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Abstract: The purpose of this paper is to investigate the global categorical symmetries

that arise when gauging finite higher groups in three or more dimensions. The motivation

is to provide a common perspective on constructions of non-invertible global symmetries

in higher dimensions and a precise description of the associated symmetry categories. This

paper focusses on gauging finite groups and split 2-groups in three dimensions. In addition

to topological Wilson lines, we show that this generates a rich spectrum of topological

surface defects labelled by 2-representations and explain their connection to condensation

defects for Wilson lines. We derive various properties of the topological defects and show

that the associated symmetry category is the fusion 2-category of 2-representations. This

allows us to determine the full symmetry categories of certain gauge theories with discon-

nected gauge groups. A subsequent paper will examine gauging more general higher groups

in higher dimensions.
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1 Introduction

There has been exciting recent progress in understanding the existence and implications

of non-invertible global categorical symmetries [1–13]. A general mechanism to produce

non-invertible symmetries in dimension D = 2 is to gauge a finite non-abelian symmetry

group [14–17]. The purpose of this work is expand this construction to incorporate gauging

a finite n-group symmetry in dimension D > 2 with n = 1, . . . , D − 1.

This present paper will focus on gauging finite groups and split 2-groups in dimension

D > 2, while subsequent work will explore more general finite 2-groups and higher groups

in D > 2.

1.1 Motivation

A first motivation for this paper is to develop a systematic approach to constructing finite

non-invertible symmetries in dimensionD > 2, which incorporates the range of perspectives

that have appeared in the literature and sheds some light on the relationship between

different constructions and common structures.

A second motivation is to explore the mathematical structure of symmetries that result

from gauging finite higher groups. In dimension D, the symmetry structure of a quantum

field theory is expected to be captured by a fusion (D − 1)-category, which encodes the

properties of extended topological operators in dimensions p = 0, . . . , D − 1.

The proposal is that the symmetry category arising from gauging a finite higher group

in D dimensions is the category of (D − 1)-representations of that higher group. This

mathematical structure encodes the properties of extended topological operators which are

higher-dimensional analogues of topological Wilson lines. This generalises the well-known
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result for gauging a finite symmetry group in D = 2 [14–17] and has interesting structure

when D > 2 even when gauging an ordinary finite group.

1.2 Summary of Results

In dimension D = 2, gauging a finite symmetry group G results in topological Wilson lines

transforming in representations of G. This generates a Rep(G) fusion category symmetry,

which has non-invertible simple objects if G is non-abelian.

In D > 2, gauging an ordinary finite symmetry group again results in topological Wil-

son lines transforming in representations of G. However, there are also higher-dimensional

topological defects arising from combinations of inserting SPT phases on submanifolds and

condensation defects for the topological Wilson lines1.

The idea is that the full spectrum of topological defects of dimensions q = 0, . . . , D−1

that arises when gauging a finite group G is captured by the higher representation theory

of G. We propose that the full symmetry category is the (D−1)-fusion category of (D−1)-

representations of G. A large portion of this paper is dedicated to explaining and checking

this proposal in dimension D = 3.

1.2.1 Groups

Let us consider a theory T with anomaly free finite group symmetryG. The strategy utilises

the construction of correlation functions in T /G by summing over networks of symmetry

defects inserted in correlation functions in T . The topological defects in T /G are then

defined operationally as topological defects in T together with instructions for how sym-

metry defects may end on them consistently. Spelling out this construction systematically

leads to a generalisation of the construction of [14–17] to dimension D > 2.

In dimension D = 3, we will show that the simple topological surfaces are labelled by

the following data:

1. A transitive G-set O.

2. A class2 c ∈ H2(G,U(1)O).

They coincide with irreducible 2-representations of G. We will also compute the fusion, 1-

morphisms, composition of 1-morphisms and fusion of 1-morphisms of simple objects. This

provides an identification of topological surfaces with |O| > 1 with partial condensation

defects for topological Wilson lines. The results are consistent with the symmetry category

2Rep(G) of 2-representations of G, whose structure has been studied extensively in the

mathematical literature [19–22].

We will also present an equivalent formulation where simple topological surfaces are

labelled instead by the following data:

1. A subgroup H ⊂ G.
1From a mathematical perspective these are all condensations, see e.g. [18].
2Here, U(1)O denotes the group U(1)|O| equipped with a G-action that is induced by the G-action on

the transitive G-set O. We will also often call O a G-orbit in what follows.
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2. An SPT phase c ∈ H2(H,U(1)).

This provides a more direct physical construction of the simple topological surfaces in

T /G in which the gauge symmetry is broken to H ⊂ G and SPT phase is inserted for

the unbroken gauge symmetry. This connects with and to some extent generalises the

perspective on condensation defects in [4].

1.2.2 2-Groups

We extend this construction further to gauging a finite 2-group symmetry in D = 3. In

this paper, we focus on split 2-groups with vanishing Postnikov class, which are specified

by a 0-form symmetry group H, an abelian 1-form symmetry group A, and an action of

the former on the latter by automorphisms. We write such a split 2-group as

G = A[1]⋊H (1.1)

by analogy with a semi-direct product.

We first elucidate the full symmetry category 2Vec(G) of a theory T with 2-group sym-

metry G, including the contribution of condensation defects for the 1-form symmetry. We

then compute symmetry category of T /G by generalising the gauging procedure described

above to show that it coincides with the fusion 2-category 2Rep(G) of 2-representations of

the 2-group G.

The simple topological surfaces are now labelled by the following data

1. A transitive H-set O.

2. A class c ∈ H2(H,U(1)O).

3. A collection of characters χj : A→ U(1) indexed by j ∈ O, satisfying

χj(a
h) = χh ▷ j(a)

for all elements a ∈ A and h ∈ H.

Here, ah and h ▷ j denote the actions of H on A and O, respectively. We compute the

fusion, 1-morphisms, composition of 1-morphisms and fusion of 1-morphisms and show that

they coincide with those in 2Rep(G). The topological surfaces with |O| > 1 and characters

χj : A→ U(1) that do not form a single H-orbit in Â involve at least a partial condensation

of topological Wilson lines.

We again present an equivalent formulation in which simple topological surfaces are

labelled by the following data:

1. A subgroup K ⊂ H.

2. A class c ∈ H2(K,U(1)).

3. A K-invariant character χ : A→ U(1).
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This again provides a more direct physical interpretation of simple topological surfaces in

T /G generalising the group case. From a mathematical perspective, it also provides a new

description of simple objects in 2Rep(G) for a split 2-group.

The construction in this paper is closely related but distinct from the gauging process

in [5], which did not in the first instance output the SPT phases and condensation defects.

The latter arose instead from an additional step of passing from local to global fusion3.

Here, all of the simple topological surfaces arise uniformly from the construction and there

is only one type of fusion. The distinction may be seen in the classification above by setting

c = 0 and restricting to collections χj : A → U(1) forming a single H-orbit. It would be

interesting to clarify the precise relation.

1.2.3 Gauge Theories

The above results have applications to non-invertible categorical symmetries of gauge the-

ories with disconnected gauge groups. We first consider a pure gauge theory T in D = 3

with a compact, connected, simple, simply connected gauge group G, such as Spin(2N).

This has a split-2 group global symmetry

Z(G)[1]⋊Out(G) (1.2)

where Out(G) is the 0-form symmetry of outer automorphisms and Z(G) is the electric

1-form center symmetry.

<latexit sha1_base64="AIYJZetYGtdFMIQeq4rCw6H/fOQ=">AAACKnicbVDJSgNBEO2Je9yiHr00BiG5hJkg6kkiHvQguGBiIBNDT6dGm/QsdNeIYZjv8eKvePGgiFc/xM4CarSg4PHeK6rqebEUGm373cpNTc/Mzs0v5BeXlldWC2vrDR0likOdRzJSTY9pkCKEOgqU0IwVsMCTcO31jgb69T0oLaLwCvsxtAN2GwpfcIaG6hQOqy7CA6aXEGclNxYdp5RmN6duwPDO89PjrExdhSIATUfGswSN8VsudwpFu2IPi/4FzhgUybjOO4UXtxvxJIAQuWRatxw7xnbKzBouIcu7iYaY8R67hZaBITPL2+nw1YxuG6ZL/UiZDpEO2Z8TKQu07geecQ5u1JPagPxPayXo77dTEcYJQshHi/xEUozoIDfaFQo4yr4BjCthbqX8jinG0aSbNyE4ky//BY1qxdmt7FzsFGsH4zjmySbZIiXikD1SIyfknNQJJ4/kmbySN+vJerHerY+RNWeNZzbIr7I+vwAH1qeh</latexit>

2Rep(⇡1(
LG) o Out(G))

<latexit sha1_base64="b1Bq5kTrhHKmNlZ1WHd05Twx3xE="></latexit>

2Vect(⇡1(
LG) o Out(G))

<latexit sha1_base64="aE61CZ/Oy+rpVQufGHDMjCOyt8k=">AAACDXicbVC7SgNBFJ2Nrxhfq5Y2g1GITdyVoFYSsNDOCHlBEsLsZDYZMvtg5q4Ylv0BG3/FxkIRW3s7/8bZTQqNHrhwOOde7r3HCQVXYFlfRm5hcWl5Jb9aWFvf2Nwyt3eaKogkZQ0aiEC2HaKY4D5rAAfB2qFkxHMEaznjy9Rv3TGpeODXYRKynkeGPnc5JaClvnnQ9QiMKBFxPcHHuAvsHuKbCJJSZjhufJUc9c2iVbYy4L/EnpEimqHWNz+7g4BGHvOBCqJUx7ZC6MVEAqeCJYVupFhI6JgMWUdTn3hM9eLsmwQfamWA3UDq8gFn6s+JmHhKTTxHd6YnqnkvFf/zOhG4572Y+2EEzKfTRW4kMAQ4jQYPuGQUxEQTQiXXt2I6IpJQ0AEWdAj2/Mt/SfOkbJ+WK7eVYvViFkce7aF9VEI2OkNVdI1qqIEoekBP6AW9Go/Gs/FmvE9bc8ZsZhf9gvHxDVN0m7g=</latexit>T /Out(G)
<latexit sha1_base64="yI2ETZRA2XzG/ntrZuQyrotQdqo=">AAACF3icbVA9SwNBEN3z2/gVtbRZDEJs4p0EtZKAhXYqGA3kjrC3mTOLex/szqnhuH9h41+xsVDEVjv/jZszhSY+GHi8N8PMPD+RQqNtf1kTk1PTM7Nz86WFxaXllfLq2qWOU8WhyWMZq5bPNEgRQRMFSmglCljoS7jyb44G/tUtKC3i6AL7CXghu45EIDhDI3XKNfdOdKHHMHNDhj3OZHaR53SHugj3mJ2mmFcLxw+y43y7U67YNbsAHSfOkFTIEGed8qfbjXkaQoRcMq3bjp2glzGFgkvIS26qIWH8hl1D29CIhaC9rPgrp1tG6dIgVqYipIX6eyJjodb90DedgxP1qDcQ//PaKQYHXiaiJEWI+M+iIJUUYzoIiXaFAo6ybwjjSphbKe8xxTiaKEsmBGf05XFyuVtz9mr183qlcTiMY45skE1SJQ7ZJw1yQs5Ik3DyQJ7IC3m1Hq1n6816/2mdsIYz6+QPrI9v2p2gVg==</latexit> bT /Out(G)

<latexit sha1_base64="qeHJbyvq1O980UpR2yz/tN1yUXY=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXJVEirqSghuXFfqCJpSbyaQdOnkwM1FKzMJfceNCEbf+hjv/xknbhbYeGDiccy/3zPESzqSyrG+jtLK6tr5R3qxsbe/s7pn7Bx0Zp4LQNol5LHoeSMpZRNuKKU57iaAQepx2vfFN4XfvqZAsjlpqklA3hGHEAkZAaWlgHjkPzKcjUJkTghoR4Fkrz/HArFo1awq8TOw5qaI5mgPzy/FjkoY0UoSDlH3bSpSbgVCMcJpXnFTSBMgYhrSvaQQhlW42zZ/jU634OIiFfpHCU/X3RgahlJPQ05NFSLnoFeJ/Xj9VwZWbsShJFY3I7FCQcqxiXJSBfSYoUXyiCRDBdFZMRiCAKF1ZRZdgL355mXTOa/ZFrX5Xrzau53WU0TE6QWfIRpeogW5RE7URQY/oGb2iN+PJeDHejY/ZaMmY7xyiPzA+fwCAIZZo</latexit> bT<latexit sha1_base64="z9bi4IQna9Kgt19zfwH5AvGfCO8=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUVdScOOyQl8wHUomzbShmWRIMkIZ+hluXCji1q9x59+YaWehrQcCh3PuJeeeMOFMG9f9dkobm1vbO+Xdyt7+weFR9fikq2WqCO0QyaXqh1hTzgTtGGY47SeK4jjktBdO73O/90SVZlK0zSyhQYzHgkWMYGMlfxBjMyGYZ+35sFpz6+4CaJ14BalBgdaw+jUYSZLGVBjCsda+5yYmyLAyjHA6rwxSTRNMpnhMfUsFjqkOskXkObqwyghFUtknDFqovzcyHGs9i0M7mUfUq14u/uf5qYlug4yJJDVUkOVHUcqRkSi/H42YosTwmSWYKGazIjLBChNjW6rYErzVk9dJ96ruXdcbj41a866oowxncA6X4MENNOEBWtABAhKe4RXeHOO8OO/Ox3K05BQ7p/AHzucPjueRbw==</latexit>T

<latexit sha1_base64="xqFBFos1QNRx7TjM+/HbdpvMmBk=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSxC3ZREirqSggvdWcE+oCllMp20QycPZm7EErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXPcSHAFlvVtLCwuLa+sFtaK6xubW9vmzm5ThbGkrEFDEcq2SxQTPGAN4CBYO5KM+K5gLXd0mfmteyYVD4M7GEes65NBwD1OCWipZ+47wB4guYkhLTs+gaHrJVfpcc8sWRVrAjxP7JyUUI56z/xy+iGNfRYAFUSpjm1F0E2IBE4FS4tOrFhE6IgMWEfTgPhMdZNJ/hQfaaWPvVDqFwCeqL83EuIrNfZdPZlFVLNeJv7ndWLwzrsJD6IYWECnh7xYYAhxVgbuc8koiLEmhEqus2I6JJJQ0JUVdQn27JfnSfOkYp9WqrfVUu0ir6OADtAhKiMbnaEaukZ11EAUPaJn9IrejCfjxXg3PqajC0a+s4f+wPj8ATuxljs=</latexit>

Out(G)
<latexit sha1_base64="xqFBFos1QNRx7TjM+/HbdpvMmBk=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSxC3ZREirqSggvdWcE+oCllMp20QycPZm7EErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXPcSHAFlvVtLCwuLa+sFtaK6xubW9vmzm5ThbGkrEFDEcq2SxQTPGAN4CBYO5KM+K5gLXd0mfmteyYVD4M7GEes65NBwD1OCWipZ+47wB4guYkhLTs+gaHrJVfpcc8sWRVrAjxP7JyUUI56z/xy+iGNfRYAFUSpjm1F0E2IBE4FS4tOrFhE6IgMWEfTgPhMdZNJ/hQfaaWPvVDqFwCeqL83EuIrNfZdPZlFVLNeJv7ndWLwzrsJD6IYWECnh7xYYAhxVgbuc8koiLEmhEqus2I6JJJQ0JUVdQn27JfnSfOkYp9WqrfVUu0ir6OADtAhKiMbnaEaukZ11EAUPaJn9IrejCfjxXg3PqajC0a+s4f+wPj8ATuxljs=</latexit>

Out(G)

<latexit sha1_base64="1MH5F0zkaeUvH2UTg9oAP2HcU9I=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyWRoq6k4EKXFewD21Am00k7dDIJM5NCCf0TNy4UceufuPNvnLRZaOuBgcM593LPHD/mTGnH+bYKa+sbm1vF7dLO7t7+gX141FJRIgltkohHsuNjRTkTtKmZ5rQTS4pDn9O2P77N/PaESsUi8ainMfVCPBQsYARrI/Vt+6nSC7Ee+UF6Nzvvul7fLjtVZw60StyclCFHo29/9QYRSUIqNOFYqa7rxNpLsdSMcDor9RJFY0zGeEi7hgocUuWl8+QzdGaUAQoiaZ7QaK7+3khxqNQ09M1kllIte5n4n9dNdHDtpUzEiaaCLA4FCUc6QlkNaMAkJZpPDcFEMpMVkRGWmGhTVsmU4C5/eZW0LqruZbX2UCvXb/I6inACp1ABF66gDvfQgCYQmMAzvMKblVov1rv1sRgtWPnOMfyB9fkDh8yS8Q==</latexit>

Z(G)[1]

<latexit sha1_base64="46FRM4cSaDZhi9vT8uhZgkH4Y4g=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1iEuimJFHUlBRe6cFHBPqCJYTKdtEMnkzAzEUoI+CtuXCji1u9w5984abPQ1gMDh3Pu5Z45fsyoVJb1bZSWlldW18rrlY3Nre0dc3evI6NEYNLGEYtEz0eSMMpJW1HFSC8WBIU+I11/fJX73UciJI34vZrExA3RkNOAYqS05JkHTkw9u5ZmD7dOiNTID9Lr7MQzq1bdmgIuErsgVVCg5ZlfziDCSUi4wgxJ2betWLkpEopiRrKKk0gSIzxGQ9LXlKOQSDedxs/gsVYGMIiEflzBqfp7I0WhlJPQ15N5RDnv5eJ/Xj9RwYWbUh4ninA8OxQkDKoI5l3AARUEKzbRBGFBdVaIR0ggrHRjFV2CPf/lRdI5rdtn9cZdo9q8LOoog0NwBGrABuegCW5AC7QBBil4Bq/gzXgyXox342M2WjKKnX3wB8bnD6KqlUc=</latexit>

⇡1(
LG)

<latexit sha1_base64="Io6fgQ3CkL8LquqFpf6kghz12N4=">AAACJnicbVDJSgNBEO1xjXEb9eilMQjJJcyEoF6UgAe9GcEsmBlCT6cnadKz0F0jhiFf48Vf8eIhIuLNT7GzHGJiQcHj1Ste1fNiwRVY1rexsrq2vrGZ2cpu7+zu7ZsHh3UVJZKyGo1EJJseUUzwkNWAg2DNWDISeII1vP71eN54YlLxKHyAQczcgHRD7nNKQFNt87LkAHuGtM4oDPOPeScg0PP89GZYaNkudiTwgCk8Fd0lWjOnKLTNnFW0JoWXgT0DOTSratscOZ2IJgELgQqiVMu2YnBTom2oYMOskygWE9onXdbSMCTa3E0nbw7xqWY62I+k7hDwhJ3fSEmg1CDwtHJ8o1qcjcn/Zq0E/As35WGcAAvp1MhPBIYIjzPDHS51PGKgAaGS61sx7RFJKOhkszoEe/HlZVAvFe2zYvm+nKtczeLIoGN0gvLIRueogm5RFdUQRS/oDY3Qh/FqvBufxtdUumLMdo7QnzJ+fgFwPaXA</latexit>

2Vect(Z(G)[1] o Out(G))

<latexit sha1_base64="meslHaWEIJPQ/iBOeGiB6U5m01Q=">AAACJXicbVDJSgNBEO1xjXGLevTSGIR4CTMS1INIwIPeXDAqZobQ06lJmvQsdNeIYZif8eKvePFgEMGTv2JnObgVFDxeveJVPT+RQqNtf1hT0zOzc/OFheLi0vLKamlt/VrHqeLQ4LGM1a3PNEgRQQMFSrhNFLDQl3Dj946H85t7UFrE0RX2E/BC1olEIDhDQ7VKh7suwgNml5DklbuKGzLs+kF2ku80HY+6CkUImo41Zynm3xU7rVLZrtqjon+BMwFlMqnzVmngtmOehhAhl0zrpmMn6GXM2HAJedFNNSSM91gHmgZGzJh72ejLnG4bpk2DWJmOkI7Y7xsZC7Xuh75RDm/Uv2dD8r9ZM8XgwMtElKQIER8bBamkGNNhZLQtFHCUfQMYV8LcSnmXKcbRBFs0ITi/X/4Lrnerzl61dlEr148mcRTIJtkiFeKQfVInp+ScNAgnj+SZvJKB9WS9WG/W+1g6ZU12NsiPsj6/AI+vpUs=</latexit>

2Rep(Z(G)[1] o Out(G))

Figure 1.

Independently gauging the 0-form and 1-form components of the 2-group symmetry

generates to a commuting square of gauge theories shown in figure 1. Gauging the 1-form

centre symmetry Z(G) results in a theory T̂ with the Langlands dual gauge group LG and

semi-direct product 0-form symmetry

π1(
LG)⋊Out(G) . (1.3)

Then gauging outer automorphisms leads to a gauge theory with disconnected gauge groups

and non-invertible categorical symmetries given by 2-representations. This reproduces and

extends examples considered in [5] with a systematic inclusion of condensation defects and

description of the full symmetry category.

3This perspective was changed in version 2 of [5].
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1.3 Outline

The structure of the paper is as follows.

Section 2 reviews aspects of gauging a finite group in two dimensions. In section 3, we

consider gauging a semi-direct product group in two dimensions by sequentially gauging

subgroups, which serves as a warm-up for later sections. In sections 4 and 5 we consider

gauging a finite group and finite split 2-group respectively in three dimensions. In section 6,

we apply these results to compute the symmetry categories of gauge theories in three

dimensions. Finally, in section 7, we outline generalisations to higher dimensions and more

general higher groups.

Note added: in the course of this project we were informed of overlapping papers [23]

and [24]. We are grateful to the authors of these papers for coordinating release and agreeing

to a delay to accommodate the second author’s paternity leave.

2 Two dimensions: finite group

Finite global symmetries and their ’t Hooft anomalies in two dimensions are described by

a unitary fusion category that captures the spectrum and properties of topological line

defects [25–30]. In this section, we review aspects of the fusion categories associated to

a finite group and its gauging following [14–17]. This will introduce notation and useful

ingredients and set the stage for higher dimensions.

2.1 Finite groups

Consider a theory T with finite group symmetry G that is free from ’t Hooft anomalies.

The associated symmetry category is Vec(G). The simple objects are topological lines

labelled by group elements g ∈ G. They have morphisms

HomT (g, g
′) =

{
C if g = g′

∅ if g ̸= g′
(2.1)

and satisfy

g ⊗ g′ = gg′ g∗ = g−1 (2.2)

with trivial associator. The dimensions of all simple objects is 1. These properties are

summarised in figure 2.
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<latexit sha1_base64="lwHUgppjusm8IoAKA8Sg5ctZkBw=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9SQFLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj26nfekKleSwfzThBP6IDyUPOqLHSw+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nrt0Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/2MyyQ1KNl8UZgKYmIyfZv0uUJmxNgSyhS3txI2pIoyY8Mp2hC8xZeXSfOi4l1WqvfVcu0mj6MAx3AC5+DBFdTgDurQAAYhPMMrvDkj58V5dz7mrStOPnMEf+B8/gAupY0h</latexit>

g0
<latexit sha1_base64="K6HpADxHlfKEOEjZA06Pqu5FHrY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ6KokU9SQFLx4r2g9oQ9lsN+nSzSbsToRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJXCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaZJMM95giUx0O6CGS6F4AwVK3k41p3EgeSsY3k791hPXRiTqEUcp92MaKREKRtFKD1F01iuV3Yo7A1kmXk7KkKPeK311+wnLYq6QSWpMx3NT9MdUo2CST4rdzPCUsiGNeMdSRWNu/PHs1Ak5tUqfhIm2pZDM1N8TYxobM4oD2xlTHJhFbyr+53UyDK/9sVBphlyx+aIwkwQTMv2b9IXmDOXIEsq0sLcSNqCaMrTpFG0I3uLLy6R5UfEuK9X7arl2k8dRgGM4gXPw4ApqcAd1aACDCJ7hFd4c6bw4787HvHXFyWeO4A+czx/wdY2S</latexit>

gg0

<latexit sha1_base64="k1PYsIMai7iAz3WyIDyhNwkiTT8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItS8OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5Jr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbphJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jbpc4XMiLEllClubyVsSBVlxoZTsiF4iy8vk+ZZ1buont+fV2o3eRxFOIJjOAUPLqEGd1CHBjAI4Rle4c0ZOS/Ou/Mxby04+cwh/IHz+QPkKIzw</latexit>= <latexit sha1_base64="k1PYsIMai7iAz3WyIDyhNwkiTT8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItS8OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5Jr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbphJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jbpc4XMiLEllClubyVsSBVlxoZTsiF4iy8vk+ZZ1buont+fV2o3eRxFOIJjOAUPLqEGd1CHBjAI4Rle4c0ZOS/Ou/Mxby04+cwh/IHz+QPkKIzw</latexit>=

<latexit sha1_base64="Ub322zNLJrKi3hfKaqfeFa3wpHU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8Ac4vjPA=</latexit>g
<latexit sha1_base64="iJq5q9YXWSOSQe+yeadZLpXLTdw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXinqSghePFewHtGvJptk2NpssSVYoS/+DFw+KePX/ePPfmG33oK0PBh7vzTAzL4g508Z1v53Cyura+kZxs7S1vbO7V94/aGmZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H45vMbz9RpZkU92YSUz/CQ8FCRrCxUmv4kJ5503654lbdGdAy8XJSgRyNfvmrN5AkiagwhGOtu54bGz/FyjDC6bTUSzSNMRnjIe1aKnBEtZ/Orp2iE6sMUCiVLWHQTP09keJI60kU2M4Im5Fe9DLxP6+bmPDKT5mIE0MFmS8KE46MRNnraMAUJYZPLMFEMXsrIiOsMDE2oJINwVt8eZm0zqveRbV2V6vUr/M4inAEx3AKHlxCHW6hAU0g8AjP8ApvjnRenHfnY95acPKZQ/gD5/MHITqO1g==</latexit>

g�1 <latexit sha1_base64="Ub322zNLJrKi3hfKaqfeFa3wpHU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8Ac4vjPA=</latexit>g

<latexit sha1_base64="k1PYsIMai7iAz3WyIDyhNwkiTT8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItS8OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5Jr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbphJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jbpc4XMiLEllClubyVsSBVlxoZTsiF4iy8vk+ZZ1buont+fV2o3eRxFOIJjOAUPLqEGd1CHBjAI4Rle4c0ZOS/Ou/Mxby04+cwh/IHz+QPkKIzw</latexit>=
<latexit sha1_base64="DRaAAucgzXEl5U7ww/C0Eqi/1WA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWanr9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV77Jaa9Yq9Zs8jiKcwCmcgwdXUIc7aEALGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AHxXjLo=</latexit>

1

Figure 2.

