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Abstract

Spectral statistics such as the level spacing statistics and spectral form factor (SFF) are
widely expected to accurately identify “ergodicity,” including the presence of underlying
macroscopic symmetries, in generic quantum systems ranging from quantized chaotic
maps to interacting many-body systems. By studying various quantizations of maximally
chaotic maps that break a discrete classical symmetry upon quantization, we demon-
strate that this approach can be misleading and fail to detect macroscopic symmetries.
Notably, the same classical map can exhibit signatures of different random matrix sym-
metry classes in short-range spectral statistics depending on the quantization. While the
long-range spectral statistics encoded in the early time ramp of the SFF are more robust
and correctly identify macroscopic symmetries in several common quantizations, we also
demonstrate analytically and numerically that the presence of Berry-like phases in the
quantization leads to spectral anomalies, which break this correspondence. Finally, we
provide numerical evidence that long-range spectral rigidity remains directly correlated
with ergodicity in the quantum dynamical sense of visiting a complete orthonormal ba-
sis.
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1 Introduction29

1.1 Background and motivation30

The connection between the statistics of energy levels and a variety of ergodic phenomena31

is a foundational problem in the study of quantum signatures of chaos [1] and the statisti-32

cal mechanics of quantum many-body systems [2]. In generic systems with a classical limit33

or many-body structure, an empirically successful approach has been to look for signatures34

of eigenvalue statistics associated with random matrix theory (RMT) [3], in order to diag-35

nose “ergodicity” if these are present [4–20], and infer its absence otherwise [21–26]; indeed,36

the presence of “ideal” RMT statistics can be shown to be sufficient (but not necessary) for37

an ergodic exploration of an orthonormal basis in the Hilbert space of a general quantum38

system [27]. However, for a complete understanding of the utility of eigenvalue statistics,39

it is essential to quantitatively characterize deviations from this idealized behavior, particu-40

larly to identify where such statistics no longer accurately diagnose different forms of ergod-41

icity/thermalization.42

There are a number of interesting systems where deviations from RMT have been observed43

that point to an increasing need to characterize non-RMT behavior [21, 27–35]. Barring spe-44

cific cases with alternate explanations, these deviations are generally due to emergent quantum45

symmetries not present in the classical system [1], usually connected to the classical periodic46

orbits, that lead to ergodicity-breaking after the Ehrenfest time [36,37] at which classical and47

quantum evolutions diverge significantly. Prominent examples include the modular multipli-48
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cation [30, 38, 39] and cat maps [28, 29] (which become exactly periodic in their standard49

quantization), and chaotic dynamics on arithmetic domains in hyperbolic surfaces [32, 33],50

where RMT statistics are present only if specific boundary conditions are imposed on quanti-51

zation [34], being strongly violated by emergent Hecke symmetries [32] otherwise.52

In this work, we identify and characterize anomalies in spectral statistics of a different53

(and essentially opposite) nature to the above systems, originating in the quantum mechani-54

cal breaking of discrete symmetries that are rigorously present at the macroscopic scale. The55

existence and relevance of such anomalies is suggested, for instance, by studies of certain56

exceptional billiard systems [40–43]. Specifically, we consider quantizations of maximally57

chaotic quantum maps in which we show that discrete macroscopic symmetries are not accu-58

rately reflected in the most commonly used measures of spectral statistics: (1) the spectral59

form factor (SFF) [1, 9], which measures spectral rigidity over different energy scales as a60

function of time (namely, long-range at early times, and short-range at late times), (2) the61

(short-range) nearest neighbor level spacing statistics [1, 4–7], and (3) the adjacent gap ra-62

tios [44] (characterizing the short-range next-nearest-neighbor statistics). The short-range63

statistics in particular show especially stark violations. These violations are striking in the64

context of the use of spectral statistics to identify discrete symmetries of the time evolution65

operator. While such diagnostics are effective in a variety of systems exhibiting block RMT be-66

havior [10,45–48], our results show they cannot always be relied upon, even in simple systems67

with a well-defined classical limit.68

1.2 Summary of this paper69

We aim to illustrate the unreliability of common spectral statistics in identifying discrete sym-70

metries as may be present in quantized chaotic maps or many-body systems. To ensure that71

the systems being compared have an identical and well-understood macroscopic behavior, we72

consider classical maps that are known to have two discrete symmetries that square to unity73

(i.e., restore the original system on acting twice). More specifically, we study spectral statistics74

in different quantizations [49, 50] of the A-baker’s maps, which are classically paradigmatic75

examples of ergodicity with maximally chaotic (Bernoulli) behavior [51]. Incidentally, in ad-76

dition to having a classical limit, these quantizations are particularly amenable to implemen-77

tation as many-body Floquet quantum circuits [52,53]. Further, all these quantizations reduce78

in the classical limit to the same classical A-baker’s maps, and thus possess the same two dis-79

crete symmetries (Sec. 2). These are: a canonical reflection symmetry, and an anticanonical80

time-reversal symmetry, which respectively correspond to a unitary reflection and antiunitary81

time-reversal operator on quantization.82

Our main qualitative results, described more thoroughly in Sec. 3, are as follows. While83

the spectral statistics of some of these quantizations are already known to be “unusual”, a key84

observation in this work is that these unusual features can be satisfactorily organized in terms85

of a simple, and potentially generalizable, picture of different levels of “discrete symmetry86

breaking” in the spectral statistics. These anomalies are to be evaluated relative to the follow-87

ing general expectation based on RMT [1, 3]: the presence and absence of the time-reversal88

symmetry respectively correspond to COE and CUE level statistics, with the presence or ab-89

sence of the reflection symmetry indicating a 2-block or 1-block structure of the associated90

random matrix. In particular, based on their classical symmetries, quantized A-baker’s maps91

would be expected to have the spectral statistics of 2-block COE. With this context, we identify92

spectral anomalies of two types (Sec. 3.1, 3.2):93

1. “Weak anomalies” whose primary effect is in the regime of long times corresponding to94

short-range energy spacings, leading to full (single-block) RMT-like behavior in the mean95

gap ratio statistic and nearest neighbor level spacings for large A (ranging from 1-block96
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COE to CUE). However, the early-time SFF is consistent with the presence of the unitary97

reflection symmetry (2-block COE). These demonstrate that short-range measures can98

be misleading indicators of discrete symmetries.99

2. “Strong anomalies” that affect even the regime of early times and long-range energy100

spacings in addition to the long-time regime as above, where even the early-time SFF101

shows RMT behavior consistent with the absence of unitary symmetries (1-block COE).102

These show that even long-range measures can be misleading in certain circumstances.103

Subsequently, we study the connection between these spectral anomalies and dynamics.104

We show analytically and numerically that strong anomalies emerge from the inclusion of ad-105

ditional phases in specific quantizations [49], which have no impact in the classical limit, but106

occur as Berry-like phases in the semiclassical periodic orbit expression (Sec. 3.3). Further, we107

numerically study quantum dynamics in the Hilbert space in the sense of cyclic ergodicity [27],108

and find that strong anomalies appear to induce cyclic ergodicity where weak anomalies do109

not, verifying the direct connection between long-range spectral statistics and ergodic quan-110

tum dynamics irrespective of classical symmetries (Sec. 3.4). The remaining sections offer111

additional analytical and numerical details concerning these results.112

2 Models113

In this section, we introduce the classical and quantum systems.114

Classical maps— The classical maps we consider are the A-baker’s maps [49,51,54], which115

act on the 2-torus T2 = R2/Z2 (identified with the unit square) via116

(q, p) 7→
�

Aq− ⌊Aq⌋,
p+ ⌊Aq⌋

A

�

, (1)

for (q, p) ∈ [0, 1) × [0,1) and A ≥ 2 an integer. When A = 2, this is the same as the usual117

baker’s map. We depict the action of the A-baker’s map for A= 3 on the unit square in Fig. 1.118

0 1

1

1
3

2
3 0 1 2 3

1
3

0 1

1

Figure 1: Visualization of the action of the 3-baker’s map, starting from the left
unit square and ending with the right unit square. The intermediate step shows
the stretching, cutting, and stacking operation described by Eq. (1).

The classical A-baker’s map is equivalent to a 2-sided Bernoulli shift [49, 51, 55] and is119

thus maximally chaotic. It represents a fairly “universal” model of chaotic dynamics, as any120

K-mixing (ergodic and chaotic) system with sufficiently large Kolmogorov-Sinai entropy [56]121

(essentially the sum of nonnegative Lyapunov exponents) h ≥ ln A can be coarse-grained into122

a given A-baker’s map (or most directly, the corresponding Bernoulli shift), by the Sinai factor123

theorem [57,58]. The A-baker’s maps possess two symmetries, a time-reversal (TR) symmetry124

T : (q, p) 7→ (p, q) and a reflection symmetry125

R : (q, p) 7→ (1− q, 1− p), (2)

which will play key roles in our analysis. Due to the time-reversal symmetry, one expects126

the RMT symmetry class for the corresponding quantized systems to be that of the circular127
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orthogonal ensemble (COE). Additionally, due to the reflection symmetry, one expects two128

distinct COE symmetry classes, leading to an overall behavior resembling a direct sum of two129

COE matrices. As we will demonstrate, however, these general expectations need not hold130

even approximately when the classical symmetries are broken upon quantization.131

We briefly note that while we do not exhaustively verify the absence of any further classical132

symmetries for A > 2, numerical results counting values of the classical action on orbits (as133

defined in Eq. (30)) suggest the above symmetries are likely the only two. In any case however,134

the main conclusions of this paper that spectral statistics can fail to detect symmetries would135

still hold.136

Balazs–Voros, Saraceno, and generic quasiperiodic quantizations— For quantizing a map like137

the classical A-baker’s map Eq. (1), there is no unique method; essentially one just requires138

the associated quantum map to be a unitary N ×N matrix that reduces to the classical map in139

the semiclassical limit N →∞. The first quantization of the baker’s map was given by Balazs140

and Voros in [49]; for the simplest case A= 2 and N even, this reads141

B̂N = F̂−1
N

�

F̂N/2 0
0 F̂N/2

�

, (3)

where F̂N is the N × N discrete Fourier transform (DFT) matrix defined via142

(F̂N ) jk =
1
p

N
e−2πi jk/N , j, k = 0, . . . , N − 1.

