral into three parts as follows

—oo 27

o0

dev(& k) f(€)

_kf

/0 T e ks = 0) () + / T Eky) — €k = 0RO + [ dEv(E k) FE)

_kf

_ ky [ £(&) I
-57 ), dgﬁf(gnﬁ/() df\/w+2ﬂ2/kfd£«/§+kff(§). (A1)

Power counting tells that only the first term is singular if f(€) has an &-power lower than —1/2. In fact, most of loop
corrections except for g satisfy this condition because we are performing the renormahzatlon group analysls around
the upper critical dimension. For example, we consider ¥, where we have f(£) ~ £~ 3¢ In this case, the first term,
foo d¢ £717¢, is singular in the ¢ — 0 limit while the second term, foo d€ £727¢, is not. As a result, we may find an e

pole by writing the integral as

*© dk, [ dk °° dg

JIE=Y B (AR A= NG (42)
ky 27 0

where the finite part of O(1) depends on ks and may diverge in the limit of ky — oo.
Using Eq. (A2), we find

where we have not used Eq. (A2) for ¥y because it gets a singular correction from not only the first term but also the



second term in Eq. (A1). Integrating over €, we have

_ p, B )55t _ A SV2

Yo=Ay y ) - kf) Qd T 3 (kad—1)+O(1)7
I(3)r(524) Ay SV2
a=—Af d—:_*iJrOl’
m(4m)> 2 ¢ 4 W
3 5—2d
—atONED A5V g,
2m(4m) = |po| 2 € 8

where ¢/,(x) = F(F)(g(%d; ) Fy (3524 5=2d 3—d _2) and § =

Ar Ag Ay .
2(2) = —?f(zpwo) 7(15 Ya-1) + 2*5(216)0%1—1)-

c. Feynman diagram FS1-3

The fermion self-energy correction in Tab. A2 FS1-3 is given by

gy . dk —povo — (ki —PL) - VL — Ok—pYd— 1
2(3)__Ab/ (2m)d 70ho)Galk —p) = ZAb/(%)d (ki —p1)® + 0k, + 1§

To find renormalization factors, we expand X(3) for p as 3(3)
where Yo, 3., X, and X, are, respectively, given by

d —ki -y — 0kva—1
Yo=A
’ b/(%)d KL +p -0

dk 1
_Ab/ 2 2 2
(2m)¢ ki +pg + di

:Ab/ Ak —2k2  + k2 + 62 + 1}
@2m)d kT +pg+og2

—Ab/ e S
(2m)® (K3 + p§ + o2

The above expressions are similar to those of ¥(2). As a result, we obtain

Ay A, . A, .
¥(3) = —Tb(lpo%) - 2*:(2%%171) — Tj(lkﬂdq),

where Ay = %.

B. ONE-LOOP VERTEX CORRECTIONS
1. Forward Scattering

a. Feynman diagram FV1-1

The vertex correction in Tab. A3 FV1-1 is given as

) dd+1k 2 dd'Hk‘ N
M(1) = Af W5(ko)’7d—1Go(k +p1)Yi-1 ® Ya-1Go(—k + p2)yva—1 = =A% | —o—=70(ko) =

=30+ S (ipoY0) + Zp (iPL 71 ) + Be(i0p7a—1) + O(p?

26

m Defining A; = ﬁiAf, we finally obtain

);
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Diagram No. FV1-1 FV1-2 FV1-3 FV1-4 FV1-5 FV1-6
Feynman \\“\\\ ,,—"’ ,', ~\\\\‘\‘¢¢,’4”’:‘$ ’:," ________________
Diagram PRGN N e JPrie i

———————————— -7 S~ \ P \‘\.\\ ‘\\\\
Renormalization An. — TA An — _3A An — _A An — 3 A2 An — _A An. =0
factors A T asd A T TasS aAr = T2 Ar T TAR, Ay = 5% Ar =

Diagram No. YV1-1 YV1-2 YV1-3 BV1-1 BV1-2 BV1-3
Feynman ,” r'.’l’ ’/ ________
Diagram \ " [ —— N O iaaas

S vy S5 . \
Renormalization ~ < - ~ ~
factors Ag = =34 Ag =TAy Ag =69 An, = *%Af An, = *%Ab Ap, =0

TABLE A3. Feynman diagrams for one-loop self-energy corrections. Here, Ag, Aa,, and Aa, represent the coefficient of the
€ poles computed from the corresponding Feynman diagrams (see Eq. (E10) for the definition).

where D and N are given by

D= [(K + P1)2 + 612<+p1] [(K - PQ) + 5 k+p2]’
N = Oktpy Yd—1 ® O—kgpyYd—1 — (K+P1) ® (K- Pz)
—(K+P1) 7®0_ktpyYd—1 + Oktp, Vi—1 @ (K — P3) -

In the numerator, there are four terms whose matrices are given by v4—1 ® Ya—1, Vi ® Vi, Vi ® Ya—1, and y4—1 ®y; with
i=1,---,d—2. The first two would diverge while the latter two would vanish after being integrated over K. Among
the two non-vanishing terms, the term for v4_1 ® y4—1 gives a renormalization factor for Af. On the other hand,
the term for v; ® ~; is an artifact stemming from the generalization of the dimension from d = 2 to general d, and it
should be eliminated by a counterterm. From now on, we focus on the term v4_1 ® 74—1 giving the renormalization
factor.

For future use, we define the following quantity:

) 1

0Af(a) = lim —tr|M(a)yg—1 ®'yd_1}, (B1)
{pi}—04

where {p;} denote external momenta such as py,ps in M(1). This quantity is directly related to a renormalization

factor, so we just call it a “renormalization factor”.
Using Eq. (B1), we find the renormalization factor A (1) as

55 (1) = —A2/ dk | /°° dk, /O@ dk, (ko + k2)(—ky + k2)
R 2T Fo + K22 412 | [(—ky + k22 + K2]

Scaling variables as k, — |k, |k, and k, — +/|k |k,, we obtain

/ (ko + E2)(—ko + K2)

SAF(1) = —S, A/dkkd“/ 7
) SRl S (ko + k2)2 1] [(—ks + k2)% + 1]
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where Sq_o = 2/((47)"= F(d22)). We point out that py should be introduced as a lower cutoff for the infrared

convergence. We find an ¢ pole from the k, -integral as f dk, k;d 2 1+ 0O(1). The remaining integral is done as

/ /°° dy (z+y*) (= +y°) V2

21 [(x +y2)2 + 1] [(—z +92)2 +1] 16"

As a result, we obtain
7TAf Af

38(1) = 5L

b. Feynman diagram FV1-2

From the vertex correction in Tab. A3 FV1-2, we find the renormalization factor §A;(2) as
dk dk,dk 62
08s(2) = _A?'/ (271');_—2 / (277)2y 2 : 212’
[0k + k%]

We encounter the same divergence as with 3(2). Regularizing the k,-integral with k¢, we obtain

dk > dk, (ke +K2)?
5Af(2):_A§/ ;2/ / ) -
2m [(ks + k2)? + k32 |
To find an € pole, we may set ky = 0 as proven in Eq. (A2). Scaling variables as k; — |k |k, and ky, — /|k.|ky, we
have
d_z (ke + E2)?
SAF(2) = —Sd_2A2 dklk 2 / / +O(1).
! ! (ke + £2)2 + 1]

We find an e pole from the k| -integral as f dk kd 2= + O(1). The remaining integral is done as

TR e
0 27‘1’ x—i—y) _|_]_]2 1671'

3A;A;
4e

As a result, we obtain

SA(2) = —

c. Feynman diagram FV1-8

From the vertex correction in Tab. A3 FV1-3, we find the renormalization factor §A;(3) as

dk ® dk, [* dk: (ko + k2)* — K3

_ 2 L 1

5Af(3)_—2Af/ T 2/ : =5
m) ko + k2)% + K3 |

Setting k¢ = 0 and scaling variables as k, — |k |k, and ky, — +/|k.|k,, we have

9 _z z + k2)2 -1
SA4(3) = fzsd_zAf/ e k4 / / .
[(ka +l<:2) 1]

d-7/2 _

We find an € pole from the k -integral as f dk k7| 1+ O(1). The remaining integral is done as

/o / 2 ;i;))ﬂl} _g'

AfAy
—=L

As a result, we obtain

5Af(3) = —



29

d. Feynman diagram FV1-4

From the vertex correction in Tab. A3 FV1-4, we find the renormalization factor A (4) as

o] k k22
5AS () = A2 dk | dk + k2) .
(2m)1-2 ke +k2)2 + k2]

The integration is the same with 6Af(2). As a result, we obtain

3ALA,
4e

A (4) = —

e. Feynman diagram FV1-5

From the vertex correction in Tab. A3 FV1-5, we find the renormalization factor §Af(5) as

dk > dk, (ke + k2)? — K3
5Af(5):_2AfAb/ = / / ) L
s [(ka 4+ k2)? + K2 |

The integration is the same with 0A¢(3). As a result, we obtain

AfA,

€

5A;(5) = —

f- Feynman diagram FV1-6

From the vertex correction in Tab. A3 FV1-6, we find the renormalization factor §Af(6) as

L 282A; dK / (ko + k7)* — K2

NS (ke + k)2 + K2+ g Ba 5]

0Af(6) =

Shifting k, — k. — k; and scaling variables as k, — [K|k, and k, — [9? B4|K|4"1]*/3k,, we have

T ) N . SR
BN Jip| + 1) (k2 + 1/ |ky|]
where Sy = 2/((4m)?"'T'(%51)). Integrated over k,, this correction vanishes due to the following identity:
1= dxﬁ = 0. As a result, we obtain
dAf(6) =

2. Backward Scattering
a. Feynman diagram BV1-1

The vertex correction in Tab. A3 BV1-1 is
dd+1k

W(S(kﬁo)Go(k P1)Yd—1 @ Go(k — p3)ya—1-

M(T) = 40,2 /
Similarly with Eq. (B1), we define

1
3(a) = lim Ztr[M(a)Immzxg . (B2)
p
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Using this formula, we find the renormalization factor dA(7) as

dk < dk, dk (ks + k2)?
5Ab(7):—4AbAf/ = / . ) 3
[(kz + k2)% + K2 ]

The integration is the same with 6Af(2). As a result, we obtain

3ALA;

€

6AW(T) = —

b. Feynman diagram BV1-2

From the vertex correction in Tab. A3 BV1-2, we find the renormalization factor 0A,(8) as

Mb(g):imbA/ dkl / / (ko + k2)(—ks + k2) — K3
! (ke + K22+ 2] [(—ke + k22 + K2

Scaling variables as k, — |k, |k, and k, — +/|k. |k,, we have

—z [ dky [ dk (ko + k2) (ke — k2) + 1
0AL(8) = 253 o ApA dk k 2 Y .
b( ) d—282b f/ iR / +I€2) ]I:(kx—kz)Q—f—l}
We find an € pole from the k| integral as f dk kd 21 The remaining integral can be done to give
/ / x+y>< S R
- )2 +1][(z—y2)2+1] 8
As a result, we obtain
AyA
5A(8) = e i

€

c¢. Feynman diagram BV1-3

From the vertex correction in Tab. A3 BV1-3, we find the renormalization factor 60A,(9) as

2927, dK / (ke + k) (ke + k2) — K? 1

N (2m)d—1 [(ko + k3)? + K2] [(—ka + £3)? + K] [k2 4 ¢2B, |I|<]|€d‘ -

6A(9) = —

Scaling variables as k, — |K|k, and k, — [¢?B4|K|9"']*/3k,, we have

4/3 Cracrk2) (ks — Cree k2) + 1
S (9) = 20419 Ay 173 Ab/ AKK 5" / / o+ Clacy ) X W)t :
B, Ip| [(ks +C|K|k2) +1]7[k2 4 1/|ky]]

where Cjk| = [¢°Ba|K|*~]*3/|K|. Since C|k| is proportional to g4/3, it remains to be small as long as the coupling
e is small.
Expanding this expression in terms of C|k|, we have

284 19*3A
5AL(9) = % / /
By

up to (’)(C’lKl) terms. The second term is proportional to (g*/3)3, so it is comparable to three-loop corrections.
Dropping this term, we have

1 ( )C\2K\ Yy
(62 + 0[R2 + /1yl [2 + 1)°[K2 + 1/, ]

28, 19*3A > dk, (> dk, 1
5 A(9) = d—19 b /

BY*N oo 2m [k2 +1][k2 +1/|k,|]
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o0 o . . .
Iol = i. The remaining integral is done as

[ / 27 [22 + 1] [yl 2+ 1/ly] 3\1/§'

As a result, we obtain

GAbg

€

0A(9) =

3. Yukawa coupling

a. Feynman diagram YV1-1

The vertex correction in Tab. A3 YV1-1 is

igAf dd+1]€

M(10) = 7N ] @i 57 0(ko)va-1Go(k + p1)va-1Go(k + p2)va-1-

Similarly with Eq. (B1), we define

idg(a) = lim 1tlr[/\/l(a)vd,l}.