A general object is a direct sum of symmetry lines

V =
⊕

g∈G
ng g ng ∈ Z+ , (2.3)
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or equivalently a G-graded vector space

V =
⊕

g∈G
Vg (2.4)

under the identification Vg = Cng .

The sum and product of general objects in the symmetry category are then identified

with direct sum and tensor product of graded vector spaces,

(V ⊕W )g = Vg ⊕Wg

(V ⊗W )g =
⊕

hh′=g

Vh ⊗Wh′ . (2.5)

The morphisms are homogeneous linear transformations

HomT (V, V
′) =

⊕

g∈G
Hom(Vg, V

′
g) . (2.6)

The composition of morphisms is then induced by matrix multiplication.

2.2 Gauging a finite group

Let us now gauge the finite group G. From a physical perspective, the resulting theory T /G
has topological Wilson lines that are labelled by linear representations of G. The associated

symmetry category is therefore Rep(G), whose objects are linear representations Φ : G →
GL(W ) of G and whose morphisms HomT (Φ,Φ

′) are intertwiners between representations.

Sums and products correspond to direct sums Φ ⊕ Φ′ and tensor products Φ ⊗ Φ′ of

representations and duals Φ∗ are complex conjugate representations. The dimension of

an object is the dimension of the representation dimΦ. The simple objects correspond to

irreducible representations of G. These properties are illustrated in figure 3.

<latexit sha1_base64="k1PYsIMai7iAz3WyIDyhNwkiTT8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItS8OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5Jr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbphJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jbpc4XMiLEllClubyVsSBVlxoZTsiF4iy8vk+ZZ1buont+fV2o3eRxFOIJjOAUPLqEGd1CHBjAI4Rle4c0ZOS/Ou/Mxby04+cwh/IHz+QPkKIzw</latexit>= <latexit sha1_base64="k1PYsIMai7iAz3WyIDyhNwkiTT8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItS8OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5Jr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbphJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jbpc4XMiLEllClubyVsSBVlxoZTsiF4iy8vk+ZZ1buont+fV2o3eRxFOIJjOAUPLqEGd1CHBjAI4Rle4c0ZOS/Ou/Mxby04+cwh/IHz+QPkKIzw</latexit>=

<latexit sha1_base64="Ys2t/02mCGSHcBoLkXVpz5Beyz0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVE9S8OKxgv2ANpTNdtMs3d2E3Y1QQv+CFw+KePUPefPfuGlz0NYHA4/3ZpiZFyScaeO6305pY3Nre6e8W9nbPzg8qh6fdHWcKkI7JOax6gdYU84k7RhmOO0nimIRcNoLpne533uiSrNYPppZQn2BJ5KFjGCTS8N2xEbVmlt3F0DrxCtIDQq0R9Wv4TgmqaDSEI61HnhuYvwMK8MIp/PKMNU0wWSKJ3RgqcSCaj9b3DpHF1YZozBWtqRBC/X3RIaF1jMR2E6BTaRXvVz8zxukJrzxMyaT1FBJlovClCMTo/xxNGaKEsNnlmCimL0VkQgrTIyNp2JD8FZfXifdq7rXrDceGrXWbRFHGc7gHC7Bg2towT20oQMEIniGV3hzhPPivDsfy9aSU8ycwh84nz/kc44k</latexit>

�
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<latexit sha1_base64="DHKH+rFdidw6hVd0d1bAnjozsjc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbRU0mkqCcpePFYwbSFNpTNdtMu3WzC7kQopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHTZNkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4upv5rSeujUjUI45THsR0oEQkGEUr+d3GUJz3yhW36s5BVomXkwrkaPTKX91+wrKYK2SSGtPx3BSDCdUomOTTUjczPKVsRAe8Y6miMTfBZH7slJxZpU+iRNtSSObq74kJjY0Zx6HtjCkOzbI3E//zOhlGN8FEqDRDrthiUZRJggmZfU76QnOGcmwJZVrYWwkbUk0Z2nxKNgRv+eVV0ryselfV2kOtUr/N4yjCCZzCBXhwDXW4hwb4wEDAM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AUYFjlU=</latexit>

�0 <latexit sha1_base64="8LQvDiEhUm/345wCmeV1YpHqEU8=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbRVUmkqCspuHFZwT6gCWUynbRDJ5MwMxFL6K+4caGIW3/EnX/jpM1CWw8MnHvOvdw7J0g4U9pxvq3S2vrG5lZ5u7Kzu7d/YB9WOypOJaFtEvNY9gKsKGeCtjXTnPYSSXEUcNoNJre5332kUrFYPOhpQv0IjwQLGcHaSAO76rXGDHmxZhFVKC/OBnbNqTtzoFXiFqQGBVoD+8sbxiSNqNCEY6X6rpNoP8NSM8LprOKliiaYTPCI9g0V2Kzys/ntM3RqlCEKY2me0Giu/p7IcKTUNApMZ4T1WC17ufif1091eO1nTCSppoIsFoUpRzpGeRBoyCQlmk8NwUQycysiYywx0SauignBXf7yKulc1N3LeuO+UWveFHGU4RhO4BxcuIIm3EEL2kDgCZ7hFd6smfVivVsfi9aSVcwcwR9Ynz/kO5Oy</latexit>

�⌦ �0 <latexit sha1_base64="lnink42kpxiCyTSu5vXDzdtI3Ig=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBPJRdKepJCl48VrAf0K4lm2bb2GyyJFmhLP0PXjwo4tX/481/Y7rdg7Y+GHi8N8PMvCDmTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKVloghtEsml6gRYU84EbRpmOO3EiuIo4LQdjG9mfvuJKs2kuDeTmPoRHgoWMoKNlVq9xog9nPXLFbfqZkDLxMtJBXI0+uWv3kCSJKLCEI617npubPwUK8MIp9NSL9E0xmSMh7RrqcAR1X6aXTtFJ1YZoFAqW8KgTP09keJI60kU2M4Im5Fe9Gbif143MeGVnzIRJ4YKMl8UJhwZiWavowFTlBg+sQQTxeytiIywwsTYgEo2BG/x5WXSOq96F9XaXa1Sv87jKMIRHMMpeHAJdbiFBjSBwCM8wyu8OdJ5cd6dj3lrwclnDuEPnM8f/9COwA==</latexit>

�⇤ <latexit sha1_base64="Ys2t/02mCGSHcBoLkXVpz5Beyz0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVE9S8OKxgv2ANpTNdtMs3d2E3Y1QQv+CFw+KePUPefPfuGlz0NYHA4/3ZpiZFyScaeO6305pY3Nre6e8W9nbPzg8qh6fdHWcKkI7JOax6gdYU84k7RhmOO0nimIRcNoLpne533uiSrNYPppZQn2BJ5KFjGCTS8N2xEbVmlt3F0DrxCtIDQq0R9Wv4TgmqaDSEI61HnhuYvwMK8MIp/PKMNU0wWSKJ3RgqcSCaj9b3DpHF1YZozBWtqRBC/X3RIaF1jMR2E6BTaRXvVz8zxukJrzxMyaT1FBJlovClCMTo/xxNGaKEsNnlmCimL0VkQgrTIyNp2JD8FZfXifdq7rXrDceGrXWbRFHGc7gHC7Bg2towT20oQMEIniGV3hzhPPivDsfy9aSU8ycwh84nz/kc44k</latexit>

�

<latexit sha1_base64="LuGgBWxOA7cwG9OVcDRmuQ4N+w8=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWARXEhJpKggSsGNywr2AU0ok8mkHTp5MHMjlpCNv+LGhSJu/Qx3/o3TNgttPXDhcM693HuPlwiuwLK+jYXFpeWV1dJaeX1jc2vb3NltqTiVlDVpLGLZ8YhigkesCRwE6ySSkdATrO0Nb8Z++4FJxePoHkYJc0PSj3jAKQEt9cz9K+xcYgfYI2Q+D3PsnGCnMeA9s2JVrQnwPLELUkEFGj3zy/FjmoYsAiqIUl3bSsDNiAROBcvLTqpYQuiQ9FlX04iETLnZ5IEcH2nFx0EsdUWAJ+rviYyESo1CT3eGBAZq1huL/3ndFIILN+NRkgKL6HRRkAoMMR6ngX0uGQUx0oRQyfWtmA6IJBR0ZmUdgj378jxpnVbts2rtrlapXxdxlNABOkTHyEbnqI5uUQM1EUU5ekav6M14Ml6Md+Nj2rpgFDN76A+Mzx/LiJVC</latexit>

= dim�

Figure 3.

Let us now summarise how to reproduce the the above result by starting from the

symmetry category Vec(G) of T and gauging G. The construction proceeds via the object

A =
⊕

g∈G
g , (2.7)

which is equivalently the graded vector space with Ag = C for all elements g ∈ G. Using

group multiplication of G, this inherits the structure of a Frobenius algebra in Vec(G) with

a multiplication morphism µ : A⊗A→ A and unit u : 1→ A.

The correlation functions in T /G are then defined by correlation functions in T with

a network of topological lines A inserted. Expanding into components, insertion of this
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network implements a summation over networks of G-symmetry lines or equivalently flat

connections for G.

Similarly, a topological line in T /G is defined as a topological line in T together with

a specification of how networks of the topological line A may consistently end on it from

the left and right. This is encoded in the structure of a (A,A)-bimodule. Starting from a

topological line V in T , one specifies morphisms

l ∈ HomT (A⊗ V, V )

r ∈ HomT (V ⊗A, V )
(2.8)

satisfying compatibility conditions involving the multiplication µ : A ⊗ A → A and unit

u : 1→ A, which define the structure of an (A,A)-bimodule.

Figure 4.

The components of these morphisms are

lh,g ∈ HomT (h⊗ Vg, Vhg) rg,h ∈ HomT (Vg ⊗ h, Vgh) (2.9)

and specify how individual symmetry defects end on the line, as illustrated in figure 4. The

component morphisms are subject to the relations

lhh′,g = lh,h′g ◦ lh′,g rg,hh′ = rgh,h′ ◦ rg,h (2.10)

and

lh,gh′ ◦ rg,h′ = rhg,h′ ◦ lh,g (2.11)

together with the normalisations le,g = 1 and rg,e = 1. These capture the fact that

topological lines have to be able to end on V consistently as illustrated in figure 5.

Figure 5.
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Figure 6.

There are many ways to present solutions to these conditions. We choose a presentation

that is convenient for our purposes. The equations (2.10) imply the components lh,g, rg,h
are invertible and identifies Vg ∼= W = Cn for all g ∈ G. They may be determined by the

components lh,e, re,g via the formula

lh,h′ = lhh′,e ◦ (lh′,e)
−1 rh,h′ = re,hh′ ◦ (re,h)

−1 . (2.12)

To formulate the remaining conditions on lh,e, re,g, we introduce the combination

Φg := (re,g)
−1 ◦ lg,e ∈ Hom(W,W ) . (2.13)

This determines the phases attached to a symmetry generator crossing the line, as illus-

trated in figure 6. The remaining equations (2.11) imply that

Φg ◦ Φh = Φgh . (2.14)

This equation encodes the requirement that in order to define a topological line in T /G,
V must be moveable through networks of symmetry defects in T . This is illustrated in

figure 7. The isomorphism class of the resulting line operator in T /G depends only on the

combination Φg, rather than individual lg,e, re,g
4.

Figure 7.

To summarise, topological lines in the gauged theory T /G are labelled by linear rep-

resentations Φ : G→ GL(W ). This reproduces the classification of Wilson lines in T /G in

a manner that will generalise to topological surfaces in higher dimensions.

4In reference [17] it is shown that it is always possible to choose re,g = 1 within an isomorphism class

whereupon Φg = lg,e.
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The sum, product and morphisms of topological lines in T /G may also be computed

from those of the parent topological lines in T . It is straightforward to check that sum and

product reproduce the direct sum and tensor product of representations. Let us briefly

summarise the computation of morphisms. The morphisms HomT /G(Φ,Φ
′) arise from

morphisms m ∈ HomT (W,W
′) subject to

m ◦ Φg = Φ′
g ◦m (2.15)

This arises from commutation with symmetry lines as illustrated in figure 8. This re-

produces the intertwiners between representations Φ,Φ′. The symmetry category may

therefore be identified with Rep(G) as expected.

Figure 8.

2.3 Discrete torsion

A generalisation is to gauge G with discrete torsion c ∈ H2(G,U(1)), resulting in a theory

(T /G)c. This is accomplished by twisting the multiplication morphism µ : A ⊗ A → A

by a representative of the class c and summing over networks of symmetry defects where

vertices g ⊗ h → gh contribute with an additional phase c(g, h). The resulting symmetry

category is again Rep(G), on which c acts by an auto-equivalence.

Let us consider a general situation of topological interfaces between pairs of theories

with discrete torsion cl, cr. The topological interfaces are constructed analogously to above,

with the result that now

Φgh = c(g, h) · Φg ◦ Φh , (2.16)

where

c(g, h) = cl(g, h)− cr(g, h) . (2.17)

The interpretation of this equation is illustrated in figure 9.

In summary, the topological interfaces between theories (T /G)cl and (T /G)cr are

labelled by projective representations Φ : G→ GL(W ) with cocycle c = cl − cr. They are

consistent topological Wilson lines in projective representations, whose anomalous gauge

transformations are compensated by anomaly inflow to the interface from the SPT phases.

The topological lines in a given theory (T /G)c are Wilson lines in ordinary representations

Φ : G→ GL(W ).

Let us denote the associated category of projective representations by Repc(G). This

does not generally have a fusion structure since cocycles are additive under tensor product.
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Figure 9.

However, there are functors

Repc(G)× Repc
′
(G) −→ Repc+c′(G) (2.18)

arising from collision of topological interfaces. In particular, there are left and right actions

of the fusion category Rep(G) on the categories Repc(G) arising from collision of topological

lines with topological interfaces.

3 Two dimensions: semi-direct product

We remain in two dimensions and consider gauging a semi-direct product group G = A⋊H
with A abelian. While this is a special case of the general construction in section 2, it is

illuminating to gauge in two steps. The first step is to gauge A, resulting in an intermediate

theory with semi-direct product symmetry Ĝ = Â ⋊ H. The second is to gauge H. The

combination of these steps is equivalent to gauging G = A⋊H.

This construction is in fact entirely symmetric between A, Â and results in the square

symmetry categories illustrated in figure 10.

GĜ

Â

A

HH

G = A � H Ĝ = Â � H

T /H : Rep(Ĝ) T̂ /H : Rep(G)

T̂ : Vect(Ĝ)T̂ : Vect(G)

Figure 10.

While the final result must reproduce the symmetry category Rep(G), this will re-

produce Mackey’s construction of irreducible representations of semi-direct products G =

A⋊H by induction. Moreover, it will provide valuable insights into gauging higher groups

in higher dimensions, which will be utilised in section 5.
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3.1 Semi-direct product

We consider then a theory T with anomaly free finite symmetry group

G = A⋊φ H (3.1)

constructed from the following data:

� A finite group H.

� A finite abelian group A.

� A homomorphism φ : H → Aut(A).

The group elements are pairs g = (a, h) with group law

(a, h) · (a′, h′) = (aφh(a
′), hh′) . (3.2)

Introducing the notation a = (a, 1) and h = (1, h), we have ah = (a, h) and ha = (φh(a), h)

and consequently φh(a) = ah, where we define ah := hah−1. We often drop the homomor-

phism from notation and write G = A⋊H.

Gauging A ⊂ G results in a theory T̂ := T /A with anomaly free finite symmetry

Ĝ = Â⋊φ̂ H (3.3)

where

Â := Hom(A,U(1)) (3.4)

is the Pontryagin dual of A and φ̂ : H → Aut Â is the dual homomorphism [17]. Elements

of the Pontryagin dual are characters χ : A→ U(1) with dual action φ̂h(χ) = χh such that

χh(a) = χ(ah). We again drop the homomorphism from notation and write Ĝ = Â ⋊H,

which we emphasise is not the Pontryagin dual of G.

The situation is entirely symmetric under exchanging A, Â: gauging Â ⊂ Ĝ in T̂
reproduces the original theory T with symmetry G. This is summarised in the horizontal

arrows in figure 10.

3.2 Gauging a semi-direct product

We now consider gauging the symmetry H ⊂ G, Ĝ in T , T̂ , represented by the vertical

arrows in figure 10. This results in a pair of theories T /H, T̂ /H. The combination of these

operations is equivalent to gauging the whole symmetry Ĝ, G of T̂ , T and must reproduce

the symmetry categories Rep(Ĝ), Rep(G). In other words,

T /H = T̂ /Ĝ T̂ /H = T /G (3.5)

This is summarised by the commutativity of arrows in figure 10.

For concreteness, we will consider gauging H ⊂ Ĝ in T̂ . This is a special case of

gauging a general finite subgroup and the resulting symmetry categories in the general
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case have been studied in [31, 32]. In the situation considered here, we show that this

reproduces the symmetry category Rep(G).

Our starting point is therefore theory T̂ with symmetry Ĝ = Â ⋊ H. Let us briefly

summarise the associated aspects of the symmetry category Vec(Ĝ). A general object is a

Ĝ = Â⋊H-graded vector space,

V =
⊕

χ,h

Vχ,h , (3.6)

where the summation runs over group elements g = χh with χ ∈ Â, h ∈ H. The sum and

product are direct sum and tensor product of graded vector spaces

(V ⊕W )χ,h = Vχ,h ⊕Wχ,h

(V ⊗W )χ,h =
⊕

χ1·(χ2)h1 =χ
h1·h2 =h

Vχ1,h2 ⊗Wχ2,h2 , (3.7)

while morphisms are homogeneous linear maps,

HomT̂ (V,W ) =
⊕

χ,h

Hom(Vχ,h,Wχ,h) . (3.8)

We now gauge H ⊂ Ĝ and compute the symmetry category of T̂ /H = T /G, generalising
the construction in section 2.

3.2.1 Objects

A topological line in T̂ /H is defined operationally as a topological line in T̂ together with

instructions for how networks of the Frobenius algebra object

AH =
⊕

h∈H
h (3.9)

end on it consistently from the left and right. In particular, starting from a topological

line V in T , one now specifies morphisms

l ∈ HomT (AH ⊗ V, V )

r ∈ HomT (V ⊗AH , V )
(3.10)

forming the structure of a (AH , AH)-bimodule.

The components of these morphisms

lh,g ∈ HomT (h⊗ Vg, Vhg) rg,h ∈ HomT (Vg ⊗ h, Vgh) (3.11)

are subject to the compatibility conditions

lhh′,g = lh,h′g ◦ lh′,g rg,hh′ = rgh,h′ ◦ rg,h (3.12)

and

lh,gh′ ◦ rg,h′ = rhg,h′ ◦ lh,g (3.13)
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together with the normalisations le,g = 1 and rg,e = 1, where we now restrict attention to

h, h′ ∈ H and g ∈ Ĝ = Â⋊H.

We solve the equations analogously to section 2. First, equations (3.12) together with

the normalisation conditions imply the morphisms are invertible and determined by the

following two component morphisms

lh,χ : h⊗ Vχ,e → Vχh,h

rχ,h : Vχ,e ⊗ h → Vχ,h ,
(3.14)

via the formulae

lh,χh′ = lhh′,χ ◦ (lh′,χ)
−1 rχh,h′ = rχ,hh′ ◦ (rχ,h)−1 . (3.15)

Note that the right morphisms rχ,h provide vector space isomorphisms Vχ,h ∼= Vχ,e for any

h ∈ H. It is then convenient to define Wχ := Vχ,e
5.

Figure 11.

We now introduce the combinations

Φh,χ = (rχh,h)
−1lh,χ :Wχ →Wχh , (3.16)

which are the amplitudes associated to the intersection with a symmetry line, as in figure 11.

The remaining equations (3.13) give

Φhh′,χ = Φh,χh′ ◦ Φh′,χ . (3.17)

which directly encodes the topological nature of the resulting line. The isomorphism class of

the line operator in T /G will depend only on the combination Φh,χ, rather than individual

morphisms lh,χ, rχ,h.

In summary, objects are labelled by:

1. A collection of vector spaces Wχ indexed by χ ∈ Â.

2. A collection of invertible morphisms Φh,χ :Wχ →Wχh satisfying

Φhh′,χ = Φh,χh′ ◦ Φh′,χ .

5The left morphism lh,e then further identifies Wχ = Wχh and induces a decomposition into simple

objects labelled by H-orbits in Â. We postpone this step until our analysis of simple objects.
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This is the data of a linear representation Φ : G → GL(W ) with underlying vector space

W := ⊕χWχ and action of group elements

Φa(wχ) = χ(a) · wχ

Φh(wχ) = Φh,χ(wχ) .
(3.18)

It is straightforward to check that this defines a representation as a consequence of equa-

tion (3.17). We have therefore confirmed that objects in the symmetry category are indeed

representations of G = A⋊H.

We note that this data can be framed more invariantly as follows:

1. A vector bundle π :W → Â.

2. A homomorphism Φ : H → Aut(W) satisfying

π ◦ Φ = φ̂ ◦ π (3.19)

with the homomorphism φ̂ : H → Aut(Â).

In other words, a G-equivariant vector bundle π :W → Â. This is a discrete analogue of the

construction of representations of compact Lie groups from vector bundles on homogeneous

spaces. The explicit description in terms of components is recovered by identifying fibers

π−1(χ) =Wχ and the collection of vectors {wχ} as a section.

3.2.2 Sum, Product, Morphisms

The sum, product and morphisms of objects in T̂ /H may be computed from the corre-

sponding operations of bimodules for the Frobenius algebra object AH and are induced

by the direct sum, tensor product and morphisms of graded vector spaces in T̂ [17]. In

particular, these operations coincide with direct sums, tensor products and intertwiners of

representations of G = A⋊H. If we denote objects by pairs (W,Φ), then

(W,Φ)⊕ (W ′,Φ′) = (W ⊕W ′,Φ⊕ Φ′)

(W,Φ)⊗ (W ′,Φ′) = (W ⊗W ′,Φ⊗ Φ′)
(3.20)

while morphisms are homogeneous linear maps m :W →W ′ satisfying m ◦ Φ = Φ′ ◦m.

3.3 Simple Objects

We now consider the decomposition of general objects in T̂ /H into simple objects. This

must reproduce the decompositions of representations of G = A ⋊ H into irreducible

representations.

3.3.1 Classification

First, the component morphisms Φh,χ : Wχ → Wχh mean a general object decomposes as

a sum of objects supported on orbits of the H-action on Â. We say that a representation

is supported on an orbit O ⊂ Â if

Wχ = 0 if χ /∈ O . (3.21)
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Moreover, given a representation supported on an orbit O, the collection of vector spaces

Wχ with χ ∈ O may decompose as direct sums with morphism Φh,χ : Wχ → Wχh acting

in a block diagonal fashion preserving the direct sum decomposition.

In summary, a simple object is labelled by the following data:

1. A collection of vector spaces Wχ indexed by orbit elements χ ∈ O.

2. A collection of simple invertible morphisms Φh,χ :Wχ →Wχh satisfying

Φhh′,χ = Φh,χh′ ◦ Φh′,χ . (3.22)

This corresponds to an irreducible representation of the semi-direct product G = A⋊H.