This quantization using the standard DFT matrix is associated with periodic boundary con-143

ditions on the torus T2. In order to study different quantum symmetries, we will consider144

the natural “generic” quantization for the A-baker’s map with quasiperiodic boundary condi-145

tions [49,50,59] corresponding to θ = (θ1,θ2) ∈ [0,1)2,146

Genθ1,θ2
A,N = (F̂θ1,θ2

N )−1
A−1
⊕

j=0

F̂θ1,θ2
N/A , (4)

where147

(F̂θ1,θ2
N ) jk =

1
p

N
e−2πi( j+θ1)(k+θ2)/N (5)

is a generalized DFT matrix, and N ∈ AN. The direct sum part of Eq. (4) produces a block148

diagonal matrix consisting of generalized DFT matrices F̂θ1,θ2
N/A .149

The case θ1 = θ2 = 0 is the Balazs–Voros quantization of the A-baker’s map, for which we150

may use the abbreviated label “BV” in plots or tables. The Balazs–Voros quantizations preserve151

an operator TR symmetry but break an operator reflection symmetry (Sec. 4.1), and for A= 2152

were observed to show anomalous level spacings behavior depending on the dimension N [49].153

The case θ1 = θ2 = 1/2 is the Saraceno quantization from [50], and corresponds to an-154

tiperiodic boundary conditions. This quantization preserves TR symmetry and moreover pre-155

serves the classical reflection symmetry, as it commutes with the microscopic reflection opera-156

tor RN : |x〉 7→ |N − x −1〉. As a consequence, this was observed for A= 2 to restore COE level157

spacing statistics within each symmetry class.158

In general, for θ1 ̸= θ2, the generic quantization in Eq. (4) does not appear to preserve a159

clear operator TR or reflection symmetry like in the Saraceno case. Possible symmetries are160

discussed further in Sec. 4.1 and Appendix A.161

Shor baker quantization— In addition to the above generic (quasi)periodic quantizations,162

we consider the “Shor baker quantizations” from [38,39]. These quantizations are part of the163
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quantum baker’s map decomposition of the modular multiplication operator in Shor’s factoring164

algorithm [30], and can be defined as165

ŜA,N = F̂−1
N

� A−1
⊕

j=0

e2πi j2/AF̂0,− j/A
N/A

�

, (6)

where F0,− j/A
N/A denotes a generalized DFT matrix defined via Eq. (5). These Shor baker quan-166

tizations again appear to break both the operator TR and reflection symmetries.167

Phase variants— Finally, we consider “phase variant quantizations” by adding arbitrary168

Berry-like phases e2πiα = (e2πiα0 , . . . , e2πiαA−1) to the DFT block sectors of the previous A-baker’s169

map quantizations. These are written in the right column of Tab. 1. These quantizations have170

historically been considered as variations on the usual Balazs–Voros or Saraceno quantizations171

since [49], but generally are overlooked in favor of the simpler standard/phaseless quantiza-172

tions. For generic or random phases, we will see that the phase variant quantizations exhibit173

significantly different spectral statistics than their corresponding standard/phaseless quanti-174

zations.175

Standard/Phaseless Phase variant

Balazs–
Voros

F̂−1
N

A−1
⊕

j=0

F̂N/A F̂−1
N

A−1
⊕

j=0

e2πiα j F̂N/A

Saraceno
�

F̂
1
2 , 1

2
N

�−1 A−1
⊕

j=0

F̂
1
2 , 1

2
N/A

�

F̂
1
2 , 1

2
N

�−1 A−1
⊕

j=0

e2πiα j F̂
1
2 , 1

2
N/A

Generic
Genθ1,θ2

A
(F̂θ1,θ2

N )−1
A−1
⊕

j=0

F̂θ1,θ2
N/A (F̂θ1,θ2

N )−1
A−1
⊕

j=0

e2πiα j F̂θ1,θ2
N/A

Shor
baker

F̂−1
N

A−1
⊕

j=0

e2πi j2/AF̂
0,− j

A
N/A F̂−1

N

A−1
⊕

j=0

e2πiα j F̂
0,− j

A
N/A

Table 1: Definitions of the different quantizations of the A-baker’s map. Balazs–Voros
is the same as Gen0,0

A , and Saraceno the same as Gen1/2,1/2
A . The “default” quanti-

zations will be the standard/phaseless ones, and we may simply refer to them as
the “Balazs–Voros/Saracneo/Generic/Shor baker” quantizations, while for the quan-
tizations with arbitrary phases e2πiα we will always specify that it involves the extra
phases.

All of the quantizations in Tab. 1 are quantizations of the classical A-baker’s map in the176

sense that they map coherent states localized in phase space near (q, p), to coherent states177

localized in phase space near the classical time-evolved point
�

Aq − ⌊Aq⌋, p+⌊Aq⌋
A

�

as N →∞.178

For details, see [60, §4] and [39, Suppl. Mat.], noting that for quasiperiodic boundary con-179

ditions one must use the appropriate quasiperiodic coherent states and generalized DFT ma-180

trix F̂θ1,θ2
N . Additionally, for the Balazs–Voros (and Saraceno) quantizations, the argument181

in [60, §5] proves a rigorous “Egorov property” concerning time-evolution of quantum observ-182

ables OpN (a) corresponding to classical observables a on T2 supported away from classical183

discontinuities,184

∥Û t
N OpN (a)Û

−t
N −OpN (a ◦ B−t)∥

N→∞
−−−−→ 0, (7)

where ÛN is the quantization and B is the classical A-baker’s map. The argument is insensi-185

tive to phases on the DFT blocks, so that the same rigorous correspondence holds for their186

corresponding phase variant quantizations. We expect the same argument (with some minor187

adaptations) applies to the generic quasiperiodic and Shor baker quantizations both with and188

without phases.189
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3 Overview of results190

In this section, we explain the main results summarized in Tab. 2, which compares the nearest-191

neighbor level spacing statistics and spectral form factor behavior by quantization and presence192

of quantum symmetries. We provide the numerical results for the level spacing statistics, and193

both analytical and numerical results for the early time SFF slope. Due to the classical TR194

and reflection symmetries of the classical A-baker’s map, one would expect its quantizations195

to exhibit spectral statistics similar to a 2-block COE matrix (a direct sum of two independent,196

equal sized COE matrices). As has been well-known since [49], this already does not hold197

for the level spacing statistics of the Balazs–Voros quantization with A = 2, which display198

intermediate level spacing statistics due to the mixing of symmetry sectors. But as we will see,199

there are several subtleties involved with the spectral statistics, and the results will depend200

on both the spectral statistic chosen and the particular quantization type. We emphasize the201

following main points.202

(A) Unlike the A= 2 case, for large A, the level spacing statistics actually do appear to follow203

classical RMT behavior for all considered quantizations. However, this RMT behavior can204

be of the wrong symmetry class (e.g. CUE vs COE) and/or reflect the wrong number of205

symmetry sectors.206

(B) For the standard/phaseless quantizations, the early time SFF behavior correctly identi-207

fies the RMT symmetry class and symmetry sectors, even as the level spacings do not.208

This provides a resolution for the non-RMT level spacing statistics in [49], as well as for209

the wrong symmetry class behavior in the aforementioned point. Such spectral anoma-210

lies, where the long-range statistics remain reliable even as the short-range ones do not,211

are those we term “weak anomalies”, and they appear to be well-described by a block212

Rosenzweig–Porter-like interpolation between RMT ensembles.213

(C) The Berry-like phases in the phase variant quantizations produce “strong spectral anoma-214

lies”, where even the early time SFF misses one of the classical symmetries. Using a215

semiclassical periodic orbit analysis, we analytically characterize the early time SFF slope216

as a function of the phase choices, and show a generic choice of phases (probability 1217

set) will always lead to strong anomalies. We note that the reflection and TR symmetries218

continue to emerge in the classical limit despite these phases.219

(D) The presence of strong anomalies is verified numerically to be tied to ergodicity in a220

quantum dynamical sense of exploring an orthonormal basis in the Hilbert space [27],221

irrespective of symmetries in the classical limit. However, weak anomalies do not appear222

to be sufficiently strong to induce ergodic dynamics in this sense.223

3.1 Nearest-neighbor level spacing statistics224

While RMT level spacing statistics are commonly used as an indicator (or even definition)225

of “quantum chaotic” systems [1], the A-baker’s map quantizations can exhibit non-universal226

level spacing statistics that are strongly sensitive to the particular quantization choice. The227

first hint of complication is that the Balazs–Voros quantization in Eq. (3) (A= 2) was observed228

in [49] to have level spacing statistics that vary depending on N ; they almost never look COE229

or block COE, which was explained as due to the quantization breaking the classical reflection230

symmetry in Eq. (2) and mixing symmetry sectors together.231

Surprisingly, as demonstrated by Figs. 2 and 3, we find the level spacing statistics and mean232

gap ratio statistic (computed from the level spacings [44,48,61]) for the higher slope A-baker’s233

maps begin to look very close to those of a single COE or CUE matrix as A increases, for all234
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BV Saraceno Genθ1,θ2
A Shor baker

A= 2 Level spacings mixed 2-COE 2-COE/mixed mixed
SFF slope 4 4 4 4

A large Level spacings COE 2-COE CUE CUE
SFF slope 4 4 4 4

BV(α) Saraceno(α) Genθ1,θ2
A (α) Shor baker(α)

A= 2 Level spacings COE COE COE/mixed mixed
SFF slope 2 2 2 2

A large Level spacings COE COE CUE CUE
SFF slope 2 2 2 2

Table 2: Summary of spectral statistics for the various quantizations of the A-baker’s
map, with the standard or phaseless quantizations in the top section, and the ran-
dom phase variant quantizations in the bottom section. The columns for the generic
quantization Genθ1,θ2

A and its phase quantization reflect the choices θ = (0.2,0.7) and
(0, 0.5) for numerics, though the SFF slope behavior we derive through the periodic
orbit analysis applies to any choice of θ . As seen in the table, the level spacing statis-
tics (and mean gap ratio) vary greatly across all quantizations, and only accurately re-
flect the classical symmetry sectors over all A for the standard Saraceno quantization,
which preserves both classical symmetries upon quantization. The early time SFF
slope successfully identifies the symmetry sectors for all standard/phaseless quanti-
zations (top section), even when the operator does not exhibit a clear analogue of the
classical symmetries. However, the SFF misses the reflection symmetry in the ran-
dom phase variant quantizations in the bottom section. The entries labeled “mixed”
indicate level spacings that do not adhere to a single RMT or block-RMT ensemble,
and instead look somewhere inbetween ensembles.

quantizations except the standard Saraceno quantization. Thus for large values of A, these235

level spacing statistics appear RMT, but reflect the wrong symmetry classes. The effect of the236

classical reflection symmetry appears to completely disappear for large A (for non-Saraceno237

quantizations), and for some quantizations the TR symmetry separating COE from CUE is238

ignored as well. For reference, the mean gap ratio values for the RMT ensembles as derived239

in [48,61] are provided in Tab. 3.240

Although all quantizations share the classical limit of an A-baker’s map, they exhibit a241

wide variety of level spacing and gap ratio statistics, ranging from the expected 2-block COE242

behavior, to single block COE, to single block CUE, and to intermediate or mixed statistics243

inbetween two RMT ensembles. We observe that for large A, it appears these short-range244

spectral statistics reflect certain symmetries of the quantized operator (Sec. 4.1, Appendix A),245

but not necessarily those of the underyling classical map.246

3.2 Spectral form factor247

The spectral form factor (SFF) is the Fourier transform of the 2-point level correlation func-248

tion [1,3]. For ÛN an N × N unitary matrix, the SFF is given by the formula249

SFF(t) =
1
N
|Tr(Û t

N )|
2 =

1
N

N
∑

j,k=1

ei t(θ j−θk), (8)

where (θ j)Nj=1 are the eigenangles of ÛN . The normalization is chosen so that the SFF can be250

conveniently analyzed and compared across different values of N . For early times t > 0, the251
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Balazs–Voros
Balazs–Voros
w/ phases
Saraceno
Saraceno
w/ phases

Gen0.2,0.7
A

Gen0.2,0.7
A (α)

Gen0,0.5
A

Gen0,0.5
A (α)

Shor baker
Shor baker
w/ phases

Figure 2: Averaged mean gap ratio for quantizations of the A-baker’s map, as a func-
tion of A. Each point represents an average over 50 values of N ∈ AN, starting near
N = 5000. The horizontal lines, from top to bottom, plot the RMT reference values
for CUE (dotted), COE (dashed), and 2-block COE (dash-dot-dotted). Only the stan-
dard Saraceno quantizations (downward triangle) exhibit mean gap ratios close to
the expected 2-block COE value for all A.