B3
{pq‘,}—>0 2 ( )
Using Eq. (B3), we find the renormalization factor dg(10) as
A dk > dk, (ko + k7)* — X3
5g(10) = 9 f J_ / ) 1

(ke + £2)2 + k2]
The integration is the same with 0A¢(3). As a result, we obtain

_ 9 A
dg(10) = NolTh

b. Feynman diagram YV1-2

From the vertex correction in Tab. A3 YV1-2, we find the renormalization factor dg(11)

A k 0o -+ k,2 2 _ k2
[(ko +k2) + k2 |

The integration is the same with 0A¢(3). As a result, we obtain

c. Feynman diagram YV1-3

From the vertex correction in Tab. A3 YV1-3, we find the renormalization factor dg(12)

59(12) g3 / dK [ dk, / (ko + k7)* — K?
9(12) = — ' :
N3/2 ) (2m)at (ks + k2)2 + K2 [k2 + g2 B4 5
Shifting k, — k. — kJ and scaling variables as k, — |K|k, and k, — [ngd|K|d*1]1/3ky, we have
7/3 o] od—11 2 _ 1
5g(12) = Sf/;g dKK*5 / / i .
N7z 2+ 1[5+ k]

Integrated over k,, this vanishes. As a result, we obtain

5g(12) = 0.
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Diagram No. FS2-1 FS2-2 FS2-3 FS2-4
Feynman R A 2
Diagram J 2 SRRk
— _ 52 ~ A g -~
Renormalization io _ %’%é%llggg Ay = —0.00006139A%, Ao = —04461A71/ %, Ay = —0.0001228A 1A,
1 — —VU. _ X2 ~ ~ _ XA
factors AQ _ 701131§2 Al = —0001490Af Al — _1575Af % Al = —OOOQQSOAfAb
Diagram No. FS2-5 BS2-1 BS2-2 BS2-3
Feynman HrEEes
Diagram
Renormalization Ao = _0‘4461A”\/%7 H2(2q) - Qi1 Hi(g) :2 |Q|2d—3 1'[22(51) :2 |Q[2d—3
factors A = _15.75&\/% (0.64279)g" 1" Ba~¢ —0.050259° A pp* 5 —0.050259° App™ 15—

TABLE A4. Feynman diagrams for one-loop self-energy corrections. Here, Ag, A1, and Az represent the coefficient of the
€ poles computed from the corresponding Feynman diagrams (see Eq. (E10) for the definition). II2(g) represents two-loop
corrections of Landau damping for the dressed boson propagator.

C. TWO-LOOP SELF-ENERGY CORRECTIONS

1. Boson Self-energy

a. Feynman diagram BS2-1

The boson self-energy in Tab. A4 BS2-1 is given by

g4u26 dA 1 qd+1]
Hg(l) = — N / (27T)2d+2 tr [’}/d—lGO(k + q)’yd_ng(k)'yd_lGo(l)’yd_lGo(l + Q)] Dl(k - l)

294M2€ / dd+1k‘dd+1l£/
N (2m)24+2 D

Dl(k _l)a

where D and N are

D=[(K+ Q)+ 6p,q [K>+ 0] [L2+ 7] [(L+ Q)%+ 67q), (Cla)
N = [5k5k+q -K- (K + Q)] [5151+q -L- (L + Q)} (Clb)
— [0k0irq + K- (L+ Q)] [010k+q + L (K+ Q)] + [0kd — K - L] [fi4q014q — K+ Q) - (L+ Q).

Integrating over k,, we have

4, 2 A+ 141,
g dkd dly&Dl(k‘—l),

H2(1) = N (27T)2d+1 D,
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where D; and N7 are given by
D1 = [(2kyay +0q)* + (K| + K + QD?] [6f + L?] [0 + (L + Q)?],

(1K~(K+Q) K- (K+QL-(L+Q)
K|[K+ Q| K| K+ Q]

L (K+QK-(L+Q)  K-LK+Q) (L+Q)
K[[K+Q K[K+Q

5l+q(L~(K+Q) K-L>+5l((K+Q)~(L+Q) K~(L+Q))].

K+Q K| K+ Q] K|

N = (K| + K +Q)) )6151+qL-(L+Q)+

+ (2kyqy +dq)

Integrating over [, we obtain

g'u* [ dKdk,dLdl, Ny 1

2d Do K—_L|d—1"
2N (27‘1’) D2 (ky _ ly)2 + 92u63d| |ky—‘ly|

(1) =

where Dy and N> are given by

Dy = [(2kyqy + 0q)” + (K| + [K + Q|)?| [(2lygqy + 69)* + (L + L+ Q[)%],

(1_ K-(K+Q)) K- (K+QL-(L+Q)
K|[K+ Q] K|K + QIIL||L + Q

L (K+QK-(L+Q) K- LK+Q- - (L+Q) L-(L+Q)
KIK+Q[LL+Q[  [KI[K+Q[LL+Q[  [L|IL+Q|

L-K+Q) KL (K+Q)- (L+Q) K-(L+Q))
LIK+Ql [K|L |[K+QIL+Q  [K[L+Q]/|

Ne = (K[ + K + Q|)(IL| + L + Q)

+ (2kyqy + 0q)(21yqy + dq)

Shifting [, as {, — I, + k, and integrating over k,, we have

g'u% [ dKdLdl, N; 1

8N (27T)2d_1 Dg 172/ + gQ,U/€Bd |K_‘l]’-“|dfl ’

(1) =

where D3 and N3 are given by

D3 = |qy|[(2lyqy)* + (K| + K+ Q| + |L| + [L + Q|)*], (C2a)
N3=<|K|+|K+Q+|L|+|L+Q|)[(1—W)<1-M) (C2b)
(K- @L+Q)\/ L (K+Q) KL/ (K+Q- (L+Q
(1 K|L+Q|)<1 ILIK+Q>+(1 |K||L|)<1 K1 QLiQ ﬂ

We may neglect the l,q, term in the fermionic part since it would give rise to subleading terms in g. Integrating over
ly, we obtain

g dKdL N

HQ(]-) = 712\/§N (277)2(1_2 ,D747

where D, and N are given by

e _1711/3
Dy = |gy| [¢?1°BalK — L|*]° (K| + K + Q| + |L| + |L + QJ),

(1 - éhf) (1 - (I|<K++Q<£|'|I(JL++QC|2))'
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Introducing coordinates of K - Q = K|Q|cosf;, L - Q = L|Q|cosf;, and K - L = KLcosf, where K = |K]|,
L = |L|, and cos 8y, = cos ), cos 6; + sin 0, sin 6; cos ¢;, and changing variables as K = |Q|k and L = |Q|l, we have

10/3, e d—1 2e 4 o0 oS T T T
my(1) = £ #1Ql %'QD - — / dkkH/ duH/ dek/ dﬂl/ doy
12V/3|q,|By/°N  (47) Lry/rl (52)0(%52) Jo 0 0 0 0
" sin? =3 0, sin? =3 0, sin?~* ¢ [(1 b+ 0089k> (1 L+ cos6‘l>
(k+m + 1+ n2)[k2 + 12 — 2kl cos O] T Ui 2
B <1  lcosty +cos€k) <1 _ kcosbty +COS€Z) - cosﬁkl)(l _ klcosOp + kcosf +1cost + 1)}7
2 m mmn2

where n; = k2 + 1+ 2kcos @, and 12 = /12 + 1 + 2l cos §;. The remaining integrals can be done numerically to give

1 1 d—4
/ dk/ dl/ dﬁk/ d@l/ dé, VElsin™2 0, sin”2 §;sin?"* ¢, 1 [(1_k+cosek>(1_l+c0891)
(k+m +1+mn2)[k?+ 12 — 2kl cos O] 2 M M2

3 (1 3 [ cos Oy, +cost9k> (1 3 k cos Oy, +cos9[> +a —cos@kl)<1 B klcos Oy + kcosBy + lcosb, +1>}
2 mn mmn2

VAT(452)

F(%QZ)

(—7.723).

As a result, we obtain

‘ |d1

(1) = —g2?u(cj)Bg = —0.6427. (C3)

|Qy|

b. Feynman diagram BS2-2

The boson self-energy in Tab. A4 BS2-2 is expressed as

_ 9 dd+1k’dd+1l B
I5(2) = —g?App® | —o—570(ko — lo)tr[va—1Go(k + @)Va—1Go(k)Ya—1Go(D)va—1Go(l + q)]

(27T)2d+1
. dd+1k‘dd+1l N
= —2¢°Asp? /W5(ko - 10)5»

where D and N are given in Eq. (C1). Integrating over k,, l,, and l,,, where the integration is the same with IT5(1),
we have

(2) = —

2 2e
(AN’ /deLdl Sk — 1 )&7
8 (27)2d—1 D5

where D3 and N3 are given by
D3 = lgy|[(2y9,)” + (K| + K + Q| + [L] + L + Q[)?],

Ny = (K| + K+ Q|+ L] + L+ QJ) (1_K'(K+Q>><1_L'<L+Q>)

KIK+Q LIL+Ql
(| K(LtQ)\(, L.(K+Q\ (, K IL\( (K+Q) (L+Q)
(-Tire) (- kra) * () (- Kran g )]

Integrating over l,,, we obtain

1, (2) = A0 [ A st [(l K QY () _LLrQ)

Rlgy> J (2m)>4—3 KIK+ Q| IL[|L + Q]

- (1 - W) (1 - m> * (1 - |KK||LL|> (1 - (FK++Q<3|.|£L++Q(|Q)> |
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The second line is odd in K and L, so it vanishes.
Integrating over Iy, we have

IIy(2) = i / 5 / o ( e o >
32|g, |2 2m)d=2 VK2 +k3y/(ki +q1)? + (ko + q0)?

X/ dl, (1_ Li - (L +q1) + ko(ko + qo) )
(2m)d-2 VE + k(L4 q1)? + (ko + q0)?

Using the Feynman parametrization method, we have

/01 " [(1 —2)]~/2 / : dk | —2z(1 — 2)Q?

s

[ —2fa(1 - )] 2QI(45Y)
= = X A—d
202K + (ko +290)” +2(1=2)Q%  Jo 1, (4m)(@=2/2 (kg + wg0)2 + 2(1 — 2)Q2] T

where l~<J_ = RJ_ 4+ xq. The integration for 1, is the same with that for k; . Then, we obtain

My(2) =

2°051QI" / dko / /dy (1 — @) /2[y(1L — )] /2T (45

(am) g, |2 (ko + 200)2 + 2(1 — 2)Q2] 7 [(ko +ya0)? +y(1 — 2)Q2] =

Using the Feynman parametrization method, we obtain

C2¢PA QI [ dko 2(1 = 2)]C=D/2[x(1 — 2)]/?[y(1 — y)]V/*T(4 — d)
I1,(2) = d dz
@ (4m) gy |? / / / y/ k 1—x)+<1—z)y(l—y>>Q2+z<1—z><x—y>2q3]

4—d’

where ko = ko + (zz + (1 — 2)y)qo. Integrating over ko, we obtain

_PAgalt . = L1 — )2y ) 2T(7/2 -~ d)
B d“/zlquQ/ ’ / dy/ ’ 1—x> (1= 2)y(1 = 9)Q2 + 2(1 - 2)(x — y)23] "

The momentum factor can be found as (u2¢|Q[*/|q,|*)|QI**~7 = 1*¢|Q|**=3/|q,|?>. The remaining integral can be
done to give

2(1—2)] Y4 2(1 — o) Y2ly(1 —y)]/2
/ d‘”/ dy/ == I e T )

As a result, we obtain

|Q‘2d 3 ~

(2) = —g*Asu* By PRERR B, = 0.05025.
Y

c. Feynman diagram BS2-3

The boson self-energy in Tab. A4 BS2-3 is expressed as

2 2e dd+1kdd+1l * *
I15(3) = g Ay Wa(ko +10)tr[GH(—Fk — @)7a—1G(—k)Go(1)1a—-1Go(l + q)]

dd+1k’dd+1l N
= —292Ab,u2E / Wé(ko + 10)57

where D and A are given in Eq. (C1). The integration is the same with II5(2). As a result, we obtain

‘Q|2d 3 B

>(3) = —g*ApuBq T B, = 0.05025. (C4)
y
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2. Fermion Self-energy

In the two-loop order, there are two kinds of diagrams for fermion self-energy corrections: rainbow diagrams and
crossed diagrams. The rainbow diagrams are represented as X, ~ Go(p + k)Go(p + 1)Go(p + k), where p is external
momentum, and k and [ are loop momenta. For brevity, gamma matrices and boson propagators have been omitted.
Since the loop momenta are “decoupled”, the integrations for k and [ are separately divergent. As a result, the integral
has only a double pole and a simple pole proportional to In p?, where the former is irrelevant for renormalization and
the latter, called nonlocal divergence, is completely canceled by one loop counterterms. In other words, there is no
simple pole, which contributes to the beta functions. We are allowed to drop the rainbow diagrams. From now on,
we only focus on the crossed diagrams.

a. Feynman diagram FS2-1

The fermion self-energy correction in Tab. A4 FS2-1 is expressed as

g4 dd+1kdd+ll
2(1) =3 / Ww—lGo(k + p)va-1Go(k + 1+ p)va-1Go(l + p)ya—1D1(k) D1 (1)
- 17, gd+1
g d P kdTH N
- / G p DD,
where D and N are given by
D=[K+P)\’+ 0] [K+L+P?+6 ] [(L+P)?+67,,] (C5a)
A= [(K+P)-T(K+L+P)-T(L+P)-T~ (K+P) - Doicpdip — (K +L+P) - Tocpiiip (C5b)

~(L+P)- r5k+p5k+1+p} + Va1 [ —(K+P) T(K+L+P) Ip— (K+L+P) T(L+P) Top

—(K+P) - T(L+P) Loqiyp + 5k+p5k+1+P§l+P} :

Integrating over k,, we have

()

- 4 d+1
[ D),

- N2 (2m)24+1 D,
where D; and N7 are given by

Dy =2[K+P|K+L+P|[([K+P|+ |K+L+P|)>+ (di4p + 2k, — p)?] [(L+P)* + 67, ]

M = [(|K+P|+\K+L+P|){(K+P).F(K+L+P)-r(L+P)-r—\K+P||K+L+P|(L+P)-r}
f(51+p+21yky—6p)51+p{\K+L+P|(K+P)~I‘—|K+P|(K+L+P)~I‘}]
+7d_1[6l+p(|K+P|+|K—|—L+P|){—(K+P)~I‘(K+L+P)~I‘+|K+P||K+L+P\}
—(61+p+219ky—§p){|K+L+P|(K+P)~I‘(L+P)-F—|K+P|(K+L+P)~I‘(L+P)~I‘H.