Alternatively, the simple objects may be labelled by irreducible representations of

stabilisers of orbits. That is, given collectionsW and Φ as above, we can fix a representative

χ0 ∈ O of the orbit and define K := StabH(χ0) ⊂ H. Then, the morphisms Φh,χ0 :Wχ0 →
Wχ0 with h ∈ K define an irreducible representation Ψ of A⋊K ⊂ G by

Ψa(w) := χ0(a) · w (3.23)

Ψh(w) := Φh,χ0(w) . (3.24)

Conversely, given an irreducible representation Ψ of A ⋊ K, we can reconstruct the

original irreducible representation as follows: For each orbit element χ ∈ O we fix an

element hχ ∈ H such that

χ = χ
hχ

0 . (3.25)

This determines hχ up to right multiplication by K, and sets up an isomorphism of sets

O ∼= H/K. It is then straightforward to check that the combination

ℓh,χ := h−1
χh · h · hχ ∈ K (3.26)

lies in the stabiliser of the orbit representative. Then,

Φh,χ := Ψ(ℓh,χ) (3.27)

solves the conditions (3.22) and determines an irreducible representation of the semi-direct

product G = A ⋊ H. One can check that, up to isomorphism, the collection Φ does not

depend on the choices of χ0 ∈ O and hχ ∈ H.

In summary, the simple objects are in 1-1 correspondence with

1. A character χ0 ∈ Â with stabiliser K ⊂ H.

2. An irreducible representation Ψ of A⋊K.

This reproduces Mackey’s construction and classification of irreducible representations of

a semi-direct product G = A⋊H by induction. Let us denote this induction by

(W,Φ) = IndGA⋊K(Ψ) . (3.28)

This presentation of the simple objects reflects a physical construction of topological

lines in the finite gauge theory T /G by imposing Dirichlet boundary conditions that break

the gauge symmetry to a subgroup A⋊K ⊂ G, supplemented by a topological Wilson line

for the unbroken gauge symmetry.
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3.3.2 Fusion of Simple Objects

We have shown that fusion corresponds to tensor product of representations of G = A⋊H.

The construction of irreducible representations by induction provides a computational tool

to compute the fusion ring of simple objects.

Let us denote the collection ofH-orbits in Â by {Oj} and introduce a corresponding col-

lection of orbit representatives {χj}. We denote their stabilisers by Kj := StabH(χj) ⊂ H.

Then, the simple objects or irreducible representations Φj : G→ GL(Wj) are constructed

by induction as

(Wj ,Φj) = IndGGj
(Ψj) , (3.29)

where Gj := A⋊Kj and Ψj is an irreducible representation of Gj as above.

In order to compute their fusions rules, we must first understand how an irreducible

representation (Wj ,Φj) decomposes upon restriction to Gi ⊂ G. It is clear that this de-

composition will involve a sum over Ki-orbits Õ ⊂ Oj , whose summands we will determine

in the following.

Given a Ki-orbit Õ ⊂ Oj , we can fix a representative χ̃ ∈ Õ with stabiliser

K̃ := StabKi(χ̃) ≡ Ki ∩ (hχ̃Kjh
−1
χ̃ ) , (3.30)

where, as before, we fixed elements hχ ∈ H such that

χ = χ
hχ

j (3.31)

for each χ ∈ Õ (in particular χ̃ = χ
hχ̃

j ). Let us now repeat the construction of induced

representations discussed above. For each orbit element χ ∈ Õ, we fix h̃χ ∈ Ki such that

χ = χ̃h̃χ . (3.32)

They are determined up to right multiplication by elements in K̃ and this fixes an isomor-

phism of sets Õ = Ki/K̃. It is now straightforward to check that h̃χ = hχ · h−1
χ̃ solves

condition (3.32) so that

ℓ̃h,χ := h̃−1
χh · h · h̃χ ≡ hχ̃ · ℓh,χ · h−1

χ̃ . (3.33)

Consequently, upon restriction to elements h ∈ Ki, we find that

(Φj)h,χ ≡ Ψj(ℓh,χ)

= Ψj(h
−1
χ̃ · ℓ̃h,χ · hχ̃)

= Ψχ̃
j (ℓ̃h,χ)

(3.34)

for all χ ∈ Õ, where the last line corresponds to the induction of the linear representation

Ψχ̃
j of K̃ defined by

Ψχ̃
j (h) := Ψj(h

−1
χ̃ · h · hχ̃) . (3.35)

Thus, the restriction of (Wj ,Φj) to Gi is summarised by an instance of Mackey’s decom-

position formula,

ResGGi
IndGGj

(Ψj) =
⊕

[χ̃]

IndGi

G̃
(Ψχ̃

j ) , (3.36)
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where the summation is over representatives χ̃ of Ki-orbits in Oj and G̃ = A⋊ K̃.

By combining this result with the push-pull formula for induction and restriction, we

obtain a convenient method to compute the fusion of simple objects,

IndGGi
(Ψi)⊗ IndGGj

(Ψj) = IndGGi
(Ψi ⊗ ResGGi

IndGGj
(Ψj))

=
⊕

[χ̃]

IndGGi

(
Ψi ⊗ IndGi

G̃
(Ψχ̃

j )
)

=
⊕

[χ̃]

IndG
G̃

(
Ψi ⊗Ψχ̃

j

)
,

(3.37)

where the summation again runs over representatives χ̃ of Ki-orbits in Oj . The represen-

tation Ψi ⊗Ψχ̃
j of G̃ may be reducible and admit a further decomposition into irreducible

representations. Nevertheless, this provides a concrete computational tool and we will see

analogues for 2-representations in sections 4 and 5.

3.4 Example

Consider a theory T with finite symmetry group

G = D2n
∼= Zn ⋊ Z2 , (3.38)

with n even. In other words, H ∼= Z2 with group elements {1, h} and A ∼= Zn with group

elements {1, a, . . . , an−1}, which are acted upon by H through h : a 7→ a−1. Gauging A

generates another theory T̂ with isomorphic symmetry group Ĝ = D2n constructed from

Â ∼= Zn with elements {1, χ, . . . , χn−1} and H-action h : χ 7→ χ−1.

<latexit sha1_base64="vdJxlgOshXmjZXrntaLssDHXSJA=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSlqCspuHFZwbZiE8pkOmmHTiZhHkIJ/Q03LhRx68+482+ctFlo64GBwzn3cs+cMOVMadf9dkpr6xubW+Xtys7u3v5B9fCoqxIjCe2QhCfyIcSKciZoRzPN6UMqKY5DTnvh5Cb3e09UKpaIez1NaRDjkWARI1hbyfdjrMdhmD3OBo1BtebW3TnQKvEKUoMC7UH1yx8mxMRUaMKxUn3PTXWQYakZ4XRW8Y2iKSYTPKJ9SwWOqQqyeeYZOrPKEEWJtE9oNFd/b2Q4Vmoah3Yyz6iWvVz8z+sbHV0FGROp0VSQxaHIcKQTlBeAhkxSovnUEkwks1kRGWOJibY1VWwJ3vKXV0m3Ufcu6s27Zq11XdRRhhM4hXPw4BJacAtt6ACBFJ7hFd4c47w4787HYrTkFDvH8AfO5w/5mZGk</latexit>

Z2
<latexit sha1_base64="vdJxlgOshXmjZXrntaLssDHXSJA=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSlqCspuHFZwbZiE8pkOmmHTiZhHkIJ/Q03LhRx68+482+ctFlo64GBwzn3cs+cMOVMadf9dkpr6xubW+Xtys7u3v5B9fCoqxIjCe2QhCfyIcSKciZoRzPN6UMqKY5DTnvh5Cb3e09UKpaIez1NaRDjkWARI1hbyfdjrMdhmD3OBo1BtebW3TnQKvEKUoMC7UH1yx8mxMRUaMKxUn3PTXWQYakZ4XRW8Y2iKSYTPKJ9SwWOqQqyeeYZOrPKEEWJtE9oNFd/b2Q4Vmoah3Yyz6iWvVz8z+sbHV0FGROp0VSQxaHIcKQTlBeAhkxSovnUEkwks1kRGWOJibY1VWwJ3vKXV0m3Ufcu6s27Zq11XdRRhhM4hXPw4BJacAtt6ACBFJ7hFd4c47w4787HYrTkFDvH8AfO5w/5mZGk</latexit>

Z2

<latexit sha1_base64="uWjOmTw/c9anRWd8sKNrtF6YtKQ=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIUVdScOOygn1gZyiZNNOGZjIhyQhl6G+4caGIW3/GnX9jpp2Fth4IHM65l3tyQsmZNq777ZTW1jc2t8rblZ3dvf2D6uFRRyepIrRNEp6oXog15UzQtmGG055UFMchp91wcpv73SeqNEvEg5lKGsR4JFjECDZW8v0Ym3EYZo+zgRhUa27dnQOtEq8gNSjQGlS//GFC0pgKQzjWuu+50gQZVoYRTmcVP9VUYjLBI9q3VOCY6iCbZ56hM6sMUZQo+4RBc/X3RoZjradxaCfzjHrZy8X/vH5qousgY0KmhgqyOBSlHJkE5QWgIVOUGD61BBPFbFZExlhhYmxNFVuCt/zlVdK5qHuX9cZ9o9a8Keoowwmcwjl4cAVNuIMWtIGAhGd4hTcndV6cd+djMVpyip1j+APn8wdUmJHg</latexit>

Zn

<latexit sha1_base64="uWjOmTw/c9anRWd8sKNrtF6YtKQ=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIUVdScOOygn1gZyiZNNOGZjIhyQhl6G+4caGIW3/GnX9jpp2Fth4IHM65l3tyQsmZNq777ZTW1jc2t8rblZ3dvf2D6uFRRyepIrRNEp6oXog15UzQtmGG055UFMchp91wcpv73SeqNEvEg5lKGsR4JFjECDZW8v0Ym3EYZo+zgRhUa27dnQOtEq8gNSjQGlS//GFC0pgKQzjWuu+50gQZVoYRTmcVP9VUYjLBI9q3VOCY6iCbZ56hM6sMUZQo+4RBc/X3RoZjradxaCfzjHrZy8X/vH5qousgY0KmhgqyOBSlHJkE5QWgIVOUGD61BBPFbFZExlhhYmxNFVuCt/zlVdK5qHuX9cZ9o9a8Keoowwmcwjl4cAVNuIMWtIGAhGd4hTcndV6cd+djMVpyip1j+APn8wdUmJHg</latexit>

Zn

<latexit sha1_base64="e+lscF5xtqb66nwNrxeNo4TqGhI=">AAACEHicbVDLSsNAFJ3Ud31FXboZLKJuSiKioiAFXbis0IfQhDCZTu3gZBJmbsQS8glu/BU3LhRx69Kdf+Ok7UKrB2Y4nHMv994TJoJrcJwvqzQ1PTM7N79QXlxaXlm119ZbOk4VZU0ai1hdh0QzwSVrAgfBrhPFSBQK1g5vzwu/fceU5rFswCBhfkRuJO9xSsBIgb3jRQT6lIiskWPvFJ8UnwfsHrIWo5DvXgTZvsz3ArviVJ0h8F/ijkkFjVEP7E+vG9M0YhKoIFp3XCcBPyMKOBUsL3upZgmht+SGdQyVJGLaz4YH5XjbKF3ci5V5EvBQ/dmRkUjrQRSaymJ9PekV4n9eJ4XesZ9xmaTAJB0N6qUCQ4yLdHCXK3O1GBhCqOJmV0z7RBEKJsOyCcGdPPkvae1X3cPqwdVBpXY2jmMebaIttItcdIRq6BLVURNR9ICe0At6tR6tZ+vNeh+Vlqxxzwb6BevjG9qcm9c=</latexit>T : Vect(D2n)
<latexit sha1_base64="euKJcIR4AuMvZuGbeVAmSSacnFY=">AAACGnicbVBNSwMxEM36WetX1aOXYBH0UnalqChIQQ8eFWwVuqVk02kbms0uyaxalv0dXvwrXjwo4k28+G/M1h78epDweG+GmXlBLIVB1/1wJianpmdmC3PF+YXFpeXSymrDRInmUOeRjPRVwAxIoaCOAiVcxRpYGEi4DAbHuX95DdqISF3gMIZWyHpKdAVnaKV2yfNvRAf6DFM/ZNjnTKYXWUb9Q3qQfz7CLaYN4JhtnbTTHZVtt0tlt+KOQP8Sb0zKZIyzdunN70Q8CUEhl8yYpufG2EqZRsElZEU/MRAzPmA9aFqqWAimlY5Oy+imVTq0G2n7FNKR+r0jZaExwzCwlfn+5reXi/95zQS7+61UqDhBUPxrUDeRFCOa50Q7Qtur5dASxrWwu1LeZ5pxtGkWbQje75P/ksZOxdutVM+r5drROI4CWScbZIt4ZI/UyCk5I3XCyR15IE/k2bl3Hp0X5/WrdMIZ96yRH3DePwFuvqB1</latexit> bT : Vect(D2n)

<latexit sha1_base64="JnrrwViVhnpTgmmS7UFaFJ5k/64="></latexit> bT /Z2 : Rep(D2n)
<latexit sha1_base64="dKYbtao7lk4LQF6H0zrjPPcgXcw=">AAACHHicbVBNS8NAEN34bf2qevSyWAS91KSKioIIevCoYlVsSthsp3Vxswm7E7GE/BAv/hUvHhTx4kHw37ipPfj1YJfHezPMzAsTKQy67oczMDg0PDI6Nl6amJyaninPzp2ZONUc6jyWsb4ImQEpFNRRoISLRAOLQgnn4fV+4Z/fgDYiVqfYTaAZsY4SbcEZWikor/kRwyvOZHaar/Z4GGaXeVCj/g7dLj4f4RazE0jy5YMgq6l8JShX3KrbA/1LvD6pkD6OgvKb34p5GoFCLpkxDc9NsJkxjYJLyEt+aiBh/Jp1oGGpYhGYZtY7LqdLVmnRdqztU0h76veOjEXGdKPQVhbrm99eIf7nNVJsbzUzoZIUQfGvQe1UUoxpkRRtCQ0cZdcSxrWwu1J+xTTjaPMs2RC83yf/JWe1qrdRXT9er+zt9uMYIwtkkSwTj2ySPXJIjkidcHJHHsgTeXbunUfnxXn9Kh1w+j3z5Aec908jYaDA</latexit>T /Z2 : Rep(D2n)

<latexit sha1_base64="vwEprrKtWe7uKadz4c3kGLRZl7g=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT1JQQ8eK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MdvuQVsfDDzem2FmXhBzpo3rfjuFtfWNza3idmlnd2//oHx41NYyUYS2iORSdQOsKWeCtgwznHZjRXEUcNoJJjeZ33miSjMpHsw0pn6ER4KFjGBjpfbtIK2J2aBccavuHGiVeDmpQI7moPzVH0qSRFQYwrHWPc+NjZ9iZRjhdFbqJ5rGmEzwiPYsFTii2k/n187QmVWGKJTKljBorv6eSHGk9TQKbGeEzVgve5n4n9dLTHjlp0zEiaGCLBaFCUdGoux1NGSKEsOnlmCimL0VkTFWmBgbUMmG4C2/vEratap3Ua3f1yuN6zyOIpzAKZyDB5fQgDtoQgsIPMIzvMKbI50X5935WLQWnHzmGP7A+fwBUVaO9g==</latexit>

D2n
<latexit sha1_base64="vwEprrKtWe7uKadz4c3kGLRZl7g=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT1JQQ8eK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MdvuQVsfDDzem2FmXhBzpo3rfjuFtfWNza3idmlnd2//oHx41NYyUYS2iORSdQOsKWeCtgwznHZjRXEUcNoJJjeZ33miSjMpHsw0pn6ER4KFjGBjpfbtIK2J2aBccavuHGiVeDmpQI7moPzVH0qSRFQYwrHWPc+NjZ9iZRjhdFbqJ5rGmEzwiPYsFTii2k/n187QmVWGKJTKljBorv6eSHGk9TQKbGeEzVgve5n4n9dLTHjlp0zEiaGCLBaFCUdGoux1NGSKEsOnlmCimL0VkTFWmBgbUMmG4C2/vEratap3Ua3f1yuN6zyOIpzAKZyDB5fQgDtoQgsIPMIzvMKbI50X5935WLQWnHzmGP7A+fwBUVaO9g==</latexit>

D2n

Figure 12.

Gauging H ∼= Z2 produces a pair of theories with symmetry category Rep(D2n), as

shown in figure 12. Let us reproduce the symmetry category starting from T̂ . There are

the following simple objects:

� The 1-dimensional orbit 1 = {1} may be supplemented by irreducible representations

1, w of its stabiliser Z2. We denote the corresponding simple objects by 1, w. 6

� The 1-dimensional orbit o = {χn
2 } may be supplemented by irreducible represen-

tations 1, w of its stabiliser Z2. We denote the corresponding simple objects by

o, ow.

6They are pure topological Wilson lines for H ∼= Z2.
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� The 2-dimensional orbits {χi, χn−i} with j = 1, . . . , n2 − 1 have trivial stabilisers. We

denote the corresponding simple objects by Oj , j = 1, . . . , n2 − 1.

The fusion rules for irreducible representations may be computed following the recipe above

and are given by

w ⊗ w = 1 o⊗ o = 1 o⊗ w = ow (3.39)

w ⊗Oj = Oj o⊗Oj = Oj (3.40)

Oi ⊗Oj = Oi+j ⊕Oi−j , (3.41)

where in the final line it is understood that O0 = 1⊕w and On
2
= o⊕ ow and Oj = On

2
+j

for j ̸= 0, n2 mod n.

For n = 4 this simplifies to

w ⊗ w = 1 o⊗ o = 1 o⊗ w = ow (3.42)

w ⊗O = O o⊗O = O (3.43)

O ⊗O = 1⊕ w ⊕ o⊕ ow (3.44)

and the symmetry category Rep(D8) is a Tambara-Yamagami fusion category based on the

abelian group Z2 × Z2 = ⟨o, w⟩ with Frobenius-Schur indicator τ = 1/2 and symmetric

bicharacter µ defined by µ(o, o) = µ(w,w) = 1 and µ(o, w) = −1 [33].

4 Three dimensions: groups

In this section, we consider gauging a finite group symmetry G in three dimensions. As

in section 2, the resulting theory has topological Wilson lines in representations of G and

generating a Rep(G) 1-form symmetry. In addition, there are now topological surface

operators arising from combinations of two-dimensional condensation defects and SPT

phases. The purpose of this section is to show that the full spectrum of topological defects

is captured by a fusion 2-category 2Rep(G) whose objects consist of 2-representations of

the finite group G.

An output of the construction is a systematic derivation of properties of condensa-

tion defects associated to topological Wilson lines generating a Rep(G) 1-form symmetry.

This analysis applies for general non-abelian finite groups G, and in this sense generalises

the analysis of condensation defects that arise from higher gauging of invertible 1-form

symmetries on surfaces in [4].

4.1 Finite group symmetry

Consider a three-dimensional theory T with finite group symmetry G without ’t Hooft

anomalies. The associated symmetry category 2Vec(G) is a fusion 2-category [34–36]. Let

us summarise some of the important data. The simple objects are topological surfaces

labelled by group elements g ∈ G with

g ⊗ g′ = gg′ g# = g−1 (4.1)
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<latexit sha1_base64="k1PYsIMai7iAz3WyIDyhNwkiTT8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItS8OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5Jr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbphJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jbpc4XMiLEllClubyVsSBVlxoZTsiF4iy8vk+ZZ1buont+fV2o3eRxFOIJjOAUPLqEGd1CHBjAI4Rle4c0ZOS/Ou/Mxby04+cwh/IHz+QPkKIzw</latexit>= <latexit sha1_base64="k1PYsIMai7iAz3WyIDyhNwkiTT8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItS8OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5Jr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbphJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jbpc4XMiLEllClubyVsSBVlxoZTsiF4iy8vk+ZZ1buont+fV2o3eRxFOIJjOAUPLqEGd1CHBjAI4Rle4c0ZOS/Ou/Mxby04+cwh/IHz+QPkKIzw</latexit>=
<latexit sha1_base64="DRaAAucgzXEl5U7ww/C0Eqi/1WA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWanr9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV77Jaa9Yq9Zs8jiKcwCmcgwdXUIc7aEALGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AHxXjLo=</latexit>

1<latexit sha1_base64="k1PYsIMai7iAz3WyIDyhNwkiTT8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItS8OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5Jr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbphJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jbpc4XMiLEllClubyVsSBVlxoZTsiF4iy8vk+ZZ1buont+fV2o3eRxFOIJjOAUPLqEGd1CHBjAI4Rle4c0ZOS/Ou/Mxby04+cwh/IHz+QPkKIzw</latexit>=

<latexit sha1_base64="Ub322zNLJrKi3hfKaqfeFa3wpHU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8Ac4vjPA=</latexit>g
<latexit sha1_base64="lwHUgppjusm8IoAKA8Sg5ctZkBw=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9SQFLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj26nfekKleSwfzThBP6IDyUPOqLHSw+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nrt0Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/2MyyQ1KNl8UZgKYmIyfZv0uUJmxNgSyhS3txI2pIoyY8Mp2hC8xZeXSfOi4l1WqvfVcu0mj6MAx3AC5+DBFdTgDurQAAYhPMMrvDkj58V5dz7mrStOPnMEf+B8/gAupY0h</latexit>

g0
<latexit sha1_base64="K6HpADxHlfKEOEjZA06Pqu5FHrY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ6KokU9SQFLx4r2g9oQ9lsN+nSzSbsToRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJXCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaZJMM95giUx0O6CGS6F4AwVK3k41p3EgeSsY3k791hPXRiTqEUcp92MaKREKRtFKD1F01iuV3Yo7A1kmXk7KkKPeK311+wnLYq6QSWpMx3NT9MdUo2CST4rdzPCUsiGNeMdSRWNu/PHs1Ak5tUqfhIm2pZDM1N8TYxobM4oD2xlTHJhFbyr+53UyDK/9sVBphlyx+aIwkwQTMv2b9IXmDOXIEsq0sLcSNqCaMrTpFG0I3uLLy6R5UfEuK9X7arl2k8dRgGM4gXPw4ApqcAd1aACDCJ7hFd4c6bw4787HvHXFyWeO4A+czx/wdY2S</latexit>

gg0 <latexit sha1_base64="Ub322zNLJrKi3hfKaqfeFa3wpHU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8Ac4vjPA=</latexit>g
<latexit sha1_base64="iJq5q9YXWSOSQe+yeadZLpXLTdw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXinqSghePFewHtGvJptk2NpssSVYoS/+DFw+KePX/ePPfmG33oK0PBh7vzTAzL4g508Z1v53Cyura+kZxs7S1vbO7V94/aGmZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H45vMbz9RpZkU92YSUz/CQ8FCRrCxUmv4kJ5503654lbdGdAy8XJSgRyNfvmrN5AkiagwhGOtu54bGz/FyjDC6bTUSzSNMRnjIe1aKnBEtZ/Orp2iE6sMUCiVLWHQTP09keJI60kU2M4Im5Fe9DLxP6+bmPDKT5mIE0MFmS8KE46MRNnraMAUJYZPLMFEMXsrIiOsMDE2oJINwVt8eZm0zqveRbV2V6vUr/M4inAEx3AKHlxCHW6hAU0g8AjP8ApvjnRenHfnY95acPKZQ/gD5/MHITqO1g==</latexit>

g�1

<latexit sha1_base64="Ub322zNLJrKi3hfKaqfeFa3wpHU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8Ac4vjPA=</latexit>g

Figure 13.

where g# denotes a topological surface with the opposite orientation. The dimension of all

simple objects is 1. These properties are illustrated in figure 13.

The categories of 1-morphism capture topological lines at junctions between surfaces,

and are given by

HomT (g, g
′) =

{
Vect g = g′

0 g ̸= g′
. (4.2)

In other words, there are only 1-endomorphisms consisting of vector spaces spanned by

sums of the identity line operator on a symmetry generating surface. The composition

and fusion of 1-endomorphisms is determined by tensor product of vector spaces. The

composition and fusion of 1-morphisms are illustrated in figure 14.