SFF measures long-range spectral correlations, while for larger times t, the SFF describes finer252

spectral correlations such as level spacings and eventually discreteness of the spectrum.253

Lettingτ= t/N , there is the well-known formula for the COE form factor averaged over the254

random ensemble in the limit N →∞ [1], which for early timesτ yields 〈SFFCOE(τ)〉= 2τ+O(τ2).255

For 2-block COE matrices, the corresponding ensemble-averaged SFF is 〈SFF2-COE(τ)〉= 〈SFFCOE(2τ)〉.256

Thus the early time SFF slope is 2 for a single COE matrix, and 4 for the 2-block COE matrix.257

For the A-baker’s map quantizations, since we do not have an ensemble of matrices to average258

over, we average the SFF by averaging over neighboring points as described in Appendix C.259

We first demonstrate that the early time (averaged) SFF resolves the two issues with the260

level spacing statistics for the standard/phaseless quantizations, (i) the non-universal behavior261

for small A of the Balazs–Voros/Generic/Shor baker quantizations, and (ii) the apparent dis-262

appearance of two distinct symmetry sectors for the same quantizations with larger A. These263

cases thus correspond to “weak anomalies”, for which the SFF provides a satisfactory diagnos-264

tic of the spectral behavior and classical symmetries.265

As shown in the top row of Fig. 4, for very early times τ, the SFFs for the standard phase-266

less quantizations follow the slope 4 reference SFF behavior for the 2-block COE, correctly267

reflecting the classical map symmetries. The longer time behaviors (corresponding to shorter268

range statistics) however vary greatly. For larger τ, the Saraceno quantizations (and Gen0,0.5
A=2 )269

continue to follow the 2-block COE SFF, as previously demonstrated for the Saraceno A = 2270

quantization in [62], but the other standard quantizations appear to cross over to the single271

COE or CUE SFF at a time τ that decreases as A increases. Since the level spacing statis-272

tics are short-range, corresponding to larger τ, this faster cross-over explains the Balazs–273

Voros/Generic/Shor baker matrix level spacing histograms approaching those of a single COE274

or CUE matrix as A increases. For these cases, which describe “weak anomalies”, both the275

RMT nature and symmetry sectors are readily apparent in the SFF, in contrast to the differing276

information from the level spacing statistics.277

The phase variant quantizations hold the surprise however. As shown in the bottom row of278

Fig. 4, the addition of random phases to the quantizations interferes with the classical reflection279

symmetry in a way that the early time SFF fails to detect it. Instead, the early time avearged280

SFF has slope 2, capturing only the classical TR symmetry. (The level spacings are of even less281

help, as seen in Figs. 2 and 3). We remark that from Fig. 4, it is not entirely clear whether it is282

the TR or reflection symmetry that is missed by the early time SFF; the SFF for several of the283
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Figure 3: Level spacing histograms for the different quantizations of the A-
baker’s map, for N = 9690. Note the variety of behaviors–COE, 2-block COE,
mixed/indeterminate, and even CUE–that can arise, despite the same classical map
symmetries. Only the phaseless Saraceno quantizations and phaseless Gen0,0.5

A=2 quan-
tization appear to follow the 2-block COE curve. The mean gap ratio statistic 〈r̃〉 is
also computed for each quantization.

quantizations follows the COE curve which strongly suggests it is the reflection symmetry that284

is broken in those cases, but the SFF for other quantizations crosses over to the CUE curve.285

From the periodic orbit analysis below, we will see that it is still the reflection symmetry that286

is broken at early times in all cases. From the periodic orbit analysis, we will also be able287

to identify the specific phases α that produce an SFF slope of 4, which is a measure zero set288

but contains more elements than just those corresponding to the standard/phaseless (α j = 0)289

quantizations.290

In addition to the SFF plots in Fig. 4, we plot the best fit SFF slope over a wide range291

of dimensions N in Fig. 5. Unlike the standard/phaseless quantizations which produce SFFs292

with slope near 4 that accurately describe the classical symmetry sectors, the quantizations293

with random phases produce SFFs with slope near 2, thereby hiding the classical R symmetry.294

Overall, as summarized in Tab. 2, although the early time SFF slope correctly identifies both295

classical symmetries for the standard/phaseless quantizations (“weak anomalies”), it only cap-296

tures one classical symmetry for the phase variant quantizations (“strong anomalies”). Mean-297

while the level spacings fare worse, missing either one or both classical symmetries in almost298

all quantizations.299

Based on the level spacings and SFF behaviors, we find it appears that the spectral statistics300

for these quantized A-baker’s maps look like those of a Rosenzweig–Porter-like [45] interpo-301

lation between a 2-block COE matrix and a standard CUE or COE matrix (for standard quan-302

tizations), or between a COE matrix and a CUE matrix (for phase variant quantizations). For303

the former case, this type of block Rosenzweig–Porter model was introduced (for block GUE)304

in [26] as a model for glassy behavior. In our case with unitary matrices, we will utilize a305

different interpolation to preserve unitarity, namely a geodesic path between unitary matrices306

U0 and U1 given by307

f (t) = U0 exp(t log(U†
0 U1)), (9)

for 0 ≤ t ≤ 1. For interpolating between a 2-block COE matrix U0 and a COE matrix U1, we308

write U0 = V T V and U1 =W T W for unitaries V and W , apply Eq. (9) to obtain an interpolation309

fVW (t) between V and W , and then take the interpolation F(t) = fVW (t)T fVW (t) between U0310

and U1. In the other two cases, interpolating between 2-block COE and CUE or between COE311
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Figure 4: Averaged SFFs for the different quantizations of the A-baker’s maps, for
N = 9690. In the top row of standard phaseless quantizations, the very early time
SFF follows the 2-block COE behavior (slope 4 at the origin), while for the bottom
row of phase variant quantizations, the early time SFF has slope 2. All insets show
up to τ = 0.05, or up to t = 484 for N = 9690. For several of the larger A quantiza-
tions, the transition away from the early time (τ ≈ 0) SFF slope behavior is already
visible in this window. In general, the larger time SFF, coresponding to shorter range
spectral statistics like the level spacings, vary greatly depending on the particular
quantization.

and CUE, we just take F(t) to be the same as f (t) in Eq. (9). We plot the resulting level spacing312

statistics and SFF of the intermediate matrices F(t) for different values of t in Fig. 6, which313

show similar behavior as the statistics shown in Fig. 3 and 4.314

3.3 Periodic orbit expansion315

We now briefly analytically explain the above numerical observations for the early time SFF316

slope using a semiclassical periodic orbit expansion for the SFF of the A-baker’s map quantiza-317

tions [59, 62, 63], leaving the full details for Sec. 6. This analysis fills in the SFF slope values318

for the entirety of Tab. 2, and moreover identifies the precise measure zero set of phases α that319

lead to an SFF slope of 4 rather than 2. The slope 2 results we obtain for the specific models320

here differ from the usual periodic orbit theory expectation for generic systems, where one321

expects the early time SFF slope to faithfully reflect the number of symmetry sectors of the322

classical system [10, 47]. For the Saraceno quantization, which ends up as part of the mea-323

sure zero set leading to the slope of 4, the SFF slope of 4 was derived in [62]. In the models324

here, the addition of phases alters the semiclassical trace formula as seen below, which can325

produce the SFF slope of 2. For the Shor baker quantizations, complications also arise due to326

the different generalized DFT blocks. This requires a more complicated analysis of the t-step327

propagator (Sec. 6.3, Appendix D), which we determine using coherent state evolution, in328

order to derive the corresponding trace formula.329

In all of the following, t ∈ N, and N will be a multiple of At for convenience. As we are330

interested in the SFF slope for early times τ= t/N as N →∞, we will assume t →∞ slowly,331

such as at a rate ∼ logA N or slower (so that N can still be a multiple of At); this corresponds332

to τ → 0. We start with a matrix ÛN = ÛN (α) from the Generic phase variant quantization333
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Figure 5: Averaged best fit early time SFF slope for A = 2 (left) and A ∈ {10,15}
(right, A = 15 for standard Balazs–Voros, Saraceno, and Gen0.2,0.7

A=15 quantizations,
and A= 10 for the remaining). The quantizations with random phases show a slope
near 2, while those without show a slope near 4. Some of the quantizations shown
share the random choice of phases. Outliers where the least squares fitting had large
error were removed prior to averaging (cf. Fig. 10, Appendix C).

Genθ1,θ2
A (α) (which includes the Balazs–Voros and Saraceno phase quantizations),334

ÛN = (F̂
θ1,θ2
N )−1

A−1
⊕

j=0

e2πiα j F̂θ1,θ2
N/A . (10)

One can readily check that applying the semiclassical propagator and saddle point method335

described in [63] (see also [62] and Eq. (D.2)) with these phases yields the periodic orbit336

approximation for N →∞,337

tr Û t
N ≈

At−1
∑

ν=0

1
At/2

e2πiNSνe2πi
∑A−1

j=0 α jη j(ν), (11)

where Sν := νν̄
At−1 is the classical action, ν̄ is the (length t) base A reversal of ν, and η j(ν) is338

the number of j’s in the (length t) base A expansion of ν. To estimate the SFF 1
N | tr Û t |2, one339

expands Eq. (11) in a double sum over indices ν,σ, and takes the “diagonal approximation” [9]340

with symmetry factors: The two classical symmetries are time-reversal ν 7→ ν̄ and reflection341

R(ν) = At−1−ν. Only summing over the orbitsσ ∈ {ν, ν̄, R(ν), R(ν̄)} and their cyclic rotations342

results in343

1
N
| tr Û t

N |
2 ≈

2t
N
+

2t
NAt

� A−1
∑

j=0

e2πi(α j−αA−1− j)

�t

. (12)

We find that in order for the second term of Eq. (12) not to decay as we average over t →∞,344

we must have α j = αA−1− j (modulo 1) for all j. Thus we obtain an SFF slope of 4 in this case,345

and a slope of 2 in all other cases. The requirement α j = αA−1− j preserves a kind of “block”346

R-symmetry, even though in general such quantizations can break the microscopic R-symmetry347

|x〉 7→ |N − 1− x〉.348

The standard phaseless quantizations here have α j = 0 for all j, and thus meet the require-349

ment for an SFF slope of 4, in agreement with numerics. We also note that whenα j = αA−1− j+1/2350

(mod 1), the approximation in Eq. (12) gives the value zero for the SFF at odd times t. In fact,351

this is exact for the Saraceno phase variant with these phases: When α j = αA−1− j + 1/2, then352

the resulting Saraceno ÛN (α) anticommutes with the reflection operator RN : |x〉 7→ |N−1−x〉,353

so that every eigenvalue eiλ comes with a partner −eiλ, and tr Û t
N = 0 for odd t ∈ N.354
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Figure 6: Level spacing histograms (top row) and SFFs (bottom row) for random
instances of the Rosenzweig–Porter-like interpolation F(t) (defined in the paragraph
below Eq. (9)), for N = 9690. Each column involves two or three independent
random matrices F(t), one chosen for each t value. Different values of t appear to
describe the various level spacings and SFF behaviors seen in Figs. 3 and 4.