Integrating over [, we obtain

-4
_ig" [ dKdk,dLdl, N,
2) = 3 [ TG B DD,

where Dy and N3 are given by
D, =4K+P|K+L+P|L+P|[(K+P|+|K+L+P|+|L+P|)*+ (2,k, — 6p)°],
Nz:(|K+P\+|K+L+P\+|L+P\)[(K+P)-I‘(K+L+P)-I‘(L+P)-I‘
- K+P|K+L+P|(L+P) T—|K+L+P|L+P|(K+P)- T+ |K+P|L+P|(K+L+P)-T
+(2lyky—6p)w_1[|K+P|(K+L+P)~1“(L+P)-1“—|K+L+P\(K+P)~F(L+P)-1“

+|L+P\(K+P)-1‘(K+L+P)~I‘—|L+P\|K+P||K+L+P\].
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We rewrite this expression as (1) = ¥4 + Xp, where £ 4 and X are given by

5, = ig4 / dKdk,dLdl, |K1| + | Ka| + | K| KiK>yK; 7 Ky " K5 B K3 Dy(k) D1 (1)
AN? (2m)2d (2kyly — 0p) + (K1 + [Ka| + |K3])? | [KG || Ko Ks|  [Ka| o [Ka| K ’
ig4 dekydely (Qkyly — (Sp)")/d_l K2K3 KlKg KlKg

g = 5 % 5 5 — —1|{Dy(k)D1(1),
4N (2m) (2kyly — 0p)* + (K| + |Ka| + |K5))? | [Ko||Ks|  |[Kuf|Ks| [ K[|

where we introduced simplified notations as

Ki=(K+P)- I, Ko=(K+L+P)- I, Ks=(L+P)-T, (C6a)
|Ki|=K+P|, |K]=|K+L+P|, |Ks=[|L+P| (C6b)
We calculate ¥ 4 first. Integrating over k, and [,, we have
5 ig8/3 / dKdL 1 K Ky K5 K, N K, K,
A= _ _ ,
27B2/AN2 ) (2m)702 (|Ka |+ [Ko| + [K|)(|K|[L)E-1/3 | [Ky || Kol [Ks|  [Ky| - |[Ka K

where we neglected (2k,l, — dp)? because it would give rise to subleading terms in g. To find a renormalization factor,
we expand ¥ 4 with respect to P as ¥4 = ES)) + ZS)(iP -T') + O(P?). Here, we focus on the term in the integrand,
given by

1 K1K2K3 K1 + KQ K3
|| + Ko + K5 | K ||K2|[Ks|  [Kq| o [Ka| (K]

Setting P = 0, we obtain

1 L?K-T+|KPL-T K.-T' (K+L)-T L.T
K|+ K +L| + [L| K||K + L||L| K] K +1Lj o f

This is odd in K and L, implying that EEL?) would vanish after integrated over K and L.
In the leading order of P, we find

1 (P~1")(|K|2+|L|2+K~I‘L~I‘)7P~I‘+ P P.T
K|+ K+ L| + |L| |K||K + L||L| K| |[K+L| [L]
B 1 |L|2K~I‘+|K|2L'I‘(K~P (K+L).P+L.P>
K|+ [K+L| + |L| [K|/K + L|L| K[> [K+LP  [LP

KPP K+ L L?
1 K-P (K+L)-P L-P
(|K|+|K+L|+|L|>2( K[ K<L |L|>

{|L|2K-I‘+|K|2L-I‘_K-I‘+(K+L)-I‘_L-F}

K[K + L]|LJ K CUR+L

(K-P)K-T) (K+L)-P(K+L)-T (L~P)(L~I‘)}

We simplify this expression as

(P-T)
(d-1)

K|* + |L]* + |K||L| + K - L — (|K| + |L|)| K + L|
(K[ + |L| + |K + L|)|K||L||K + L|

K|+ |L| - K+ L (1 K.L>  2/K[|L|(K]| + L] + 2/K + L|) ( - (K_L)z) o
(K[ + L] + [K + L[)?[K + L] K|L|) (K| + L[+ K+ LK + L KPLE )|

(d—2)
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where we have used the following identities satisfied inside the integral expression

2 . 2 .
(K-I'NL-I')=K-L, (K-P)(K-I')= |K(|d(131)I‘)7 (L-P)L-T)= W,
_ (P-I)(K-L) _(P-T)(K-L)
(K P)(L-T) = = m o, (Lo P)(K - T) =
Resorting to Eq. (C7), we obtain
s _ 9" / dKdL 1 1 (d_2)|K|2+|L|2+|K||L\+K~L—(|K|+|L|)|K+L|
4 97PN J (222 [KL{[D/8 (d - 1) (K] + L + [K + L|)[K[|K + L[|L|
_ K|+ |L| — [ K+ Lj (1 K-L>_ 2|K||IL|(|K| + |L| + 2|K + L|) < _(K-L)2> (Cs)
(K| + L] + [K + L|)?[K + L KIIL[/ (K| + L[+ K+ L|)?[K + L[? K]PL /|

Next, we calculate Y. It gives a renormalization factor for dp. To find the renormalization factor, we expand it

with respect to dp as Lp = Eg) + Eg)(iép'yd,l) + O(82). We ignore Eg)) because it would vanish after integrated
over k, and [,. Then, we have

2(1) _ g4 / dekydely <2kyly)2 — (|K1| + ‘K2| + |K3|)2 K2K3 _ KlKg K1K2 _1 Dl(k’)Dl(l)
BTANT ) TR (k1) 4 (Kul + Kl + |K))?] | TERlIKs] TRl K[|
Integrating over k, and [,, we obtain
s _ g3 / dKdL 1 KoKy KKy KK
PPN S @mR T RL]TYR (K | K| + | Kl)? [EClIEs] KRS RG]

where we neglected (2kyly)2 which would give rise to subleading terms in g. We set P = 0 because the renormalization
factor is independent of P. Then, we have

1 {(K+L)~I‘(L-I‘)_(K-I‘)(L-I‘) (K-I‘)(K+L)-I‘_1}
(K| + K+ L| +|L|)? /K + L||L| IK||L| IK||K + L
_ K|+ |L| - [K+ L ( KL)
(IK|+ L] + K+ L|)?|K + L KI[IL[ )’

where we used (K- T')(L-T') = K- L in the second line. As a result, we obtain

(C9)

s _ g8/3 / dKdL 1 K|+ |L| — |[K + L] < N K~L>
b 27B2/*N2 ) (2m)** 2 [[K[|L[]=1/3 (K| + L] + [K + L|)?|K + L| KI[|L| )

Lastly, we complete the calculation of Egs. (C8) and (C9). Introducing coordinates of K-L = K L cos 6 and changing
a variable as L = KI, we have

Q/ 8/3 o) B oo _ ™

22):%/ dKKL?’m/ dllzd35/ df sin=3 9
27B;°N? Jp| 0 0

[(d—2)1+l+l2+lc089—(1+l)77_(1+l—n)(1+cos€)_2[(1+l+217)(1(10329)

(d—1) InQ+1+mn) d=1D(1+14+n)2n (d—1)(1+1+n)n3
/ 8/3 o0 4d—13 o0 2d—5 T( p—
DO / dKKdT/ ™% / a9 sint—3 g L+ L= ML+ cos0)
27B2/*N2 Jip| 0 0 n(1+14n)?

4d—13

where ) = g, and 1 = v/1+ {2 + 2l cos§. We find an € pole from the K integral as f|(1)30| dK 3 =
2

4
(4m)d=1 /D (45T
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% + O(1). The remaining integrals are done as
/ dl/ 11+l+l2+lcosﬂf(1+l)nig(1+l77))(1+cosﬁ)
Vsin 6 In(1+1+mn) 3 (L+1+mn)%n
411+ 1+2n)(1 —cos® 6 r(4:2
411+ 1+2n)(1 - cos )} _ \/Trd(_12 ) (~0.1120),
3 (T+14n)n3 L'(%5)
(1+1-n)(1 (452
/ dl/ [ +1=n)( +c2089)] :\/77d( )(003770)
Vsin 6 n(1+1+mn) L(43h)
As a result, we obtain
g 9
(1) = (—0.3361) = (zP I') + (—0.1131)=— (idpYa—1)- (C10)
€

b. Feynman diagram FS2-2

The fermion self-energy correction in Tab. A4 FS2-2 is given by

, [ diRdi
2(2) =A% | —555—0(ko)d(lo)va—1Go(k + p)va—1Go(k + 1+ p)ya—1Go(l + p)va—1

(27.‘.)2d
d 1 kdd 1] N
— A2
= Af/ (27T)2d (S(kio)(s(l()),D,

where D and A are given in Eq. (C5). Integrating over k, and [, (the integration is the same with ¥(1)), we find

Y4 = ﬁ / dekydely5<k0)5(lo) |K1| + [ Ko + | K3 KK K3 K n Ky, K
4 (2m)2d—2 (2kyly — 0p) + (| K1| + [ K2 + |K3|)? | [K1l|K2||K5] K| - |Ka| K|
A2

5, _i8% / AK Ry Ly g (2kyly — 6p)7a 1 KK, KK KK
4 (2m)2d=2 (2kyly — 0p)? + (| K1| + [ K2| + |K3|)? | [Kal|[K3|  [K1l|KG|  [Kq]| K| ’

where ¥(2) = ¥4 + Xp, and K,, |K,| with a = 1,2,3 are given in Eq. (C6).

Y. p vanishes upon integrating over (k,, ) in the infinite range. Meanwhile, ¥ 4 is divergent under the same integral.
The divergence comes from the sections given by k, = 0 and [, = 0. We regularize the integral by avoiding these
sections, i.e. constraining the integral range of ky, as [~ _dk, — [~ dk, + f dk, and similarly with the [, integral.
We ignore dp, for simplicity. Integrating over (k,,l,) this way, we obtain

K1K2K3 K1 K2 K3

Ya= — + —
K[| Ko |[Ks| (K| o [Ka| K3

iA dKdL
f 2y
552 / ( 2@%—45(]“0)5“0) (Im [PolyLog(ZIA )} 7ln A)

where PolyLog|a,b] is the polylogarithm function and A = ——A___ As A — 0, Im PolyLog(2,1A2)} be-
VKL |+ K2 |+ K|

comes Im {PolyLog(Q,I Az)] ~ A% = m The power-counting tells that the contribution arising from

Im {PolyLog(Z IA2)} is only finite due to the additional momentum factor, |K1| + |K3| + |K3|, in the denominator.