<latexit sha1_base64="k1PYsIMai7iAz3WyIDyhNwkiTT8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItS8OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5Jr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbphJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jbpc4XMiLEllClubyVsSBVlxoZTsiF4iy8vk+ZZ1buont+fV2o3eRxFOIJjOAUPLqEGd1CHBjAI4Rle4c0ZOS/Ou/Mxby04+cwh/IHz+QPkKIzw</latexit>= <latexit sha1_base64="k1PYsIMai7iAz3WyIDyhNwkiTT8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItS8OKxiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHq5Jr1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbphJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvkZl0lqULL5ojAVxMRk+jbpc4XMiLEllClubyVsSBVlxoZTsiF4iy8vk+ZZ1buont+fV2o3eRxFOIJjOAUPLqEGd1CHBjAI4Rle4c0ZOS/Ou/Mxby04+cwh/IHz+QPkKIzw</latexit>=

<latexit sha1_base64="Ub322zNLJrKi3hfKaqfeFa3wpHU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8Ac4vjPA=</latexit>g
<latexit sha1_base64="K6HpADxHlfKEOEjZA06Pqu5FHrY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ6KokU9SQFLx4r2g9oQ9lsN+nSzSbsToRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJXCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaZJMM95giUx0O6CGS6F4AwVK3k41p3EgeSsY3k791hPXRiTqEUcp92MaKREKRtFKD1F01iuV3Yo7A1kmXk7KkKPeK311+wnLYq6QSWpMx3NT9MdUo2CST4rdzPCUsiGNeMdSRWNu/PHs1Ak5tUqfhIm2pZDM1N8TYxobM4oD2xlTHJhFbyr+53UyDK/9sVBphlyx+aIwkwQTMv2b9IXmDOXIEsq0sLcSNqCaMrTpFG0I3uLLy6R5UfEuK9X7arl2k8dRgGM4gXPw4ApqcAd1aACDCJ7hFd4c6bw4787HvHXFyWeO4A+czx/wdY2S</latexit>

gg0<latexit sha1_base64="Ub322zNLJrKi3hfKaqfeFa3wpHU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8Ac4vjPA=</latexit>g<latexit sha1_base64="Ub322zNLJrKi3hfKaqfeFa3wpHU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCcpePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWag775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC+q3mW11qxV6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8Ac4vjPA=</latexit>g
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Figure 14.

A general object can be expressed as a sum

R =
⊕

g∈G
ng g (4.3)

with non-negative integers ng ∈ Z+. This is represented by a G-graded set

R =
⊔

g∈G
Rg , (4.4)

under an identification Rg
∼= {1, . . . , ng} where elements of the set index the copies of the

symmetry defect g in (4.3). The sum and product of general objects are then disjoint union

and cartesian product of G-graded sets,

(R⊕R′)g = Rg ⊔R′
g

(R⊗R′)g =
⊔

g=hh′

Rh ×Rh′ . (4.5)
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The 1-morphisms are

HomT (R,R′) =
⊕

g∈G
VectRg×R′

g
(4.6)

whose summands are categories of Rg ×R′
g-graded vector spaces or alternatively ng × n′g

2-matrices whose components are vector spaces. The composition of 1-morphisms is deter-

mined by matrix multiplication and tensor product of vector spaces. Fusion of morphisms

is determined by tenor product of matrices and vector spaces. The 2-morphisms are ho-

mogeneous linear maps between graded vector spaces.

4.2 Gauging a finite group

Now consider gauging the finite symmetry G of T . We compute the symmetry category

of T /G by gauging an appropriate algebra object in the symmetry category 2Vec(G) of

T . We classify the topological surfaces and explain their physical interpretation as con-

densation defects. We show that the topological surfaces are in 1-1 correspondence with

2-representations of G and derive their fusion and 1-morphisms, which identifies the sym-

metry category with the fusion 2-category 2Rep(G).

4.2.1 Objects

Following section 2, the strategy is to define topological surfaces in T /G as topological

surfaces in T together with instructions for how networks of symmetry defects end on

them in a manner that is consistent with their topological nature.

This construction again proceeds via the algebra object in T ,

A =
⊕

g∈G
g , (4.7)

corresponding to the G-graded set with Ag
∼= {1} for all elements g ∈ G. A topological

surface in T /G is then specified by a topological surface in T together with instructions for

how A ends on it inside correlation functions, which need to satisfy various compatibility

conditions to ensure that the resulting surface is indeed topological.

The starting point is a general topological surface in T labelled by a G-graded set R.
This is supplemented by 1-morphisms

l ∈ HomT (A⊗R,R)
r ∈ HomT (R⊗A,R)

(4.8)

that specify how topological surfaces A end on it from the left and right. To formulate the

additional data and constraints concretely, we consider the component 1-morphisms

lh,g ∈ HomT (h⊗Rg,Rhg)

rg,h ∈ HomT (Rg ⊗ h,Rgh) ,
(4.9)

which are topological lines specifying how individual symmetry defects end on the surface.

The interpretation of these 1-morphisms is illustrated in figure 15.
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Figure 15.

As in two dimensions, these topological lines must satisfy compatibility conditions to

ensure consistency with topological manipulations of networks of surfaces in the bulk. How-

ever, in three dimensions, the conditions are not equalities but implemented by invertible

topological local operators, which are 2-isomorphisms in the symmetry category of T .

Figure 16.

In particular, the component 1-morphisms are supplemented by the following topolog-

ical local operators or 2-isomorphisms:
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� There are normalisation 2-isomorphisms

Ψl
g : 1Rg ⇒ le,g

Ψr
g : 1Rg ⇒ rg,e

(4.10)

and correspond to topological local operators on which the topological line operators

le,g, rg,e may end.

� There are left and right 2-isomorphisms

Ψl
h,h′|g : lhh′,g ⇒ lh,h′g ⊗ lh′,g

Ψr
g|h,h′ : rg,hh′ ⇒ rgh,h′ ⊗ rg,h

(4.11)

implementing compatibility with fusion of symmetry defects.

� There are 2-isomorphisms

Ψlr
h|g|h′ : lh,gh′ ⊗ rg,h′ ⇒ rhg,h′ ⊗ lh,g . (4.12)

implementing compatibility of left and right 1-morphisms.

The interpretation of these 2-isomorphisms is illustrated in figure 16. For clarity, we

have flattened the surfaces and the attached symmetry defects are omitted: one must

imagine symmetry defects attached to lh,g/rg,h pointing out of/into the page.

The 2-morphisms must themselves satisfy further compatibility conditions. The first

set of conditions may be viewed as a normalisation condition for the 2-isomorphisms in

equation (4.11) and take the form

Ψl
h,e|g = lh,g ⊗Ψl

g Ψl
e,h|g = Ψl

hg ⊗ lh,g
Ψr

g|e,h = rg,h ⊗Ψr
g Ψr

g|h,e = Ψr
gh ⊗ rg,h .

(4.13)

The second set of conditions ensure compatibility of the 2-isomorphisms with associativity

of the fusion of symmetry defects,

Ψl
h1h2,h3|g ◦ (Ψ

l
h1,h2|h3g

⊗ lh3,g) = Ψl
h1,h2h3|g ◦ (lh1,h2h3g ⊗Ψl

h2,h3|g)

Ψr
g|h1,h2h3

◦ (Ψr
gh1|h2,h3

⊗ rg,h1) = Ψr
g|h1h2,h3

◦ (rgh1h2,h3 ⊗Ψr
g|h1,h2

)
(4.14)

We are using here a shorthand notation where lh,g, rg,h denotes the identity 2-isomorphism

on the same topological lines. The interpretation of these conditions for the left 1-morphisms

is illustrated in figure 17.

The task is now to classify solutions. First, the existence of 2-isomorphisms in (4.10)

and (4.11) imply the 1-morphisms lh,g, rg,h are weakly invertible and provide explicit

inverting 2-isomorphisms. For example

Ψl
h−1,h|g ◦Ψl

g : (lh,g)
−1 ⊗ lh,g ⇒ 1Rg

Ψr
h,h−1|g ◦Ψr

g : (rg,h)
−1 ⊗ rg,h ⇒ 1Rg ,

(4.15)
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Figure 17.

where we define (lh,g)
−1 := lh−1,hg and (rg,h)

−1 := rgh,h−1 . All of the component 1-

morphisms may then be constructed from the components lg,e, re,g using combinations

of the 2-isomorphisms in equations (4.10) and (4.11). We must then solve these remaining

component 1-morphisms and associated 2-isomorphisms.

Let us now use the above 2-isomorphisms to identify Rg
∼= Re =: S for all g ∈ G. We

then formulate the remaining conditions on lg,e, re,g using the combination

ρg := (re,g)
−1 ◦ lg,e ∈ Hom(S,S) . (4.16)

This represents the topological line arising from the intersection of a symmetry defect g ∈ G
with the topological surface. This is illustrated in figure 18.

The remaining 2-isomorphisms may be organised into combinations of the form

Ψe : 1S ⇒ ρe Ψg,h : ρgh ⇒ ρg ◦ ρh (4.17)
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Figure 18.

and are subject to the conditions7

Ψe,g = Ψe ⊗ ρg Ψg,e = ρg ⊗Ψe

Ψh1h2,h3 ◦ (Ψh1,h2 ⊗ ρh3) = Ψh1,h2h3 ◦ (ρh1 ⊗Ψh2,h3)
(4.18)

which ensure compatibility when intersecting the surface with multiple symmetry defects

as illustrated in figure 19.

In summary, a topological surface in T /G is specified by the following data:

1. A set S ∼= {1, . . . , n} ∈ 2-Vec .

2. A collection of n× n 2-matrices ρg ∈ Hom(S,S).

3. A 2-isomorphism Ψe : 1S ⇒ ρe.

4. 2-isomorphisms Ψg,h : ρgh ⇒ ρg ◦ ρh.

The 2-isomorphisms are subject to the conditions (4.18). This is precisely the data of a

2-representation of the finite group G in 2Vect [19–22].

Let us now summarise the classification of 2-representations following [22]. First, the

2-isomorphisms imply that the 1-morphisms ρg ∈ Hom(S,S) are weakly invertible. For

example, we have

Ψg,g−1 ⊗Ψe : 1S ⇒ ρg ⊗ ρg−1 . (4.19)

As a consequence, they endow S with the structure of a G-set

σ : G→ Aut(S) . (4.20)

More concretely, using S = {1, . . . , n}, up to isomorphism ρg is an n × n permutation

2-matrix whose non-zero entries are 1-dimensional vector spaces. It is therefore entirely

determined by the associated permutation representation σ : G→ Sn. This is an analogue

of topological Wilson lines being labelled by linear representations.

Next, since ρgh and ρg ◦ ρh are permutation 2-matrices, they have only one non-zero

entry per row and column, which is a 1-dimensional vector space. The 2-isomorphisms Ψg,h

are therefore completely determined by a sequence of n phases {cj(g, h) ∈ U(1)} specifying
7Here and in similar equations to follow, we abuse notation and abbreviate the identity 2-morphisms of

1-morphisms ρg by the same symbol ρg.
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Figure 19.

the isomorphism between the 1-dimensional vector spaces in the j-th row. By varying the

group elements g and h, we can think of this sequence as a 2-cochain

c : G×G→ U(1)n. (4.21)

Condition (4.18) then translates into the 2-cocycle condition

cσ−1
g (j)(h, k)− cj(gh, k) + cj(g, hk)− cj(g, h) = 0 (4.22)

for all group elements g, h, k ∈ G and j = 1, . . . , n. Thus, c defines a class

c ∈ H2(G,U(1)S) , (4.23)

where U(1)S is the abelian group U(1)|S| supplemented with the structure of aG-module via

the permutation representation σ. This is an analogue of Wilson lines in one-dimensional

representations of G, which are SPT phases H1(G,U(1)).
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In summary, topological surfaces in T /G are 2-representations of the finite group G,

which can be labelled by pairs (S, c) consisting of

1. a G-set S,

2. a class c ∈ H2(G,U(1)S).

The dimension of the 2-representation is |S| = n. Two 2-representations labelled by (S, c)
and (S ′, c′) are considered equivalent if there exists a bijection f : S → S ′ of G-sets

that maps c to c′ by acting on the coefficients. This agrees with the classification of 2-

representations described in appendix A.3.2. Note that for one-dimensional 2-representa-

tions S ∼= {1} one specifies a group cohomology class c ∈ H2(G,U(1)). The associated

topological surfaces are constructed by inserting the associated SPT phase supported on a

surface in the path integral of T /G.
The 2-representations with n > 1 are called condensation defects in the physics liter-

ature.8 A clean physical interpretation of the topological surfaces with n > 1 is perhaps

not transparent in the current formulation, but this will be remedied momentarily with a

more direct construction of simple objects or irreducible 2-representations.

4.2.2 Sum, Product, Conjugation

The sum and product of topological surfaces in T /G are inherited from those of parent

topological surfaces in T and correspond to sum and product in the symmetry category

2Vec(G). They correspond to natural ways in which to combine the data labelling 2-

representations fo G and are described in generality below.

First, given two G-sets S and S ′, we define their direct sum and tensor product via

disjoint union and Cartesian product respectively, i.e.

S ⊕ S ′ = S ⊔ S ′

S ⊗ S ′ = S × S ′
(4.24)

with the appropriate induced G-actions. More concretely, let us write S = {1, . . . , n} and
S ′ = {1, . . . , n′} with permutations σ, σ′ : G→ Sn, Sn′ . Then

(σ ⊕ σ′)g(j) =

{
σg(j) j ∈ S
σ′g(j − n) + n j − n ∈ S ′

(σ ⊗ σ′)g(j) = (σg(i), σ
′
g(i

′)) j = (i, i′) ∈ S × S ′ .
(4.25)

provide explicit permutation actions on S ⊕ S ′ and S ⊗ S ′.
Similarly, given two classes c ∈ H2(G,U(1)S) and c′ ∈ H2(G,U(1)S

′
), we define their

direct sum and tensor product

c⊕ c′ ∈ H2(G,U(1)S⊕S′
)

c⊗ c′ ∈ H2(G,U(1)S⊗S′
)

(4.26)

8From a mathematical perspective, they are all condensations, see e.g. [18].
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by setting for each g, h ∈ G

(c⊕ c′)j(g, h) =

{
cj(g, h) j ∈ S
c′j−n(g, h) j − n ∈ S ′

(c⊗ c′)j(g, h) = ci(g, h) + c′i′(g, h) j = (i, i′) ∈ S × S ′ .
(4.27)

It is straightforward to check that these satisfy the appropriate 2-cocycle conditions. Com-

bining these formulae provides a combinatorial definition of the direct sum and fusion of

topological surfaces (S, c) and (S ′, c′) in T /G.
In addition, the conjugation of a 2-representation (S, c) may be defined as the 2-

representation (S, c)# := (S,−c).
These operations coincide with the corresponding operations in 2Rep(G), as described

in appendix A.4.

4.2.3 1-Morphisms

The 1-morphism categories capture topological lines that sit at junctions between topologi-

cal surfaces. The 1-morphisms between two topological surfaces in T /Gmay be constructed

from 1-morphisms between parent topological surfaces together with instructions on how

they interact with networks of symmetry defects in T .
Let us first consider the 1-morphism category

HomT /G(1, (S, c)) , (4.28)

which describes topological lines bounding or screening a topological surface (S, c). The

starting point is then the 1-morphisms of the parent topological surface in T . However,

as above, the problem may be reduced to the component 1-morphisms HomT (1,S) with

Re
∼= S := {1, . . . , n}, which are S-graded vector spaces or equivalently collections of vector

spaces {Vj} index by j ∈ {1, . . . , n}.
The component 1-morphisms must satisfy compatibility conditions involving the topo-

logical lines ρg ∈ Hom(S,S) arising from the intersection with symmetry defects. In

particular, these topological lines may end at the boundary on topological local operators

corresponding to 2-isomorphisms in T ,

Φg : HomT (1,S) ⇒ HomT (1,S) . (4.29)

Concretely, such a 2-isomorphism is a collection of linear maps Φg,j : Vj → Vσg(j) for all

j = 1, . . . , n. This is illustrated in figure 20.

The compatibility with the fusion of symmetry defects intersecting the parent topo-

logical surface in T requires that the 2-morphisms compose as

Φgh,j = cj(g, h) · Φg,σh(j) ◦ Φh,j . (4.30)

The additional phase arises due to the same anomaly inflow mechanism described in sec-

tion 2.3. This condition is illustrated in figure 21.

To summarise, an object in the 1-morphism category HomT /G(1, (S, c)) is determined

by the following data:
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Figure 20.

Figure 21.

� A collection of vector spaces {V1, . . . , Vn} indexed by S ∼= {1, . . . , n},

� a collection of linear maps Φg,j : Vj → Vσg(j) satisfying

Φgh,j = cj(g, h) · Φg,σh(j) ◦ Φh,j .

We call this an S-graded projective representation of G. Note that this reduces to an

ordinary projective representation for a one-dimensional 2-representation or topological

surface constructed from an ordinary cohomology class c ∈ H2(G,U(1)). In this case, the

topological line corresponds to a Wilson line whose anomalous transformation is cancelled

by anomaly inflow from the topological surface, similar to section 2.3. The general case is

a vast generalisation of this picture.

This data of a 1-morphism in HomT /G(1, (S, c)) can be framed more invariantly as

follows:

1. A vector bundle π : V → S.

2. A projective homomorphism Φ : G→ Aut(V) satisfying

π ◦ Φ = σ ◦ π (4.31)

where σ : G→ Aut(S) is the G-action on S.

Here, by projective homomorphism we mean Φ is a group homomorphism up to multipli-

cation by elements c ∈ U(1)|S|, viewed as bundle automorphisms

v ∈ Vj 7→ cj · v . (4.32)
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This can be seen as a more abstract way to formulate the composition property in (4.30).

Having classified the objects, let us now consider the 2-morphisms in HomT /G(1, (S, c)).
They may also be computed from T and generalise the notion of intertwiners between pro-

jective representations to S-graded projective representations. In particular, a 2-morphism

between 1-morphisms (V,Φ) and (V ′,Φ) is specified by collections of linear maps

mj : Vj → V ′
j (4.33)

such that

Φ′
g,j ◦mj = mσg(j) ◦ Φg,j . (4.34)

They can be regarded as bundles maps m : V → V ′ commuting with the projective G-

actions. This clearly reduces to ordinary intertwiners between projective representations

for a one-dimensional 2-representation.

In summary, we have found that

HomT /G(1, (S, c)) ∼= Rep(S,c)(G) (4.35)

is the category of S-graded projective representations of G with cocycle c. A more detailed

exposition of this category can be found in appendix B.1.

We can now generalise this result to 1-morphisms between arbitrary pairs of topological

surfaces, with the result

HomT /G((S, c), (S, c′)) = Rep(S⊗S′, c′−c)(G) . (4.36)

This may be computed directly by generalising the line of reasoning above, or alternatively

using the folding trick to equate the result with 1-morphisms from the trivial topological

surface to the tensor product (S, c)# ⊗ (S ′, c′). This agrees with the classification of 1-

morphisms between 2-representations in 2Rep(G) described in appendix C.1.

Finally, note that for 1-dimensional 2-representations described purely by two group

cohomology classes c, c′ ∈ H2(G,U(1) we have

HomT /G(c, c
′) = Repc

′−c(G) (4.37)

corresponding to topological Wilson lines in projective representations of G, whose anoma-

lous transformations are absorbed by anomaly inflow from the SPT phases c, c′ on the

adjoining surfaces. In particular, the category of endomorphisms of any 1-dimensional 2-

representation reproduces the fusion category Rep(G) of ordinary representations of G and

corresponds to genuine topological Wilson lines.

4.2.4 Composition of 1-morphisms

The composition of 1-morphisms also has a convenient description in terms of S-graded
projective representations. The composition corresponds to functors

Rep(S⊗S′, c′−c)(G) × Rep(S
′⊗S′′, c′′−c′)(G)

◦−→ Rep(S⊗S′′, c′′−c)(G) , (4.38)

which is illustrated in figure 22.
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Figure 22.

Given an S ⊗S ′-graded representation (V,Φ) and an S ′ ⊗S ′′-graded projective repre-

sentation (V ′,Φ′), their composition is an S ⊗S ′′-graded projective representation (V,Φ) ◦
(V ′,Φ′) that can be constructed as follows:

� The collection of vector spaces V ◦ V ′ is given by

(V ◦ V ′)(j,j′′) =
⊕

j′∈S′

V(j,j′) ⊗ V ′
(j′,j′′) . (4.39)

� The collection of linear maps Φ ◦ Φ′ is given by

(Φ ◦ Φ′)g · (v ◦ v′)j,j′′ =
⊕

j′∈S′

(Φg · v(j,j′)) ⊗ (Φ′
g · v′(j′,j′′)) . (4.40)

It is straightforward to check that this defines an S × S ′′-graded projective representation

with 2-cocycle c′′ − c. Further details on the composition of graded projective representa-

tions can be found in appendix B.5.

4.2.5 Fusion of 1-morphisms

The fusion of 1-morphisms also has a convenient description in terms of S-graded projective

representations. Let us first consider fusion of 1-morphisms of the form

HomT /G(1, (S, c)) × HomT /G(1, (S ′, c′)) ⊗−→ HomT /G(1, (S, c)⊗ (S ′, c′)) (4.41)

which are illustrated in figure 23.

This corresponds to the fusion of graded projective representations,

Rep(S,c)(G)× Rep(S
′,c′)(G)

⊗−→ Rep(S⊗S′, c+c′)(G) . (4.42)

To describe this fusion explicitly, consider an S-graded projective representation (V,Φ) and
an S ′-graded projective representation (V ′,Φ′). Their fusion is the S⊗S ′-graded projective

representation (V,Φ)⊗ (V ′,Φ′) where

� The collection of vector spaces V ⊗ V ′ is given by (V ⊗ V )(j,j′) = Vj ⊗ V ′
j′ ,

� The collection of linear maps Φ⊗ Φ′ is given by (Φ⊗ Φ′)g,(j,j′) = Φg,j ⊗ Φ′
g,j′ .
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Figure 23.

This may then be generalised to fusion of 1-morphisms between arbitrary pairs of topolog-

ical surfaces, for example, using the folding trick.

As a consistency check, consider the fusion of 1-endomorphisms of the trivial surface

(or any one-dimensional 2-representation), which are ordinary topological Wilson lines. It

is clear that this reproduces the tensor product of ordinary representations of G, which is

the correct fusion of topological Wilson lines in T /G. More details on sums and fusions of

graded projective representations can be found in appendix B.2.

4.3 Simple Objects

Let us now consider simple objects in the symmetry category 2Rep(G) of T /G, which cor-

respond to irreducible 2-representations of G. This uncovers an alternative mathematical

structure that sheds light on the physical interpretation of topological surfaces correspond-

ing to 2-representations of dimension greater than one in terms of condensation defects.

4.3.1 Irreducible 2-representations

The decomposition of topological surfaces into simple topological surfaces corresponds to

the decomposition of a 2-representation (S, c) into irreducible 2-representations.

First, we may decompose any G-set as a union of disjoint orbits S = ⊔αOα, which form

transitive G-sets by definition. Second, there is an associated decomposition c = ⊕αcα into

classes on each orbit according to the isomorphism

H2(G,U(1)S) ∼=
⊕

α

H2(G,U(1)Oα) . (4.43)

Consequently, any 2-representation (S, c) of G can be decomposed as a direct sum

(S, c) ∼=
⊕

α

(Oα, cα) . (4.44)

of simple objects, where the latter are labelled by pairs (O, c) consisting of

1. a G-orbit O,
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2. a class c ∈ H2(G,U(1)O),

and correspond to irreducible 2-representations of G. More details on the latter can be

found in appendix A.6.

4.3.2 Induction

The irreducible 2-representations may also be obtained by induction of one-dimensional

2-representations of subgroups H ⊂ G, leading to a more direct physical construction of

topological surfaces that clarifies their relationship to condensation defects for the topo-

logical Wilson lines.

The first observation is that, given an irreducible 2-representation (O, c′) of G, we may

use the orbit-stabiliser theorem to relate the G-orbit O to a subgroup H := Stab(∗) ⊂
G acting as the stabiliser of a fixed element ∗ ∈ O. Similarly, we can define a group

cohomology class c := c′∗|H ∈ H2(H,U(1)), which can be interpreted as a 1-dimensional

2-representation of the subgroup H ⊂ G, also known as the restriction of (O, c′) to H;

c = ResGH(O, c′) . (4.45)

Conversely, any irreducible 2-representation (O, c′) can be obtained as the induction of a

one-dimensional 2-representation of a subgroup H ⊂ G labelled by a group cohomology

class c ∈ H2(H,U(1)) [22]. Let us write this correspondence as

(O, c′) = IndGH(c) . (4.46)

Explicitly, the induction works as follows:

1. Given the subgroup H ⊂ G, we can obtain a G-orbit by setting O = G/H. The

permutation action of G on O can be constructed by picking a system {r1, . . . , rn}
of representatives of left H-cosets rjH and defining σ : G→ Sn by

g · rj ∈ rσg(j)H . (4.47)

In addition, this allows us to define little group elements

ℓg,j := r−1
σg(j)

· g · rj ∈ H . (4.48)

2. Utilising Shapiro’s isomorphism

H2(H,U(1)) ∼= H2(G,U(1)O) , (4.49)

we can construct a class c′ ∈ H2(G,U(1)O) from c by setting

c′j(g1, g2) := c
(
ℓg1, σ−1

g1
(j) , ℓg2, σ−1

g1g2
(j)

)
(4.50)

where ℓg1, σ−1
g1

(j) and ℓg2, σ−1
g1g2

(j) are little group elements associated to g1, g2.
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One can check that the 2-representation (O, c′) obtained in this way depends on the

coset representatives rj only up to isomorphism. More details on the induction of 2-

representations can be found in appendix A.5.