We now consider the Shor baker phase variant quantizations. Unlike the Genθ1,θ2
A (α) phase355

variant quantizations, we recall this quantization involves different generalized DFT matrices356

for each block,357

ÛN = F̂−1
N

� A−1
⊕

j=0

e2πiα j F̂0,− j/A
N/A

�

. (13)

In order to estimate the SFF using the periodic orbit expansion, we must first identify358

the correct t-step quantization Û (t)N corresponding to this ÛN , which is complicated by the359

different generalized DFT blocks. By determining the behavior of ÛN (α) on maximally lo-360

calized coherent states (Sec. 6.3), we can find the corresponding t-step propagator in mixed361

momentum-position basis (Eq. (39)), which is used to derive the trace formula (Eq. (41)),362

tr Û (t) ≈
At−1
∑

ν=0

1
At/2

e2πiNSνe
2πiνν̄

At (At−1) e−2πi φ(ν)A e2πi
∑A−1

j=0 α jη j(ν),

where φ(ν) = −
∑t

j=2 a j
∑ j−1

i=1 aiA
− j+i . As calculated in Sec. 6.3, the extra factors in the trace363

formula, with the diagonal approximation, eventually yield364

1
N
| tr Û t

N |
2 ≈

2t
N
+

2t
NAt

� A−1
∑

j=0

e2πi(α j−αA−1− j+2 j/A)

�t

e2πi t/A. (14)

Similar analysis then shows we obtain an averaged SFF slope of 4 iff365

αA−1− j = α j +
2 j + 1

A
mod 1, j ∈ ⟦0 : A− 1⟧, (15)

and slope 2 in all other cases. For the standard Shor baker quantization, α j = j2/A, which366

satisfies Eq. (15). Unlike the condition on phases for the Balazs–Voros, Saraceno, and generic367

quasiperiodic quantizations, this condition does not seem to exhibit a clear “block” R-symmetry368

to mirror the classical one.369
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Figure 7: Effect of spectral anomalies on quantum cyclic ergodicity measured in
terms of the persistence z2(t), via four different quantizations of A = 10-baker’s
maps with different kinds of anomalies. The depicted quantizations are Saraceno (no
anomalies), Gen(0.2,0.7)

A (weak reflection and time-reversal anomalies), Saraceno(α)

(strong reflection anomaly) and Gen(0.2,0.7)
A (α) (strong reflection anomaly, weak time-

reversal anomaly). All values of N from 9600 to 9690, in steps of 10, are depicted
(translucent red lines) together with the average z2(t) (top row) and z2(t)/z2

COE(t)
(bottom row) over these values of N (dashed black line) to observe the statistical
trends after averaging out the strong fluctuations with N . Top row: The persistence
z2(t) given by Eq. (19) is plotted as a function of time t in a log-linear scale, and com-
pared with the COE (Gaussian) curves z2

COE(t) denoting the ideal behavior of COE
statistics given by Eq. (21) over these values of N [up to O(N−1) fluctuations, which
are not depicted for the COE reference]. The vertical band near the center of each
plot depicts the range of t = N/2 over the different values of N , and the horizontal
band depicts z2(t) = N−1 (representing the order of magnitude of η2(N) = cN−1),
the value reached by the COE (Gaussian) curve at t = N/2 (the cutoff time for cyclic
ergodicity). Bottom row: The ratio z2(t)/z2

COE(t) is plotted against t in a linear-linear
scale, with the vertical band near the center again depicting the range of t = N/2,
while the horizontal line near the center depicts a unit ratio, i.e., z2(t) = z2

COE(t).
The rapid increase near t = N/2 in these plots represents the onset of O(N−1) fluc-
tuations as the dominant behavior of z2(t) around and beyond this time. These plots
appear consistent with quantum cyclic ergodicity of the kind associated with COE
[z2(t) ≥ z2

COE(t) up to O(N−1) fluctuations], resulting from strong anomalies (sym-
metry breaking in long-range measures) but not weak anomalies as explained in the
text.

3.4 Symmetry breaking and quantum dynamical ergodicity370

Having demonstrated that measures of spectral statistics can be incompatible with classical371

symmetries, we now consider the direct relation between spectral statistics and quantum dy-372

namics in the Hilbert space. This is especially of interest in illustrating the fully quantum373

mechanical role of spectral anomalies or deviations from ideal random matrix behavior, irre-374

spective of symmetries in the classical limit. We will take advantage of the distinct behavior375

of each measure across different quantizations of the A-baker’s maps to contrast the role of376

short-range and long-range spectral statistics in influencing quantum dynamics. In particular,377

we will provide numerical evidence that long-range symmetry breaking or strong anomalies378

are sufficient to induce ergodicity (in a sense to be clarified below) in the quantum dynam-379

ics of the system, while short-range or weak anomalies have a milder effect that may not be380
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significant in the N →∞ limit.381

For this purpose, we will consider the notion of quantum cyclic ergodicity in the Hilbert382

space, introduced in Ref. [27] as a direct quantum dynamical counterpart to spectral statistics.383

There, it was shown that the presence of sufficient long-range spectral rigidity is tied to the384

existence of an orthonormal basis {|Ck〉}N−1
k=0 where every initial state “visits” every other state385

in a cyclic sequence. This form of ergodicity is appropriate for time-independent unitary sys-386

tems with (quasi-)energy conservation, and differs from more direct forms related to classical387

ergodicity possible in open or time-dependent quantum systems [64–66]. Quantitatively, the388

overlap of an initial state |Ck〉 with |Ck+t〉 after t time-steps, called the persistence,389

z2
k(t)≡ |〈Ck+t |Û t

N |Ck〉|2, (16)

must be larger than a cutoff η2(N) = cN−1 (where c is some Ω(1) parameter) associated with390

the overlap of random states for t ∈ [−N/2, N/2], i.e.,391

z2
k(t)> η

2(N),∀ t ∈
�

−
N
2

,
N
2

�

. (17)

Further, the “optimal” orthonormal basis in which this property is most likely to be present [in392

terms of maximizing z2
k(1)] was shown to be given by the discrete Fourier transform (DFT) of393

the energy eigenstates:394

|Ck〉=
1
p

N

N−1
∑

n=0

e−2πikn/N |En〉, (18)

where the energies are sorted in ascending order. In this case, z2
k(t) = z2(t) for all k, given in395

terms of the energy levels by396

z2(t) =

�

�

�

�

�

1
N

N−1
∑

n=0

ei(En−2πn/N)t

�

�

�

�

�

2

. (19)

This is the basis we will study numerically.397

For “ideal” RMT-like behavior, z2
RMT(t) = exp[−∆2 t2] to leading order [27] (originating in398

Gaussian spectral fluctuations [67–69]), where (specializing to even N for simplicity)399

∆2 = 2
N/2
∑

t=1

SFF(t)
N t2

(20)

gives the leading contribution to spectral fluctuations in various measures of long-range spec-400

tral rigidity such as the Dyson-Mehta ∆3 parameter [3] or the related ∆∗ [70] that measure401

the regularity of the spectrum. For COE, one obtains402

z2
COE(t) = e−4t2 ln N/N2

. (21)

This is guaranteed to exceedη2(N) = cN−1 as per Eq. (17) with the slight restriction |t|< N(1−ε)/2403

(for any small ε > 0), showing that each |Ck〉 in a system with ideal COE statistics “ergodically”404

visits almost all basis vectors |Ck−N/2〉 through |Ck+N/2〉 in succession. Due to the presence of405

time-reversal symmetry without separate sectors in COE [1], one cannot here demand ergod-406

icity in the full interval |t| ≤ N/2 in Eq. (17), corresponding to fully visiting every single basis407

vector, that is present [27] in CUE or a non-degenerate half of CSE.408

In Fig. 7, the persistence z2(t) in the DFT basis for 4 different quantizations of the A= 10-409

baker map [Saraceno and Gen(0.2,0.7)
A , with and without phases] are compared to the ideal COE410

persistence, to examine their quantum dynamical ergodicity relative to the behavior of COE411
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[i.e., if z2(t) ≥ z2
COE(t) +O(N−1)]. We recall that while the unitary reflection symmetry may412

be broken weakly or strongly in these quantizations, the antiunitary time reversal symmetry413

is always broken only weakly in the spectral statistics, making COE the appropriate standard414

for comparison. The choice of A= 10 statistically guarantees that the Berry-like phases α j are415

generically random, as required for strong anomalies (for instance, in Eq. (14)); in contrast,416

A= 2 has only one independent phase and may show a significant dependence on this phase417

as seen in Fig. 10(g). Further, due to atypical fluctuations with varying N in the level statistics418

of baker maps [see, e.g., Fig. 8 and Fig. 10(a)-(f)], noted as far back as Ref. [49], we consider419

statistical trends over 10 adjacent values of N , and additionally plot the persistence z2(t)420

averaged over these values of N to tame the fluctuations. This is justified for our numerics421

as N varies only by around 1% in our chosen range. Subsequently, we observe if the average422

persistence is comparable to (or is greater than) the ideal COE trend to diagnose ergodicity in423

the presence of a long-range time-reversal symmetry.424

The numerical trends are as follows:425

1. For Saraceno (no anomalies) and Gen(0.2,0.7)
A (weak reflection and time-reversal anoma-426

lies), z2(t) remains less than z2
COE(t) up to random fluctuations consistent with O(N−1),427

showing compatibility with ergodicity-breaking in the presence of a long-range reflection428

symmetry.429

2. For Saraceno with phases (strong reflection anomaly) and Gen(0.2,0.7)
A with phases (strong430

reflection anomaly and weak time-reversal anomaly), z2(t) fluctuates around z2
COE(t),431

showing compatibility with the presence of COE-type ergodicity without a long-range432

reflection symmetry (but with time-reversal indicated by long-range spectral statistics).433

Finally, we note that in both the Gen(0.2,0.7)
A cases (with or without phases), which possess a434

weak time-reversal anomaly, z2(t) oscillates around a slightly larger value than in the Sara-435

ceno cases (which have an unbroken time-reversal symmetry), though this slight increase does436

not statistically appear to be sufficient to induce ergodicity without strong anomalies. In fact,437

this slightly larger value is likely a finite size numerical effect for these values of N , stemming438

from the logarithmic divergence of∆2 with N in Eq. (20) for a linear ramp SFF(t)∝ t leading439

to a visible numerical contribution from the late-time regime (corresponding to the crossover440

in Sec. 3.2). However, one can show that in the N →∞ limit, as long as the SFF apprecia-441

bly deviates from the early-time trend (due to weak anomalies) only for |t| ≥ cN in SFF(t),442

the anomalous contribution to ∆2 is subleading compared to the early-time contribution; it is443

indeed for a similar reason that COE possesses logarithmically divergent (ln N) spectral fluctu-444

ations [3,9,70] despite the SFF deviating from a linear ramp [1] for t ∼ N . To see this quantita-445

tively, we consider a simplified model with the interval of summation t ∈ I = [1, N/2] split into446

an early-time regime IUV = [1, cN] with SFF(t) = αt, and a late-time regime IIR = (cN , N/2]447

with SFF(t) = β t for some c ≪ 1; in this case, the leading contribution to the logarithmic448

divergence α ln(cN/1) comes entirely from the early time region, while the late-time region449

contributes a subleading term proportional to β ln[(N/2)/(cN)] = −β ln(2c). Nevertheless,450

other effects (such as a deviation from a Gaussian profile of z2(t)) are possible at larger N ,451

and it would be interesting to explore or rule out such phenomena at values of N at least an452

order of magnitude larger than the present study.453

In summary, our numerics for N ≈ 104 in quantizations of A-baker’s maps with different454

manifestations of spectral anomalies appear to be consistent with a direct link between long-455

range symmetry breaking (strong anomalies) and cyclic ergodicity, with an at best weaker456

effect of short-range symmetry-breaking (weak anomalies), verifying the analytical connection457

obtained in Ref. [27] between long-range spectral statistics and quantum dynamical ergodicity.458
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4 Operator symmetries and level spacing statistics459

In the remaining sections, we provide further background and details for the results in the460

previous section. We start with the relation between the quantizations’ operator symmetries461

and the classical map’s symmetries.462

4.1 Operator symmetries463

Classifying quantum symmetries corresponding to the classical symmetries in these models is464

not entirely straightforward. If one can construct a quantum version of the classical symmetry,465

such as in the Saraceno quantization [50], then one can say that the quantization preserves466

the corresponding classical symmetry. However, due to the infinite possibilities of quantum467

operators that can all correspond to same the classical symmetry operator in the limit ħh→ 0468

(N → ∞), verifying that a quantization does not commute with any of those operators is469

much less clear. For this reason, we will discuss a limited version of the possible operator470

symmetries, and include more detailed analysis in Appendix A. These restricted definitions471

will still agree with those historically used to describe the symmetries of the Balazs–Voros and472