Furthermore, the logarithm term, —7 In A, only gives double poles. Thus, we conclude that the epsilon pole is absent
in this diagram:

%(2) = 0. (C11)
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c. Feynman diagram FS2-3

The fermion self-energy correction in Tab. A4 FS2-3 is

_ 292Af A1 Edd+1]

£(3) sart 0(l0)va-1Go(k + p)ya-1Go(k + 1+ p)va-1Go(l + p)va—1D1(k)

N (2m)
_ 2ig?Ay [ dTTkdTH N
- N (27)2d+1 )

where D and A are given in Eq. (C5). Integrating over k, and I, where the integration is the same with (1), we
have

ig?Ay [ dKdk,dLdl, K| + | K| + K| KKKy K1 Ko Ks
Y= a1 (o) 2 2 - - + Di(k),
2N (2m) (2kyly — 0p)? + (1K1 + | K2| + | Ks))? | [K0 || K| Ks8| |Ka| o [Ka| o [KG
Sy = ZgQAf dekJ dely (S(lo) (Zkyly — (Sp)’)/d_l K> K3 K K3 B K K5 B D]_(k’)
2N (2m)2d T (2kyly — 0p)? + (K| + | Ka| + | K5|)? | [Ka||Ks|  |[Ku||Ks| KKy '

Here, 3(3) is decomposed into X(3) = X4 + X, and K, |K,| with a = 1,2, 3 are given in Eq. (C6). Integrating over
l,, we obtain

4=

iNrg? [ dKdk,dL 1 [KlKQKg K, K, K?,]

—0(lo) + -
8N ) (2m)d2 [y | [k + g? BB ] [ G IGIIKS] (Kl (Kl K|

where ¥ p vanishes due to the identity of L dx% = 0. Integrating over k,, we obtain ¥4 as

iApg?/? dKdL 1
Y4 = 2/3 o 2d—3 5(lo) K2(d-1)/3
12v/3B°N J (27) K]

K1K2K3 K1+K2 K3
|[K || Ka|[Ks| (K| o [Ka| K3

We expand ¥4 with respect to P as X4 = Z(O) + E (zpofyo) + EA 2(zpl ~v1). We do the similar thing with ¥ 4 of
¥(1), noticing lp = 0 in this case. Then, we obtain

S0 _ Apg?/3 / dKdL 5(lp)
1 12\/§B§/3N (27)21173 |K‘2(d—1)/3

K?+1?+K-L 1 1 1

7_|_ -
KIK+LIL K| [K+L [L|

(et e - i )
KPR KK +LF KPR LF) |

s _ _ Apg?? /deL 3(lo) d—3(K2+L2+K-L_1+ 1 _1>
a2 12v3B° N J (2m)278 KUV [d =2 KK+ L|L] K[ [K+L[ [L]

AL (| (KL
(d—2)K+LJ’ K[2L]2 ) |
Introducing coordinates of k| -1, = klcosf and scaling variables as | — kl and kg — kkg, we have

QA 4d—13 d ‘
s = figz ks / - 3/ dko/ e del
’ 127r\fB 13N Po k )

<1+k§+z2+lcos9 1 +11)k2( l N l B 1 1)
lm/l+k2 itk n 1) 77(1+k2)3/2 PVI+kg (LK) 0

QA 4d 1 d 40
5 — figw " ke / dnt=? / dko / W @
" 127VBBYPN Jpo Hk

y d—3<1—|—k0+12+1c059_ 1 +1_1>_2l\/1+k8(1_C0329>
d—2 Iny/1+ k3 VItk, no (d—2)n? 1+k2)|
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where 1 = /1 + k2 + 12 + 2l cos §. We find an e pole from the k integral as f dkk*5" = 3
integrals can be done as

= ;- +O(1). The remaining

d4
/ dlld3/ dk:o/ do b

(1+k3+12+lcos9_ 1 +1_1>
1+k2<d /3 Iny/1+ k2 Vi+k 0ol
_(2)< l l

(

1 1 Jal (43
1+ k2)3/2 * e 2 2)3/2 +3> = %(—0.5290),
n(1+ kg) 1+k2 (1+k2) n r(%2)
i1 _ 5 o
/ dl- 3/ dko/ 40 ’ d91)3 d 3(1+k0+l +1lcos 1 +11)
T R 72 itk itk 1

_20y/1 + k2 cos? 0 (TB) _15.68)
(d—2)n3 " 1+k2 r(d 2) e
As a result, we obtain

%(3) = (—0.4461)

ffumo) (_15-75)%5 (ipL 7).

(C12)

d. Feynman diagram FS2-4

The fermion self-energy correction in Tab. A4 FS2-4 is

dd+1k‘dd+1l
S(1) = 2858, [ gy k)00 a1 Gioll + PG~ ~ 1~ Py Gy
) dkd¥l N
_ZZAfAb/WD,

—p)

where D and N are given by

D=[K+P)\’+6 ] [K+L+P)?*+6%,, ][(L+P)+6

flfp]’

(C13a)

N=[K+P) P(K+L+P) - P(L+P) T—(K+P) To i1 pdyp— (K+L+P) Togpdip  (CL3b)

(L+P) - Toicipdt1-p| +7a-1| — (K+P) - T(K+L+P)-To 1~ (K+L+P)-T(L+P)-Toyp
—(K+P) T(L+P) T6_11_p + s pdk1_pd_1 p]

Integrating over k, and [,, where the integration is similar with ¥(1), we have

NI / dKdk,dLdl
Sa =

Y 5(ko)3(lo) | K| + | Ka| + | K3 KKKy K1 K + K3
2 (2m)2d=2 (=2kyla — 8p)2 + (K| + | Ka| + | Ks))? | QG| K] [Ke| K| ]
ZB:iAfAb/dekydelyé(k 5o (—2k, 0y — 0p) a1 KKy KKy KiKs
2 (2m)2d=2 T oy — 0p)2 + ([K | + K| + [Ks|)? | [Ka[Ks|  [KQ[[Ks|  [Kq[[Kol

Here, ¥(4) is decomposed into $(4) = X4 + Bp with Iy = I, + ky + p,. K, and |K,| with a = 1,2,3 are given in
Eq. . i

a = L4 i i
(C6). There are some differences between these expressions and those of 3(2), where —2k,l; — d, appears instead
yly ~ 9p

) Yy p i
of 2k,l, — d, and some terms in the brackets differ in sign. However, these differences can be eliminated with variable
changes, given by [, — I, — k, —

Dy, ky = —ky, ki — ki ,and 1} —1; +k;. As aresult, we obtain

%(4) = 0. (C14)
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e. Feynman diagram FS2-5

The fermion self-energy correction in Tab. A4 FS2-5 is

dd+1kdd+1l

5(5) = 29°Ay / Wfs(kO)Vd—lGo(k +p) = Go(=k =1 = p)ya—1Go (=1 = p) D1 (k)

) dd+1k’dd+1l N
22192Ab/W5(50)57

where D and N are given in Eq. (C13). Integrating over k, and [,, where the integration is similar with (1), we
have

EA:iQQAb/dekydely (W) |K1| + | K| + | K3 KGRy K Ky Ky DyR),

2 (2m)2d-1 (—2kylg — 0p)2 + (| K| + | Ko| + | K3))2 | [K1|[ KoK K |K2| | K]

EB:ingb/dekydezy (W) (—2kylg — 0p)Yd1 K>K3 KKy KK Di(k).
2 (2m)2d—t (—2kylg — 6p)% + (|K1| + | Ko| + | K3|)? | 2K [K[|[Ks| K[| K

Here, ¥(5) is decomposed into X(5) = ¥4 + X with l; =1, +ky,+p,. K, and |K,| with a =1,2,3 are given in
Eq. (C6). Resorting to the following change of variables as i, — I, —ky, —py, ky = —ky, k; — ki, and1l; — 1, +k,,
we find the same expression as ¥(3). As a result, we obtain

Ny

N (ipoo) b\f

e (ipL - Y1)

2(5) = (—0.4461) + (—15.75) (C15)

D. TWO-LOOP VERTEX CORRECTIONS
1. Forward scattering
a. Feynman diagram FV2-1

The vertex correction in Tab. A5 FV2-1 is given by

5 [ diikdi
M(1) = —2A% Wﬂko)‘s(lo)quo(k'i‘ I+ p1)Ya-1Go(l + p1)va—1 @ Ya-1Go(k + p2)va—1Go(—1 + p2)ya-1-

Using Eq. (B1), we find the renormalization factor 6Af(1) as

SAF(1) = —2A% / dkd®l _ [oendy = (ky +10) L] [id0o1 + ko -1
f ==

(2m)2¢ 07+ (ko +10)7] [0F + K3 ] [oF + 1 ] [62, + 13 ]

Integrating over k,, we have

6Ap(1) = -

ki+1 )ik, 1y ki+11)1, i Wi
A3 / dic diy g (ks + 10+ ko) (016 — SR bende ) 4 (5 4 2k 1) (6 ST + a5l )
(2my>= [(61 -+ 2y 1y)2 + (e + Lu| + [k 2] [67 + 2] [02, + 2] :

Integrating over k,, we obtain

dk | dl, dl,dl, 1 (ky+1,) -1k, -1,
SAf(1) =——L

010_1 —
(2)2d-2 |ly|[§12+12¢] [531+12j ( 171 ki +10|ky|

Integrating over [, we have

0As(1) = A7 / dkidlidl, |1 ( (ki +1)-Lik, - h)

16 ) (2m)2=3 |1, |14 +12] ko A Lok [
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Diagram No. FV2-1 FV2-2 FV2-3 FV2-4 FV2-5 FV2-6
Rlaa N
\\ II : \\ ‘\ ’/ \1\ /7 : \t\ \\ /”” _>_l_>T)_\_)T>— _’_‘-»_‘:)A_»?-)_
y %
Feynman \\vll : \\‘ /\\’\ \\\\ //l/ : “\\\\ ,,’x'\ E E \\\ l//
. 4%
Diagram AN | oy AN i BN i i A
’ \ 1 i \\ \\ I/I, ‘\\\ : "’\t\ ‘\ H I ! \
’ \ | pid \ \ 7 W | A \ : : / \
P> Ly > L
—> 1y 1y Ly
Renormalization A, =0 Ay =0 A, =0 A, =0 A, =0 A, =0
f f f f f f
factors
Diagram No. FV2-7 FV2-8 FV2-9 FV2-10 FV2-11 FV2-12
,,',::\\\ /’,’:::\\ 2277
DT>~ >l >
| | N / \‘\\ //,/ ) : v K \\\\ v
Feynman E E N/ R4 i ! N N
. s 4 | | N4
Diagram ! ! N P ! i A A
1 | AN P4 “ ) ! SN PR
! 1 / \ 7 \ ' i / \ aN
— e > —— 1y St
A, = A, =
. . A A
- f f
Renormalization AAf -0 AAf -0 AAf -0 AAf = 1.795A 3§ 3 - A2
factors ’ ’ —4.162A54/ & —4.162 VN
Diagram No. FV2-13 FV2-14 FV2-15 FV2-16 FV2-17 FV2-18
i/ S~ i/ S~ -~ ‘\\ P BN
: : \\ /I ‘\\\ /7 : : \ ’ \:\ I;I
Fe'ynman H H \\v/l N H H NS A
Diagram ! ! A hd ! ! h3 PAS
1 i S\ 7\ i H PN i\
1 \ /N PN i i SN W\
—_— > S>> — e > ———— ————>
Renormalization A, =0 Ay =0 Ay =0 A, =0 A, =0 A, =0
f f f f f f
factors
Diagram No. FV2-19 FV2-20 FV2-21
[l 1 \ ’ W /1
Feynman ! ! NS N
. H i N N/
Diagram i 1 N n
1 ) N LA\
1 ] /N o\
[l ] ’ \ / W
1 1 / \ /i A\Y
>yl y Ly e
R lizati Ap, =
enormalization 5 AAf -0 AA,- -0
factors 0.2765A g '

TABLE A5. Feynman diagrams for two-loop vertex corrections for the forward disorder scattering Ay. Here, A A represents
the coefficient of the € poles computed from the corresponding Feynman diagrams.
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Diagram No. BV2-1 BV2-2 BV2-3 BV2-4 BV2-5 BV2-6
> > TN TN 2T
NG T N N ; _(_4_(.“_)4_)_:_)_ —> > —(—rrb—“-<—<-“->—" _<—C‘:'V/\|-:):-)_V_>_
\Y i ! ‘\ II : " '
Feynman . B i i o P
Diagram AN i i 2% H i i ! i ! H )
/SN i i FARN H E u ! i ' H i
| 1 '

Renormalization A =0 A =0 -0 A =0 A =0 AAb~ = _
factors 2o 2o 2o 2o 2o —4.162A74/ %
Diagram No. BV2-7 BV2-8 BV2-9 BV2-10 BV2-11 BV2-12

Feynman i E i E 0 ! i it o
. " | n | " 1 n " n
Diagram " ! I ! " ! i i i
" H " ' " | H H i
I ! i ) " ' i i u
e > > T/ 5 T <
Renormalization AAb - A. =0 =0 A, =0 A 13.585> Ay, =0
factors —4.162Af % S il S ap TN s
Diagram No. BV2-13 BV2-14 BV2-15 BV2-16 BV2-17
T e 20 - e ﬂ%se
Diagram ii EE ii Ei ii
ii ii i H i
— " e My Ny ey
A, = Ay =
Renormalization A, =0 A. = 1.408A ;3 . o A, = 5.0565"
factors o S0 . 9y 3230754/ % 8.3234, V ~ ° !

TABLE A6. Feynman diagrams for two-loop vertex corrections for the backward disorder scattering A,. Here, Aa, represents
the coefficient of the € poles computed from the corresponding Feynman diagrams.

The integral for [, is divergent near I, = 0. We regularize this integral with a cutoff A as
A} [ dkdly [><dl, 2] ki +1,) -1k -1
5Af(1)=—f/ J_2d¢4/ dly |¢|2 <1+(J_+J_) 1k J_)
16 ) (2m)2=% Jy 27 [l | [l +13] ko + 1oLk f[Le]

:Ai'f/ dk i dl 1n(1+1’j/A4)( (kl+1l)~ukl-u>
64m | (2m)2d—4 1| ky 101 fky [/

Introducing coordinates of k| -1, = klcos# and scaling variables as k — [k, we have

QA3 [ o0 i cosO(kcosf + 1)
SA(1) = —L Al (12 /A* + 1 / dk:/ d si d49<1+ )
1) =5 . n(r*/ )], , o v+ 2k cos 0 + k2

The integral for [ gives

- 1 111(1‘4/792)
2d—6 2 /04 0
/ dll In(I/A% 4+ 1) 5¢2 7e +0(1).