In summary, simple objects may alternatively be labelled by pairs (H, c) consisting of

� a subgroup H ⊂ G,

� a class c ∈ H2(H,U(1)),

and correspond to irreducible 2-representations of G. Two such simple objects labelled by

(H, c) and (H ′, c′) are considered equivalent if there exists a g ∈ G such that

H ′ = gHg−1 and c′ = cg , (4.51)

where (cg)(h1, h2) := c(g−1h1g, g
−1h2g) for all h1, h2 ∈ H ′.

In computing fusion and 1-morphisms of simple objects below, we will encounter a

version of Mackey’s decomposition formula for the restriction of induced one-dimensional

2-representations to other subgroups. Namely,

(ResGH ◦ IndGK)(c) =
⊕

[g]∈H\G/K

IndHH ∩Kg(c g) (4.52)

where the summation is over representatives g of double cosets and Kg ≡ gKg−1. On the

right-hand side of equation (4.52) we view c g as a class on H ∩Kg and therefore ought to

write ResK
g

H ∩Kg(c g) instead of simply c g. In order to avoid cumbersome notation, we will

leave this implicit in what follows.

Finally, we note that the induction of 2-representations reflects an alternative physical

construction of simple topological surfaces. They correspond to topological surfaces in T /G
where the bulk gauge symmetry is broken down to H ⊂ G by a partial Dirichlet bound-

ary condition, supplemented by a two-dimensional SPT phase c ∈ H2(H,U(1)) for the

unbroken gauge symmetry. Surfaces corresponding to equivalent simple 2-representations

are physically indistinguishable as they are related by a residual symmetry transforma-

tion. The above interpretation of full condensation defects with H = 1 and full Dirichlet

boundary conditions appeared in [4]. The case H ̸= 1 was also considered in [11].

4.3.3 Fusion of Simple Objects

We now consider the fusion ring generated by decomposing products of simple topological

surfaces as sums of simple topological surfaces. While the structure follows from the general

construction of direct sums and tensor products of 2-representations above, we will also

provide an explicit description in terms of induced 2-representations.

Let us then introduce a basis of G-orbits Oα and denote simple objects by (Oα, c)

where c ∈ H2(G,U(1)Oα). The fusion rules will take the form

(Oα, c)⊗ (Oβ, c
′) =

⊕

γ

nγαβ · (Oγ , c
′′) , (4.53)
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where the coefficients9 nγαβ can be determined as follows:

� The fusion of underlying orbits corresponds to the Cartesian product. The coefficients

nγαβ ∈ Z+ are therefore determined by decomposing the cartesian product of orbits

as a disjoint union

Oα ×Oβ =
⊔

γ

nγαβ · Oγ . (4.54)

� The associated cohomology classes c′′ are determined using the sum and product

defined in (4.27). Concretely, if Oα = {1, . . . , nα} and Oβ = {1, . . . , nβ}, then the

class c′′ on the orbit Oγ ⊂ Oα ×Oβ is given by the formula

c′′(j,j′) = cj + c′j′ (4.55)

for each element (j, j′) ∈ Oγ .

This provides a full description of the fusion structure of simple topological surfaces.

However, it is also useful to reformulate the fusion structure in terms of induced 2-

representations. From this perspective, the simple objects are labelled by conjugacy classes

of subgroups Hα ⊂ G together with classes cα ∈ H2(Hα, U(1)).

First, the decomposition of the Cartesian product of G-orbits is equivalent to the

double coset decomposition formula

G/Hα × G/Hβ =
⊔

[g]∈Hα\G/Hβ

G/ (Hα ∩Hg
β) , (4.56)

where the summation is over representatives g of double Hα-Hβ-cosets. The cohomology

classes decompose such that the class associated to the summand G/(Hα ∩Hg
β) is

cα ⊗ c gβ ∈ H2(Hα ∩Hg
β , U(1)) , (4.57)

where restriction of arguments to the intersection is understood.

In summary, the fusion of simple topological surfaces is

(Hα, cα) ⊗ (Hβ, cβ) =
⊕

[g]∈Hα\G/Hβ

(Hα ∩Hg
β , cα ⊗ c

g
β ) , (4.58)

where an appropriate restriction of the classes to Hα ∩Hg
β is understood implicitly on the

right-hand side. This provides another concrete method to compute the fusion structure

and agrees with the fusion of irreducible 2-representations described in appendix A.6.

The fusion formula may also be viewed as an application of Mackey’s decomposition

formula together with the push-pull formula for induced 2-representations via the following

9Here, the fusion coefficients nγ
α,β are positive integers. Equivalently, one may view them as the result

of stacking with a decoupled 2d TQFT: Since 2d fully extended stable TQFTs are completely determined

by positive integers n, stacking such a TQFT Tn on top of a surface defect X simply corresponds to taking

the direct sum Tn ⊗X = X ⊕ ...⊕X ≡ n ·X.

– 34 –



manipulations,

(Hα, cα)⊗ (Hβ, cβ) ∼= IndGHα
(cα)⊗ IndGHβ

(cβ)

= IndGHα
(cα ⊗ ResGHα

IndGHβ
(cβ))

=
⊕

[g]∈Hα\G/Hβ

IndGHα
(cα ⊗ IndHα

Hα ∩Hg
β
(c gβ ))

=
⊕

[g]∈Hα\G/Hβ

IndGHα ∩Hg
β
(cα ⊗ c gβ )

∼=
⊕

[g]∈Hα\G/Hβ

(Hα ∩Hg
β , cα ⊗ c

g
β )

(4.59)

where the appropriate restrictions on the c’s are understood implicitly in the final line.

We now consider some special cases. The simplest is perhaps the fusion of one-

dimensional 2-representations or pure SPT phase topological surfaces, which is addition of

the associated cohomology classes,

c⊗ c′ = c+ c′ . (4.60)

This is consistent with a direct path integral argument by inserting SPT phases supported

on surfaces in T /G. A generalisation is the fusion of a one-dimensional 2-representation

(or pure SPT phase) with a general irreducible 2-representation or condensation defect.

The result is that

(H, c) ⊗ c′ = (H, c+ResGH(c′)) . (4.61)

This formula reflects the fact that the gauge symmetry is broken to a subgroup H ⊂ G

on the topological surface and therefore fusion with another SPT phase c′ only detects the

restriction to the subgroup H ⊂ G.
We may also restrict attention to the fusion of simple topological surfaces corresponding

to normal subgroups. This produces a summation of the form

(Hα, cα) ⊗ (Hβ, cβ) =
⊕

[g]∈Hα\G/Hβ

(Hα ∩Hβ , cα ⊗ c gβ ) (4.62)

with a common subgroup appearing in each summand. This reflects the fact that fusion of

topological surfaces breaking the gauge symmetry to normal subgroups Hα, Hβ will break

the gauge symmetry to the intersection Hα ∩Hβ. In particular,

(H, c) ⊗ (H, c′) =
⊕

[g]∈G/H

(H, c⊗ (c′)g) (4.63)

when fusing 2-representations induced from the same normal subgroup H ⊂ G.
Finally, if G is abelian, the fusion structure simplifies dramatically with a single sum-

mand appearing in the fusion of simple objects

(Hα, cα)⊗ (Hβ, cβ) = nαβ · (Hα ∩Hβ, cα ⊗ cβ) , (4.64)
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where the coefficient on the right-hand side is

nαβ ≡ |Hα\G/Hβ| =
|Hα ∩Hβ|
|Hα| · |Hβ|

· |G| . (4.65)

by the Cauchy-Frobenius lemma. This again reflects the fact that fusion of topological

surfaces breaking the gauge symmetry to abelian subgroups Hα, Hβ will break the gauge

symmetry to the intersection Hα ∩Hβ.

4.3.4 1-morphisms

We start by considering topological lines on which a simple topological surface (O, c′) may

end. They are captured by the 1-morphism category

HomT /G(1, (O, c′)) = Rep(O,c′)(G) , (4.66)

which is the category of O-graded projective representations of G with 2-cocycle c ∈
H2(G,U(1)O) by specialising the general result (4.35).

It is also useful to reformulate this result in terms of induced 2-representations where

we label the simple topological surface by a pair (H, c) with (O, c′) = IndGH(c). As described

in appendix B.3, the 1-morphisms may be obtained by an analogous process of induction.

In particular, any O-graded projective representation (V,Φ) of G may be obtained as the

induction of an ordinary projective representation φ : H → GL(W ) of H with cocycle

c ∈ H2(H,U(1)). Let us write this correspondence as

(V,Φ) ∼= IndGH(W,φ) . (4.67)

Moreover, 2-morphisms or morphisms in the category of 1-morphisms are obtained by

induction of intertwiners between projective representations.

In summary,

HomT /G(1, (H, c)) ∼= Repc(H) (4.68)

is the category of projective representations of H with 2-cocycle c ∈ H2(H,U(1)). The

objects may be regarded as Wilson lines for the unbroken gauge symmetry H ⊂ G,

whose anomalous transformation is cancelled by anomaly inflow from the attached two-

dimensional SPT phase surface defect, as described in section 2.3. In particular, endomor-

phisms of the identity object reproduces ordinary representations

EndT /G(1) = Rep(G) (4.69)

corresponding to genuine topological Wilson lines.

We can now generalise this result to 1-morphisms between pairs of simple topological

surfaces by specialising (4.36) or using the folding trick together with the fusion described

above. The result is that

HomT /G

(
(H, c), (H ′, c′)

)
=

⊕

[g]∈H\G/H′

Rep(c
′)g−c (H ∩ (H ′)g) . (4.70)
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This agrees with the classification of 1-morphisms between irreducible 2-representations

described in appendix C.1.

We are particularly interested in 1-endomorphisms describing topological line operators

on a simple topological surface,

EndT /G(H, c) =
⊕

[g]∈H\G/H

Repc
g−c (H ∩Hg) . (4.71)

In the special case when H ⊂ G is normal and c = 0, this becomes

EndT /G(H) =
⊕

[g]∈G/H

Rep(H) . (4.72)

Note that this clearly contains Rep(H) as a sub-category. Furthermore, by considering only

trivial representations in each summand, it also contains Vect(G/H) as a sub-category. The

fusion structure on these sub-categories stems from the composition of 1-morphisms, which

turns EndT /G(H) into a fusion category. We will expand on this in more detail below.

From a physical perspective, this captures the fact that the simple topological surface

breaks the gauge symmetry to down H ⊂ G, leaving a residual global symmetry G/H

on the defect. In other words, the 1-endomorphisms of the surface defect in T /G contain

topological Wilson lines for H and symmetry generators for G/H that arise from symmetry

generators in T ending on the surface.

These symmetries exhibit a mixed ’t Hooft anomaly of the type discussed in [17], which

is straightforward to describe explicitly when H is abelian and Rep(H) = Vec(Ĥ). If we

consider the exact sequence

1 → H → G → G/H → 1 , (4.73)

with extension class e ∈ H2(G/H,H) then the ’t Hooft anomaly takes the form
∫

X3

ĥ ∪ e(a) (4.74)

with background fields ĥ ∈ H1(X3, Ĥ) and â : X3 → B(G/H).

4.3.5 Composition of 1-morphisms

We restrict our attention to composition of 1-endomorphisms of a simple object associated

to a normal subgroup H ⊂ G and c = 0. The general case is described in appendix C.3.

As above, we can think of 1-morphisms as sums of pairs ([g], φ) consisting of a coset

[g] ∈ G/H and a topological Wilson line in a representation φ : H → GL(W ) of H. The

composition of these 1-endomorphisms is

([g1], φ1) ◦ ([g2], φ2) =
(
[g1] · [g2] , φ1 ⊗ (φ2)

g1
)

(4.75)

where the product structure on G/H is understood and φg : H → GL(W ) is the conjugated

representation defined by

φg(h) = φ(g−1hg) . (4.76)

This endows the sub-categories Rep(H) and Vect(G/H) separately with their obvious fu-

sion structure. However, due to the appearance of the twist (φ2)
g1 in (4.75), the fusion

category EndT /G(H) is not in general equivalent to the product Vect(G/H)× Rep(H).
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4.3.6 Fusion of 1-morphisms

The general case of fusions of 1-morphisms between simple topological surfaces is presented

in appendix C.2. Here we restrict ourselves to an instructive example that illustrates the

condensation nature of the topological surfaces.

Consider the fusion of the identity 1-endomorphism Id(H,c) ∈ End(H, c) of a simple

topological surface labelled by (H, c) and a general 1-endomorphism of the identity surface

φ ∈ End(1) = Rep(G). This is the fusion of a topological surface with a topological Wilson

line as illustrated in figure 24. We find that

Id(H,c) ⊗ φ = φ|H , (4.77)

which captures precisely the condensation nature of the topological surfaces. In particular,

for the full condensation defect with H = 1, all of the topological Wilson lines condense

on the surface.

Figure 24.

4.4 Examples

4.4.1 G = Z2

Let us consider the simplest example G = Z2. The theory T has symmetry category

2Vec(Z2) with two simple objects 1, s with fusion s ⊗ s = 1 and non-trivial 1-morphism

categories HomT (1, 1) = HomT (s, s) = Vect.

Upon gauging the symmetry G, the resulting theory T /G has topological Wilson lines

generating the Pontryagin dual Z2 1-form symmetry. However, there is also condensation

surface defect for the topological Wilson lines and the full symmetry category is the fusion

2-category 2Rep(Z2).

The simple objects are irreducible 2-representations. There are only two Z2-orbits: the

trivial orbit with stabiliser Z2, and the maximal orbit with trivial stabiliser. There are no

SPT phases because H2(Z2, U(1)) = 0. Let us denote the corresponding simple objects

by 1, X, respectively. The physical interpretation of these objects is clear: 1 is the identity

surface, while X is the condensation defect for the Z2 1-form symmetry.
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Their fusion is determined by

X ⊗X = 2X , (4.78)

which follows from the fact that the cartesian product of two maximal orbits decomposes

as a sum of two orbits. The 1-morphism categories are

EndT /G(1) = Rep(Z2) (4.79)

HomT /G(1, X) = HomT /G(X, 1) = Vect (4.80)

EndT /G(X) = Vect(Z2) . (4.81)

A diagrammatic representation of 2Rep(Z2) can be found in appendix C.4.110.

4.4.2 G = Z2 × Z2

As a slightly more involved example, let us consider G = Z2 × Z2. The theory T has

symmetry category 2Vec(Z2 × Z2) with four simple objects 1, s+, s0, s− with fusion

s2+ = s20 = s2− = 1

s± · s0 = s∓

s+ · s− = s0

(4.82)

and non-trivial 1-morphisms Hom(1, 1) = Hom(s±, s±) = Hom(s0, s0) = Vect.

Upon gauging the symmetry G, the symmetry category of the resulting theory T /G
is the fusion 2-category 2Rep(Z2 × Z2). There are now five orbits, corresponding to the

five subgroups of Z2 × Z2 acting as stabilizers of the orbits: the group G = Z2 × Z2 itself,

three subgroups of order 2, and the trivial subgroup. In particular, the trivial orbit with

stabilizer G = Z2 × Z2 can be supplemented by an SPT phase

α ∈ H2(Z2 × Z2, U(1)) ∼= Z2 . (4.83)

Let us denote the corresponding simple objects by 1α, Xi and Y respectively (where i =

1, 2, 3). Their fusion is determined by

1α ⊗ 1β = 1α+β , (4.84)

Xi ⊗Xj =

{
2Xi if i = j,

Y if i ̸= j,
(4.85)

Xi ⊗ Y = 2Y , (4.86)

Y ⊗ Y = 4Y . (4.87)

A diagrammatic representation of 2Rep(Z2 × Z2) can be found in appendix C.4.311.

10Note that in appendix C.4.1 we used the labels 1 and 2 for the simple objects of 2Rep(Z2).
11Note that in appendix C.4.3 we used the labels 1α, 2+, 20, 2− and 4 to denote the simple objects of

2Rep(Z2 × Z2).
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5 Three dimensions: split 2-groups

We now generalise section 4 to gauging a finite 2-group symmetry in three dimensions.

We emphasise that we consider finite 2-group symmetries with finite 0-form and 1-form

components. A common source of such symmetries in dynamical gauge theories is discussed

below in section 6. Aspects of 2-group global symmetries (typically with continuous 0-form

components) and their ’t Hooft anomalies have been investigated in [37–46].

In this paper, we focus on gauging a split finite 2-group with vanishing Postnikov class,

leaving more general finite 2-groups to a subsequent paper. Such a 2-group is specified

by a finite 0-form symmetry group H, a finite abelian 1-form symmetry group A and

a homomorphism φ : H → Aut(A). By a natural extension of the notation for a split

extension or semi-direct product group, we denote this by

G := A[1]⋊H . (5.1)

As for a semi-direct product group in two dimensions in section 3, the 0-form and 1-form

components of an anomaly free split 2-group may be gauged independently. This generates

the commuting square of symmetry categories illustrated in figure 25, where the arrows

denote gauging the labelled symmetry.
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G
<latexit sha1_base64="A1KNYN3DPwZPQNLhVJ5+UW8ooq0=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUE8S8KDHCOaByRJmJ5NkyOzsMtOrhCV/4cWDIl79G2/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0fXUbz5ybUSk7nEccz+kAyX6glG00kPnSfT4kCK56RZLbtmdgSwTLyMlyFDrFr86vYglIVfIJDWm7bkx+inVKJjkk0InMTymbEQHvG2poiE3fjq7eEJOrNIj/UjbUkhm6u+JlIbGjMPAdoYUh2bRm4r/ee0E+5d+KlScIFdsvqifSIIRmb5PekJzhnJsCWVa2FsJG1JNGdqQCjYEb/HlZdI4K3vn5cpdpVS9yuLIwxEcwyl4cAFVuIUa1IGBgmd4hTfHOC/Ou/Mxb8052cwh/IHz+QMc25CM</latexit> bG

<latexit sha1_base64="je+gLCWOkO/WSoCjeir0ZD0dzDM=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUE8S8eIxgnlgsoTZySQZMju7zPQqYclfePGgiFf/xpt/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSrYAaLoXidRQoeSvWnIaB5M1gdDP1m49cGxGpexzH3A/pQIm+YBSt9NB5Ej0+pEiuu8WSW3ZnIMvEy0gJMtS6xa9OL2JJyBUySY1pe26Mfko1Cib5pNBJDI8pG9EBb1uqaMiNn84unpATq/RIP9K2FJKZ+nsipaEx4zCwnSHFoVn0puJ/XjvB/qWfChUnyBWbL+onkmBEpu+TntCcoRxbQpkW9lbChlRThjakgg3BW3x5mTTOyt55uXJXKVWvsjjycATHcAoeXEAVbqEGdWCg4Ble4c0xzovz7nzMW3NONnMIf+B8/gATw5CG</latexit> bA
<latexit sha1_base64="KSfkq8H6Rya1HylX6XGBH07zxJs=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUE8S8JJjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp/77SdUmsfywUwS9CM6lDzkjBorNWr9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpHVV9q7LlUalVL3L4sjDGZzDJXhwA1WoQR2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB58zjNE=</latexit>

H
<latexit sha1_base64="KSfkq8H6Rya1HylX6XGBH07zxJs=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUE8S8JJjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp/77SdUmsfywUwS9CM6lDzkjBorNWr9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpHVV9q7LlUalVL3L4sjDGZzDJXhwA1WoQR2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB58zjNE=</latexit>

H

<latexit sha1_base64="mhXp2m8ve4/IucmX7e6SqlKN1rk=">AAACCnicbVDLSgMxFM3UV62vUZduokVwVWakqBul4sIuK9gHdIaSyWTa0MyD5I5SStdu/BU3LhRx6xe4829M20G09UDg5Jx7c3OPlwiuwLK+jNzC4tLySn61sLa+sbllbu80VJxKyuo0FrFseUQxwSNWBw6CtRLJSOgJ1vT6V2O/ecek4nF0C4OEuSHpRjzglICWOua+c8991iOAr/E5/rlcYkcCD5nC1Y5ZtErWBHie2Bkpogy1jvnp+DFNQxYBFUSptm0l4A6JfpAKNio4qWIJoX3SZW1NI6LHuMPJKiN8qBUfB7HUJwI8UX93DEmo1CD0dGVIoKdmvbH4n9dOIThzhzxKUmARnQ4KUoEhxuNcsM8loyAGmhAquf4rpj0iCQWdXkGHYM+uPE8axyX7pFS+KRcrF1kcebSHDtARstEpqqAqqqE6ougBPaEX9Go8Gs/Gm/E+Lc0ZWc8u+gPj4xsSq5k7</latexit> bG = bA o H
<latexit sha1_base64="YlwDkjOxpU5ZDTkrUgfToIcx8YY=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUlE1I1ScWGXFewD0lAm00k7dDIJMxMhhPorblwo4tYPceffOH0stPXAwOGc+5oTJJwp7TjfVmFldW19o7hZ2tre2d2z9w9aKk4loU0S81h2AqwoZ4I2NdOcdhJJcRRw2g5GtxO//UilYrF40FlC/QgPBAsZwdpIPbt8h67Qjef6qCs1i6hCddSzK07VmQItE3dOKjBHo2d/dfsxSSMqNOFYKc91Eu3n2EwknI5L3VTRBJMRHlDPUIHNHj+fHj9Gx0bpozCW5gmNpurvjhxHSmVRYCojrIdq0ZuI/3leqsNLP2ciSTUVZLYoTDnSMZokgfpMUqJ5ZggmkplbERliiYk2eZVMCO7il5dJ67TqnlfP7s8qtet5HEU4hCM4ARcuoAZ1aEATCGTwDK/wZj1ZL9a79TErLVjznjL8gfX5A9HFkvQ=</latexit>

G = A[1] o H
<latexit sha1_base64="ul5KAa7cJSEy/AiHLHAT08R9eWQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqCepePFYwX5AGspmu2mX7m7C7kYooX/BiwdFvPqHvPlv3LQ5aOuDgcd7M8zMCxPOtHHdb6e0tr6xuVXeruzs7u0fVA+POjpOFaFtEvNY9UKsKWeStg0znPYSRbEIOe2Gk7vc7z5RpVksH800oYHAI8kiRrDJpVvfCwbVmlt350CrxCtIDQq0BtWv/jAmqaDSEI619j03MUGGlWGE01mln2qaYDLBI+pbKrGgOsjmt87QmVWGKIqVLWnQXP09kWGh9VSEtlNgM9bLXi7+5/mpia6DjMkkNVSSxaIo5cjEKH8cDZmixPCpJZgoZm9FZIwVJsbGU7EheMsvr5LORd27rDceGrXmTRFHGU7gFM7Bgytowj20oA0ExvAMr/DmCOfFeXc+Fq0lp5g5hj9wPn8AZjWN0Q==</latexit>

A[1]
<latexit sha1_base64="6A2TWsNJvrqfLnWrQ8wXllbdWck=">AAACC3icbVA9SwNBEN3zM8avqKXNkiBoE+4kqChIwELLCEkM5I6wt5nTxb0PdufEcKS38a/YWChi6x+w89+4l6TQ6INdHu/NMDPPT6TQaNtf1szs3PzCYmGpuLyyurZe2ths6zhVHFo8lrHq+EyDFBG0UKCETqKAhb6EK//2LPev7kBpEUdNHCTghew6EoHgDI3UK5XdkOENZzJrDql7Qo/zb99FuMesDXy4e77XK1Xsqj0C/UucCamQCRq90qfbj3kaQoRcMq27jp2glzGFgksYFt1UQ8L4LbuGrqERC0F72eiWId0xSp8GsTIvQjpSf3ZkLNR6EPqmMt9cT3u5+J/XTTE48jIRJSlCxMeDglRSjGkeDO0LBRzlwBDGlTC7Un7DFONo4iuaEJzpk/+S9n7VOajWLmuV+ukkjgLZJmWySxxySOrkgjRIi3DyQJ7IC3m1Hq1n6816H5fOWJOeLfIL1sc3g+OZbw==</latexit>T : 2Vec(G)

<latexit sha1_base64="jtVje2ajLY9x0fCpTa0nYadSC8Q=">AAACHnicbVDLSgMxFM34tr6qLt0Ei6CbMiO+UJCCC11WsA/olJJJb9vQzIPkjlqG+RI3/oobF4oIrvRvzNQKar2QcDjnXJJzvEgKjbb9YU1MTk3PzM7N5xYWl5ZX8qtrVR3GikOFhzJUdY9pkCKACgqUUI8UMN+TUPP6Z5leuwalRRhc4SCCps+6gegIztBQrfy+eyPa0GOYuD7DHmcyuUpT6p7Q4+zadRFuMakCT7e/nfR8p5Uv2EV7OHQcOCNQIKMpt/JvbjvksQ8Bcsm0bjh2hM2EKRRcQppzYw0R433WhYaBAfNBN5NhvJRuGaZNO6EyJ0A6ZH9uJMzXeuB7xpll0H+1jPxPa8TYOWomIohihIB/PdSJJcWQZl3RtlDAUQ4MYFwJ81fKe0wxjqbRnCnB+Rt5HFR3i85Bce9yr1A6HdUxRzbIJtkmDjkkJXJByqRCOLkjD+SJPFv31qP1Yr1+WSes0c46+TXW+ycSB6HJ</latexit>bT : 2Vec( bG)

<latexit sha1_base64="zxW67Tq7csz/y7f5TQDbcUMjkK4=">AAACGXicbVDLSgNBEJz1GeMr6tHLYBDiJe5KUFGQgAdzVDEayIYwO+kkg7MPZnrVsOxvePFXvHhQxKOe/BtnYw5qLJihqOqmu8uLpNBo25/WxOTU9Mxsbi4/v7C4tFxYWb3UYaw41HkoQ9XwmAYpAqijQAmNSAHzPQlX3vVx5l/dgNIiDC5wEEHLZ71AdAVnaKR2wXZvRQf6DBPXZ9jnTCYXaUq3aY26h/Qg+3ZchDtMziFKSydb7ULRLttD0HHijEiRjHDaLry7nZDHPgTIJdO66dgRthKmUHAJad6NNUSMX7MeNA0NmA+6lQwvS+mmUTq0GyrzAqRD9WdHwnytB75nKrP19V8vE//zmjF291uJCKIYIeDfg7qxpBjSLCbaEQo4yoEhjCthdqW8zxTjaMLMmxCcvyePk8udsrNbrpxVitWjURw5sk42SIk4ZI9USY2ckjrh5J48kmfyYj1YT9ar9fZdOmGNetbIL1gfX+9ZnvU=</latexit>bT /H : 2Rep(G)
<latexit sha1_base64="0nOG5tZ+pzHP/7qo8Prqh2OWWW8=">AAACGXicbVDLSgMxFM34rPVVdekmWIS6qTNSVBSk4MIuVawWOqVk0ts2mHmQ3FHLML/hxl9x40IRl7ryb8zULtR6IOFwzr0k53iRFBpt+9OamJyanpnNzeXnFxaXlgsrq5c6jBWHOg9lqBoe0yBFAHUUKKERKWC+J+HKuz7O/KsbUFqEwQUOImj5rBeIruAMjdQu2K7PsM+ZTC5Suk1r1D2kB9m14yLcYXIOUVpyb0UH+gyTk3SrXSjaZXsIOk6cESmSEU7bhXe3E/LYhwC5ZFo3HTvCVsIUCi4hzbuxhojxa9aDpqEB80G3kmGylG4apUO7oTInQDpUf24kzNd64HtmMsuh/3qZ+J/XjLG730pEEMUIAf9+qBtLiiHNaqIdoYCjHBjCuBLmr5T3mWIcTZl5U4LzN/I4udwpO7vlylmlWD0a1ZEj62SDlIhD9kiV1MgpqRNO7skjeSYv1oP1ZL1ab9+jE9ZoZ438gvXxBc0mnvU=</latexit>

T /H : 2Rep( bG)

Figure 25.