Saraceno quantizations [49,50].473

Quantization on the torus— To discuss the relation between the classical symmetries and474

operator symmetries, we first provide more background on the quantization process on the475

torus. For further details, see [60,71]. Quantization on the 2-torus associates to each natural476

number N ∈ N and θ ∈ [0, 1)2 an N -dimensional Hilbert space HN (θ ) of quantum states. The477

parameter θ = (θ1,θ2) sets the quasiperiodicity requirement in position and momentum as478

follows. Letting S(q, p) = ei(pQ−qP)/ħh denote the phase space translation operators, then the479

Hilbert space HN (θ ) is associated with states ψ on R satisfying480

S(1,0)ψ= e−2πiθ1ψ, S(0, 1)ψ= e2πiθ2ψ,

for θ = (θ1,θ2). Recall the Balazs–Voros quantization corresponds to the case θ1 = θ2 = 0481

which describes periodic states, while the Saraceno quantization corresponds to θ1 = θ2 = 1/2482

which describes antiperiodic states. The generic quantization Genθ1,θ2
A corresponds to the483

quasiperiodic conditions described by θ = (θ1,θ2). The main consideration we need for dif-484

ferent θ is that position representation states |n〉 and momentum representation states |k〉 are485

related via the generalized discrete Fourier transform F̂θ1,θ2
N as defined in Eq. (5), which de-486

pends on θ . This explains why one uses the generalized DFT matrices in the Saraceno and487

Genθ1,θ2
A quantizations. The generalized DFT matrix relation between position and momen-488

tum also implies that operators on HN (θ ), which are N × N matrices, are converted between489

position and momentum basis via conjugation by F̂θ1,θ2
N (or its inverse).490

The Shor baker quantizations involve several different generalized DFT blocks, but we will491

associate these quantizations with periodic boundary conditions to match the F̂−1
N factor.492

Reflection symmetry— Let B be the classical A-baker’s map, and recall the classical reflec-493

tion symmetry R in Eq. (2), which maps (q, p) to (1 − q, 1 − p) and satisfies RBR−1 = B. Its494

quantum analogue RN should then reverse, in some way, both the position states |n〉 and the495

momentum states |k〉, and quantizations ÛN that preserve the reflection symmetry should sat-496

isfy RN ÛN R−1
N = ÛN .497

For the Saraceno quantizations, which we will denote here by B̂Sar
N ,A, the quantum reflection498

is RN : |x〉 7→ |N − 1− x〉, which has the same action in momentum space and commutes with499

B̂Sar
N ,A since RN = (F̂

1
2 , 1

2
N )2. One can separate the eigenvalues of B̂Sar

N ,A according to whether its500

corresponding eigenstate is in the +1 or −1 symmetry sector of RN , and this produces COE501

level spacing statistics within each symmetry sector, as explained in [50]. (See Fig. 9 for502

larger A.) Additionally, when considering the spectrum as a whole, the two symmetry sectors503
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of the Saraceno quantizations combine to look like that of a direct sum of two COE matrices,504

indicating that the two symmetry sectors behave essentially as if they are independent of each505

other.506

On the other hand, the Balazs–Voros, generic quasiperiodic, and Shor baker quantiza-507

tions do not exhibit a clear analogous reflection symmetry. We investigate possible Fourier508

reflection symmetries in Appendix A, and provide numerical plots demonstrating the lack509

of Fourier reflection symmetry for the non-Saraceno quantizations that we consider (Balazs–510

Voros, Gen0.2,0.7
A , Gen0,0.5

A , and Shor baker). While this rules out a class of reflection operators511

coming from the generalized DFT matrices, it does not prohibit the possibility of a different512

commuting reflection-like operator in the N →∞ limit. In Appendix A, we also briefly con-513

sider the symmetries of phase space (Husimi) plots of the eigenvectors.514

TR symmetry— The other classical symmetry is a time reversal (TR) symmetry T : (q, p) 7→ (p, q),515

which satisfies T BT−1 = B−1. Its quantum analogue should act on operators by switching516

between position and momentum basis, and mapping i 7→ −i, so that quantizations ÛN (in517

position basis) preserving TR symmetry should ideally satisfy the antiunitary relation518

F̂θ1,θ2
N ÛN (F̂

θ1,θ2
N )−1 = (Û−1

N )
∗, (22)

where ∗ denotes entrywise complex conjugation. We can define a quantization ÛN to have519

an “operator TR symmetry” if it satisfies Eq. (22) for its corresponding boundary conditions520

θ . However, as for the reflection symmetry, other antiunitary operations with the same clas-521

sical limit could also be a valid “quantum TR symmetry”. For the quantizations we consider,522

the Balazs–Voros and Saraceno quantizations satisfy Eq. (22), while the generic quasiperiodic523

quantizations with θ1 ̸= θ2 and the Shor baker quantizations do not.524

4.2 Level spacing statistics525

To investigate the level spacing statistics of an N×N unitary matrix, one orders the eigenangles526

θi , and defines the nearest neighbor level spacings (or gaps)527

si = θi+1 − θi , i ∈ Z/NZ. (23)

To compare the distribution of these level spacings to the expected universal RMT distributions,528

the normalization is to multiply the (si) by N
2π , which we do for all level spacing histogram plots.529

The mean (adjacent) gap ratio statistic, as defined in [44], is given by530

〈r̃〉=
­

min
�

si+1

si
,

si

si+1

�·

i
, (24)

where the average is over all i ∈ Z/NZ. This statistic provides a single value that can be531

used to compare the closeness to RMT level spacings, and does not require any normalization532

or unfolding of the eigenvalues. The mean gap ratios for the standard RMT ensembles in533

the N → ∞ limit were derived in [61], and for block RMT matrices in [48]. The block534

RMT matrices are relevant in the presence of discrete symmetries, as one generally needs to535

separate eigenstates according to the symmetry sector to recover expected non-block RMT536

level statistics. We are primarily concerned with the circular orthogonal ensemble (COE) and537

circular unitary ensemble (CUE). Since the circular ensembles and Gaussian ensembles have538

the same local n-level correlation functions in the limit N →∞ [3], we may interchange terms539

such as “COE level spacings” and “GOE level spacings”. We list the values of relevance to our540

study in Tab. 3.541

Here the 2-block GOE matrix means a direct sum of two equal sized, independent GOE542

matrices, and similarly for the the 2-block GUE matrix.543
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GOE 2-block GOE GUE 2-block GUE Poisson
〈r̃〉 0.53590 0.423415 0.60266 0.422085 0.38629

Table 3: Mean gap ratio values for RMT ensembles, from [48,61].

In general, ones expects that chaotic systems with time reversal (TR) symmetry have544

GOE/COE spectral statistics, while those without have GUE/CUE statistics. Additionally, one545

expects the presence of discrete symmetries to produce block-RMT statistics, according to the546

number of symmetry sectors. As we saw for the A-baker’s map however, the actual level spac-547

ings behavior can be highly variable depending on the particular quantization.548

We plot in Fig. 8 the mean gap ratios for the different quantizations over a range of N ∈ AN.549

As we saw for specific dimensions N in Figs. 2 and 3, out of all the quantizations in Tab. 2,550

only the Saraceno quantizations, and the generic quantization Gen0,0.5
A=2 (for A= 2 only), have551

mean gap ratio close to that for block COE matrices. We note that there are dips in the mean552

gap ratio at specific values of N , which typically correspond to powers of the slope A. For such553

dimensions the level spacings may look non-RMT (sometimes close to Poisson).554
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Figure 8: (a)–(f) Mean gap ratios for the different quantizations over N ∈ AN. The
horizontal lines (from top to bottom) are the RMT reference values for GUE (dotted),
GOE (dash-dot-dotted), 2-block GOE (dashed), and Poisson (loosely dotted). Some
of the phase variant quantizations may share the same random choice of phases. (g)
Mean gap ratios for A = 2 and N = 5000 as a function of the phase α = (0,α1) for
α1 ∈ [0,1) (step size 0.002). Note that α1 = 1/2 corresponds to the standard Shor
baker quantization, while α1 = 0 corresponds to the standard versions of the other
quantizations.

4.3 Approximate symmetry classes for the Balazs–Voros quantization555

We now return to the Balazs–Voros-type quantizations of the A-baker’s map, which we saw556

have level spacing statistics that can exhibit deviations from RMT and overlook the presence557

of classical symmetry sectors. We demonstrate how one can obtain roughly COE-like level558

spacings for the Balazs–Voros quantization in Eq. (3) (A = 2) by separating the eigenvalues559

according to approximate symmetry classes of their eigenstates, which was suggested as a560

possible method in [49]. However, we will see in Sec. 5 using the SFF that this separation still561

retains significant irregularities.562

Recall the reflection operator RN : |x〉 7→ |N − x − 1〉 which commutes with the Saraceno563
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quantization and is equal to (F̂
1
2 , 1

2
N )2. This is the permutation matrix with 1s on the top-right564

to bottom-left diagonal, which has the trivial block decomposition565

RN =









RN/A
RN/A

. .
.

RN/A









.

Since it commutes with the Saraceno quantization B̂Sar
N ,A, this allowed for separating the eigen-566

states of B̂Sar
N ,A according to whether they fall in the +1 or −1 eigenspace of RN , which recovers567

RMT spectral statistics.568

For the Balazs–Voros quantizations, this suggests considering a similar reflection-like op-569

erator, the permutation570

R̃N = (F̂
0,0
N )

2 =

















1 0 ... 0
0 ... 0 1
. 0 1 0
: 0 1 0 0

..
.

. .
. ...

0 1 0 ... 0

















, (25)

which is a natural reflection candidate (cf. Appendix A) when considering states that are571

periodic in position and momentum (vs antiperiodic for Saraceno quantizations). The map572

R̃N is equal to F̂2
N and sends |x〉 7→ |− x〉 (taken modulo N). While R̃N does not commute with573

B̂N , it is in some sense close to commuting with B̂N . In particular, we show in Appendix B that574

the commutator [B̂N ,A, R̃N ] has only very few non-decaying matrix elements.575

Computing the overlap 〈ϕ( j)|R̃N |ϕ( j)〉 for all eigenvectors ϕ( j) of B̂N , we create the two576

symmetry classes,577

S+ = {ϕ( j) : 〈ϕ( j)|R̃N |ϕ( j)〉 ≥ 0},

S− = {ϕ( j) : 〈ϕ( j)|R̃N |ϕ( j)〉< 0}.
(26)

We can then investigate the level spacing statistics within each approximate symmetry class,578

which are shown (along with those for the exact Saraceno symmetry classes) in Fig. 9.579

Approximate symmetries for A = 2— As seen in Fig. 9(c)–(d), for A = 2, within a single580

approximate symmetry class S±, the level spacing statistics for the Balazs–Voros quantization581

look approximately COE. The inner products 〈ϕ( j)|R̃N |ϕ( j)〉 tend to cluster near −1 and 1582

(Fig. 9(e)), suggesting that while not exact, R̃N is a fairly good choice of approximate symme-583

try. Fig. 9(f) plots the quantity,584

1
N

N
∑

j=1

�

�|〈ϕ( j)|eRN |ϕ( j)〉| − 1
�

�

2
, (27)

which is the mean square error of the inner product from ±1, for eigenstates of B̂N . Other than585

some outliers that appear somewhat connected to powers of A, this error is fairly constant,586

suggesting that the distribution shape shown for A= 2 in Fig. 9(e) is likely representative for587

other N as well.588

We also note that attempting to use the Saraceno reflection operator RN : |x〉 7→ |N− x−1〉589

here for the Balazs–Voros quantization does not appear to produce any meaningful separation,590

and the inner products 〈ϕ( j)|RN |ϕ( j)〉 are spread within [−1,1] instead of clustering near ±1.591
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Figure 9: (a), (b) Mean gap ratios for the Saraceno + symmetry sectors and Balazs–
Voros + approximate symmetry sectors, for N ∈ AN even. (d), (e) Level spacing his-
tograms for the Saraceno + symmetry sector and Balazs–Voros + approximate sym-
metry sector for N = 5904. (c) Balazs–Voros inner product histogram for N = 5904
and A = 2, 4,16. The histogram for A = 2 shows a strong clustering split between
+1 and −1, but this dichotomy disappears for larger A. (f) The mean square error
defined in Eq. (27) for the Balazs–Voros quantizations as a function of N .