Po
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4 2
The logarithmic term, —%, would be cancelled to the counterterm diagram associated with the one-loop

counterterm. As a result, we conclude

5A;(1) =

b. Feynman diagram FV2-2

From the vertex correction in Tab. A5 FV2-2, we find a renormalization factor as

5A L (2) 2A3/ddkddl [6k4101 — (ko +10) - 1] [6-k0 + ko - 1@
f =

(2m)2 (52 + (ko +10)2] [02, + k2] [62 +12])7

Integrating over k., we have

ki +1,)1, k1 ki+1,)1 k-1

55,2 A3/dlqdkyddz(“ﬂ+1L|+|1<L|)(512+( S ) 4 0+ 2k, + 2k 0 (S - )
f = 2f _ :

(2m)2d-1 (61 + 2ky Ly + 2k2)2 + (ko + 1o| + [k [)?] [62 +12]°

Integrating over [, we obtain

0Af(2) =

A} / dk y dkydl dl, (2L, +2k;)? — (ko |+ ki + 10+ (1)) (1 (ki t1) 'h) (1 k) -1, )
4 (2m)2472 [(2kyly + 252)2 + (ko | + ko + 1|+ 1)) ko + 101 kofflel/)

Introducing the coordinates k, = rcos 6 and I, = sin 6, we rewrite the integral for k, and [, as

Afx/ dk dl| /27r dﬂ/ drr 4r(cos@sin 6 + cos® 0)* — (ki | + |k + 1|+ [1.])?
4 2m)2d—4 [4r4(cos Osin 6 + cos? 0)2 + (|kJ_\+|kJ_—|—lJ_\—|—|lJ_|)2]2

(kL+1L)'lL)< k- ll)
X1l 1+ —).
( ki +1o[1y] ke |1y

Integrated over r, this vanishes. As a result, we obtain

0Af(2) =

5A5(2) =

c. Feynman diagram FV2-3

From the vertex correction in Tab. A5 FV2-3, we find a renormalization factor as

SAf(3) = —

A AZ/ddkddl [Sk10-1 — (ko +10) - 10] [y + ko - 10]
TS @ g+ G L[+ AT [ + B[+ HT

Integrating over k,, we have

(ki +11) 1k, 1 (ki+1,)1 k-1
N A2/ dicy dkya (Ko + 1] + ko) (8101 — SgEaaene ) (6 + 2y dy) (0 BT + 6l )
; .

SAf(3) =
78) (2m)2d-1L (60 + 2k 1y)? + (ko + 1] + ko )?] [oF + 13 [02, + 13 ]

Integrating over k,, we obtain

SA (3):_Ang/ ddedl 1 56 _(kl—l—ll)-lLkL'll
f 4 @m)z=2 |, [+ 202, + 2]\ k. + 1|k, | '

This is the same with §Af(1). As a result, we obtain

5A;(3) =0. (D1)
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d. Feynman diagram FV2-4

From the vertex correction in Tab. A5 FV2-4, we find a renormalization factor as

ded®l [0 — (ko +10) - 10| [0kdr + ko -1 ]
(@m0 52, + (ko + 107 [02 + K2 [ + 18]

§Af(4) = —4AfA§/

Integrating over k,, we obtain

(ki41)1,.k, 1 k1 (ky+1y)1
55 (0) = 202 /ddekyddzukl+u|+|kl|>(6%—M)mwkyzy)él( L+ Gt

f = T4 Sy — .
(2m)2d-1 [(61+ 2ky1)% + (ko + 10| + ko |)?][62 +12]°

Integrating over [, we have

AfA% dk | dkydl dl, (2kyly)2_(|kJ_|+|kJ_+1J_|+|1J_|)2 (kp+10)-1 k, -1,
(5Af(4):— 1 1 .

2 (m)2E2 (kg ly)? + (k| + ko + 1o+ 122\ Tk F L[] /T ke[
Integrated over k, and [,, this vanishes. As a result, we obtain

SA4(4) = 0.

e. Feynman diagram FV2-5

From the vertex correction in Tab. A5 FV2-5, we find a renormalization factor as

A A ded?l [Sx16k0 — (ko +10) k16— ki 16k — (ko +10) -1 0k0y
6Ap(5) = —4 f (2m)2d 52 Kk 1021162 k21162 212 162, + 12
” [0y + (ko +10)2] [0 + K3 ] [6f + 13 ] [0%, + 17 ]

Integrating over k,, we obtain

51 (5) — 28 / dic ity 0151k + L]+ e ) (1= S ) o+ (04 20y )o (Ut - )
! I @t [0+ 2y 1)2 + (ko + 1|+ [k 2] [07 + 13 ] [0%, + 2] '

Integrating over k,, we have

5Ap(5) = D1 [ ki d 019y ( (k¢+1¢)'kL>.

2 ) o2, [ + B][0%, + BT\ ko 1k

Integrating over [, we obtain

0Af(5) = Ai"/dkuﬂldly | (1_ (kLJrlL)'kl).
8 (2m)24=3 |1, |14 412 | ki + 10 |[ky]

Integrating over l,,, we have

6A¢(5)

_ Aj’i/ dkydl; In(1+12 /A% (1_ (ki +11) ~kL)
32r | (2m)2d4 L ko +1if[ke] /)

We drop this correction because it does not give a simple pole responsible for renormalization. As a result, we obtain

5A;(5) =0. (D2)
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f. Feynman diagram FV2-6

From the vertex correction in Tab. A5 FV2-6, we find a renormalization factor as

5 [ d¥%ddl [Sx10kh — (ko +10) - kid — ki 16k — (ko +10) - 16k]d)
6Af(6) = —4A% 924 2 2121052 41212 '
(27) [0+ (ko +10)2] [0 + K3 ] [of +13 ]

Integrating over k,, we have

k,+1, )k, ki+1,.) 1 k1,
A ZAg/dkldkyddl 03(Ik 1+ L]+ ko) (1= feiaies ) + (01 + 2k y)a (Bt — St )

f ] — .
TJ (2m)2a- [(01 + 2y ly)2 + (ko + 10| + ko [)2] [62 +12]°

Integrating over [, we obtain

7Aj diy dkydlidl, (2kyl,)% — (ko] + ko + 10|+ [10])?
2 (2m)2 2 [(2kyly)? + (ko | + ko +10 ]+ [1.])?]°

(1_<kJ_+lJ_)'kJ_ ki -1, _(kj_+lj_)'1J_)
ko + 1 flko| o [kofl] ke + 1oL

5AL(6) =

Integrated over k, and [,, this vanishes. As a result, we obtain

SA(6) = 0.

g. Feynman diagram FV2-7

From the vertex correction in Tab. A5 FV2-7, we find a renormalization factor as

9 dkd?l [51(_;,_151(5_1 — (kL + IL) k61 —-k, - 1L5k+1 — (kL + IL) . llék] 01
6A(7) = 74AfAb 2d 2 2752 27752 1 12 ] [52 2 :
(2m) [0p 1+ (ko +10)2] [0f + X3 ] [6f +13][62, + 13]

Integrating over k,, we have

s [k diydty 001k + L]+ Dlen ) (1 — SRR )+ (04 20,0 (B - )
6Af(7) = _ZAfAb/ 2d—1 2 21752 - 12 152 2 :
(2m) [(01 4 2kyly)? + (ko + 10|+ [ko])?] [67 +13 ] [6%, + 13 ]

Integrating over k,, we obtain

AZA d .
5Af(7):7 f b/(ddel 616,1 < (kL‘FlL) kl>

2 2m)24=2 |1 |[62 + 12 ] [62, + 12 ] ki + 10 [[ky]
We drop this correction because it does not give a simple pole responsible for renormalization. As a result, we obtain

SA4(T) = 0.

h. Feynman diagram FV2-8

From the vertex correction in Tab. A5 FV2-8, we find a renormalization factor as

Akd] [dx10k0_1 — ki - (k 1)1 —k, -1, 6k —1, - (k 1, )6k |d_
5Af(8):—4Achb/d2kd2;[k+l K0_1 LQ (ki +11) 12 ; L2k+12 ¢2( ;Jr 1)6k] 1
(2m) (02,1 + (ko +10)2][62 + K3 ] [02, +13 ]

Integrating over k,, we have

ki +1)k ki +1,)1 L
SAL(8) = —2A%A /ddek;yddg 0% (ke +10 ]+ Ikﬂ)(l - fkjil%) + (61 + 2ky1y)5_,(< Lt bl )

1(8) =~ b = _
d (2m)2d-1 (61 + 2k, 1y)2 + (ko + 10|+ [ko 2] [62, +12]°
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Integrating over [, we obtain

AZA, / dk dkydlydl, (2kyly +202)% — (|kp|+ [ky + 10|+ [1L])?
2 (2m)2472 [(2ky 1, + 202)2 + (k| + ko +1u| + [10])?2)°

(1ot de o (ot L)
ki +1ky| (ko] ke 1|1y

5A5(8) = —

Integrated over k, and [,, this vanishes. As a result, we obtain
dAf(8) = 0.
i.  Feynman diagram FV2-9

From the vertex correction in Tab. A5 FV2-9, we find a renormalization factor as

5A4(0) =

AA Ag/ dd?l [Ox10-k0 — ki - (ke +10)6 — ko -1 bk — 10 - (ko +10)0_k| 6
—Rar d 2 :
(2m)? (62,1 + (ko +10)2][62, + K3 ] [67 +12 ]

Integrating over k., we have

ki+l)k ! ki+11)1
5Af(9)_2AfA2/dkldkyddl 5?(|kL+lL‘+|kL‘)(1+m) (§1+2k l +2k’2)(5l( L + (lﬁL-‘rLlllL)

= ; — .
(2m)2a=t [(81 + 2k Ly + 2Kk2)2 + (lkep + 1|+ [kes])?] [5 + li]

Integrating over [, we obtain

AfAQ/ddekydlLdly (2kyly +2k5)* — (ko] + ko + 1]+ [1u])?
2 (2m)2472 T2kl + 2k2)2 + (ko | + ko + 10| + [1))2]°

(1+ (ki +11)- ke ki1 (kL+1L)'1L)
ko +1[ko| (koo (ko 1oL

6A(9) =

Integrated over k, and [,, this vanishes. As a result, we obtain

SA4(9) = 0.

j.  Feynman diagram FV2-10

From the vertex correction in Tab. A5 FV2-10, we find a renormalization factor as

AP A% [ @t fdd (01 10k01 — (K + L) - K& — K - Loy — (K + L) - L] 64

N (2m2H T 52 (K - L)) [0 + K2 [67 + 2] [02, + L2 k2 + g2 By K1)

(5Af(10) = -

Integrating over k,, we obtain

5A,(10) 29°A% [ dKdk,d+ ] 515_1(|K+L|+IKI)( 7%:5”2)%15 (“fgjg‘ %)
f = 0 —
N (2m)> (07 + (B T+ (K1) [67 + L2 [0, + L2] 5 + g2 Ba ]

where we have neglected kyl, in the fermionic part since it would give rise to subleading terms in g. Integrating over
l:, we have

52 ,(10) 29° A% dek;ydezyé(l ) (202)? = 2|L|(|K| + |K + L| + |L])
f = — .
N (2m)2d-1 (k2 + ¢* Ba S [(202)2 + (K| + [K + L] + [L))2] [(212)% + 4/L)7]

K|+ |K + L <_(K+L)~K> ( IL| ((K+L)-L KL)}

(K[ + K+ L] +[L]) /K + L[[K| K|+ K+L[+ L)\ [K+L|L|  [K[L]
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Integrating over k, and [,, we obtain

5Af(10) 9" A / dKdL — é(lo) 1
f = — —
3v3BY°N J (2m)23 [K[@DE ALK + [K + L| + L) + 2|L|/[K[ + [K + L[ + [L|
K|+ K+ 1 ( _(K+L)-K) IL| ((K+L)-L_ K-L)
K|+ [K+L|+|L| K+LIK| /) K|+ [K+L+ L\ [K+L|L [K[L]/]

Introducing coordinates as k| -1, = Klcosf, and scaling variables as | — Kl and kg — Kk, we get

0 4/3A2 0o B 0o 00 T
5A;(10) = 971/;,” / KK / =3 / % / dosintto— L
37V3B,°N Jip| 0 o (1+42) 0 V2In + 211

?

n—l( 14+ k%4 1cosd ) l( [+ cosf cos 6 )
X — + - -
n VI+E2V1+E2+12+2cosb NA\VI+k2+12+2lcosf 1+ k2

where Q) = (47T)d*2ﬁlf(lﬂ)F(ﬂ) and n = V1 +k2+1+V1+ k2 +12 + 2lcosh. We find an e pole from the K integral
31 2 2
as ‘; AKK% = 2 + O(1). The remaining integral can be done numerically as
o) o s _ 2 .
/ dlld_3/ dk / d0sind—4 0 1 n l(l 3 1+ k% +1lcosf )
0 o (14 k2)Ed=1/6 J Veip+2m| n V1I+k2V1+ k% + 12+ 2l cos 0
T(4=3
+l( L+ cosf _ _cosf ) _ VT d(_22 ) (0.4415).
N\V1+k>+12+42lcosf 1+ k? (%2)
As a result, we obtain
AsAyg
5A4(10) = (1.7951) =L=L9 (D3)
€

k. Feynman diagram FV2-11

From the vertex correction in Tab. A5 FV2-11, we find a renormalization factor as

492A% d4 kgt [5k+15k51 — (K + L) Loy — K- Ly — (K + L) . K(51] o

N (2m)2d+1 0 [512{“ + (K + L)z} [512( + KQ] [512 + sz[k% +g2By II\()@ZT} .