The upshot is that the symmetry category resulting from gauging the split 2-group

symmetry is the fusion 2-category 2Rep(G) of 2-representations of G. In particular, we

will enumerate the topological surfaces and show that they are in 1-1 correspondence with

2-representations of G. We will also consider in detail the fusion, 1-morphisms, fusion or

1-morphisms and composition of 1-morphisms. The structure of this category for general

finite 2-groups has been elaborated in [20].

In this section, we will actually begin our exploration from the theory T̂ = T /A[1] in
figure 25 obtained by gauging the 1-form component of the 2-group symmetry. This has a

finite 0-form symmetry taking the form of a semi-direct product

Ĝ = Â⋊H (5.2)
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and the associated symmetry category 2Vec(G) has been discussed at the beginning of

section 4. This allows us to generalise the results of section 4 in two directions by gauging

subgroups of the symmetry Ĝ:

� First, gauging Â ⊂ Ĝ recovers the original theory T with finite 2-group symmetry

G = A[1]⋊H. This allows us to derive the full structure of the symmetry category

2Vect(G) associated to a split 2-group symmetry.

� Second, gauging H ⊂ Ĝ is equivalent to gauging the entire 2-group symmetry G of

T and results in the symmetry category 2Rep(G) of 2-representations of G.

The two generalisations can be treated in a similar way, by means of a combination of

arguments in sections 3 and 4.

5.1 Split 2-group symmetry

We first consider the symmetry category 2Vec(G) of T . This is essentially a higher analogue

of a semi-direct product combining contributions from 2Vect(H) and 2Rep(Â) obtained by

gauging the symmetry Â. The derivation is therefore a mild generalisation of section 4

taking into account the additional action of H on Â, and therefore we do not perform the

derivation in detail. To our knowledge, the presence of condensation defects arising from

2Rep(Â) has not been emphasised in the literature.

Let us start by enumerating the simple topological surfaces by combining simple objects

of 2Vect(H) and 2Rep(Â). The simple topological surfaces are therefore labelled by pairs

((O, c), h) (5.3)

where (O, c) is an irreducible 2-representation of Â and h ∈ H. Here we have chosen to

label the irreducible 2-representation as in (4.44), namely:

1. O is a Â-orbit,

2. c ∈ H2(Â, U(1)O).

The fusion of simple topological objects is determined by fusion in 2Vect(H) and

2Rep(Â), together with the natural action of H on 2-representations of Â. In particular,

let σ : Â → Aut(O) denote the transitive action of Â on the orbit O. For any h ∈ H, we

then define Oh as the Â-set with the same underlying set but shifted action σhχ := σχh .

The higher analogue of the semi-direct product fusion rule is then

((O, c), h)⊗ ((O′, c′), h′) = ((O ⊗O′h, c⊗ c′h), hh′) . (5.4)

Notice that the topological surface on the right-hand side is not necessarily simple. It can

be decomposed into simple objects as outlined in section 4.3.3, either using (4.53) or the

subsequent discussion on induced representations.
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We now briefly summarise 1-morphisms. They again combine the result (4.2) for 1-

morphisms in 2Vect(H) and (4.36) for 1-morphisms in 2Rep(Â), taking into account the

H-action on Â. We obtain the result

HomT /Â
(((O, c), h), ((O′, c′), h′)) =

{
Rep(O⊗O′h, c′h−c)(Â) h = h′

0 h ̸= h′ ,
(5.5)

which can again be understood as Wilson lines in projective representations of Â, whose

anomalous transformation is compensated by inflow from the topological surfaces. Com-

position and fusions of 1-morphisms are determined by those in 2Vec(H) and 2Rep(Â) and

the H-action on Â.

5.2 Gauging a split 2-group

We now consider gauging the finite 0-form symmetry group H ⊂ Ĝ of T̂ . This is tanta-

mount to gauging the entire 2-group G = A[1] ⋊H of T . Following the line of reasoning

and combining arguments from sections 3 and 4, we will show here that this results in a

theory with the symmetry category 2Rep(G), the fusion 2-category of 2-representations of

the 2-group G.

5.2.1 Objects

Since the arguments are a combination of those in sections 3 and 4, we will be brief. We

start from T̂ = T /A[1] with 0-form symmetry group Ĝ = Â ⋊H and symmetry category

2Vec(Ĝ). A general topological surface in T̂ is labelled by a Ĝ-graded set R.
In order to gauge H ⊂ Ĝ, we introduce the algebra object

AH =
⊕

h∈H
h (5.6)

which is the Ĝ-graded set with

(AH)g =

{
{1} if g ∈ H
∅ if g /∈ H

. (5.7)

This is analogous to the algebra object in (4.7) but now restricted to the subgroup H

analogously to the two-dimensional case (3.9).

Topological surfaces in T̂ /H can be identified with topological surfaces in T̂ together

with instructions for how networks of the algebra object may consistently consistently end

on them. The instructions are implemented by 1-morphisms

l ∈ HomT (AH ⊗R,R) ,
r ∈ HomT (R⊗AH ,R) .

(5.8)

To formulate additional data and constraints, we consider the components

lh,g ∈ HomT (h⊗Rg,Rhg) , h ∈ H ,

rg,h ∈ HomT (Rg ⊗ h,Rgh) , h ∈ H ,
(5.9)
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which are topological lines specifying how individual symmetry defects end on the surface.

Consistency with topological manipulations require the existence of various 2-isomorphisms

between these 1-morphisms. These are the same as the ones (4.10), (4.11) (4.12) that we

encountered in section 4, but now with appropriate restrictions to H.

To make further progress, we write elements of Ĝ = Â ⋊H as g = (χ, h) with χ ∈ Â
and h ∈ H, and by a slight abuse of notation Rg = Rχ,h. Similarly to section 4, the

existence of 2-isomorphisms allows us to construct all component 1-morphisms from the

components
lh,χ : h⊗Rχ,e → Rχh,h ,

rh,χ : Rχ,e ⊗ h → Rχ,h ,
(5.10)

where the shift χh appears in the left action due to the ordering in the semi-direct product.

The 2-isomorphisms imply that these 1-morphisms are weakly invertible and we can identify

Rχ,h
∼= Rχ,e =: Sχ using the right action.

We now form the combination

ρh,χ := (rχh,h)
−1 ◦ lh,χ : Sχ → Sχh , (5.11)

which represents the topological line arising from the intersection of a symmetry defect h ∈
H with the topological surface. The various remaining 2-isomorphisms may be organised

into combinations

Ψh,h′|χ : ρhh′,χ ⇒ ρh,χh′ ◦ ρh′,χ Ψe|χ : 1Sχ ⇒ ρe,χ (5.12)

subject to the compatibility conditions

Ψh,e |χ = ρh,χ ⊗Ψe |χ , Ψe,h |χ = Ψe |χh ⊗ ρh,χ ,
Ψh1h2,h3 |χ ◦ (Ψh1,h2 |χh3 ⊗ ρh3,χ) = Ψh1,h2h3 |χ ◦ (ρh1,χh2h3 ⊗Ψh2,h3 |χ) ,

(5.13)

which are illustrated in figure 26.

In summary a topological surface in T /G is labelled by the following data

1. A collection of sets Sχ ∈ 2Vect indexed by χ ∈ Â.

2. A collection of 2-matrices ρh,χ ∈ Hom(Sχ,Sχh) for all h ∈ H.

3. 2-isomorphisms Ψe|χ : 1Sχ ⇒ ρe,χ

4. 2-isomorphisms Ψh,h′|χ : ρhh′,χ ⇒ ρh,χh′ ◦ ρh′,χ

where the 2-isomorphisms are subject to the compatibility relations above. This is precisely

the data of a 2-representation of the finite 2-group G = A[1]⋊H in 2Vect.

Let us now classify 2-representations up to isomorphism. We introduce the total set

S :=
⊔

χ∈Â

Sχ (5.14)
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Figure 26.

with

ρh :=
⊕

χ∈Â

ρh,χ : S → S . (5.15)

Since individual 1-morphisms are weakly invertible, ρh : S → S is weakly invertible and acts

by a permutation 2-matrix. However, there are restrictions on the form of this permutation.

To understand the restrictions, note that for each element j ∈ S, we may associate a

character χj ∈ Â such that j ∈ Sχj . The form of the individual 1-morphisms ρh,χ : Sχ →
Sχh implies that

χh
j = χσh(j) (5.16)

where σh is the underlying permutation at the level of sets. This says that the H action

on the collection χj from the semi-direct product Â⋊H coincides with that coming from

the permutation representation on the set S.
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Next, since ρhh′,χ and ρh,χh ◦ ρh′,χ are permutation 2-matrices, the 2-isomorphisms

Ψh,h′|χ are completely determined by a sequence of |Sχ| phases cχj (h, h′) ∈ U(1) specifying

the isomorphism between the 1-dimensional vector spaces in the j-th row. We can combine

these phases into an overall sequence c(h, h′) ∈ U(1)|S| by setting

cj(h, h
′) := c

χj

j (h, h′) for j ∈ S . (5.17)

This defines a 2-cochain

c : H ×H → U(1)S , (5.18)

which as a consequence of the compatibility condition (5.13) satisfies the 2-cocycle condition

cσ−1
h (j)(h

′, h′′)− cj(hh′, h′′) + cj(h, h
′h′′)− cj(h, h′) = 0 . (5.19)

This defines a class

c ∈ H2(H,U(1)S) , (5.20)

where U(1)S denotes the abelian group U(1)|S| supplemented with the structure of a H-

module via the permutation representation σ.

To summarise, topological surfaces in T /G correspond to 2-representations of the split

2-group G = A[1]⋊H labelled by triples (S, c, χ) consisting of:

� A H-set S.

� A class c ∈ H2(H,U(1)S).

� A collection of χj ∈ Â indexed by j ∈ S such that

χh
j = χσh(j) . (5.21)

Here σ : H → Sn denotes the permutation action of H on S. The size |S| = n is again

the dimension of the 2-representation. Two 2-representations labelled by (S, c, χ) and

(S ′, c′, χ′) are considered equivalent if there exists a bijection f : O → O′ of H-sets that

maps c to c′ and χ to χ′.

If A is the trivial group, χ = (1, . . . , 1) and the above data reduces to the classifying

data of a 2-representation of the ordinary group H as in section 4.2.112. More details on

the classification of 2-representations of split 2-groups can be found in appendix A.3.2.

5.2.2 Sum, Product, Conjugation

The sum and product of topological surfaces are determined from those of the parent objects

in T̂ and follow from the sum and product of the underlying H-sets and cohomology classes

as in section 4, together with the abelian group structure on characters Â.

Consider two topological surfaces labelled by triples (S, c, χ) and (S ′, c′, χ′). The direct

sum is the topological surface labelled by the triple

(S, c, χ) ⊕ (S ′, c′, χ′) = (S ⊕ S ′, c⊕ c′, χ⊕ χ′) , (5.22)

12In section 4 we denoted finite groups by G instead of H.
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using the definitions in (4.25) and (4.27) and χ⊕ χ′ ≡ χ ∪ χ′.

Similarly, the fusion is the topological surface labelled by

(S, c, χ) ⊗ (S ′, c′, χ′) = (S ⊗ S ′, c⊗ c′, χ⊗ χ′) , (5.23)

using the definitions in (4.25) and (4.27) and χ⊗ χ′ is defined by

(χ⊗ χ′)(i,j) ≡ χi + χ′
j ∈ Â (5.24)

for all (i, j) ∈ S ⊗S ′. Here, we used an additive notation to denote the group structure on

the abelian group Â.

In addition, the conjugation of a 2-representation (S, c, χ) may be defined as the 2-

representation (S, c, χ)# := (S,−c,−χ) where we have again used additive notation. These

operations agree with the corresponding operations in 2Rep(G) as described in appendix

A.4.

5.2.3 1-Morphisms

Consider the 1-morphism category

HomT /G(1, (S, c, χ)) (5.25)

which describes topological lines bounding or screening the topological surface (S, c, χ).
This is determined by 1-morphisms of the parent topological surface in T̂ . However, the

computation is again determined by the component 1-morphisms involving

S ∼=
⊕

j∈S
Rχj ,e . (5.26)

In particular,

HomT̂ (1,S) ∼=
⊕

j∈S
HomT̂ (1,Rχj ,e)

∼= Vec(S(χ)) (5.27)

where

S(χ) := { j ∈ S | χj = 1 } ⊂ S . (5.28)

This happens because the only 1-morphisms in T̂ are 1-endomorphisms.

These 1-morphisms are supplemented, as discussed in section 4.2.3, by a collection of

linear maps ensuring compatibility with intersections of symmetry defects. The result is

that the objects are again graded projective representations of H. However, the support

of the graded projective representation is now restricted to S(χ) ⊂ S. We therefore write

HomT /G(1, (S, c, χ)) ∼= Rep
(S,c)
S(χ)(H) . (5.29)

for the category of graded projective representations of H with support S(c) ⊂ S.
More generally, the 1-morphism space between arbitrary topological surfaces is

HomT /G((S, c, χ), (S ′, c′, χ′)) ∼= Rep
(S⊗S′, c′−c)
S(χ⊗χ′) (H) , (5.30)
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where χ denotes the complex conjugation of χ with respect to the coefficients in U(1),

or simply the inverse in Â. When A = 1, this reproduces the 1-morphism between 2-

representations of the ordinary group H in section 4.2.3. More details on the classification

of 1-morphisms in 2Rep(G) can be found in appendix C.1.

The composition and fusion of 1-morphisms is given by the composition and tensor

product of graded projective representations as described in sections 4.2.4 and 4.2.5. One

can check that these operations respect the corresponding restrictions of the support im-

posed by the characters χ.

5.3 Simple Objects

The simple topological surfaces are those that cannot be written as a direct sum of other

topological surfaces and correspond to irreducible 2-representations of G.

5.3.1 Irreducible 2-Representations

Generalising the discussion in section 4.3, a general topological surface (S, c, χ) can be

decomposed into simple objects by decomposing the underlying H-set S into H-orbits. A

simple topological surface is then labelled by triples (O, c, χ) consisting of

� A H-orbit O.

� A class c ∈ H2(H,U(1)O).

� A collection of χj ∈ Â indexed by j ∈ O such that

χh
j = χσh(j) . (5.31)

We emphasise that the collection {χj} does not necessarily form a H-orbit in Â. This fact,

together with the group cohomology class c ∈ H2(H,U(1)O), means we arrive at a larger

class of simple objects than the gauging procedure in [5].

However, the fact that O is a transitive H-set implies that the collection {χj} of a sim-

ple object is constructed from at most one H-orbit in Â, albeit as a union of multiple copies

of that orbit. This multiplicity is the origin of condensation defects in our construction.

An extreme example is the collection

χ = {1, . . . , 1} (5.32)

with |O| entries, which is a pure simple condensation defect. At the other extreme, simple

objects where the collection {χj} form a single H-orbit are topological surfaces that do not

involve condensation at all. The general case is a mixture.

In summary, the set of simple objects may be partitioned into subsets labelled by H-

orbits in Â. Each subset contains a minimal object where the collection {χj} consists of a
single H-orbit in Â and c = 0. This is joined by associated condensation surfaces involving

multiple copies of the same orbit and nontrivial classes c. To put it another way, the simple

topological surfaces, modulo condensations and SPT phases, are labelled by H-orbits in Â.

After analysing 1-morphisms below, we will see that these subsets can be regarded as the

connected components of the symmetry category 2Rep(G).
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5.3.2 Induction

An alternative description of simple topological surfaces can be obtained by utilising the

fact that every irreducible n-dimensional 2-representation (O, c′, χ′) of G can be seen as

being induced by a 1-dimensional 2-representation (c, χ) of a sub-2-group (A[1]⋊K) ⊂ G
with K ⊂ H a subgroup of H of index |K : H| = n. Let us write this correspondence as

(O, c′, χ′) ∼= IndGK(c, χ) . (5.33)

Thus, we can alternatively label the irreducible 2-representations of G or simple topo-

logical surfaces by triples (K, c, χ) consisting of

� a subgroup K ⊂ H,

� a class c ∈ H2(K,U(1)),

� a K-invariant character χ ∈ Â.

From a physical perspective, this again corresponds to a topological surface in T /G where

the bulk gauge symmetry is broken down to K ⊂ H by a partial Dirichlet boundary con-

dition, supplemented by a two-dimensional SPT phase c ∈ H2(K,U(1)) for the unbroken

gauge symmetry.

Two such triples (K, c, χ) and (K ′, c′, χ′) are considered equivalent if there exists a

g ∈ G such that

K ′ = gHg−1 , c′ = cg , χ′ = χg , (5.34)

where (cg)(k1, k2) := c(g−1k1g, g
−1k2g) and (χg)(a) := χ(ag).

When A = 1, the reproduces the labelling of irreducible 2-representations of an or-

dinary group H as in section 4.3.2. More details on the induction of 2-representations of

split 2-groups can be found in appendix A.5.

5.3.3 Fusion of Simple Objects

The fusion of simple topological surfaces may again be determined by introducing a basis

Oα of H-orbits and decomposing Cartesian products into disjoint unions of orbits.

From the point of view of induced 2-representations, we label the simple topological

surfaces by subgroups Kα ⊂ H (corresponding to the stabilisers of the orbits Oα) together

with a class cα ∈ H2(Kα, U(1)) and a Kα-invariant character χα ∈ Â. The fusion of two

such simple topological surfaces is then given by

(Kα, cα, χα) ⊗ (Kβ, cβ, χβ) ∼=
⊕

[h]∈Kα\H/Kβ

(
Kα ∩Kh

β , cα ⊗ chβ , χα ⊗ χh
β

)
. (5.35)

When A = 1, this reduces to the fusion rule for simple 2-representations of the ordinary

group H as in section 4.3.3. More details on the fusion of simple 2-representations of G

can be found in appendix A.6.
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We consider a few special cases. First, the fusion of 1-dimensional irreducible 2-

representations (c, χ) and (c′, χ′) labelled by SPT phases c, c′ ∈ H2(H,U(1)) and H-

invariant characters χ, χ′ ∈ Â corresponds to addition of the associated cohomology classes

and characters,

(c, χ) ⊗ (c′, χ′) ∼= (c+ c′, χ+ χ′) . (5.36)

If H is abelian, fusion simplifies to

(Kα, cα, χα) ⊗ (Kβ, cβ, χβ) ∼=
⊕

[h]∈Kα\H/Kβ

(
Kα ∩Kβ, cα ⊗ cβ, χα ⊗ χh

β

)
. (5.37)

Note that, unlike in 4.3.3, the right-hand side is not necessarily a multiple of a single

summand, but a priori consists of a sum of several different simple topological surfaces due

to the appearance of the character χα ⊗ χh
β.

5.3.4 1-Morphisms

The category of 1-morphisms between simple topological surfaces can again be simplified

using the notion induced graded projective representations (see appendix B.3).

The category of topological lines screening a simple topological surface labelled by

(K, c, χ) is given by

HomT /G(1, (K, c, χ)) ∼= δχ, 1 · Repc(K) . (5.38)

More generally,

HomT /G

(
(K, c, χ), (K ′, c′, χ′)

) ∼=
⊕

[h]∈K\H/K′:

χ=(χ′)h

Rep(c
′)h−c(K ∩ (K ′)h) . (5.39)

When A = 1, this reduces to 1-morphism categories between irreducible 2-representations

of the group H, as in section 4.3.4. Further details on the classification of 1-morphisms

between irreducible 2-representations can be found in appendix C.1.

For 1-endomorphisms of a simple topological surface we obtain

EndT /G(K, c, χ) ∼=
⊕

[h]∈H/K:

χ=χh

Repc
h−c(K ∩Kh) . (5.40)

If H is abelian, this further simplifies to

EndT /G(K, c, χ) ∼=
⊕

[h]∈ (H/K)χ

Rep(K) , (5.41)

where we denoted by (H/K)χ the subgroup of H/K consisting of all [h] ∈ H/K such that

χh = χ. The fusion structure on the right-hand side is induced by the composition of

1-morphisms, which is identical to the composition of 1-morphisms described in (4.75).
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5.3.5 Connected components

Finally, let us comment on the connected components of the symmetry category. A con-

sequence of (5.39) is that 1-morphisms between distinct simple objects exist if and only

if χ, χ′ lie in the same H-orbit in Â. In other words, the connected components of the

symmetry category are labelled by H-orbits in Â.

5.4 Example

Let us consider a theory T with 2-group symmetry G = (Z2 × Z2)[1] ⋊ Z2, where Z2

acts on (Z2 × Z2)[1] by exchanging the two cyclic factors. In other words, we identify

H = Z2 and A = Z2 × Z2. This is the 2-group analogue of the ordinary symmetry group

D8 = (Z2 × Z2)⋊ Z2.

Let us determine the symmetry category 2Rep(G) of T /G explicitly following the pro-

cedure described above. The simple objects are irreducible 2-representations constructed

from the trivial orbit {1} with stabiliser K = Z2 and the maximal orbit {1, 2} with trivial

stabiliser K = 1. There are no additional SPT-phases because

H2(Z2, U(1)) = 0 . (5.42)

However, each orbit O can be supplemented by a collection χ of H-equivariant characters

of Z2 × Z2. Let us denote the characters of Z2 × Z2 by {1, χ1, χ2, χ1χ2}. Labelling each

simple object by a pair (O, χ), the simple objects are then given by

� the trivial 2-representation 1 =
(
{1}, (1)

)
,

� a 1-dimensional 2-representation V =
(
{1}, (χ1χ2)

)
,

� a 2-dimensional 2-representation D =
(
{1, 2}, (χ1, χ2)

)
,

� condensation defect X =
(
{1, 2}, (1, 1)

)
,

� condensation defect X ′ =
(
{1, 2}, (χ1χ2, χ1χ2)

)
.

It is straightforward to compute the fusion rules following the general procedure described

in section section 5.2.2. In particular, we find

V ⊗ V = 1

V ⊗D = D ⊗ V = D

V ⊗X = X ′

D ⊗D = X ⊗ (1⊕ V )

X ⊗D = D ⊗X = D ⊕D
X ⊗X = 2X .