Failure for larger A-baker’s maps— For A ≥ 3, the Saraceno quantizations of the the A-592

baker’s map continue to commute with the reflection operator RN , and continue to exhibit593

level spacing statistics that look like a direct sum of two COE matrices. Thus one can try to use594

an approximate symmetry for the non-symmetrized Balazs–Voros quantizations with A ≥ 3595

as well. Unlike the A = 2 case however, the natural approximate symmetry candidate R̃N596

does not produce even an approximately useful separation of eigenstates, as seen in Fig. 9(e).597

The values 〈ϕ( j)|R̃N |ϕ( j)〉 no longer cluster strongly near ±1, and separating by the sign of598

〈ϕ( j)|R̃N |ϕ( j)〉 does not reproduce RMT-like level statistics (Fig. 9(c)–(d)). Given that the599

unseparated eigenvalue statistics begin to look more and more like a single COE matrix as A600

increases, this is not that surprising.601

5 Spectral form factor analysis602

In this section, we provide more detailed analysis and plots of the spectral form factor (SFF)603

and its early time slope. Recall the SFF for an N × N unitary matrix is given by the formula604

SFF(t) =
1
N
|Tr(U t

N )|
2 =

1
N

N
∑

j,k=1

ei t(θ j−θk), (28)

and that we set τ= t/N . The formula for the ensemble-averaged COE form factor [1] is605

〈SFFCOE(τ)〉 ≡ lim
N→∞

1
N
E|Tr(U t

N )|
2 =

¨

2τ−τ log(1+ 2τ), τ≤ 1

2−τ log
�2τ+1

2τ−1

�

, τ > 1
. (29)

For the quantized baker’s maps, with no ensemble to average over, we average Eq. (28) at time606

t with its nearest 2ℓ neighbors (or from time 1 to 2t − 1 if t < ℓ), as described in more detail607

in Appendix C.608
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We show plots of the early time SFF slope as function of the dimension N in Fig. 10(a)–609

(f), corresponding to noisier, more detailed versions of the earlier Fig. 5. In general, the SFF610

slope computations are noisy, and even the plots in Fig. 10 are averaged over the nearest611

∼20 neighbors, after removing outliers which did not have a low error slope fit. These outliers612

amount to only relatively few values of N for each quantization (< 1% for A= 2 quantizations,613

and∼ 5-8% for A= 10 or 15 in Fig. 10). As in Fig. 5, we see in Fig. 10 a clear dichotomy in the614

SFF slope between the standard phaseless quantizations and the phase variant quantizations.615

In Fig. 10(g), we also plot the SFF slope for A = 2 as a function of the phase parameter616

α= (0,α1), similarly as we did for the mean gap ratio in Fig. 8(g).617
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Figure 10: (a)–(c) Averaged early time SFF slope for the standard/phaseless quanti-
zations, plotted as function of N ∈ AN. The SFF slope values cluster near 4. Outliers
(fewer than 1% of points for A = 2, and ∼5-8% for A ∈ {10, 15}) where the least
squares slope fitting produced large residuals were removed before averaging. For
further details, see Appendix C. (d)–(f) Averaged early time SFF slope for the phase
variant quantizations, fewer than 1% of points removed as outliers. The SFF slope
values cluster near 2. (g) SFF slope for A = 2 and N = 5000 as a function of the
phase α ∈ [0, 1) (step size 0.002) for the different types of quantizations. Compare
with Fig. 8(g).

Next, in Fig. 11(a) we briefly examine the SFF within an individual approximate symmetry618

class (Sec. 4.3) for the Balazs–Voros 2-baker quantization. We see that while the SFFs appear619

to look COE for moderately sized τ, there are irregularities near τ= 0. Thus while separating620

by the approximate symmetry class can partially restore level spacing statistics as in Fig. 9, it621

produces long-range spectral irregularities. In contrast, for the Saraceno quantizations (not622

shown), the SFF for an individual symmetry class appears to follow the single COE SFF for all623

τ.624

In Fig. 11(b) we also demonstrate a complication with determining the early time SFF625

slope. For some values of N , the SFF may show large early time irregularities. Large enough626

irregularities which do not have a good least squares fit are considered outliers, and we remove627

such points prior to averaging and plotting in Figs. 5 and 10.628

We note that some of the outliers and noise are products of the averaging methods used629

to compute the SFF slope. While we do not optimize the averaging methods used, we choose630

parameters so that it becomes clear whether the slope of the early time SFF is close to 2,631

corresponding to the SFF for a single COE matrix, or close to 4, corresponding to the SFF for632

a 2-block COE matrix. Due to this choice of parameters, along with the occasional outliers,633

computing the SFF slope is not as convenient as computing the gap ratio statistic; however,634

22



SciPost Physics Submission

0.0 0.5 1.0
τ

0.00

0.25

0.50

0.75

1.00

SF
F

(a) BV A = 2, + approx. sym.
N = 8002
N = 8004
N = 8006

0.0 0.5 1.0
τ

(b) Saraceno A = 2, N = 7168
A = 2

Figure 11: (a) Balazs–Voros SFF for + approximate symmetry classes for
N = 8002, 8004, and 8006. The behavior for small τ shows irregularities, even
though for larger times it follows the COE SFF. In contrast, the Saraceno ±1 sym-
metry classes (not plotted) show single COE-like SFF. (b) Example of bad early time
behavior in the SFF, for one of the rare outliers removed before averaing to produce
the plots in Fig. 10.

for these models it proves to be more informative.635

6 Semiclassical trace formula636

In this section, we explain how one derives the semiclassical trace formulas used in Section 3.3.637

To that end, we must first revisit the classical A-baker’s map dynamics as used in [59,62,63].638

6.1 Classical dynamics revisited639

One particularly useful interpretation of the classical A-baker’s map is via its symbolic dy-640

namics [51]: Points (q, p) ∈ T2 can be identified with infinite base A sequences of symbols641

. . . a−2a−1a0 • a1a2 . . ., where 0.a1a2 . . . is the A-ary expansion of q, 0.a0a−1a−2 . . . is the A-ary642

expansion of p, and • is a separator distinguishing p from q. The classical A-baker’s map is643

then the 2-sided Bernoulli left shift,644

. . . a−2a−1a0 • a1a2 . . . 7→ . . . a−1a0a1 • a2a3 . . . .

The composition of the A-baker’s map with itself t times is then given by t such shifts, or645

equivalently,646

q 7→ Atq− a1 · · · at ,

p 7→ A−t(p+ at · · · a1),

where digit expressions like a1 · · · at represent the value when viewed as a base A number,647

a1 · · · at =
∑t

j=1 a jA
t− j . The length t periodic orbits of the A-baker’s map are then seen to be648

given by A-ary expansions of the form · · ·νν ·νν · · · for any length t A-ary string ν= a1 · · · at .649

This corresponds to points,650

q =
ν

At − 1
, p =

ν̄

At − 1
,

where ν̄= at · · · a1 denotes the A-ary reversal of ν.651

As determined in [62,63], the classical action Sν of a point ν is652

Sν =
νν̄

At − 1
. (30)
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Taken modulo 1, one has653

Sν = Sν̄ = SR(ν) = SR(ν̄), (31)

where R(ν) is the base A reflection operator R(ν) = At − 1− ν. The reflection operator R acts654

on the expansion ν= a1 · · · at by mapping each digit a j to the digit A− 1− a j .655

6.2 Periodic orbit theory for the Generic quantizations656

For the semiclassical analysis, we will utilize a mixed basis representation of the quantizations657

as in [59, 62, 63]. The generic quantization Eq. (4) is written in the position basis, acting on658

position states |n〉 and returning states expressed in the position basis. To express a position659

basis quantization ÛN ,pos in the momentum basis, one takes ÛN ,mom = F̂θ1,θ2
N ÛN ,pos(F̂

θ1,θ2
N )−1.660

For the mixed basis quantization, one takes ÛN ,mix = F̂θ1,θ2
N ÛN ,pos, which now acts on position661

states |n〉 on the right and momentum dual states 〈k| on the left. Due to the structure of all662

the quantizations we consider, the mixed basis quantization has a simple block DFT structure.663

In what follows, quantizations with the subscript “mix” will denote the representation in the664

mixed basis.665

The generic quantization Eq. (4) of the A-baker’s map B has the simple block diagonal666

mixed basis representation,667

ÛN ,mix(α) =
A−1
⊕

j=0

e2πiα j F̂θ1,θ2
N/A .

The classical t-step A-baker’s map B t can be quantized in a similar way. Letting νn = ⌊At n/N⌋,668

which identifies the length t A-ary string corresponding to n/N , the corresponding quantiza-669

tion for B t is, in mixed basis,670

〈k|Û (t)mix(α)|n〉= δνnν̄k
〈k− νnN/At |F̂θ1,θ2

N/At |n− νnN/At〉e2πi
∑A−1

j=0 α jη j(νn), (32)

where η j(ν) denotes the number of j’s in the base A expansion of ν. The δνnνk
term specifies671

where to place the DFT block F̂θ1,θ2
N/At ; it places it in the row k corresponding to the classical672

A-baker’s map image of the rectangle [νn/A
t] × [0, 1], where [νn/A

t] denotes the interval673

[νn
At , νn+1

At ). One can verify Eq. (32) has the correct phase factor involving α by comparing the674

action on coherent states to that of ÛN (α)t . A phase e2πiα j is accumulated for every j in ν,675

since a current q value of 0.a · · · (written in base A) corresponds to choosing the ath DFT block.676

The t-step quantization in Eq. (32) is not identical to the 1-step quantization ÛN (α) com-677

posed t times, but it is an approximation useful for deriving analytical expressions using a678

periodic orbit expansion [62,63]. We will refer to the quantization Eq. (32) of the t-step map679

as the (t)-step propagator, with parenthesis, to distinguish it from the 1-step quantization com-680

posed t times. Using Eq. (32) (with Eq. (D.2)) for the (t)-step propagator in the saddle point681

method described in [63, §4] yields the approximation for N →∞,682

tr Û (t) ≈
At−1
∑

ν=0

At/2

At − 1
e2πiNSν exp

�

2πi
A−1
∑

j=0

α jη j(ν)
�

. (33)

As we assume t →∞ (though slowly) in N , we can replace At/2

At−1 by 1
At/2 . Each value ν in the683

sum in Eq. (33) corresponds to a length t periodic orbit, given by the coordinates ν= a1 . . . at684

in base A.685

To estimate the SFF 1
N | tr Û (t)|2, we expand Eq. (33) in a double sum over indices ν,σ.686

Because of the large factor N in the resulting term e2πiN(Sν−Sσ), we ignore any pairs (ν,σ)687
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with Sν ̸= Sσ, since they are likely to average out due to the rapid oscillations. This the688

“diagonal approximation” method in periodic orbit theory [9]. We know that Sν = Sσ for689

σ ∈ {ν, ν̄, R(ν), R(ν̄)}, and also for any σ that is a rotation of any of the four above elements.690

(A periodic orbit ν = a1 · · · at is equivalent to the rotated orbit a2 · · · at a1, and so on.) For691

most ν, there are thus 4t choices of σ that we know satisfy Sν = Sσ. We have overcounted692

for some ν however, in particular for the ν that are repetitions of a shorter sequence, or ν693

for which {ν, ν̄, R(ν), R(ν̄)} contains duplicates. However, we can count that there are only of694

order O(At/2) such ν, which is exponentially small compared to the total number At for large695

t. Therefore in what follows we can ignore the differences for such ν since they contribute696

non-leading order terms.697

Assuming the above-described 4t values for σ are usually or on average the only main698

orbits with Sσ = Sν, the diagonal approximation (with the symmetries) then yields699

1
N
| tr Û (t)|2 ≈

At−1
∑

ν=0

t
NAt

�

2+ 2e2πi
∑A−1

j=0 α j[η j(ν)−η j(R(ν))]
�

=
2t
N
+

2t
NAt

At−1
∑

ν=0

e2πi
∑A−1

j=0 η j(ν)(α j−αA−1− j)

=
2t
N
+

2t
NAt

 

A−1
∑

j=0

exp
�

2πi(α j −αA−1− j)
�

!t

, (34)

where we used the multinomial expansion to obtain the last line, since700

At−1
∑

ν=0

exp
�

2πi
A−1
∑

j=0

η j(ν)(α j −αA−1− j)
�

=
∑

n0+···+nA−1=t
n j∈N0

�

t
n0, . . . , nA−1

� A−1
∏

j=0

�

e2πi(α j−αA−1− j)
�n j .