SA;(11) = —

Integrating over k,, we get

(K+L)-K (K+L)-L K-L
_QQQA?C dekydd-‘rll (512(|K + L| + ‘KD (1 - m) + ((51 + 2kyly)61( KL ﬁ)

0 1
N (2m)2 (81 + 2ky1,)? + (K + L + [K])2] [67 + L2]°[k2 + g2 Ba S

SA;(11) =

Integrating over [, we obtain

9*A% [ dKdk,dLdl, 5(lo)

— d—1
2N (2m)2d-1 kz%JFQZBdlI\(lL“

SAF(11) = — K| + K+ L[ + L] (1 (K+L)~K)

[LI[(2k,4,)? + (K[ + K+ LI+ )7\ [K+L[K]|

(2kyly)% — (K| + |K + L| + [L])2 (1_(K+L)-L K-L_(K+L)-K>
[(2ky1,)2 + (K| + K + L| + [L))?]? K+L|L  [K|L [K+L|K| /|

Integrating over k, and [,, we have

5a,(11) = LA /deL 5(lo) _(K+L) K
T T BN ) P LK@ DA T K+ LK)
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Introducing coordinates as k| -1, = Klcos# and scaling variables as [ — Kl and ky — Kk, we obtain

0 2/3A2 o0 B oo e s
5Af(11):7972/;/ dKK“s”/ dzzd*‘*/ Ldf/ dfsin®=* 9
127v/3B,°N Jip| 0 o (1+k2)3 Jo

( B 1+ k2 +1lcosf )
VI+ k21T +k2+12+2cosf)

4d 13

We find an € pole from the K integral as fl dKK = 2 4+ O(1). The remaining integral can be done numerically

as
e > dk i 1+ k% +1lcosf (42
/ i+ / Py / desind—49<1— o >= v d(_f )(4.934).
0 o (1+k2)5 Jo V1+k2V/1+ k2 +12 + 2l cosd I(42)

As a result, we obtain

ArApG

Ne

SAf(11) = (—4.162)

l. Feynman diagram FV2-12

From the vertex correction in Tab. A5 FV2-12, we find a renormalization factor as
49°A2 dd+1kdd+1l6 [5k+157k51 -K- (K+L)§j —K -Loxpy— L (K+ L)é,k} 0

0 d—1 *
N ) @mr (670 + (K +L)2] [02 + K2] [ +L2]°[k2 + g2B, K]

5A£(12) =

Integrating over k,, we obtain

K+L) K K+L) L
QQZA% dekydd+1l 512(|K+L| + |K|)<1—|— 7\(K+L\)|K|) (51—|—2]€yly —‘,—2]{;2)61(% + (\K-&-I)J\ )

0 d—1
N (2m)2d (81 + 2ky Ly + 2k2)2 + (1K + L] + [K|)2] [67 + L2]°[k2 + ¢? Ba X

SAF(12) =

Integrating over [, we get

g*A? [ dKdk,dLdl, 0(lo)
2N (27r)2d—1 k2 + g2By \IT]LZ"I

5A;(12) =

K|+ K +L| + L] (1 (K+L)-K)
ILI[(2kyly)* + (K| + [K + L] + [L])?] K+ L[[K]|

(2kyl,)? — (K| + |K + L] + |L|)2 (1 (K+L)'L KL _(K+L)-K)
[(2ky1,)? + (K| + [K + L| + [L])?]? K+LJLl  [K|[L |K+L|K|

where we have ignored the k2 terms in the fermionic part since they would give rise to subleading terms in g.
Integrating over k, and [,,, we have

5Af(12) _ 92/3A12) / dKdL 5([0) < (K + L) . K)

12v3B23N J (2m)*43 |L|[K[2(4=1/3 K + L||K]|

The term of |L|~!K|~2(¢=1)/3 does not give rise to an € pole, so we drop it. Then, we have

5A,(12) = g*B A} /(deL 5(lp) (K+L)-K

12v/3B2°N J (2m)*473 L] K + L||K|*5

Integrating over K, we obtain

2/3 A2 1 -1
5Af(12):97f/b3/ ot
12v3B3°N (

1— )" . s
| e “0)(4@%L|[x(1_x>mﬁ

d 1 d—4 3d—6
) 6 4d 13

dLL

Ny (s )
12V3BYN mp2 AT o “TTES) U,
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We find an € pole from the L integral as fpo; dLL*5" = 3

i: + O(1). The remaining integral can be done as

As a result, we obtain

SAF(12) = (_4.162>%/§ (D5)

m. Feynman diagram FV2-13
From the vertex correction in Tab. A5 FV2-13, we find a renormalization factor as

OA;(13) = —2A3 / d?kd?l (6107 —2(ky +11) - 106 — 1B 6pe a0k
r(13) = —2A% :
(@m0 (62, + (ko +10)2] [02, + K3 ] [07 + 13 )

Integrating over k,, we obtain

5A,(13) — A2 / dtkdlydl, (07 = ) (ki + 10|+ ko [) + 2001 + 2yl + 262)6 S
f - = (2m)2d-1

[+ 2yl + 28202 + (e + Lo+ [k 2] (57 + 127

Integrating over [, we get
A3 [ dk dkydly dl, (2kyl, + 2K2)2 — (ko |+ ko + 10|+ [1,])2
5Af(13):—f/ vdkydlydly (2Rl +2k)% — (ko] + ko + 1]+ [Lu))

(1 (kA1) ll)
2 (2m)2472 2kl + 202)% + (ko | + ko + Lo| + 1. ])?]° ko + L]

Integrated over k, and [,, this vanishes. As a result, we obtain

0Af(13) = 0.

n. Feynman diagram FV2-1}

From the vertex correction in Tab. A5 FV2-14, we find a renormalization factor as

A A3 d?kdh [6k+1612 -2k, +1) 1,6 — li(sk+1] Ok
0As(14) = —24; (2m)2d |52 27 752 271752 4 1212
[0f 1 + (ko +10)2][6 + K3 ] [oF +17]

Integrating over k,, we have

5, (14) = —A?/ dk  dkydl (02 = ) (ki + 10|+ ko |) +2(51 + 2k L, )0 ST
— 2
(2m)2d=t [(61+ 2kyly)2 + (Jky + 10| + ko [)2] [07 +12]

Integrating over [, we get

3
5A(14) = _Af/ddekydlLdly (2kyly)? — (ko] + ko + 10 +[10])2

(1 (k1) 1J.>
2 (2m)*=2 [(2ky1,)2 + (ko | + ko 4+ 1]+ [1.))2])° [ky + 10 [[1|

Integrated over k, and [,, this vanishes. As a result, we obtain

5Af(14) = 0.
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0. Feynman diagram FV2-15

From the vertex correction in Tab. A5 FV2-15, we find a renormalization factor as

dedl [6x10% ) — 2(ky +11) - 1061 — 13 6] 0
(2m)* 52, + (ko +10)2] [62 + k2] [02, +12])°

SAf(15) = —2AfA§/

Integrating over k,, we have

SAL(15) — A, A7 /dmz@ddz (02, = 1) (k1 + 1|+ [k |) + 26 + 2ky Ly )5 B4
f =T8S _
(@m0 [0+ 2hyly)2 + (ko + 10 + [k ])?] 02, + 18]

Integrating over [,, we obtain

55, (15) Ang/ddekydlLdly (2kyly +202)% — (k| + [k + 10|+ [10])? ( (kL—HL)-lL)
7(15) = — '

2 (2m)2972 2k, 1, + 202)2 + (ko | + ko + Lo| + 10 ))2]° ko + 1o [[1y]
Integrated over k, and [,, this vanishes. As a result, we obtain

5A4(15) = 0.

p. Feynman diagram FV2-16

From the vertex correction in Tab. A5 FV2-16, we find a renormalization factor as

dd®l [Ox16f — 2(ko +11) - 106 — 12 e Ok
(2m)%4 62, + (ko +10)2][62 + K2 ][0z +12 ]

§A;(16) = —2A§Ab/

The integration is the same with 6A;(14). As a result, we obtain

5Af(16) =0.

q. Feynman diagram FV2-17

From the vertex correction in Tab. A5 FV2-17, we find a renormalization factor as

d%kd?] [5k+1512 — Q(kL + lL) 1,6 — 13_5](_;,_1} O_k
(2m)2 (62, + (ko +10)2][02, + k2] [s2 +12]%

SAL(17) = —2A?Ab/

The integration is the same with 6A;(13). As a result, we obtain

SAL(17) = 0.

r. Feynman diagram FV2-18

From the vertex correction in Tab. A5 FV2-18, we find a renormalization factor as

ddl [6x16% ) — 2(ky +11) - 1161 — 13 O] 6k
(2m)2 [0% 1+ (ko +10)2] [0F + K2 [ [02, + 13]2 '

SA;(18) = —2A§/

The integration is the same with 6A;(15). As a result, we obtain

SA;(18) = 0.
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s.  Feynman diagram FV2-19

From the vertex correction in Tab. A5 FV2-19, we find a renormalization factor as

72g2A? dH 1 edd+1] [6k+1612 — 2(K + L) -Lé — L2(5k+1] 0_k

N @ s (K L2 (62, + K2 (67 + L2712 4 g2 B M)

SAF(19) =

Integrating over k., we get

5A4(19)

/ ded+1z (02 — L2)(|K + L] + [K]) + 2(01 + 2kyly, + 2k2) o G E
N (2m)2d [(51 + 2kl + 2k2)2 + (K + L] + [K[)2] [67 + L2]*[12 + g2 By M |

Integrating over [, we have

SAF(19) =

9*A% [ dKdk,dLdl, 5(ko) (2kyly + 2k2)* — (K| + [K + L| + |L|)? ( B (K+L)'L)
2N (@m2t 2 g2 Byl [(2hyl, + 2K2)2 + (K| + K + L] + |L))2)° K + LI|L|

We may ignore kyl, since it would give rise to subleading terms in g. Integrating over k, and [,, we obtain

SA4(19) = —

g3 A% / dKdL (ko) 1 (1 (K+L)- L)
24\/3BY/3N J (2m)2473 [L|@=D/3 (K| + [K + L + [L])%/2 /K + L||[L|

Introducing coordinates as K- L = Klcosf, K = Lk, and Iy = LI, we have

9) 4/3A2 oo Lod—31 oo oo T
§A£(19) = _971[3 dLL™% / dkkd‘3/ %/ dfsin®* 0
247\/3BY/°N Jp, 0 o (14107 0

1 < B 1+1%+kcosh )
VI+2+k+ VIt P+ k2 +2keos0]”*\ VI+BVI+PZ+k2+2kcosd)

X

10d 31 3

We find an € pole from the K integral as fl dLL™ 5 = £ 4+ O(1). The remaining integral can be done numerically
as

dl g 1
dkkd—3 / - / dfsin®* 0
/0 o (1+12)d=1/6 J, [\/1+l2+k+\/1+l2+k2+2kc0s9]3/2
><<1— 14+1%+kcosd )_ﬁr(d?)

V1I4+12V1+12+ k2 + 2kcosd F(%)

(—0.5439).

As a result, we obtain

5A;(19) = (0.2765)A, 219 (D6)
€

t. Feynman diagram FV2-20

From the vertex correction in Tab. A5 FV2-20, we find the renormalization factor as

20°A% [ diHEddtY [6k+107 — 2(K + L) - L, — L?0k 1] 0k

0 d—1 *
NS @t T s+ (K L)) [0+ K2 [0 + L2 P[4 2By

SA4(20) = —

Integrating over k., we have

2A2 ¢ dKdk,d (07 — L2)(K + L + [KK]) + 201 + 2k, )01 SeEFEE

N (27)2d 0 [(51+2kyly)2+(lK+L|+|K|)2] [512+L2] [12 +g2BdIL\d‘1}.

5A;(20) = 7
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Integrating over [, we obtain

9*A% [ dKdk,dLdl, §(lo) (2k,1,)?2 — (K| + |K + L| + L) (K+L)-L
W ="58 | Tt gy ep, B 2 7\ KL )
I3+ 9°Ba S [(2kyly)? + (K| + K + L] + [L|)?]
Integrated over k, and [, this vanishes. As a result, we obtain
0A¢(20) = 0.
u. Feynman diagram FV2-21
From the vertex correction in Tab. A5 FV2-21, we find a renormalization factor as
55, (21) 29°A2 [ dHlkdd ) [61+102, — 2L - (K + L)d_y — L20kc 1] 0k
f = - 2d+1 0 2 d—1-q"
N (2m)2e (621 + (K +1)2] [6 + K2] 02 + L2 (12 + g2 By -
Integrating over k., we have
272 d+1 82, — L2)(|K + L| + [K|) + 261 + 2k, 1, )6 EIL
55, (21) = _ 908 dK dk,d*1] (02) = L) (1K + L| + [K{) + 2(01 + 2kyly )0 151y
£(21) = = 0 i1
N (2m)2d [(61 + 2k, 1,)2 + (K + L[ + [K|)2] [62, + L2]*[12 +ngd‘ﬁLZ| ]
Integrating over [, we get
A g°A} [ dKdk,dLdl, 6(ko) (2kyly +205)* — (K[ + K + L| + |L[)? (K+L)-L
0 f(21> = IN (271.)2d71 2 o L[4 2)2 2]? 'K + L|[L] -
I3+ 9*Ba S [(2kyly + 212)% + (K| + [K + L] + |L[)?]

Integrated over k, and [,, this vanishes. As a result, we obtain

SA4(21) = 0.