(5.43)

Note that the only invertible simple objects are 1 and V .

It is worth focussing in particular on the fusion

D ⊗D = X ⊗ (1⊕ V ) (5.44)
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and specifically on the appearance of the condensation defect X as a factor on the right-

hand side. In [5], the condensation defect arose from the global fusion of topological surfaces

on a compact 2-surface Σ2 and is expressed in the form

D(Σ2)⊗D(Σ2) =
1

Z2
(Σ2)⊕

V

Z2
(Σ) , (5.45)

where the denominators express the fact that from the perspective of T /G the Z2 1-form

symmetry is gauged along the surface Σ2 as described in [4]. In contrast, we include here

the condensation defects X, X ′ from the beginning as simple objects in the symmetry

category.

The 1-morphism categories are computed using the procedure described in section 5.3.4

with the result

End(1) = End(V ) = Rep(Z2) (5.46)

End(X) = End(X ′) = Vect(Z2) (5.47)

End(D) = Vect (5.48)

Hom(1, X) = Hom(V,X ′) = Vect (5.49)

with all other 1-morphism spaces vanishing.

Note that the only 1-morphisms between distinct objects are between the condensation

defects. Therefore the connected components of the symmetry category are labelled by the

three Z2-orbits in Z2 × Z2: {1}, {χ1, χ2} and {χ1χ2} with representative objects 1, D, V .

A diagrammatic representation of the 2-category 2Rep((Z2 × Z2)[1]⋊Z2) can be found in

appendix C.4.213.

6 Applications to Gauge Theory

A common source of finite split 2-groups of the type discussed in section 5 are the automor-

phism 2-groups of compact connected simple Lie groups, whose 0-form component consists

of outer automorphisms and 1-form component consists of the centre. The automorphism

2-group is then realised as a symmetry of associated dynamical gauge theories based on

this simple Lie group.

Gauging outer automorphisms leads to dynamical gauge theories with disconnected

gauge theories and non-invertible symmetries [5]. In this section, we apply the results of

section 5 to compute and identify the symmetry category of certain disconnected gauge

theories in three dimensions with 2-representations of a group or 2-group.

6.1 Automorphism 2-group

Consider a simple Lie algebra g and denote the associated compact, connected, simply

connected Lie group G. The associated automorphism 2-group takes the form

Z(G)⋊Out(G) (6.1)

13Note that in appendix C.4.2, we labelled the simple objects by 1±, 2± and 20, which correspond to the

simple topological surfaces 1+ ↔ 1, 1− ↔ V , 2+ ↔ X, 2− ↔ X ′ and 20 ↔ D in our current notation.
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where

� Out(G) is the group of outer automorphisms of G

� Z(G) is the center of G.

and the Out(G)-action on Z(G) is induced from the action of outer automorphisms on G.

Let us now consider a pure gauge theory T in D = 3 dimensions with gauge group

G. 14 This displays an automorphism 2-group symmetry where

� A 0-form charge conjugation symmetry Out(G).

� A 1-form symmetry Z(G) generated by topological Gukov-Witten defects.

and charge conjugation acts on topological Gukov Witten defects by the action of outer

automorphisms on representative of conjugacy classes. The symmetry is free from ’t Hooft

anomalies.

6.2 Gauging

Following the discussion in section 5, we may independently gauge the 0-form and 1-form

components of the symmetry leading to a commuting square of theories shown in figure 27.

In particular, gauging the 1-form centre symmetry Z(G) results in a theory T̂ corresponding

to a dynamical gauge theory with the Langlands dual gauge group LG. This has a magnetic

0-form symmetry

π1
(
LG

)
= Ẑ(G) , (6.2)

forming part of a semi-direct product 0-form symmetry

π1(
LG)⋊Out(G) . (6.3)

Now gauging outer automorphisms on either side leads to a dynamical gauge theory with

a disconnected gauge group and non-invertible categorical symmetry given by a fusion

2-category of 2-representations.

<latexit sha1_base64="AIYJZetYGtdFMIQeq4rCw6H/fOQ="></latexit>

2Rep(⇡1(
LG) o Out(G))

<latexit sha1_base64="b1Bq5kTrhHKmNlZ1WHd05Twx3xE="></latexit>

2Vect(⇡1(
LG) o Out(G))

<latexit sha1_base64="aE61CZ/Oy+rpVQufGHDMjCOyt8k=">AAACDXicbVC7SgNBFJ2Nrxhfq5Y2g1GITdyVoFYSsNDOCHlBEsLsZDYZMvtg5q4Ylv0BG3/FxkIRW3s7/8bZTQqNHrhwOOde7r3HCQVXYFlfRm5hcWl5Jb9aWFvf2Nwyt3eaKogkZQ0aiEC2HaKY4D5rAAfB2qFkxHMEaznjy9Rv3TGpeODXYRKynkeGPnc5JaClvnnQ9QiMKBFxPcHHuAvsHuKbCJJSZjhufJUc9c2iVbYy4L/EnpEimqHWNz+7g4BGHvOBCqJUx7ZC6MVEAqeCJYVupFhI6JgMWUdTn3hM9eLsmwQfamWA3UDq8gFn6s+JmHhKTTxHd6YnqnkvFf/zOhG4572Y+2EEzKfTRW4kMAQ4jQYPuGQUxEQTQiXXt2I6IpJQ0AEWdAj2/Mt/SfOkbJ+WK7eVYvViFkce7aF9VEI2OkNVdI1qqIEoekBP6AW9Go/Gs/FmvE9bc8ZsZhf9gvHxDVN0m7g=</latexit>T /Out(G)
<latexit sha1_base64="yI2ETZRA2XzG/ntrZuQyrotQdqo=">AAACF3icbVA9SwNBEN3z2/gVtbRZDEJs4p0EtZKAhXYqGA3kjrC3mTOLex/szqnhuH9h41+xsVDEVjv/jZszhSY+GHi8N8PMPD+RQqNtf1kTk1PTM7Nz86WFxaXllfLq2qWOU8WhyWMZq5bPNEgRQRMFSmglCljoS7jyb44G/tUtKC3i6AL7CXghu45EIDhDI3XKNfdOdKHHMHNDhj3OZHaR53SHugj3mJ2mmFcLxw+y43y7U67YNbsAHSfOkFTIEGed8qfbjXkaQoRcMq3bjp2glzGFgkvIS26qIWH8hl1D29CIhaC9rPgrp1tG6dIgVqYipIX6eyJjodb90DedgxP1qDcQ//PaKQYHXiaiJEWI+M+iIJUUYzoIiXaFAo6ybwjjSphbKe8xxTiaKEsmBGf05XFyuVtz9mr183qlcTiMY45skE1SJQ7ZJw1yQs5Ik3DyQJ7IC3m1Hq1n6816/2mdsIYz6+QPrI9v2p2gVg==</latexit> bT /Out(G)

<latexit sha1_base64="qeHJbyvq1O980UpR2yz/tN1yUXY=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXJVEirqSghuXFfqCJpSbyaQdOnkwM1FKzMJfceNCEbf+hjv/xknbhbYeGDiccy/3zPESzqSyrG+jtLK6tr5R3qxsbe/s7pn7Bx0Zp4LQNol5LHoeSMpZRNuKKU57iaAQepx2vfFN4XfvqZAsjlpqklA3hGHEAkZAaWlgHjkPzKcjUJkTghoR4Fkrz/HArFo1awq8TOw5qaI5mgPzy/FjkoY0UoSDlH3bSpSbgVCMcJpXnFTSBMgYhrSvaQQhlW42zZ/jU634OIiFfpHCU/X3RgahlJPQ05NFSLnoFeJ/Xj9VwZWbsShJFY3I7FCQcqxiXJSBfSYoUXyiCRDBdFZMRiCAKF1ZRZdgL355mXTOa/ZFrX5Xrzau53WU0TE6QWfIRpeogW5RE7URQY/oGb2iN+PJeDHejY/ZaMmY7xyiPzA+fwCAIZZo</latexit> bT<latexit sha1_base64="z9bi4IQna9Kgt19zfwH5AvGfCO8=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUVdScOOyQl8wHUomzbShmWRIMkIZ+hluXCji1q9x59+YaWehrQcCh3PuJeeeMOFMG9f9dkobm1vbO+Xdyt7+weFR9fikq2WqCO0QyaXqh1hTzgTtGGY47SeK4jjktBdO73O/90SVZlK0zSyhQYzHgkWMYGMlfxBjMyGYZ+35sFpz6+4CaJ14BalBgdaw+jUYSZLGVBjCsda+5yYmyLAyjHA6rwxSTRNMpnhMfUsFjqkOskXkObqwyghFUtknDFqovzcyHGs9i0M7mUfUq14u/uf5qYlug4yJJDVUkOVHUcqRkSi/H42YosTwmSWYKGazIjLBChNjW6rYErzVk9dJ96ruXdcbj41a866oowxncA6X4MENNOEBWtABAhKe4RXeHOO8OO/Ox3K05BQ7p/AHzucPjueRbw==</latexit>T

<latexit sha1_base64="xqFBFos1QNRx7TjM+/HbdpvMmBk=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSxC3ZREirqSggvdWcE+oCllMp20QycPZm7EErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXPcSHAFlvVtLCwuLa+sFtaK6xubW9vmzm5ThbGkrEFDEcq2SxQTPGAN4CBYO5KM+K5gLXd0mfmteyYVD4M7GEes65NBwD1OCWipZ+47wB4guYkhLTs+gaHrJVfpcc8sWRVrAjxP7JyUUI56z/xy+iGNfRYAFUSpjm1F0E2IBE4FS4tOrFhE6IgMWEfTgPhMdZNJ/hQfaaWPvVDqFwCeqL83EuIrNfZdPZlFVLNeJv7ndWLwzrsJD6IYWECnh7xYYAhxVgbuc8koiLEmhEqus2I6JJJQ0JUVdQn27JfnSfOkYp9WqrfVUu0ir6OADtAhKiMbnaEaukZ11EAUPaJn9IrejCfjxXg3PqajC0a+s4f+wPj8ATuxljs=</latexit>

Out(G)
<latexit sha1_base64="xqFBFos1QNRx7TjM+/HbdpvMmBk=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSxC3ZREirqSggvdWcE+oCllMp20QycPZm7EErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXPcSHAFlvVtLCwuLa+sFtaK6xubW9vmzm5ThbGkrEFDEcq2SxQTPGAN4CBYO5KM+K5gLXd0mfmteyYVD4M7GEes65NBwD1OCWipZ+47wB4guYkhLTs+gaHrJVfpcc8sWRVrAjxP7JyUUI56z/xy+iGNfRYAFUSpjm1F0E2IBE4FS4tOrFhE6IgMWEfTgPhMdZNJ/hQfaaWPvVDqFwCeqL83EuIrNfZdPZlFVLNeJv7ndWLwzrsJD6IYWECnh7xYYAhxVgbuc8koiLEmhEqus2I6JJJQ0JUVdQn27JfnSfOkYp9WqrfVUu0ir6OADtAhKiMbnaEaukZ11EAUPaJn9IrejCfjxXg3PqajC0a+s4f+wPj8ATuxljs=</latexit>

Out(G)

<latexit sha1_base64="1MH5F0zkaeUvH2UTg9oAP2HcU9I=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyWRoq6k4EKXFewD21Am00k7dDIJM5NCCf0TNy4UceufuPNvnLRZaOuBgcM593LPHD/mTGnH+bYKa+sbm1vF7dLO7t7+gX141FJRIgltkohHsuNjRTkTtKmZ5rQTS4pDn9O2P77N/PaESsUi8ainMfVCPBQsYARrI/Vt+6nSC7Ee+UF6Nzvvul7fLjtVZw60StyclCFHo29/9QYRSUIqNOFYqa7rxNpLsdSMcDor9RJFY0zGeEi7hgocUuWl8+QzdGaUAQoiaZ7QaK7+3khxqNQ09M1kllIte5n4n9dNdHDtpUzEiaaCLA4FCUc6QlkNaMAkJZpPDcFEMpMVkRGWmGhTVsmU4C5/eZW0LqruZbX2UCvXb/I6inACp1ABF66gDvfQgCYQmMAzvMKblVov1rv1sRgtWPnOMfyB9fkDh8yS8Q==</latexit>

Z(G)[1]

<latexit sha1_base64="46FRM4cSaDZhi9vT8uhZgkH4Y4g=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1iEuimJFHUlBRe6cFHBPqCJYTKdtEMnkzAzEUoI+CtuXCji1u9w5984abPQ1gMDh3Pu5Z45fsyoVJb1bZSWlldW18rrlY3Nre0dc3evI6NEYNLGEYtEz0eSMMpJW1HFSC8WBIU+I11/fJX73UciJI34vZrExA3RkNOAYqS05JkHTkw9u5ZmD7dOiNTID9Lr7MQzq1bdmgIuErsgVVCg5ZlfziDCSUi4wgxJ2betWLkpEopiRrKKk0gSIzxGQ9LXlKOQSDedxs/gsVYGMIiEflzBqfp7I0WhlJPQ15N5RDnv5eJ/Xj9RwYWbUh4ninA8OxQkDKoI5l3AARUEKzbRBGFBdVaIR0ggrHRjFV2CPf/lRdI5rdtn9cZdo9q8LOoog0NwBGrABuegCW5AC7QBBil4Bq/gzXgyXox342M2WjKKnX3wB8bnD6KqlUc=</latexit>

⇡1(
LG)

<latexit sha1_base64="Io6fgQ3CkL8LquqFpf6kghz12N4=">AAACJnicbVDJSgNBEO1xjXEb9eilMQjJJcyEoF6UgAe9GcEsmBlCT6cnadKz0F0jhiFf48Vf8eIhIuLNT7GzHGJiQcHj1Ste1fNiwRVY1rexsrq2vrGZ2cpu7+zu7ZsHh3UVJZKyGo1EJJseUUzwkNWAg2DNWDISeII1vP71eN54YlLxKHyAQczcgHRD7nNKQFNt87LkAHuGtM4oDPOPeScg0PP89GZYaNkudiTwgCk8Fd0lWjOnKLTNnFW0JoWXgT0DOTSratscOZ2IJgELgQqiVMu2YnBTom2oYMOskygWE9onXdbSMCTa3E0nbw7xqWY62I+k7hDwhJ3fSEmg1CDwtHJ8o1qcjcn/Zq0E/As35WGcAAvp1MhPBIYIjzPDHS51PGKgAaGS61sx7RFJKOhkszoEe/HlZVAvFe2zYvm+nKtczeLIoGN0gvLIRueogm5RFdUQRS/oDY3Qh/FqvBufxtdUumLMdo7QnzJ+fgFwPaXA</latexit>

2Vect(Z(G)[1] o Out(G))

<latexit sha1_base64="meslHaWEIJPQ/iBOeGiB6U5m01Q=">AAACJXicbVDJSgNBEO1xjXGLevTSGIR4CTMS1INIwIPeXDAqZobQ06lJmvQsdNeIYZif8eKvePFgEMGTv2JnObgVFDxeveJVPT+RQqNtf1hT0zOzc/OFheLi0vLKamlt/VrHqeLQ4LGM1a3PNEgRQQMFSrhNFLDQl3Dj946H85t7UFrE0RX2E/BC1olEIDhDQ7VKh7suwgNml5DklbuKGzLs+kF2ku80HY+6CkUImo41Zynm3xU7rVLZrtqjon+BMwFlMqnzVmngtmOehhAhl0zrpmMn6GXM2HAJedFNNSSM91gHmgZGzJh72ejLnG4bpk2DWJmOkI7Y7xsZC7Xuh75RDm/Uv2dD8r9ZM8XgwMtElKQIER8bBamkGNNhZLQtFHCUfQMYV8LcSnmXKcbRBFs0ITi/X/4Lrnerzl61dlEr148mcRTIJtkiFeKQfVInp+ScNAgnj+SZvJKB9WS9WG/W+1g6ZU12NsiPsj6/AI+vpUs=</latexit>

2Rep(Z(G)[1] o Out(G))

Figure 27.

14Higher dimensional versions are discussed in the following section.
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The symmetry categories are summarised in figure 27. This reproduces and extends

examples considered in [5] with a systematic inclusion of condensation defects and full

description of the symmetry category.

6.3 Example

Let us start from the three dimensional gauge theory T with gauge group

G = Spin(4N) . (6.4)

This has automorphism 2-group symmetry

(Z2 × Z2)[1]⋊ Z2 (6.5)

where Z2 acts by permuting the two factors in Z2×Z2. Gauging generates the commuting

square of gauge theories and symmetry categories in figure 28. In particular, the symmetry

category of the PO(4N) gauge theory was considered in detail in section 5.4.

<latexit sha1_base64="ipClJHQ44ZAMZJWc46kUbu4TY14=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISKepJCl48SUX7AW0om+2mXbrZhN2JWEN/iRcPinj1p3jz37htc9DWBwOP92aYmefHgmtwnG8rt7K6tr6R3yxsbe/sFu29/aaOEkVZg0YiUm2faCa4ZA3gIFg7VoyEvmAtf3Q19VsPTGkeyXsYx8wLyUDygFMCRurZxS6wR0jvYi4n5erNSc8uORVnBrxM3IyUUIZ6z/7q9iOahEwCFUTrjuvE4KVEAaeCTQrdRLOY0BEZsI6hkoRMe+ns8Ak+NkofB5EyJQHP1N8TKQm1Hoe+6QwJDPWiNxX/8zoJBBdeymWcAJN0vihIBIYIT1PAfa4YBTE2hFDFza2YDokiFExWBROCu/jyMmmeVtyzSvW2WqpdZnHk0SE6QmXkonNUQ9eojhqIogQ9o1f0Zj1ZL9a79TFvzVnZzAH6A+vzBznEksw=</latexit>

Spin(4N)
<latexit sha1_base64="MWg7U9O+BkuImGqoDAMqwLCvXwI=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYhDiJexKUE8S8OJJI5oHJGuYncwmQ2Znl5leNSz5Dy8eFPHqv3jzb5w8DppY0FBUddPd5ceCa3Scb2thcWl5ZTWzll3f2Nzazu3s1nSUKMqqNBKRavhEM8ElqyJHwRqxYiT0Bav7/YuRX39gSvNI3uEgZl5IupIHnBI00n0L2ROmldvrYaF0ddTO5Z2iM4Y9T9wpycMUlXbuq9WJaBIyiVQQrZuuE6OXEoWcCjbMthLNYkL7pMuahkoSMu2l46uH9qFROnYQKVMS7bH6eyIlodaD0DedIcGenvVG4n9eM8HgzEu5jBNkkk4WBYmwMbJHEdgdrhhFMTCEUMXNrTbtEUUomqCyJgR39uV5UjsuuifF0k0pXz6fxpGBfTiAArhwCmW4hApUgYKCZ3iFN+vRerHerY9J64I1ndmDP7A+fwCXIJHp</latexit>

PSO(4N)

<latexit sha1_base64="SsfEWkZsYHRzua81arlz9O0jJn8=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahIpREinqSghdPUsF+QBvLZrtpl242YXdSLKH/xIsHRbz6T7z5b9y2OWjrg4HHezPMzPNjwTU4zreVW1ldW9/Ibxa2tnd29+z9g4aOEkVZnUYiUi2faCa4ZHXgIFgrVoyEvmBNf3gz9ZsjpjSP5AOMY+aFpC95wCkBI3VtuwPsCdIal5PHs1Ll7rRrF52yMwNeJm5GiihDrWt/dXoRTUImgQqiddt1YvBSooBTwSaFTqJZTOiQ9FnbUElCpr10dvkEnxilh4NImZKAZ+rviZSEWo9D33SGBAZ60ZuK/3ntBIIrL+UyToBJOl8UJAJDhKcx4B5XjIIYG0Ko4uZWTAdEEQomrIIJwV18eZk0zsvuRblyXylWr7M48ugIHaMSctElqqJbVEN1RNEIPaNX9Gal1ov1bn3MW3NWNnOI/sD6/AGFKZLs</latexit>

Pin+(4N)
<latexit sha1_base64="KmoU2/xTAmGZnX8rnVOuB/K1GjQ=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnqSgBdPGsE8IFnC7GSSDJl9ONMbDEu+w4sHRbz6Md78GyfJHjSxoKGo6qa7y4uk0Gjb31ZmZXVtfSO7mdva3tndy+8f1HUYK8ZrLJShanpUcykCXkOBkjcjxanvSd7whtdTvzHiSosweMBxxF2f9gPRE4yikdw28idMqneTYvn2tJMv2CV7BrJMnJQUIEW1k/9qd0MW+zxAJqnWLceO0E2oQsEkn+TaseYRZUPa5y1DA+pz7SazoyfkxChd0guVqQDJTP09kVBf67HvmU6f4kAvelPxP68VY+/STUQQxcgDNl/UiyXBkEwTIF2hOEM5NoQyJcythA2oogxNTjkTgrP48jKpn5Wc81L5vlyoXKVxZOEIjqEIDlxABW6gCjVg8AjP8Apv1sh6sd6tj3lrxkpnDuEPrM8f72uRjA==</latexit>

PO(4N)

<latexit sha1_base64="TlPwzMXoTitqECFneNyXo1j0U90=">AAACMHicbVDLSgMxFM3UV62vUZdugkWomzJTirqSggtdVrAP7Awlk2ba0MyD5I5YhvkkN36KbhQUcetXmD4WtvVA4HDOvbn3Hi8WXIFlvRu5ldW19Y38ZmFre2d3z9w/aKookZQ1aCQi2faIYoKHrAEcBGvHkpHAE6zlDa/GfuuBScWj8A5GMXMD0g+5zykBLXXN64oD7BHSJqOQlUpOQGDgeel91q1gB3jA1F/ptGO72JETHc8ZXbNola0J8DKxZ6SIZqh3zRenF9EkYCFQQZTq2FYMbkr051SwrOAkisWEDkmfdTQNiR7pppODM3yilR72I6lfCHii/u1ISaDUKPB05XhJteiNxf+8TgL+hZvyME6AhXQ6yE8EhgiP08M9LnVQYqQJoZLrXTEdEEko6IwLOgR78eRl0qyU7bNy9bZarF3O4sijI3SMSshG56iGblAdNRBFT+gVfaBP49l4M76M72lpzpj1HKI5GD+/RTmpsw==</latexit>

2Vect((Z2 ⇥ Z2)[1] o Z2)
<latexit sha1_base64="lsiHeRveAsm8Ci9RU6hzHM3T3GQ=">AAACLXicbZBLS8NAEMc39VXrK+rRy2IR6qUkpagnKejBYwX7wKaEzXbbLt082J2IJeQLefGriOChIl79Gm7aHmzrwMKf38zszPy9SHAFljUxcmvrG5tb+e3Czu7e/oF5eNRUYSwpa9BQhLLtEcUED1gDOAjWjiQjvidYyxvdZPnWE5OKh8EDjCPW9ckg4H1OCWjkmrcVB9gzJE1GIS2VHJ/A0POSx9StYAe4z9RfdI4dOYV4gbpm0Spb08Crwp6LIppH3TXfnV5IY58FQAVRqmNbEXQToj+ngqUFJ1YsInREBqyjZUD0yG4yvTbFZ5r0cD+U+gWAp/RvR0J8pca+pyuzJdVyLoP/5Tox9K+6CQ+iGFhAZ4P6scAQ4sw63ONSuyTGWhAqud4V0yGRhII2uKBNsJdPXhXNStm+KFfvq8Xa9dyOPDpBp6iEbHSJaugO1VEDUfSC3tAEfRqvxofxZXzPSnPGvOcYLYTx8wsqf6is</latexit>

2Vect((Z2 ⇥ Z2) o Z2)

<latexit sha1_base64="86+vhe058k4gHcHeKM4ildwOjxc=">AAACLHicbZBLS8NAEMc3vq2vqEcvi0Wol5KUop6k4MWjilWxCWGzneji5sHuRCyhH8iLX0UQD4p49XO4iTn4Glj485uZnZl/mEmh0XFerYnJqemZ2bn5xsLi0vKKvbp2ptNccejzVKbqImQapEigjwIlXGQKWBxKOA9vDsr8+S0oLdLkFEcZ+DG7SkQkOEODAvug4yHcYXEC2bjV8mKG12FYXI6DDvVQxKC/o23qqQrSHzSwm07bqYL+FW4tmqSOo8B+8oYpz2NIkEum9cB1MvQLZj7nEsYNL9eQMX7DrmBgZMLMSL+ojh3TLUOGNEqVeQnSin7vKFis9SgOTWW5pP6dK+F/uUGO0Z5fiCTLERL+NSjKJcWUls7RoVDAUY6MYFwJsyvl10wxjsbfhjHB/X3yX3HWabs77e5xt9nbr+2YIxtkk7SIS3ZJjxySI9InnNyTR/JCXq0H69l6s96/Siesumed/Ajr4xNG9qg3</latexit>

