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Abstract

We study binding of N identical heavy fermions by a light atom in two dimen-
sions assuming zero-range attractive heavy-light interactions. By using the
mean-field theory valid for large N we show that the N + 1 cluster is bound
when the mass ratio exceeds 1.074N2. The mean-field theory, being scale in-
variant in two dimensions, predicts only the shapes of the clusters leaving their
sizes and energies undefined. By taking into account beyond-mean-field effects
we find closed-form expressions for these quantities. We also discuss differ-
ences between the Thomas-Fermi and Hartree-Fock approaches for treating
the heavy fermions.
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1 Introduction

Binding in the fermionic N + 1-body model with zero-range interactions is a fundamental
problem, necessary for general understanding of fermionic mixtures with mass and popu-
lation imbalance. Apart from the interspecies scattering length a, which sets the length
scale, the model is parametrized by the number of heavy fermions N , the mass ratio M/m,
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and the space dimension D. This parameter space has unexplored spots in spite of the
constant interest to the problem from the nuclear-physics side and, more recently, from
the ultra-cold-gas community.

In contrast to attractive bosons, which typically always bind, fermionic N + 1-clusters
bind only above a critical mass ratio, such that the interspecies attraction overcomes the
Fermi pressure. Previous studies have shown that binding of larger clusters requires higher
mass ratios or lower dimension, which can be explained by the dependence of the Fermi
pressure (kinetic energy of noninteracting fermions) on M and D. The current status of
the fermionic N + 1 problem is as follows.

In three dimensions, the 2 + 1 trimer binds at M/m = 8.2 [1], the 3 + 1 tetramer
at M/m = 8.9 [2, 3], and the 4 + 1 pentamer at M/m = 9.7 [3]. A qualitative picture
which explains the relatively small spread in the critical mass ratios for these bound
states, as well as their angular momenta and parities, is that the dimer acts as a p-wave-
attractive scattering center for heavy atoms and thus accomodates three orbitals with
different projections of the angular momentum [3]. These N + 1-body systems become
Efimovian above certain mass-ratio thresholds in the vicinity of M/m ≈ 13 and require a
three-body, four-body, and five-body parameter, respectively [3–5].

In one dimension there is no Efimov effect, no fermionic sign problem, and no shell
effects. The 2 + 1 trimer exists for any M/m > 1 [6] and the mass-ratio thresholds of
N + 1 clusters steadily grow with N [7]. In the limit of large N their shapes and energies
are well described by the mean-field theory; in this limit the critical mass ratios scale as
M/m = π2N3/36 [7].

In two dimensions the atom-dimer attraction in the p-wave channel leads to a formation
of the 2 + 1 trimer with unit angular momentum for M/m > 3.33 [8]. The 3 + 1 tetramer
emerges almost immediately, for M/m > 3.38 [9], pointing to even stronger shell effects
than in three dimensions. Exact calculations demonstrate the presence of an excited
tetramer for M/m > 5 [10] and a ground-state pentamer for M/m > 5.14 [9]. Although
there is no Efimov effect, the fermionic statistics and rapid growth of the configurational
space with N makes the analysis of larger clusters technically difficult.

In this paper we address the large-N limit of the two-dimensional N +1-body problem
by applying the mean-field (MF) approximation together with the local-density Thomas-
Fermi (TF) assumption for the energy of an ideal Fermi gas. We show that the N + 1
cluster emerges for M/m = 2N2/C, where C = 1.862. At this critical point the cluster
shape is controlled by the nonlinear Schrödinger equation with attractive cubic nonlinearity
like in the case of attractive two-dimensional bosons. We thus notice similarities of the
critical N + 1 cluster with the Townes soliton [11], recently observed in ultracold bosonic
atoms [12, 13]. For larger mass ratios our theory gives the shape of the cluster as a
function of the parameter α = 4πN2/(M/m) < 2πC and the coupling constant for which
the solution exists. However, being scale invariant this theory does not predict the size or
energy of the cluster. We show that the leading beyond-MF correction for the N+1 cluster
with N � 1 is a local quantity and we use it to calculate the cluster energy and size, which
both scale exponentially with N . We show that replacing the TF approximation by the
full Hartree-Fock treatment is necessary for determining the preexponential factor.