2. Backward Scattering
a. Feynman diagram BV2-1

From the vertex correction in Tab. A6 BV2-1, we find a renormalization factor as

ded®l [6x161 — (ko +10) 10| [0kdy + ko -1 ]
(2m)%4 (62, + (ko +10)2] [02 + K2 ] [52 + 12]*

5A(1) = —4A§Ab/

The integration is the same with 6Af(4). As a result, we obtain

§Ay(1) = 0.

b. Feynman diagram BV2-2

From the vertex correction in Tab. A6 BV2-2, we find a renormalization factor as

dkd? [Orér — (ke +10) -1 ] [6_wd + ko - 14]
(2m)* 52+ (ko +10)2] [82, + k2] [62 + 127

SAL(2) = —2A§Ab/

The integration is the same with 6Af(2). As a result, we obtain

5AL(2) = 0.
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c. Feynman diagram BV2-3

From the vertex correction in Tab. A6 BV2-3, we find a renormalization factor as

ddk‘ddl [6k+157k51 — kJ_ . (kJ_ + 1J_)51 — kJ_ . 1J_($k+] - lJ_ . (kj_ + IJ_)(S,k] 51
(2m)2 (021 + (ko +10)2] [82, + K2 [67 + 12 ]

5A,(3) = —4ATA, /

The integration is the same with 6A¢(9). As a result, we obtain
0AL(3) = 0.

d. Feynman diagram BV2-}

From the vertex correction in Tab. A6 BV2-4, we find a renormalization factor as

ded?l [bre16kh — ko - (ke +10)6 — ko - 1o — 1o - (ko +11)dk]d)
(2m) (62,1 + (ko +10)2) [0 + 13 ] [0 + 1]

SA(4) = —4ATA, /

The integration is the same with 0A¢(6). As a result, we obtain
dAy(4) = 0.

e. Feynman diagram BV2-5

From the vertex correction in Tab. A6 BV2-5, we find a renormalization factor as

hed Sk 10kd 1 — ko - (k Li)or—ky - Lidk—1-(k 1, )6k |0—
6Ab(5):—4Ang/dkd2dl[ka 1— ki (ki +10)5 -k Db — 10 (;—i— 1)0k] 3
(2m) [0 + (ko +10)7] [0 + K3 ] [02, + 13

The integration is the same with 6A¢(8). As a result, we obtain
0AL(5) = 0.
f- Feynman diagram BV2-6

From the vertex correction in Tab. A6 BV2-6, we find a renormalization factor as

50(6) =

4g°AsA, / A4 dd+ ] [Se0 k0 — K - (K 4+ L)§ — K - Léyr — L - (K + L)6_1] 6

(0) -1 °
N e g G DR [ K 5+ L [+ B

The integration is the same with 6Af(12). As a result, we obtain
0AL(6) = 0.

g. Feynman diagram BV2-7

From the vertex correction in Tab. A6 BV2-7, we find a renormalization factor as

58u(7) 402 Ap A, / A dd 4 [0kt — K - (K + L)& — K - Loy — L - (K + L)) 6
o(7) = —

0 =¥
N (2maet (62, + (K + L)?] [62 + K2] [37 + L] *[k2 + ¢° Ba 51

The integration is the same with 6Af(11). As a result, we obtain
0AL(7) = 0.
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h. Feynman diagram BV2-8

From the vertex correction in Tab. A6 BV2-8, we find a renormalization factor as

d?kdd] [5k+]515_1 -1, - (kl + IL)(SI -1, - (kL + IL)5_1 - liékH] Ok
@m0+ (e + 1] [0 + k3 [0 + 1] [02, + 1]

50, (8) = —4ATA, /

Integrating over k,, we obtain

i, dhydl (9161 = 13) (k1 + 1|+ [l [) + (01 + 2y ly) (61 + ) Bl

IA(8) = —QA‘}AZ,/

(27)2d—1 [(61 + 2ky )% + (ko + 10| + ki ])?][6F + 13 ] [6%, + 13 ]
Integrating over k,, we get
AZA d _12
5Ab(8) =1 d / dkchgllflz 2515_21 1;_ 27"
2 (2) |ty|[6% +12] [02, + 13 ]

Integrating over [, we have

50(8) =

AZA, /dkldhdly 1|
8 (2m)2d=3 1, |[Id +13]

We drop this correction because it does not give a simple pole. As a result, we obtain
0A4(8) = 0. (D7)
i. Feynman diagram BV2-9

From the vertex correction in Tab. A6 BV2-9, we find a renormalization factor as

6A,(9) =

4gPAA / A4t dd 1] (18101 — Li- (K + L)§ — L - (K + L)d_; — L2 11] 0

(ko) e
NS G s (L] 4 2 674 2] 02, + L2 4 02 B

Integrating over k., k,, and [, we have

AN, [ dkdLdl, IL|

5AL(9) = —
) 8N (2m)2472 1, 14 + 2] [12 + g2 Ba S

where the integration is the same with 6A(8). We may ignore the l;l term in the fermionic part since it would give
rise to subleading terms in g. Integrating over [, we obtain

Ap(9)

PBAN, / dk, dL 1
12v3B2AN S (2m)243 |L)*s

We drop this correction because it does not give a simple pole. As a result, we obtain

5A4(9) = 0. (DS)

j.  Feynman diagram BV2-10

From the vertex correction in Tab. A6 BV2-10, we find a renormalization factor as

dked?l b1k + ko - (ko +10)] (66 —13) + 212 (ki 16k — 1o - (ko +10)6k]
(2mr)2d [ yr + (ko +10)2] [0 + X3 ] [0F + 13 ] [0%, + 17 ]

§A(10) = fQAffAb/
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Integrating over k., we get

dk | dk,d%l 1
8A,(10) = —A2A / Y
»(10) f=0 (2m)24=1 [(6y 4 2kyly)? + (ko + 10|+ ko ])?][07 +12 ] [62, + 12 ]
12 (kp +11) ko 2 k, -1, (kp+1,)-1,
x (6104 u)(lkL+u|+|k¢l)<1+kLHLHkl + 202 (61 + 2kyly ) |1L| oL e LI

Integrating over k,, we obtain

5A4(10) = —

AN, / dk , d oy —12 ( (kL+lL)-kl)
4 (2m)2d=2 |1, |[67 + 12 | [62, + 13 | ko +10ko] /0

Integrating over [, we have

6Ab(10):A?Ab/ddelLd1y 1| (1 (kL—s—lL)-kL).

8 ) @2 [+ 2]\ L]
We drop this correction because it would give only a double pole. As a result, we obtain

5A4(10) = 0. (DY)

k.  Feynman diagram BV2-11

From the vertex correction in Tab. A6 BV2-11, we find a renormalization factor as

4 d+1 d+1
say(11) = -2 Ab/d kedd+1] N

)2d+ K Di(k)D:(l
N2 (2 )2d ? [512(+l (K L)Z] [53k—L + ( + L)Q] [612( + KQ] [63L + |,2} 1( ) 1( )7
where N is given by

N =010 11010 1+ K- LK +L)? — (S 4+ 61 1)0 1K - (K + L)
—(Oxq1 + 01 1)0kL- (K+ L) — 66 1 (K + L)? — 64161 1K - L.

We may ignore k, and [, in the fermionic part since they would give rise to subleading terms in g. Then, we have

SA(11) = —

2g* Ay / dit1 fgd+1] N’ D
N? (2m)*72 [k, +1,)2 + (K + 1)2]*[k2 + K2] [12 + 1?]

where N is given by
N = (ky + 1)?kply + K- LK+ L) + k(K + L) + (ky +1,)°K - L.

Integrating over k, and [, we obtain

4 .
say(11) = & Ab/dekydely 1 ( K L

oN? | T (@m) K+ L|(K[+ K + L[ + L) 1‘K||L|)D1(’“>Dl(l)-

Integrating over k, and [, we get

8/3 .
6Ab(11) = 29 2/3Ab / dKiI:2 d—1 d—1 : (1 - =L )
27B2/*N2 J (27)*7% K| |L|5 K + L|(K| + [K + L| + |L|) IK]|L|

Introducing coordinates as K - L = KL cos # and scaling K as K = Lk, we have

200 g83N, [ 1s [ aas [T : 1 — cos
sAy(11) = — L2 [ qpps / dkk™5 / dfsin®~3 9 cos? ,
27Bd/ N3 Jip| 0 0 \/1+k:2+2kcos€(1+k+\/1+k2+2kcosﬁ)
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4d—13 3

- We find an € pole from the L integral as fﬁf\ dLL™5 = 4-+0O(1). The remaining

- 4
where &' = G R (IO

integral is numerically done as

& 2d—5 [ — T(4=2
/ Ak / dosin?=* 6 L cosf = YTEETD) (5 96)
0 0 V1+k?+2kcosO(1+k+V1+k>+2kcost) (%)
As a result, we obtain
§2
SA(11) = (13.58)A, L. (D10)
€

l.  Feynman diagram BV2-12

From the vertex correction in Tab. A6 BV2-12, we find a renormalization factor as

dd [0l — ko - (ko +10)] (0161 —13) — 202 [l L - (ki +11) + Sk - 11
(2m)2 [0 + k3] [0%y + (ko +10)2] [0 + 13 ] [02) + 1]

SAL(12) = —4A§Ab/

Integrating over k,, we obtain

5A,(12) = _2A%A, / dk | dk,dl 1
b N3 (2m)24= 1 [(61 + 2ky )2 + (ko + 10|+ [k [)2][02 +12][02, + 12 ]
k, +1,) -k k-1 (kg +10)-10
X (6161 =P )|k, +1, ]+ |k (1—(>+2126+2kl 1 (- )
[( 101 J.)(‘ L J—| ‘ J—|) |kl+ll||kL| y( 1 Y y)| J—‘ |kLHlL‘ |kL+1LH1L|
Integrating over k,, we have
5A(12) = _AiAb/ dk, dl 56— 12 < (k1) -kL)
2 ) PR B2 A B\ ke Lkl

Integrating over [, we get

5A(12) =

A?Ab/dkj_dh_dly L | ( _(k¢+1¢)-kL>
4 (2m)24=3 |1, |[i4 + 12 ] ki + 1k )

We drop this correction because it would give only a double pole. As a result, we obtain

5, (12) = 0. (D11)

m. Feynman diagram BV2-13

From the vertex correction in Tab. A6 BV2-13, we find a renormalization factor as

d%kd] [5k5k+1 -k, - (kJ_ + lJ_):I ((51(5_1 — li) — 2[12/ [51(11_ . (kJ_ + lJ_) + 6k+lkj_ . IJ_]
(2m)2d (02 + %2 ] [0, + (ko +10)2] [6F + 13 ] [0%, + 13 ]

SA,(13) = —4AfA§/

The integration is the same with §A;(12). As a result, we obtain

5A,(13) = 0.

n. Feynman diagram BV2-14

From the vertex correction in Tab. A6 BV2-14, we find a renormalization factor as

C4gPAsA, / dt kdd 1] (601 — K - (K + L)] (6161 — L?) — 212[6kL - (K + L) + 61 K - L]

5Ab(14) - 0 —
N (2m)2d+1 [62 + K] [02,, + (K + L)2] [67 + 12] [82, + L2 [k2 + ¢* B 5]
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Integrating over k., we have

2 d+1
5ay(14) = 2 AfAb/dkdkyd l 1

N (2m)2 (o) [62 + (1K + L + [K|)?] [62 + L2] [62, + 2] [k2 + ¢>Ba 1]

xl(élé1—L2)(|K+L|+|K|)(1—(K+L)'K) +zz§51|L|<_ K-L <K+L)-L> 7

K + L{|K]| K|IL[  [K+L{|L|

where we have neglected the kI, term since it would give rise to subleading terms in g. Integrating over [, [, and

k,, we obtain

A (14) = g AN, /(deL 5(lo) V2 (1 (K+L)-K>

6v3BLN J (2m)23 k@D | (K| + |K + L| + L))y/JL[\  [K+L[K]
_\/K+|K+L|+L|—,/2|L(1_(K+L>.K K L (K+L).L>]

(K[ + K+ L[)? - |L? K+LK| [K[L] " [K+L|L|

Introducing coordinates as K - L = KL cos § and scaling variables as L = Kl and ky = Kk, we have
Qg*BPA A e = e o dk T

SAy(14) = 9711;31’ / KK % / i3 / . / d9sin® 40
6m\v3B, "N Jpo 0 o (1+k2)5% Jo

X[ﬂ(¢$+z+n)(1_HkQHCM)_(mﬂﬂ)m_\@(l— cost )(1 m)

V14 k2 (VI+k2+n)2—12 V1+ k2 n ’
where 7 = v/1 + k2 + 12 + 2l cos . We find an € pole from the L integral as f dLL™% = 2 +0(1). The remaining

integral are done numerically as

[ee] 2 N
/ dud—3/ / 6 sin® 6 V2 (1— Ltk “C%e)
0 0 1+k2 VIVT+EZ+1+1n) V14 k2n

(\/1+7k‘2+l+77)1/2—\/27 cos 0 I — 1+ k2 B \/EF(%)
e (v ()| e T

As a result, we obtain

Ayg

€

5A,(14) = (1.408)A,

o. Feynman diagram BV2-15

From the vertex correction in Tab. A6 BV2-15, we find a renormalization factor as

492A Ay ditpqd+1] ko1 — K- (K+L)| (6016 — LQ) — 2[2 kL - (K+L)+6nK-L
f

N (2m)2d+1 o) [62 + K2] [62,, + (K + L)2] [67 + L2] [02) + L] 12 + ¢? By E ]