In order for the second term of Eq. (34) not to decay against the At term in the denominator701

as t →∞, we must have α j−αA−1− j = c mod 1 for a constant c and all j = 0, . . . , A−1, which702

requires c = 0 or 1/2 mod 1 by considering j = k and j = A− 1 − k. In the case c = 0, we703

obtain 1
N | tr Û (t)|2 ≈ 4t

N , giving an SFF slope of 4 at zero. In the latter case c = 1/2, we obtain704

1
N | tr Û (t)|2 ≈ 2t

N (1+ (−1)t), giving an average SFF slope (averaged over t) of 2 at zero. Thus705

as stated in Sec. 3, we only obtain an SFF slope of 4 if α j = αA−1− j for all j, and obtain a slope706

of 2 in all other cases.707

6.3 Periodic orbit theory for the Shor baker quantizations708

Recall the arbitrary phase version of the Shor baker matrices was defined in Tab. 1 as709

ÛN (α) = F̂−1
N

�

A−1
⊕

j=0

e2πiα j F̂0,− j/A
N/A

�

. (35)

In order to estimate the SFF using the periodic orbit expansion, we must identify the cor-710

rect t-step quantization Û (t) corresponding to ÛN (α). For simplicity, we first take all block711

phases α j = 0, since they can be added in at the end. We next need to keep track of the712

phases of the 1-step propagator, which we do by calculating its action on maximally localized713

Gaussian-like states (coherent states) Ψ(q0,p0),σ,T2 as defined on the torus, see e.g. [39,71,72].714

For j ∈ {0, 1, . . . ,A− 1}, let j
A ≤ q < j+1

A , and also assume q is far enough away from the715

boundaries 1
AZ to avoid diffraction effects near the classical map’s discontinuities. Following716
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the calculations in [39, Suppl. Mat. §III], then for717

ŨN :=
A−1
⊕

j=0

F̂
0,β j

N/A ,

and Ψ(q0,p0),σ,T2 the torus coherent state at (q0, p0), we have the evolution718

ŨNΨ(q0,p0),σ,T2 = eiπN jq0 eiπN j(p0+ j)/Ae−2πiβ j p0Ψ(Aq0− j,
p0+ j

A ), σ
A2 ,T2 + o(1), (36)

with the error term o(1) as N → ∞, which includes error from an O(N−1) shift in the co-719

herent state center. The phase e−2πiβ j p0 is the extra phase due to the β j . Starting with a q0720

corresponding to ν = a1 · · · at , then after t applications of ŜN , we accumulate the phase (due721

to the β j)722

exp
�

− 2πi
t−1
∑

j=1

βa j

� j−1
∑

i=1

ai

Aj−i
+

p0

Aj−1

��

. (37)

The expression in hard brackets [· · · ] is the momentum coordinate just before applying the723

jth iteration. If we write p0 = 0.b1 b2 . . . in base A, then at this step the classical infinite binary724

sequence is · · · b2 b1a1 · · · a j−1 • a j · · · at · · · , which corresponds to the aforementioned phase.725

Taking β j = − j/A, then Eq. (37) becomes726

exp
�

2πi
t−1
∑

j=1

a j

j−1
∑

i=1

ai

Aj−i+1

�

e2πiνp0/A
t
. (38)

Next we assume the t-step propagator Û (t) is of the form F̂−1
N Û (t)mix with 〈k|Û (t)mix|n〉= δνnν̄k

F̂0,b(ν)
N/At e−2πiψ(ν)

727

for some b(ν) andψ(ν). As in Eq. (36), the b(ν) term will produce an extra phase e−2πi b(ν)p0 .728

Comparing this to Eq. (38) leads to the relations b(ν) = −ν/At and ψ(ν) = φ(ν)/A. Adding729

in the α j phases then yields the (t)-step propagator for Eq. (35) in mixed basis as730

〈k|Û (t)mix(α)|n〉= δνnν̄k
F̂0,−ν/At

N/At e−2πiφ(ν)/Ae2πi
∑A−1

j=0 α jη j(νn), (39)

where731

φ(ν) = −
t
∑

j=2

a j

j−1
∑

i=1

aiA
− j+i . (40)

For visualization purposes, we include graphics below in the style of [59] (which plotted t-732

step propagators for the Saraceno quantization) to visually demonstrate Eq. (39) for the Shor733

baker quantization with A = 2. This involves comparing Û (t)mix to the mixed basis propagator734

Ŝ t
N ,mix := F̂N Ŝ t

N , where735

ŜN = F̂−1
N

�

F̂N/2

−F̂0,−1/2
N/2

�

,

is the usual A = 2 Shor baker quantization. In Figs. 12 and 13, for t = 2 and 3, we plot the736

mixed basis matrix entry sizes and phases of Ŝ t
N , and observe close agreement with those of737

the (t)-step propagator Û (t)mix from Eq. (39) for A= 2.738

With the stationary phase approximation (see Appendix D for details), Eq. (39) leads to739

tr Û (t) ≈
At−1
∑

ν=0

1
At/2

e2πiNSνe
2πiνν̄

At (At−1) e−2πi φ(ν)A e2πi
∑A−1

j=0 α jη j(ν). (41)
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N in mixed basis

−3

−2

−1

0

1

2

3

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

Phases of (2)-step Shor baker in mixed basis

−3

−2

−1

0

1

2

3

Figure 12: Visual example for Eq. (39). (Left) Plot of the matrix entry sizes of Ŝ2
N ,mix

for N = 152. The non-DFT-like blocks have much smaller matrix elements, other than
possibly at the block boundary lines. (Center) Phase plot of the entries of Ŝ2

N ,mix. Note
the different color patterns in each generalized DFT block (most evident by looking
at the four corner areas of each block). This corresponds to different generalized
DFT phases and different block phases. (Right) Phase plot of the (2)-step propagator
in Eq. (39) with α= 0. By carefully considering the different color patterns, one can
see they match those of the center plot for Ŝ2

N ,mix.

From Eq. (40), one can check that φ(ν) = φ(ν̄), and that740

φ(R(ν)) = φ(ν)− (A− 1)t + A−
1

At−1
+ 2

t
∑

i=1

ai −
ν+ ν̄
At−1

.

Then we obtain741

νν̄

At(At − 1)
−
φ(ν)

A
−
�

R(ν)R(ν̄)
At(At − 1)

−
φ(R(ν))

A

�

= −
�

1−
1
A

�

t +
2
A

t
∑

i=1

ai . (42)

Additionally, if ν′ = a2 · · · at a1 is the 1-step cyclic rotation of ν = a1 · · · at , then calculation742

shows that743

φ(ν′)
A
=
φ(ν)

A
+

a1

At
(ν− ν̄′),

so that also using ν′ν̄′

At−1 =
νν̄

At−1 + a1(ν− ν̄′), we obtain744

νν̄

At(At − 1)
−
φ(ν)

A
=

ν′ν̄′

At(At − 1)
−
φ(ν′)

A
. (43)

Then taking the diagonal approximation (with symmetry factors) to only sum overσ ∈ {ν, ν̄, R(ν), R(ν̄)}745

and their cyclic rotations, yields similarly to Eq. (34),746

1
N
| tr Û (t)|2 ≈

t
NAt

At−1
∑

ν=0

 

2+ 2 exp
�

2πi
A−1
∑

j=0

α j

�

η j(ν)−η j(R(ν))
�

�

e2πi[−(1− 1
A)t+ 2

A

∑t
i=1 ai]

!

=
2t
N
+

t
NAt

At−1
∑

ν=0

2exp
�

2πi
A−1
∑

j=0

η j(ν)
�

α j −αA−1− j +
2 j
A

�

�

e−2πi(1− 1
A)t

=
2t
N
+

2t
NAt

 

A−1
∑

j=0

exp
�

2πi(α j −αA−1− j + 2 j/A)
�

!t

e2πi t/A. (44)
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Figure 13: Phase plot equivalents of Fig. 12 for t = 3. As in the t = 2 case, note the
careful agreement between the phases of Ŝ3

N ,mix and those of the (3)-step propagator
from Eq. (39).

In order to have non-decaying second term as t →∞, we need (modulo 1)747

α j −αA−1− j +
2 j
A
= c, ∀ j = 0, . . . , A− 1.

By considering j = k and j = A−1−k, we must have c = −1
A or −1

A+
1
2 (mod 1). In the former,748

Eq. (44) becomes 4t
N , while in the latter it becomes 2t

N (1+ (−1)t) which averages to slope 2.749

Thus we obtain an averaged SFF slope of 4 iff750

αA−1− j = α j +
2 j + 1

A
mod 1, j = 0, . . . , A− 1, (45)

and slope 2 in all other cases.751

7 Conclusion752

We have studied maximally chaotic quantum maps with discrete symmetries that share the753

same classical limit. Contrary to conventional expectations for the correspondence between754

discrete symmetries and spectral statistics [10,45–48], we demonstrated that short-range spec-755

tral statistics in these models generically fail to identify discrete symmetries (weak anomalies),756

while long-range spectral statistics also violate these expectations in the presence of phases757

(strong anomalies). However, long-range spectral statistics appear more directly correlated758

with intrinsic quantum dynamical properties [27] in the Hilbert space. This further reinforces759

the notion that spectral statistics should ideally be interpreted in terms of intrinsically quan-760

tum mechanical properties, while more work is necessary to understand how they connect to761

macroscopic dynamics, such as in the classical limit, beyond the well-studied case of systems762

showing close agreement in several measures with RMT [1,3].763

One direction to explore, which may be of immediate relevance in the context of many-764

body statistical mechanics, is whether the introduction of simple phases — as in the case of765

strong anomalies studied here — could break the commonly observed correspondence [2,22]766

between “macroscopic” subsystem thermalization behaviors (i.e. in a large subset of particles)767

and spectral signatures of ergodic phenomena. While our results already formally point to768

an affirmative answer, given that one can realize quantizations of A-baker’s maps as many-769

body Floquet quantum circuits using the quantum Fourier transform and phase gates [52,53]770
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(with the classical N →∞ limit then corresponding to the thermodynamic limit of, e.g., many771

qubits), it would nevertheless be illuminating to understand the mechanisms involved (such772

as Berry-like phases) in a more natural setting of an interacting many-body system that does773

not necessarily model a classically chaotic map.774
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A Reflection commutators781

In this section, we provide numerical evidence that the (generic) generic quasiperiodic and782