2 Mean-field Thomas-Fermi approach for large N

We consider a mass-imbalanced fermionic mixture governed by the Hamiltonian

Ĥ =

∫ (
− φ̂†r∇2

rφ̂r
2m

− Ψ̂†r∇2
rΨ̂r

2M
+ gΨ̂†rφ̂

†
rΨ̂rφ̂r

)
d2r, (1)
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where φ̂†r and Ψ̂†r are the creation operators of light and heavy fermions, respectively, and
we set h̄ = 1. The short-range heavy-light interaction is characterized by the coupling
constant g = 2π/[mr ln(2mr|E1+1|/κ2)] < 0, where mr = mM/(m + M) is the reduced
mass, E1+1 is the dimer energy, and κ is the ultraviolet cut-off momentum assumed to be
much larger than any other momentum scale in the problem. The dimer energy is related
to the heavy-light scattering length by E1+1 = −2e−2γE/(mra

2), where γE is the Euler
constant.

We write the MF energy functional for the N + 1 system as

E =
1

2m

∫ [
|∇φ(r)|2 +

α

2
n2(r) + γn(r)|φ(r)|2

]
d2r, (2)

where φ(r) is the wave function of the light atom, the product Nn(r) is the density profile
of the heavy atoms, and we introduce two dimensionless parameters: α = 4πmN2/M and
γ = 2mgN < 0. Equation (2) is valid for weak interactions, i.e., mr|g| � 1. The term
∝ n2(r) is the kinetic energy density of an ideal Fermi gas taken in the TF local-density
approximation valid for N � 1, when n changes slowly on the mean interparticle distance.

To minimize Eq. (2) with the normalization constraints
∫
|φ(r)|2d2r = 1 and

∫
n(r)d2r =

1 we introduce the Lagrange multipliers ε and µ and minimize the grand potential Ω =
E−

∫
[µNn(r)+ε|φ(r)|2]d2r. The conditions δΩ/δφ = 0 and δΩ/δn = 0 lead to the coupled

equations
−∇2φ(r) + γn(r)φ(r) = 2mεφ(r), (3)

n(r) = −γ
α
θ[|φ(r)|2 + 2mNµ/γ], (4)

where θ(x) = (x+ |x|)/2. Equation (3) describes a light atom in an effective well formed
by the MF attraction of the heavy fermions. Similarly, Eq. (4) is the TF density profile
of the heavy fermions in the MF trap created by the light atom.

The Lagrange multipliers ε and µ have physical meanings of the energy of the light
atom and the chemical potential of the heavy atoms, respectively. For self-bound solutions
of Eqs. (3) and (4) these quantities should both be negative since φ and n are not allowed
to spread over the whole space. The binding threshold for the N + 1 cluster corresponds
to µ = 0, when the heavy atom at the Fermi surface is nearly unbound. In this case
Eq. (4) reduces to n(r) = −γ|φ(r)|2/α. The normalization constraints then imply −γ = α
and Eq. (3) becomes the nonlinear Schrödinger equation with negative cubic nonlinearity
like in the case of attractive two-dimensional bosons. The solution of this problem is the
Townes soliton which exists only for a specific value of the coupling constant [11]. In
our case, this compatibility condition reads −γ = α = 2πC = 11.7 and the critical wave
function is given by φ(r) = f(r/R)/(R

√
2πC), where f(ρ) is the unique nodeless solution

of −f ′′ − f ′/ρ − f3 = −f and C =
∫
f2(ρ)ρdρ = 1.862 [11, 14]. The scale R is arbitrary

and cannot be determined from the MF set of Eqs. (2)-(4). Interestingly, the MF energy
(2) vanishes for this solution independent of R [15–18]. For bosons this problem is solved
by the fact that the renormalized coupling constant gr depends logarithmically on R [14]
leading to a shallow (beyond-MF) minimum in E(R) at a certain R. Here, for fermions, the
stabilization mechanism is similar, but as we will show below, the beyond-MF contribution
has a slightly different form and can be calculated in the local-density approximation.