5A,(15) = —

Integrating over k., k, and [, we get

5Ay(15) =

?ApA, [ dKdLdl, IL| < (K+1L)- K)

=2 §(ko) (1-
) e e L 1 g B K+ L[K]

where the integration is the same with dA,(12). We may neglect the l‘yl term since it would give rise to subleading
terms in g. Integrating over [, we have

GBALA, /(deL d(ko) ( _(K+L)-K>

0A(15) =
09 = vapin ) erpr = ' R LIK]
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Introducing coordinates as K - L = KL cos§ and scaling variables as K = Lk and [y = LI, we obtain

Qg2BALA e T 1 k 5 0
5AL(15) = 97;31’ dL / dl / dfsin=* 9 = (1 - +cos )
67v3B2°N 0 (1+12)*% V1+k2+ 1%+ 2kcos
We find an € pole from the L integral as fIP\ dLL*5" % + O(1). The remaining integral can be done numerically
as

[ee) (e’ T 1 . ]_" da—3
/ ik / di / d0sin®* 9 _— (1— Rt cosf ) (4.935) Y2 )
0 0 0 (1+12)7% V1+ k%412 + 2k cos 6

As a result, we obtain

5, (15) = (8.323)AbA\/J%/§. (D12)

p. Feynman diagram BV2-16

From the vertex correction in Tab. A6 BV2-16, we find a renormalization factor as
4g°A} [ d4T kd (601 — K - (K + L)] (6161 — L?) — 212[6kL - (K + L) + 61 K - L]

0) —1
N (2m)2d+1 [62 + K] [02,, + (K + L)2] [62 + 12] [32, + L] [12 + ¢*Ba 5]

SA(16) = —

The integration is the same with §A(15). As a result, we obtain
dAL(16) = 0.

q. Feynman diagram BV2-17

From the vertex correction in Tab. A6 BV2-17, we find a renormalization factor as

4g*A A kdd 1] [0 0k — K- (K4 L)](616_1 — L?) — 212 [6kL - (K + L) + 61K - L
08 (17) = — L 2 b/ 2d+2 [ R 2( 2 )]2( — ) 2 yz[ : 2( 2 ) 2 = ]Dl(k)Dl(l)-
N (2m) [62 + K2][62 ., + (K +L)2|[67 + L2][62, + L2]
We may ignore k, and [, in the fermionic part since they would give subleading terms in g. Then, we have
4g* A, / d 1 fdd+1] ky(ky +1,) — K- (K+L)
0A(17) = Dy(k)D1(1).
v(17) = =3 (2m)242 k2 + K2] [(ky + Lo)? + (K + L)2] [12 + L2] 1(B)D1()

Integrating over k, and [, we get
4
g Ay / dKdk,Ldl, 1 ( (K+L) K>
————2—— | D1(k)D1(1).
N ) e LK KL E KR ) O
Integrating over k, and [,,, we obtain
4g8/3 A dkdl 1 K+L)-K
SA(17) = . 2/3 b / 242 g0 L1y (422 (1_ | ) >
272/ N2 ) (27)*72 K| LIS (K| + [K + L| + L) K + L[[K|

Introducing coordinates as K - L = K L cos # and scaling variables as K = Lk, we have

Q/ 8/3A 4d 1 1
s 17) = SIS [Ty 3/ dkk* 5 /d@bln 39 (1— bt cost )
27B; BNz Jip| 14+k++vV1+k2+ 2kcosb V14 k2 +2kcosd

4d 13

SAL(17) =

We find an € pole from the L integral as fIP\ dLL = ;- + O(1). The remaining integral are done numerically as

/ 22 7 g sind=3 9 ! (1— bt cost )—f( ) (0.4213).
0 0 1+k++v1+k2+ 2kcosf V1+ k%24 2kcos6 r(42)

The remaining integration is the same with dA,(11). As a result, we obtain

5A(17) = (5. 056)Ab—2 (D13)
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E. DERIVATION OF CRITICAL EXPONENTS
1. Critical exponents for fermion and boson fields

Here, we derive the Callan-Symanzik equations and define the critical exponents for the correlation functions. We
first consider the following correlation function:

GO (i}, F) = (D(k1) -+ W (k) B(Fg1) -+ ) (E1)

where F = (g, A £ Ay). In a renormalized theory, the correlation function is expressed as

GO (ki b, wFy) = 092y ™2 2" PG (ki) F), (E2)

bare

where G\ ({kZ +}, 1, Fr) and Gl();nr: ({k:},F) represent the renormalized and bare correlation functions, respectively.

Here, {k;,} are scaled momenta, F, are renormalized coupling constants, and [G] = m[¥] 4+ n[®] + z + z(d — 2) + 3.
(m,n)

Using the fact G”i‘ﬁ"e = 0, we obtain the following Callan-Symanzik equation for Gg?,;_")({kiﬂr}, w, Fo):

{Zkrvki — Br - Ve —m([¥] +7,) = n([®] +7,) — Dee| G ({ki}, 1, F) = 0, (E3)
where the derivative expressions are defined as k - Vj, = zk()% +zky - Vg, + 6k6%k and Vg = (%8% I diAb)

and the beta function is written in the vector form as fr = (8, BAfvﬂAb)7 and Dy. = z + 2(d — 2) + 3. The critical
exponents in the Callan-Symanzik equations are defined as

81I1(Zo/Z2)
= 1 —_—mmm
: + Olnp

_ 81n(Zl/Z2)

=1 Olnp
o 81nZ2
/7\11 - aln/,é )
811’1Z3

where Zj 12,3 are the renormalization factors that relate the bare and scaled momenta as
Z, Z 1
ko, = ko, Kip = paky ke y = phe, kyr = p2k,. (E5)
’ Z2 ’ ZQ ’ '

We next consider another type of correlation function given by
G (ki v b F) = (W) 1) P (k2) -+ O (k1) V() ¥ () (k1) -+ ) 5 (E6)

where 7, (;) represent the gamma matrices for the corresponding coupling constants, i.e. v4-1 for g and A ¢ or the

identity matrix I» for Ay. With a similar consideration for G ({k;}, F), we obtain the Callan-Symanzik equation
for G(m,n) ({kl}7 {VM(]) }7 F) as

ZkrvkﬁﬂrVF*m([‘PH%) n([®] +7,) — ec+2ﬁf§) ™k} AV b F) =0 (E7)

Here, 'yu( N Zy1,2,3 are the anomalous dimension of the coupling constants are defined as

_ 0lnZ,
o = Olnp’
N 8anAf
(9111ZA

VA, = (E8)

Olnp ’
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where Z,, Za,, and Za, are the renormalization factors that relate the bare and renormalized coupling constants as

Zeg =05 (Z0) %)% (21 %) T 2223 90,
IngAg = p= (21 %) 225 A,
Ay = (21 Z9) 222 Ay . (E9)

We finally compute the critical exponents for the correlation functions, which are defined in Egs. (E4) and (ES),
which are given in Eqgs. (17) and (18) in the main text. We note that in the epsilon expansion the renormalization
factors are given in the following forms:

A 1
Z, =142 +O<2 (E10)
€ €

Ap

Inserting Eq. (E10) into Egs. (E4) and (E8) solving the resulting equations order by order in €, we obtain the following
expressions:

=(1+F V(4 - ))_17
2(1—F VF(A()—A ))

—%ZF - VpAs,

1
Vo = —§5F - VrAs,

Yg = —ZF - VFAg,
Vs, = —ZF - VrAa,,
Ya, = —ZF - VrAa,, (E11)

Ve

To obtain Eq. (E11), we should note that the coupling constants have the u-factors in front of them as u%g, ,ugeﬁf,

and p€Ay, which we have ignored in the loop correction computations, for simplicity. To find Ag, A1, A, As, Ag,
Apny, and Ap,, we gather all corresponding contributions from Sec. A, C, B, and D. As a result, we obtain

Ao == —Bj— B — 0545 — 04581/ £ = 0458,/ £,
A1:—g—0.54§2—16Aﬂ/%—16&,,/%,

Ay = —05A; — 0.5Af —0. 11g2,

Ap, = —Ap = Ay —

.

An, = 67+ 0.14A; + 182 +1.4gAf+8.3Ab1/%, (E12)

where A, = Ay and Az = 0. Inserting Eq. (E12) into Eq. (E11), we obtain the critical exponents in Eqgs. (17) and
(18) in the main text.
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2. Critical exponents for thermodynamic quantities

Here, we explicitly compute the critical exponents for thermodynamic quantities, which are given in Eq. (37) in
the main text with a heuristic argument. We start with the order parameter m for the Ising-nematic order, which is
defined as,

of M 4 @

- 57| = (®@)+ N(x)) =m" +m, (E13)

oh h—0

where m™ and m(? represent the fermion and boson contribution given as

m = (4(x)),

dPk
2) _ /s _
m® = (@) = [ Gt G (E14)
By solving the Callan-Symanzik equation for m(), which is given by
1
$Oy + Br - Vi + 5 (D — 1+ %)] mt) =0, (E15)

we obtain the scaling behavior of m) as
mV) ~ 3 P=1478) ()5 (P 147,) (E16)

To find the scaling behavior of m(®, we consider the Callan-Symanzik equations for a fermion Green’s function
G(k) = (¥(k)¥(k)), which is given by

[k V4 = Be - T+ 1=, | Gl 1, F) = 0 (E17)

The solution is represented as

1

Gk, u,F) = ———5—
( y s ) ,U,’Y‘I’|(5k|17’y‘1’

g(ko/|0x|?). (E18)

Using this expression, we find the scaling behavior of m(® as

@) dPE 1 ko r ~ () (D=147y) E19
: (—r) (E19)

27T)D ‘6k|1—'y‘pg |5k|z’ |6k|1/y

Using the values of D =5/2, v, =0, and 7, = 0.24 at the DNFL fixed point, we obtain
m® ~ (—r)", m® ~ (—r)tom, (E20)

We note that the bosonic contribution m) is much larger than the fermionic contribution m(? near the critical point
r ~ 0. This observation justifies ignoring the coupling of the external field with fermionic excitations.
We next compute the susceptibility for Ising-nematic order parameter, which is defined as

o°f
ah?

_ / P (B(2)D(0) + N(@)N(0)) = xV + ), (E21)
h—0

where Y1) and x(? represent the fermion and boson contribution given as

k—0

W0 = / dPx ($(x)$(0)) = lim D(k),

D
W = [ (@) = [ G G-}, (E22)

To find the scaling behavior of x(1), we consider the Callan-Symanzik equations for a boson Green’s function D(k) =
(p(k)p(—E)), which is given by

[k~Vk —Bp-Vp+1 —V(I)]D(k,u,F) —0. (E23)
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The solution is represented as

1

Dk, F) = ———
b B) = e P

d(ko/|ky[*). (E24)

Using this expression, we find the scaling behavior of y(!) as

1 k r
W _ g g o [ =70) E25
T e P (|ky|2z’|ky|2/v r (E25)

To find the scaling behavior of x(?), we consider the Callan-Symanzik equations for the correlation function G®) (k) =
(j(k)j(—=k)), which is given by

k-Vi—fp-Ve+2+ vgﬂ G (k) =0, (E26)

where yzlfs =Ya, 27, . The solution is represented as

1 k T
G (k) = _ <2>< L > E27
© = T b (520

Using this expression, we find the scaling behavior of x(?) as

dPk 1 k r v(D—2—~")
(2) — (2 0 ~ apc, E28
= [ G o5 (e ) v (29

Using the value of 'yZL}f = —0.50 at the DNFL fixed point, we find

XD~ 7 X ). (E29)

We note that the bosonic contribution x!) is again much larger than the fermionic contribution x(?) near the critical
point r &~ 0. This observation again justifies ignoring the coupling of the external field with fermionic excitations.

F. WARD IDENTITY

The effective field theory of Eq. (4) has a U(1) symmetry, given by ¥;(k) — e W;(k). Associated with this
symmetry, we derive the Schwinger-Dyson equation for (1(z)(0)) and find the following identity

Paatr,0) = 2510 (F1)

where I'y_1(p + ¢, ¢) is the irreducible vertex function resulting from (j4—1(z")¥(x)1(0)), and G(p) is the fully renor-
malized fermion propagator. jg_1 = 1y4_1% is the conserved current related to the U(1) symmetry in the (d — 1)
direction. The Ward identity of Eq. (F1) implies that the vertex function for v4—1 and the fermion kinetic energy
should be renormalized at the same rate. For the fermion-boson Yukawa coupling, where bosons are coupled to jg—1
conserved currents, this equation implies the following relation

Yg = 2V, (F2)

which should be preserved in all loop corrections.
There is a similar identity for forward disorder scattering. To figure it out, we define

Z‘; =, — 72”;, where
'yzgf (’yZ“;) is the anomalous dimension involved with a single (multiple) scattering process. For example, in Tab. A3,

the Feynman diagrams labeled as “FV1-3”, “FV1-5”, and “FV1-6” fall into the single scattering process while those
labeled as “FV1-17, “FV1-2” | and “FV1-4” fall into the multiple scattering process. Only VZSf is subject to the

Ward identity because the forward scattering acts effectively as a vertex function for ;1 only in the single scattering
process. Then, the Ward identity in Eq. (F1) implies another relation,

T = A (F3)

which should be preserved in all loop corrections.
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