Shor baker quantizations do not have a Fourier reflection symmetry, as defined below. We also783

provide numerical plots demonstrating symmetries of various eigenvectors.784

We will say that a quantization ÛN has a “Fourier reflection symmetry” if ÛN commutes785

with some R̃ω1,ω2
N := (F̂ω1,ω2

N )2, for (ω1,ω2) ∈ [0,1)2, for each N ∈ AN. Interestingly enough,786

there is a generic quantization Gen0.5,0
A=2 that does not commute with its “natural” reflection787

candidate R̃0.5,0
N , but does commute with R̃0,0

N , and so counts as possessing a Fourier reflection788

symmetry. As discussed in Sec. 4.1, these Fourier reflection symmetries are only a small subset789

of all possible quantum reflection operators.790

Letting B̂θ1,θ2
A,N be the generic quasiperiodic quantization for the A-baker’s map, we plot the791

Frobenius matrix norm for a variety of commutators [B̂θ1,θ2
N ,A , R̃ω1,ω2

N ] in Fig. 14. It appears that792

the Balazs–Voros quantization, most generic quasiperiodic quantizations, and the Shor baker793

quantization have nonzero commutators and do not possess a Fourier reflection symmetry.794

In Fig. 16, we plot the Husimi functions of eigenstates of the various quantizations. The795

Husimi function is a phase space representation of a vector v ∈ CN , defined using the overlap796

with coherent states. For a precise definition and further background, see [73]. This type of797

phase space representation was used in [50] to study scarring of the eigenstates of the Sara-798

ceno quantization. Depending on the quantization, the eigenstates may or may not preserve799

the classical reflection or TR symmetries, which can suggest information about possible quan-800

tum symmetries. However, we emphasize that Fig. 16 provides only a rough visual indication801

of symmetries, of only a select sample of eigenstates, and moreover may contain finite-size802

effects. Therefore, while the Husimi functions exhibit different symmetries depending on the803

quantization, they can provide interesting but not conclusive evidence about quantum ana-804

logues of the classical symmetries.805

B Commutator for approximate symmetry806

In this section, we analytically check the approximate symmetry R̃N introduced in Section 4.3807

(Eq. (25)) is in some sense close to commuting with the Balazss–Voros quantization B̂N ,A. More808

precisely, for B̂N ,A the Balazs–Voros quantization and R̃N = R̃0,0
N , we show the only possible809

large matrix elements 〈x |[B̂N ,A, R̃N ]|y〉 of the commutator [B̂N ,A, R̃N ] are those (x , y) with810
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Figure 14: (a)–(e): Plots of the Frobenius matrix norm of the commutator
[B̂θ1,θ2

N ,A , R̃ω1,ω2
N ] as a function of θ = (θ1,θ2), for: (a)–(b) ω = θ , (c) ω = (0,0),

(d) ω = (0.5, 0.5), and (e) ω = (0.2,0.7). In all cases N = 100. In (a), (b), and
(d), the commutator is zero only at θ1 = θ2 = 1/2, which corresponds to the Sara-
ceno quantization. In (c), the Gen0.5,0

A=2 quantization is seen (perhaps surprisingly)
to commute with R̂0,0

N . However, in (e) and for randomly chosen ω, it appears that

∥[B̂θ1,θ2
A,N , R̃ω1,ω2

N ]∥F is bounded away from zero for all θ . (f)–(k): Plots of the Frobe-

nius matrix norm of the commutator [ÛN , R̃θ1,θ2
N ], where ÛN is a fixed quantization

and R̃θ1,θ2
N ranges over θ ∈ [0,1)2. In all plots except for the Saraceno quantization in

(g), the matrix norm appears bounded away from zero, indicating the quantizations
should not have a Fourier reflection symmetry. Plots for A= 10 appear similar, and
plots for the phase variant quantizations also appear bounded away from zero. In all
of the above plots, the sampling mesh is size 200× 200.

y ∈ N
AZ and with x close to 0 or N and not in AZ.811

Let a, b ∈ {0, . . . , A−1} be defined so that a N
A ≤ y < (a+1)N

A and b N
A ≤ N−y mod N < (b+1)N

A .812

Using that R̃N |y〉= |N − y〉 (taken modulo N), direct evaluation shows,813

〈x |[B̂N ,A, R̃N ]|y〉=
p

A
N

N/A−1
∑

m=0

�

e2πiax/Ae2πi xm/N e2πimyA/N − e2πi x b/Ae−2πi xm/N e−2πimyA/N
�

.

(B.1)

First, if x+ yA∈ NZ, which would prevent geometric summation, then since A|N we must also814

have x ∈ AZ. Combined with x+ yA∈ NZ, then Eq. (B.1) is zero in this case. For x+ yA ̸∈ NZ,815

we can evaluate,816

〈x |[B̂N ,A, R̃N ]|y〉=
p

A
N

�

e2πiax/A e2πi x/A− 1
e2πi x/N e2πi yA/N − 1

− e−2πi bx/A e−2πi x/A− 1
e−2πi x/N e−2πi yA/N − 1

�

,

(B.2)

which we see is zero if x ∈ AZ. If y ∈ N
AZ, then one can check that a+ b ∈ {0, A}, and we use817

the bound |e2πx/N e2πiAy/N − 1| ≥ c
N d(x , NZ) for a numerical constant c > 0. This gives the818

bound819

〈x |[B̂N ,A, R̃N ]|y〉=O
�

p
A

d(x , NZ)

�

, (B.3)

which thus allows large commutator matrix elements for the A values of y ∈ N
AZ∩ [0, N − 1]820

and x close to 0 or N (and not in AZ).821
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If y ̸∈ N
AZ, then one can check a+ b = A− 1, and we obtain from Eq. (B.2) that822

〈x |[B̂N ,A, R̃N ]|y〉=
p

A
N

e2πiax/A(1− e2πi x/A) =O
�

p
A

N

�

,

which is small. Thus the only possible large matrix elements of the commutator [B̂N ,A, R̃N ] are823

those (x , y) from Eq. (B.3) with y ∈ N
AZ and x close to 0 or N and not in AZ.824

C Details for the computation of the early time SFF slope825

In this section, we provide the details for our numerical computations of the early time SFF826

slope. Examples of RMT behavior and (rare) bad early time behavior are shown in Fig. 15.827

1. We averaged the SFF at time t with its nearest 2ℓ neighbors (or up to time 2t − 1 if828

t < ℓ), with ℓ = 20 for N < 1000 and ℓ = 40 for N ≥ 1000. The choice of averaging to829

time 2t − 1 for t < ℓ keeps the averaging symmetric about t.830

2. We took the first f points of the above averaged SFF, where f = 20 for N < 1000,831

f = 40 for 1000 ≤ N < 5000, and f = 60 for N ≥ 5000, and ran a least squares fit832

for a line through the origin to get the best slope. We also retained the scaled residual833

error, which is the residual error when running the least squares fit for x ∈ ⟦1 : f ⟧ and834

y = N SFF(x).835

3. We removed all “outliers” which had scaled residual error over 100 (or 400 for A= 15,836

to make sure not too many points were removed). We then averaged the slopes among837

points within 10 units away (ignoring outliers) and plotted the resulting slopes. We note838

that the removed outlier points are not necessarily those with an outlier SFF slope value,839

but just those for which the least squares fit did not work well.840

0.0 0.2 0.4 0.6 0.8 1.0
τ

0.0

0.5

1.0

SF
F

COE
2-block COE

0.000 0.002 0.004 0.006 0.008
τ

0.0

0.1

0.2

SF
F

Saraceno A = 2,
N = 7168
least squares
slope 4
slope 2

Figure 15: (Left) SFF for random instances of a COE and a 2-block COE matrix for
reference, with N = 9690 and ℓ= 100. There is a clear distinction between COE and
2-block COE with this averaging method, which in particular identifies the slope near
0. (Right) Example of the least squares fit for a removed outlier of the Saraceno A= 2
quantization, N = 7168 (plotted for longer times in Fig. 11(b)). Removed outliers
amount to only 0.86% of the values of N ∈ 2N considered for this quantization in
Fig. 10(b).

D Shor baker matrix stationary phase approximation841

We provide more details for adapting the saddle point method from [63] to the Shor baker842

quantizations, which we recall involve several different generalized DFT blocks. The resulting843
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Figure 16: Husimi (phase space) plots for eigenvectors of the various quantizations
for N = 1000 and mesh size 300× 300, arranged by column. A reflection symmetry
across the line p = q corresponds to the classical TR symmetry (q, p) 7→ (p, q), while
a reflection symmetry across the line p = 1−q corresponds to the classical reflection
symmetry (q, p) 7→ (1−q, 1−p). While all quantizations have some eigenvectors that
appear to preserve both symmetries (top row), it appears the quantizations that do
not have a clear quantum analogue of the classical symmetries can have eigenvectors
that break a symmetry (middle and bottom rows of columns (a), (c), and (e)). Of
the eigenvectors sampled for the Gen0,0,5

A=2 quantization in column (d), however, they
appear to generally preserve both classical symmetries.

extra phase factors in Eq. (D.1) below will be important for the analysis. We start with the844

t-step quantization Û (t)mix in Eq. (39), for simplicity with block phases α j = 0 since they can845

be added in later. The nonzero blocks in Û (t)mix correspond to coordinates (n, k) with νn = ν̄k.846

Equivalently, picking a ν, then there is the block where Nν
At ≤ n< N(ν+1)

At and N ν̄
At ≤ k < N(ν̄+1)

At .847

For these coordinates,848

〈k|Û (t)mix|n〉= 〈k− ν̄N/At |F̂
0,− νAt

N/At |n− νN/At〉e−2πiφ(ν)/A (D.1)

= 〈k− ν̄N/At |F̂0,0
N/At |n− νN/At〉e2πikν/N e−2πiνν̄/At

e−2πiφ(ν)/A.

Letting Fν(q, p) = At pq − νp − ν̄q be the classical generating function as in [63], there is the849

relation for q = (n+ θ2)/N and p = (k+ θ1)/N ,850

〈k− ν̄N/At |F̂θ1,θ2
N/At |n− νN/At〉=

At/2

N1/2
e−2πiN Fν(q,p). (D.2)

Since we work with periodic boundary conditions for the Shor baker quantizations, we take851

θ1 = θ2 = 0. Allowing interpolation to move to continuous coordinates q and p, Eq. (D.1)852

then becomes853

〈p|Û (t)mix|q〉 ≈
At/2

N1/2
e−2πiN Fν(q,p)e2πipνe−2πiνν̄/At

e−2πiφ(ν)/A.
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Preparing for the saddle point approximation as in [63, §4] then yields,854

tr Û (t) =
1

N1/2

N−1
∑

k,n=0

e2πikn/N 〈k|U (t)mix|n〉

=
1

N1/2

∞
∑

k,n=−∞

∫ ∞

−∞
d(Nq)

∫ ∞

−∞
d(N p)χ[0,1)(p)χ[0,1)(q)e

2πiN pq〈p|U (t)mix|q〉×

δ(Nq− n)δ(N p− k)

≈ N3/2
∑

ℓ,m

At−1
∑

ν=0

∫
ν+1
At

ν
At

dq

∫
ν̄+1
At

ν̄
At

dp e2πiN pqe−2πimNqe−2πiℓN p At/2

N1/2
e−2πiN Fν(q,p)e2πipν×

e−2πiνν̄/At
e−2πiφ(ν)/A

= NAt/2
∑

ℓ,m

At−1
∑

ν=0

∫
ν+1
At

ν
At

dq

∫
ν̄+1
At

ν̄
At

dp exp
�

2πiN[pq− At pq+ (ν− ℓ)p+ (ν̄−m)q]
�

×

e2πipνe−2πiνν̄/At
e−2πiφ(ν)/A.

For ℓ = m = 0, the stationary point is q = ν
At−1 , p = ν̄

At−1 . For other (ℓ, m), there are no855

stationary points in the region of integration, and so ignoring those terms, we thus obtain the856

stationary phase estimate857

tr Û (t) ≈
At/2

At − 1

At−1
∑

ν=0

e2πiNSνe
2πiνν̄

At (At−1) e−2πiφ(ν)/A. (D.3)
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