By numerically solving Eqs. (3) and (4) above the critical mass ratio, i.e., for α < 2πC,
we always find a radially symmetric real nodeless self-bound solution. More precisely, each
α gives rise to a family of self-similar solutions which exist only for a certain γ = γc(α).
We parametrize this family by the length scale R = 1/

√
−2mε. Formally setting ε = ε0 =

−1/(2m), Eqs. (3) and (4) become adimensional and we denote their solution by φ0(ρ),
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n0(ρ), and µ0. Then, for any R > 0 the dimensional solution for the same α and γ = γc(α)
reads φ0(r/R)/R, n0(r/R)/R2, ε = −1/(2mR2), and µ = µ0/R

2.
All these solutions of Eqs. (3) and (4), for any α and any R, correspond to vanishing

E. Physically, it follows from the fact that Eq. (2) scales with R as E ∝ R−2. Then, if
E 6= 0, the system would shrink or expand, contradicting the stationarity of the found
solution. That the stationarity of a two-dimensional soliton with cubic (scale-invariant)
nonlinearity is equivalent to E = 0 has been mathematically shown in Ref. [15] (see also
Refs. [16–18]). In our case, to make sure that from Eqs. (3) and (4) indeed follows E = 0 we
derivate Eq. (3) with respect to R using the scaling properties of φ(r) and n(r) mentioned
above. We then eliminate ε from the result by employing the same Eq. (3) again. We then
multiply the resulting equation by φ and integrate it over space obtaining the equality∫

[−2φ(r)∇2φ(r)− γφ2(r)rn′(r)]d2r = 0, which can further be reduced to the form E = 0
with the help of Eq. (4).

In Fig. 1 we show n0(ρ) for a few values of α. These profiles are characterized by a
finite µ0 < 0 and, therefore, by a singular behavior of n0(ρ) at the Thomas-Fermi radius
implicitly defined by the equation φ0(ρTF) =

√
2mNµ0/γ. The inset in Fig. 1 shows the

curve γc(α).
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Figure 1: The heavy-atom density n0 versus radius ρ obtained by solving adi-
mensional Eqs. (3) and (4) (with 2mε = −1) for α = 0.8 (solid), α = 2 (dotted),
and α = 11 (dot-dashed). The dashed curve is the large mass-ratio (or small
α) limit Eq. (5). The inset shows γc versus α. The small-α asymptote of this
curve is γc ≈ 4π/ lnα and the end point corresponds to γc = −α = −11.7 and
derivative γ′c = −1/2 (see text).

For large mass ratios Eqs. (3) and (4) can be solved perturbatively. In this regime the
heavy atoms are much more localized than the light atom, i.e., ρTF � 1, and the light
atom is in the halo state with a small probability to be at ρ < ρTF. Outside of this region
the light-atom wave function is given by the Bessel function φ0(ρ) ≈ K0(ρ)/

√
π. In the

region ρ < ρTF we write φ0(ρ) = φ0(0) + δφ0(ρ) and linearize Eqs. (3) and (4) assuming
small δφ0(ρ) � φ0(0). The linearized equations can be solved straightforwardly leading
to the compatibility condition γc = 4π/ lnα+ o(1/ lnα) and the density profile

n0(ρ) ≈ 4

αJ1(σ1)σ1
J0

(√
8π

α
ρ

)
, ρ < ρTF =

√
α

8π
σ1, (5)

where J0 and J1 are the Bessel functions and σ1 is the first zero of J0. The dashed curve
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for α = 0.8 in Fig. 1 corresponds to Eq. (5).

3 Beyond-mean-field correction

We see that the MF analysis cannot predict the sizes and the binding energies of the
clusters, although it does predict their shapes (up to the rescaling) and determines the
threshold mass ratio M/m = 2N2/C. Since the beyond-MF correction is not scale in-
variant, it introduces preferred length and energy scales, which can be understood from
the following arguments. In two dimensions the second-order correction to the energy of
two atoms interacting via a delta potential is logarithmically diverging at high momenta.
Therefore, the beyond-MF correction to Eq. (2) is dominated by the renormalization of
the two-body coupling constant, logarithmic in κ. It is thus convenient to express the
beyond-MF-corrected energy by writing Eq. (2) with g replaced by gr = g + δg, where

δg = −
∫ κ

1/ξ

g2

k2/(2mr)

d2k

(2π)2
= −mrg

2 ln(κξ)

π
. (6)

One can check that the renormalized coupling constant gr = g+ δg is cut-off independent
up to the second-order terms in the small parameter mr|g| � 1. This renormalization
removes the cut-off dependence from the energy to this order.

The physical (i.e., cut-off independent) part of the beyond-MF contribution is absorbed
into the length scale ξ, which is a functional of the fields φ and n, in general nonlocal.
Qualitatively, 1/ξ is the characteristic momentum governing the many-body or few-body
problem at hand. For two atoms in a box ξ is proportional to the box size. For a weakly
interacting uniform Bose gas ξ is proportional to the healing length and this result can also
be applied in the inhomogeneous case, if the density varies slowly on the scale ξ (see, for
instance, [19]). On the other hand, for attractive bosons the local-density approximation
does not work since ξ is proportional to the soliton size. However, this very fact that ξ ∝ R
leads to important predictions for the energy and size scalings of bosonic solitons [14].

In our fermionic N+1 case the typical second-order process contributing to the beyond-
MF term is a virtual excitation of the light atom creating a particle-hole excitation in the
Fermi sea of heavy atoms. The typical momentum transfer is on the order of the Fermi
momentum, which means that ξ is comparable to the mean interparticle separation for
the heavy atoms, which scales as R/

√
N . Therefore, the beyond-MF correction in our

case is local and can be obtained by analyzing the homogeneous problem. We just need
to know the second-order ground-state energy shift for a single light atom immersed in a
uniform Fermi sea of heavy atoms with Fermi momentum pF . Having found no answer in
the literature we briefly outline this calculation.

Normalizing the single-particle states per unit surface we write the second-order energy
correction as [20]

∆E(2) =
2Mg2

(2π)4

∫
dpdp2

2pp2 − (1 +M/m)p2
. (7)

The integration domain in Eq. (7) is defined by the inequalities p2 < pF , p < κ, and
|p2 − p| > pF , corresponding to the following virtual process. The unperturbed state is
the impurity at rest and a Fermi sea filled up to pF . The virtually excited state is the light
atom at momentum p, a heavy hole at momentum p2, and a heavy atom at momentum
p2 − p. We find it convenient to expand p2 into a vector p‖ parallel to p and a vector
p⊥ perpendicular to p. The integral over the angle of p gives 2π. We then integrate
Eq. (7) over p⊥, then over p, and finally over p‖. In this manner, neglecting finite-range
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corrections p2F o(pF /κ), we obtain

∆E(2) = −
mrg

2p2F
(2π)2

ln(ξκ), (8)

where

ξ =
e1/2

pF

(
M

m
+ 1

)(
M

m

)−1/(1−m/M)

. (9)

Since we are interested in the regime M/m ∼ N2 � 1, Eq. (9) further simplifies to
ξ = e1/2/pF which confirms the qualitative guess ξ ∼ 1/pF and shows that the large mass
ratio does not dramatically influence this estimate. We can now proceed with the local-
density approximation. Substituting pF =

√
4πNn(r) into Eqs. (8) and (9), keeping only

the leading-order terms at large M/m, and going back to notations of Eq. (2) we write
the beyond-MF correction to the cluster energy in the form

EBMF = − 1

2m

γ2

2πN

∫
n(r)|φ(r)|2 ln

e1/2κ√
4πn(r)N

d2r. (10)

Note that EBMF ∝ N−1 lnN is smaller than any of the three terms in Eq. (2), which are
∼ 1 (for a cluster of unit size). Therefore, Eq. (10) cannot strongly influence the shape of
the cluster, but it can remove the degeneracy related to arbitrariness of R. Substituting
φ(r) = φ0(r/R)/R and n(r) = n0(r/R)/R2 into Eqs. (2) and (10) and assuming γ =
γc +O(1/N) we obtain up to the terms of order 1/N

E + EBMF =
I1γ

2
c

8πNmR2

(
4πN

γ − γc
γ2c

+
I2
I1
− ln

eκ2R2

4πN

)
, (11)

where I1 =
∫
n0(ρ)φ20(ρ)d2ρ and I2 =

∫
n0(ρ)φ20(ρ) lnn0(ρ)d2ρ. Note that up to the

chosen accuracy (γ − γc)/γ2c ≈ 1/γc − 1/γ and 4πN/γ ≈ ln[4e−2γE/(aκ)2]. Minimization
of Eq. (11) then gives

R2
min = πNa2e4πN/γc+I2/I1+2γE+O(1/N) (12)

and

EN+1 = − I1γ
2
c

8πNmR2
min

. (13)

The preexponential-factor accuracy in Eqs. (12) and (13) follows from the beyond-MF
accuracy of Eq. (11) and from the fact that the weak-interaction parameter mr|g| � 1 is
equivalent to 1/N � 1 in the self-bound regime since γ ∼ 1. We note, however, that the
TF approximation for the kinetic energy of the heavy fermions is guaranteed only to the
leading order in 1/N . To estimate the error we pass to the Hartree-Fock (HF) description.

4 Hartree-Fock approach

The Hartree-Fock approach for solving the N + 1 cluster problem consists in introducing
N orthonormal orbitals Ψν(r) and minimizing Eq. (2), in which the TF approximation
αn2(r)/(4m) is replaced by

∑N
ν=1 |∇Ψν |2/(2M). With these notations, the minimization

of the energy functional with respect to φ gives Eq. (3) with

n(r) =
N∑
ν=1

|Ψν |2/N (14)

6



SciPost Physics Submission

and the minimization with respect to the orbitals Ψν(r) leads to

−∇2Ψν +
4πγN

α
|φ|2Ψν = ωνΨν , (15)

where ων are Lagrange multipliers corresponding to the normalization constraints
∫
|Ψν |2d2r =

1. The functions φ and n determined by the TF and HF approaches are different, but
one can easily check that their scaling properties are the same. In the HF method the
length scale can thus also get fixed by setting 2mε0 = −1 and denoting the correspond-
ing solutions by φ0 and n0. In addition, we assume cylindrical symmetry by imposing
φ0(r) = φ0(r). Equation (15) then splits into one-dimensional Schrödinger equations for
functions ψl,ν(r), such that Ψν(r) = ψl,ν(r)eilϕ, with l being the integer angular momen-
tum. States with l 6= 0 are doubly degenerate corresponding to ±l. To find the ground
state, we diagonalize Eq. (15) and we select the N states with the lowest energy among all
possible channels. We then plug these states into Eq. (14), substitute n0 into Eq. (3), and
find γ for which Eq. (3) has a ground state corresponding to 2mε0 = −1. The function
φ0 is then substituted back into Eq. (15) and the process is repeated until convergence.
This procedure results in the critical γHF

c which, in contrast to γTF
c (we use superscripts

to specify the method), does not only depend on α but also on N .

5 10 50 100

0.0001

0.001
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0.1

5 10 50 100

Figure 2: Left panel — |γHF
c − γTF

c | versus N for α = 2. Black color corresponds
to γHF

c − γTF
c > 0, red to γHF

c − γTF
c < 0. The solid line marks the slope ∝ N−1.

For reference, for α = 2 we have γTF
c = −5.460. Right panel — same as the left

panel but α = 8. Here γTF
c = −9.714.

Figure 2 shows the convergence of the HF value γHF
c (α,N) towards the TF value

γTF
c (α) at large N for α = 2 and α = 8. We show results up to N = 256. The black

straight lines indicate the slope N−1. We believe that stronger fluctuations for larger α are
due to the fact that the uppermost filled heavy-atom orbitals are closer to the dissociation
threshold and the system is thus more sensitive to changes in N . Accordingly, we find that
the case of larger α and N requires finer and larger spatial grids for accurate calculations.

The fact that |γHFc −γTF
c | scales as N−1 on average shows phenomenologically that to

keep up with the claimed accuracy (up to the preexponential factor) for the cluster energy
we should use γHF

c instead of γc in Eqs. (12) and (13). The best TF-based prediction
for the cluster energy is therefore EN+1 = −a−2e−4πN/γc−2 lnN+O(N0). Advantages of
the TF approximation is that it has α as the only input parameter and that limiting
cases can be worked out analytically. By contrast, the higher accuracy of the HF method
comes at the price of doing separate calculations for each N and M/m. However, the HF
method predicts the structure of the cluster, its angular momentum and parity. It can
also naturally handle excited states.
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5 Hartree-Fock method applied to small clusters

Although the HF method is valid for N � 1, it is tempting to benchmark its performance
for the few lowest-order clusters, for which exact results are known [8–10]. In addition, the
obtained solutions can also be used as guiding functions for the fixed-node Monte-Carlo
scheme (see, for instance, [21]). We find that the HF method describes these small clusters
rather well and we expect the accuracy to further improve with increasing N .

As we describe in Sec. 4, iteratively solving Eqs. (3), (14) and (15) we obtain the
critical γHFc and the fields n0(r) and φ0(r). From there we calculate the integrals I1 =∫
n0(r)φ

2
0(r)d

2r and I2 =
∫
n0(r)φ

2
0(r) lnn0(r)d

2r and determine the energy from Eqs. (12)
and (13). Explicitly,

EN+1 = − I1(γ
HF
c )2

8π2N2ma2
e−4πN/γ

HF
c −I2/I1−2γE . (16)

We note that although the beyond-MF correction Eq. (10) is obtained within the TF frame-
work, it is sufficiently precise to be used in combination with the Hartree-Fock Eqs. (3),
(14), and (15).
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Figure 3: Hartree-Fock energies of the 1 + 1 dimer (dotted black), 2 + 1 trimer
(solid black), 3 + 1 tetramer (dotted red), 4 + 1 pentamer (dot-dashed blue), and
the excited 3 + 1 tetramer (dashed brown) in units of the exact dimer energy as
a function of the mass ratio. We use the same color code as in Fig. 1 of Ref. [9].

In Fig. 3 we plot the energies EHF
N+1 in units of the exact dimer energy as a function

of the mass ratio. The different curves stand for the 1 + 1 cluster (dotted black, in the
HF description the heavy atom occupies the lowest s-wave orbital), 2 + 1 trimer (solid
black, occupied are the lowest s-wave and one of the two degenerate l = ±1 orbitals),
3 + 1 ground tetramer (dotted red, occupied are the lowest s-wave and both lowest p-wave
orbitals), 4 + 1 pentamer (dash-dotted blue, occupied the lowest and the first excited s-
wave and both p-wave orbitals), and the excited 3 + 1 tetramer found in Ref. [10] (dashed
brown, occupied are the lowest and the first excited s-wave and one of the lowest p-
wave orbitals). One can see that the HF approach reproduces the structure of the levels
rather well (cf. [9]), although the artifacts of the approach are also visible. For instance,
the trimer and the tetramer emerge immediately with finite binding energies, which is
a consequence of the nonlinearity of the equations. The threshold behavior depends on
the angular momentum of the orbital or, more precisely, on the convergence properties of
the corresponding normalization integral. Since at zero energy the orbitals with angular
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momentum l behave as ψl,ν ∝ r−|l|, the normalization integral for s-wave orbitals diverges.
Therefore, a heavy atom in the s-wave orbital is in the halo state and does not influence
the core. The crossing is therefore smooth (see the crossings of the pentamer and the
excited tetramer). By contrast, for |l| > 1 the zero-energy orbital function is normalizable
meaning that the newly bound heavy atom is inside the core right at the threshold. This
creates artifacts due to the nonlinearity. We find that the case |l| = 1, in spite of the
logarithmic divergence of the normalization integral, is also prone to this nonlinear effect.

The cylindrical-symmetry assumption has to be carefully checked, but it requires a
more involved two-dimensional analysis. We leave this task as well as the investigation of
higher-order clusters to the future.

6 Conclusion

A two-dimensional fermionic N + 1 cluster binds for sufficiently large M/m. The MF
theory valid for large N predicts the threshold value M/m = 2N2/C = 1.074N2 and the
cluster shape at this point and for larger M/m. The beyond-MF analysis based on the
local-density approximation gives closed-form expressions for the size and energy of the
cluster. The accuracy and practical relevance of the obtained results can be increased by
switching to the Hartree-Fock form of the MF density functional. Finally, our findings have
implications for ultracold fermionic mixtures. We can think of strongly mass-imbalanced
mixtures of 6Li with 173Yb [22,23] or with other heavy Lanthanides such as Dy or Er.
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