2Rep((Z2 ⇥ Z2) o Z2)
<latexit sha1_base64="FijRiuRWj1bPY9CzIH5WAvyM6yM=">AAACL3icbVDJSgNBEO1xjXGLevTSGIR4CTMhqCcJCOIxilkwM4SeTsU06VnorhHDkD/y4q/kIqKIV//CznIw0QcNj/equqqeH0uh0bbfrKXlldW19cxGdnNre2c3t7df11GiONR4JCPV9JkGKUKooUAJzVgBC3wJDb9/OfYbj6C0iMI7HMTgBewhFF3BGRqpnbsquQhPmN5CPCwU3IBhz/fT+2G7RF0UAejf0knL8airJjqdM9q5vF20J6B/iTMjeTJDtZ0buZ2IJwGEyCXTuuXYMXopM59zCcOsm2iIGe+zB2gZGjIz0ksn9w7psVE6tBsp80KkE/V3R8oCrQeBbyrHS+pFbyz+57US7J57qQjjBCHk00HdRFKM6Dg82hEKOMqBIYwrYXalvMcU42gizpoQnMWT/5J6qeicFss35XzlYhZHhhySI1IgDjkjFXJNqqRGOHkmI/JOPqwX69X6tL6mpUvWrOeAzMH6/gFgaak+</latexit>

2Rep((Z2 ⇥ Z2)[1] o Z2)

<latexit sha1_base64="1LLrDFDfdLdwUzLaQj0S0fOuKqI=">AAACDnicbVDLSsNAFJ34rPUVdelmsBTqpiSlqCspuHFZwT4wCWEynbRDJ5MwMxFK6Be48VfcuFDErWt3/o2TNovaeuDC4Zx7ufeeIGFUKsv6MdbWNza3tks75d29/YND8+i4K+NUYNLBMYtFP0CSMMpJR1HFSD8RBEUBI71gfJP7vUciJI35vZokxIvQkNOQYqS05JvVmhshNQqC7GHqN6CraETkonTu2B70zYpVt2aAq8QuSAUUaPvmtzuIcRoRrjBDUjq2lSgvQ0JRzMi07KaSJAiP0ZA4mnKkt3rZ7J0prGplAMNY6OIKztTFiQxFUk6iQHfmh8plLxf/85xUhVdeRnmSKsLxfFGYMqhimGcDB1QQrNhEE4QF1bdCPEICYaUTLOsQ7OWXV0m3Ubcv6s27ZqV1XcRRAqfgDNSADS5BC9yCNugADJ7AC3gD78az8Wp8GJ/z1jWjmDkBf2B8/QILjJt0</latexit>

(Z2 ⇥ Z2)[1]

<latexit sha1_base64="WgDwvyTi8sSxWGL/uDoNBOyf5sk=">AAACCHicbVDLSsNAFL2pr1pfUZcuHCyCq5KUoq6k4MZlBfvAJoTJdNIOnTyYmQgldOnGX3HjQhG3foI7/8ZJm4W2HrhwOOde7r3HTziTyrK+jdLK6tr6RnmzsrW9s7tn7h90ZJwKQtsk5rHo+VhSziLaVkxx2ksExaHPadcfX+d+94EKyeLoTk0S6oZ4GLGAEay05JnHTojVyPez+6lXR45iIZW/Jc+sWjVrBrRM7IJUoUDLM7+cQUzSkEaKcCxl37YS5WZYKEY4nVacVNIEkzEe0r6mEdYL3Wz2yBSdamWAgljoihSaqb8nMhxKOQl93ZnfKBe9XPzP66cquHQzFiWpohGZLwpSjlSM8lTQgAlKFJ9ogolg+lZERlhgonR2FR2CvfjyMunUa/Z5rXHbqDavijjKcAQncAY2XEATbqAFbSDwCM/wCm/Gk/FivBsf89aSUcwcwh8Ynz/bZJne</latexit>

Z2 ⇥ Z2

<latexit sha1_base64="YypoJvr2gZ66JKdvlxeEIVhx+vE=">AAAB9HicbVBNSwMxFHxbv2r9qnr0EiyCp7JbinqSghePFWwrtkvJptk2NMmuSbZQlv4OLx4U8eqP8ea/MdvuQVsHAsPMe7zJBDFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikHgKsKWeStgwznD7EimIRcNoJxjeZ35lQpVkk7800pr7AQ8lCRrCxkt8T2IyCIH2c9WuoX664VXcOtEq8nFQgR7Nf/uoNIpIIKg3hWOuu58bGT7EyjHA6K/USTWNMxnhIu5ZKLKj203noGTqzygCFkbJPGjRXf2+kWGg9FYGdzELqZS8T//O6iQmv/JTJODFUksWhMOHIRChrAA2YosTwqSWYKGazIjLCChNjeyrZErzlL6+Sdq3qXVTrd/VK4zqvowgncArn4MElNOAWmtACAk/wDK/w5kycF+fd+ViMFpx85xj+wPn8AVPPkc4=</latexit>

Z2
<latexit sha1_base64="YypoJvr2gZ66JKdvlxeEIVhx+vE=">AAAB9HicbVBNSwMxFHxbv2r9qnr0EiyCp7JbinqSghePFWwrtkvJptk2NMmuSbZQlv4OLx4U8eqP8ea/MdvuQVsHAsPMe7zJBDFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikHgKsKWeStgwznD7EimIRcNoJxjeZ35lQpVkk7800pr7AQ8lCRrCxkt8T2IyCIH2c9WuoX664VXcOtEq8nFQgR7Nf/uoNIpIIKg3hWOuu58bGT7EyjHA6K/USTWNMxnhIu5ZKLKj203noGTqzygCFkbJPGjRXf2+kWGg9FYGdzELqZS8T//O6iQmv/JTJODFUksWhMOHIRChrAA2YosTwqSWYKGazIjLCChNjeyrZErzlL6+Sdq3qXVTrd/VK4zqvowgncArn4MElNOAWmtACAk/wDK/w5kycF+fd+ViMFpx85xj+wPn8AVPPkc4=</latexit>

Z2

Figure 28.

7 Generalisations

7.1 Higher groups and higher dimensions

The results of this paper have a natural generalisation to gauging a split n-group G in

dimensionD > 3 with n = 1, . . . , D−1 with vanishing Postnikov data. They are determined

by a finite 0-form symmetry group H, a collection of finite abelian q-form symmetry groups

Aq, and homomorphisms φq : H → AutAq, with q = 1, . . . , n− 1. Following our previous

notation, this would be denoted

(

D−2∏

q=1

Aq[q])⋊H . (7.1)

This entire symmetry may be gauged following the methods in this paper by gauging the

subgroups Aq, . . . , A1, H in sequence.

The symmetry category of T /G is expected to be a the fusion (D − 1)-category (D −
1)Rep(G). To the authors’ best knowledge, a rigorous definition and construction of such
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higher categories is not yet available in the mathematical literature. There is a recent

explicit description of 3Rep(G) for an ordinary group G in and more generally we refer the

reader to for the state-of-the-art.

Nevertheless, some features may be safely determined. Indeed, the construction of

higher representations of higher groups is to some extent inductive in nature. For example,

the descriptions topological surfaces as 2-representations in this paper is enough to compute

the 2-category of (D − 1)-fold iterations of endomorphisms of the identity in T /G. For

G and ordinary finite group, there will certainly exist simple codimension-1 topological

surfaces labelled SPT phases

c ∈ HD−1(G,U(1)) (7.2)

with 1-morphisms

HomT /G(c, c
′) = (D − 1)Repc

′−c(G) (7.3)

given by projective (D − 2)-representations of G with cocycle c′ − c. This structure can

already be seen for 3-representations in D = 4 in. However, as D = 3 already demonstrates

there will certainly exist many more simple objects.

<latexit sha1_base64="VAFeKW83W4ktdQ0OiUv5teSvY/E=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUE8S8KDHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/lgxkn6Ed0IHnIGTVWqt/1iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bssV+qVUvUmiyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP52vjNA=</latexit>

G
<latexit sha1_base64="A1KNYN3DPwZPQNLhVJ5+UW8ooq0=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUE8S8KDHCOaByRJmJ5NkyOzsMtOrhCV/4cWDIl79G2/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0fXUbz5ybUSk7nEccz+kAyX6glG00kPnSfT4kCK56RZLbtmdgSwTLyMlyFDrFr86vYglIVfIJDWm7bkx+inVKJjkk0InMTymbEQHvG2poiE3fjq7eEJOrNIj/UjbUkhm6u+JlIbGjMPAdoYUh2bRm4r/ee0E+5d+KlScIFdsvqifSIIRmb5PekJzhnJsCWVa2FsJG1JNGdqQCjYEb/HlZdI4K3vn5cpdpVS9yuLIwxEcwyl4cAFVuIUa1IGBgmd4hTfHOC/Ou/Mxb8052cwh/IHz+QMc25CM</latexit> bG

<latexit sha1_base64="KSfkq8H6Rya1HylX6XGBH07zxJs=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUE8S8JJjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp/77SdUmsfywUwS9CM6lDzkjBorNWr9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpHVV9q7LlUalVL3L4sjDGZzDJXhwA1WoQR2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB58zjNE=</latexit>

H
<latexit sha1_base64="KSfkq8H6Rya1HylX6XGBH07zxJs=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUE8S8JJjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp/77SdUmsfywUwS9CM6lDzkjBorNWr9YsktuwuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpHVV9q7LlUalVL3L4sjDGZzDJXhwA1WoQR2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB58zjNE=</latexit>

H

<latexit sha1_base64="Kn7UrdRZD/u/DI8pi16U6VbE6NU=">AAAB+3icbVDLSgMxFL1TX7W+xrp0EyyCqzIjRd0oFRd2WcE+YDqUTJppQzOZMcmIZeivuHGhiFt/xJ1/Y/pYaOuBwOGc+8oJEs6UdpxvK7eyura+kd8sbG3v7O7Z+8WmilNJaIPEPJbtACvKmaANzTSn7URSHAWctoLhzcRvPVKpWCzu9SihfoT7goWMYG2krl28RZfo2nvwUUdqFlGFal275JSdKdAyceekBHPUu/ZXpxeTNKJCE46V8lwn0X6GzUDC6bjQSRVNMBniPvUMFdis8bPp7WN0bJQeCmNpntBoqv7uyHCk1CgKTGWE9UAtehPxP89LdXjhZ0wkqaaCzBaFKUc6RpMgUI9JSjQfGYKJZOZWRAZYYqJNXAUTgrv45WXSPC27Z+XKXaVUvZrHkYdDOIITcOEcqlCDOjSAwBM8wyu8WWPrxXq3PmalOWvecwB/YH3+ANp6kwo=</latexit>

G = A[q] o H

<latexit sha1_base64="VVIW1aHENxvtyfrmm0zxk6ElPZA=">AAACAnicbVDLSsNAFJ3UV62vqCtxM7UIbixJKepKKrpwWcE+IAllMpm0QycPZyZKCcWNv+LGhSJu/Qp3/o3TNAttPXAvh3PuZeYeN2ZUSMP41goLi0vLK8XV0tr6xuaWvr3TFlHCMWnhiEW86yJBGA1JS1LJSDfmBAUuIx13eDnxO/eECxqFt3IUEydA/ZD6FCOppJ6+Zz9QjwyQhBfWlV0+tst3Wa85Pb1iVI0McJ6YOamAHM2e/mV7EU4CEkrMkBCWacTSSRGXFDMyLtmJIDHCQ9QnlqIhCohw0uyEMTxUigf9iKsKJczU3xspCoQYBa6aDJAciFlvIv7nWYn0z5yUhnEiSYinD/kJgzKCkzygRznBko0UQZhT9VeIB4gjLFVqJRWCOXvyPGnXquZJtX5TrzTO8ziKYB8cgCNgglPQANegCVoAg0fwDF7Bm/akvWjv2sd0tKDlO7vgD7TPH/5ylTo=</latexit> bA[D�q�2]

<latexit sha1_base64="dzhtqfyr0dm9aWE80RWAS1UvMNc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1JNUvHisYD8gDWWz3bRLdzdxdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1NaWV1b3yhvVra2d3b3qvsHbR2nitAWiXmsuiHWlDNJW4YZTruJoliEnHbC8W3ud56o0iyWD2aS0EDgoWQRI9jk0o3/GPSrNbfuzoCWiVeQGhRo9qtfvUFMUkGlIRxr7XtuYoIMK8MIp9NKL9U0wWSMh9S3VGJBdZDNbp2iE6sMUBQrW9Kgmfp7IsNC64kIbafAZqQXvVz8z/NTE10FGZNJaqgk80VRypGJUf44GjBFieETSzBRzN6KyAgrTIyNp2JD8BZfXibts7p3UT+/P681ros4ynAEx3AKHlxCA+6gCS0gMIJneIU3RzgvzrvzMW8tOcXMIfyB8/kDx3WOEQ==</latexit>

A[q]
<latexit sha1_base64="PPoX0B2e3UBhAOT/MYoXS2zHseM=">AAACEXicbVDLSgMxFM34rPVVdekmWITpwjIjRUVBCgq6rNAXdErJpGkbmnmQ3BHL0F9w46+4caGIW3fu/Bsz7Sy09UDC4Zx7ufceNxRcgWV9GwuLS8srq5m17PrG5tZ2bme3roJIUlajgQhk0yWKCe6zGnAQrBlKRjxXsIY7vEr8xj2Tigd+FUYha3uk7/MepwS01MmZjkdgQImIq2PsXODz5DOvj+yCA+wB4jqjMDZvCriTy1tFawI8T+yU5FGKSif35XQDGnnMByqIUi3bCqEdEwmcCjbOOpFiIaFD0mctTX3iMdWOJxeN8aFWurgXSP18wBP1d0dMPKVGnqsrk/3VrJeI/3mtCHpn7Zj7YQTMp9NBvUhgCHASD+5yqS8WI00IlVzviumASEJBh5jVIdizJ8+T+nHRPimW7kr58mUaRwbtowNkIhudojK6RRVUQxQ9omf0it6MJ+PFeDc+pqULRtqzh/7A+PwBp5ObAA==</latexit>T : (D � 1)Vect(G)

<latexit sha1_base64="KjmqvmiYyGSydQp4pb3MqGx9s2U="></latexit> bT : (D � 1)Vect( bG)

<latexit sha1_base64="neA6ZJfU6wGKiNbT4a68283mIPg="></latexit> bT /H : (D � 1)Rep(G)
<latexit sha1_base64="ddEBu/NATur7kUJ/wTajdeWiCaE="></latexit> bT /H : (D � 1)Rep( bG)

<latexit sha1_base64="o5cMAUC+eVST/MMghHwrU8lDURA=">AAACEnicbVDLSgMxFM3UV62vUZdugkXQRctMKepGqSjYZQXbCjNDyWTSNjTzMMkoZZhvcOOvuHGhiFtX7vwb03YQbT0QODnn3tzc40aMCmkYX1pubn5hcSm/XFhZXVvf0De3WiKMOSZNHLKQ37hIEEYD0pRUMnITcYJ8l5G2Ozgf+e07wgUNg2s5jIjjo15AuxQjqaSOfmDfU4/0kUwuU3gCf25nqXVRui1VHJtL6hMB6x29aJSNMeAsMTNSBBkaHf3T9kIc+ySQmCEhLNOIpJMg9SBmJC3YsSARwgPUI5aiAVJjnGS8Ugr3lOLBbsjVCSQcq787EuQLMfRdVekj2RfT3kj8z7Ni2T12EhpEsSQBngzqxgzKEI7ygR7lBEs2VARhTtVfIe4jjrBUKRZUCOb0yrOkVSmbh+XqVbVYO83iyIMdsAv2gQmOQA3UQQM0AQYP4Am8gFftUXvW3rT3SWlOy3q2wR9oH98SFp0U</latexit> bG = bA[D � q � 2] o H

Figure 29.

Particularly simple examples are split higher groups involving a single q-form symmetry

with q > 0, which may be written

G = A[q]⋊H . (7.4)

for some q = 1, . . . D−2. Gauging symmetries will produce a commuting square of theories

illustrated in figure 29. In particular, the example q = 1 arises uniformly in pure dynamical

gauge theories inD-dimensions where G is the automorphism 2-group of a simple, compact,

connected Lie group G. The situation becomes rather symmetric in D = 4 where gauging

a 1-form symmetry results in another 1-form symmetry and is illustrated in figure 30. This

encompasses the full symmetry categories of anomaly free examples in four dimensions

in [5].

7.2 Postnikov data, subgroups, ’t Hooft anomalies

An important extension is to consider gauging more general higher groups with non-trivial

Postnikov data, which is closely connected to gauging more general subgroups and mixed ’t
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<latexit sha1_base64="ipClJHQ44ZAMZJWc46kUbu4TY14=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISKepJCl48SUX7AW0om+2mXbrZhN2JWEN/iRcPinj1p3jz37htc9DWBwOP92aYmefHgmtwnG8rt7K6tr6R3yxsbe/sFu29/aaOEkVZg0YiUm2faCa4ZA3gIFg7VoyEvmAtf3Q19VsPTGkeyXsYx8wLyUDygFMCRurZxS6wR0jvYi4n5erNSc8uORVnBrxM3IyUUIZ6z/7q9iOahEwCFUTrjuvE4KVEAaeCTQrdRLOY0BEZsI6hkoRMe+ns8Ak+NkofB5EyJQHP1N8TKQm1Hoe+6QwJDPWiNxX/8zoJBBdeymWcAJN0vihIBIYIT1PAfa4YBTE2hFDFza2YDokiFExWBROCu/jyMmmeVtyzSvW2WqpdZnHk0SE6QmXkonNUQ9eojhqIogQ9o1f0Zj1ZL9a79TFvzVnZzAH6A+vzBznEksw=</latexit>

Spin(4N)
<latexit sha1_base64="MWg7U9O+BkuImGqoDAMqwLCvXwI=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYhDiJexKUE8S8OJJI5oHJGuYncwmQ2Znl5leNSz5Dy8eFPHqv3jzb5w8DppY0FBUddPd5ceCa3Scb2thcWl5ZTWzll3f2Nzazu3s1nSUKMqqNBKRavhEM8ElqyJHwRqxYiT0Bav7/YuRX39gSvNI3uEgZl5IupIHnBI00n0L2ROmldvrYaF0ddTO5Z2iM4Y9T9wpycMUlXbuq9WJaBIyiVQQrZuuE6OXEoWcCjbMthLNYkL7pMuahkoSMu2l46uH9qFROnYQKVMS7bH6eyIlodaD0DedIcGenvVG4n9eM8HgzEu5jBNkkk4WBYmwMbJHEdgdrhhFMTCEUMXNrTbtEUUomqCyJgR39uV5UjsuuifF0k0pXz6fxpGBfTiAArhwCmW4hApUgYKCZ3iFN+vRerHerY9J64I1ndmDP7A+fwCXIJHp</latexit>

PSO(4N)

<latexit sha1_base64="SsfEWkZsYHRzua81arlz9O0jJn8=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahIpREinqSghdPUsF+QBvLZrtpl242YXdSLKH/xIsHRbz6T7z5b9y2OWjrg4HHezPMzPNjwTU4zreVW1ldW9/Ibxa2tnd29+z9g4aOEkVZnUYiUi2faCa4ZHXgIFgrVoyEvmBNf3gz9ZsjpjSP5AOMY+aFpC95wCkBI3VtuwPsCdIal5PHs1Ll7rRrF52yMwNeJm5GiihDrWt/dXoRTUImgQqiddt1YvBSooBTwSaFTqJZTOiQ9FnbUElCpr10dvkEnxilh4NImZKAZ+rviZSEWo9D33SGBAZ60ZuK/3ntBIIrL+UyToBJOl8UJAJDhKcx4B5XjIIYG0Ko4uZWTAdEEQomrIIJwV18eZk0zsvuRblyXylWr7M48ugIHaMSctElqqJbVEN1RNEIPaNX9Gal1ov1bn3MW3NWNnOI/sD6/AGFKZLs</latexit>

Pin+(4N)
<latexit sha1_base64="KmoU2/xTAmGZnX8rnVOuB/K1GjQ=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnqSgBdPGsE8IFnC7GSSDJl9ONMbDEu+w4sHRbz6Md78GyfJHjSxoKGo6qa7y4uk0Gjb31ZmZXVtfSO7mdva3tndy+8f1HUYK8ZrLJShanpUcykCXkOBkjcjxanvSd7whtdTvzHiSosweMBxxF2f9gPRE4yikdw28idMqneTYvn2tJMv2CV7BrJMnJQUIEW1k/9qd0MW+zxAJqnWLceO0E2oQsEkn+TaseYRZUPa5y1DA+pz7SazoyfkxChd0guVqQDJTP09kVBf67HvmU6f4kAvelPxP68VY+/STUQQxcgDNl/UiyXBkEwTIF2hOEM5NoQyJcythA2oogxNTjkTgrP48jKpn5Wc81L5vlyoXKVxZOEIjqEIDlxABW6gCjVg8AjP8Apv1sh6sd6tj3lrxkpnDuEPrM8f72uRjA==</latexit>

PO(4N)

<latexit sha1_base64="1LLrDFDfdLdwUzLaQj0S0fOuKqI=">AAACDnicbVDLSsNAFJ34rPUVdelmsBTqpiSlqCspuHFZwT4wCWEynbRDJ5MwMxFK6Be48VfcuFDErWt3/o2TNovaeuDC4Zx7ufeeIGFUKsv6MdbWNza3tks75d29/YND8+i4K+NUYNLBMYtFP0CSMMpJR1HFSD8RBEUBI71gfJP7vUciJI35vZokxIvQkNOQYqS05JvVmhshNQqC7GHqN6CraETkonTu2B70zYpVt2aAq8QuSAUUaPvmtzuIcRoRrjBDUjq2lSgvQ0JRzMi07KaSJAiP0ZA4mnKkt3rZ7J0prGplAMNY6OIKztTFiQxFUk6iQHfmh8plLxf/85xUhVdeRnmSKsLxfFGYMqhimGcDB1QQrNhEE4QF1bdCPEICYaUTLOsQ7OWXV0m3Ubcv6s27ZqV1XcRRAqfgDNSADS5BC9yCNugADJ7AC3gD78az8Wp8GJ/z1jWjmDkBf2B8/QILjJt0</latexit>

(Z2 ⇥ Z2)[1]

<latexit sha1_base64="YypoJvr2gZ66JKdvlxeEIVhx+vE=">AAAB9HicbVBNSwMxFHxbv2r9qnr0EiyCp7JbinqSghePFWwrtkvJptk2NMmuSbZQlv4OLx4U8eqP8ea/MdvuQVsHAsPMe7zJBDFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikHgKsKWeStgwznD7EimIRcNoJxjeZ35lQpVkk7800pr7AQ8lCRrCxkt8T2IyCIH2c9WuoX664VXcOtEq8nFQgR7Nf/uoNIpIIKg3hWOuu58bGT7EyjHA6K/USTWNMxnhIu5ZKLKj203noGTqzygCFkbJPGjRXf2+kWGg9FYGdzELqZS8T//O6iQmv/JTJODFUksWhMOHIRChrAA2YosTwqSWYKGazIjLCChNjeyrZErzlL6+Sdq3qXVTrd/VK4zqvowgncArn4MElNOAWmtACAk/wDK/w5kycF+fd+ViMFpx85xj+wPn8AVPPkc4=</latexit>

Z2
<latexit sha1_base64="YypoJvr2gZ66JKdvlxeEIVhx+vE=">AAAB9HicbVBNSwMxFHxbv2r9qnr0EiyCp7JbinqSghePFWwrtkvJptk2NMmuSbZQlv4OLx4U8eqP8ea/MdvuQVsHAsPMe7zJBDFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikHgKsKWeStgwznD7EimIRcNoJxjeZ35lQpVkk7800pr7AQ8lCRrCxkt8T2IyCIH2c9WuoX664VXcOtEq8nFQgR7Nf/uoNIpIIKg3hWOuu58bGT7EyjHA6K/USTWNMxnhIu5ZKLKj203noGTqzygCFkbJPGjRXf2+kWGg9FYGdzELqZS8T//O6iQmv/JTJODFUksWhMOHIRChrAA2YosTwqSWYKGazIjLCChNjeyrZErzlL6+Sdq3qXVTrd/VK4zqvowgncArn4MElNOAWmtACAk/wDK/w5kycF+fd+ViMFpx85xj+wPn8AVPPkc4=</latexit>

Z2

<latexit sha1_base64="1LLrDFDfdLdwUzLaQj0S0fOuKqI=">AAACDnicbVDLSsNAFJ34rPUVdelmsBTqpiSlqCspuHFZwT4wCWEynbRDJ5MwMxFK6Be48VfcuFDErWt3/o2TNovaeuDC4Zx7ufeeIGFUKsv6MdbWNza3tks75d29/YND8+i4K+NUYNLBMYtFP0CSMMpJR1HFSD8RBEUBI71gfJP7vUciJI35vZokxIvQkNOQYqS05JvVmhshNQqC7GHqN6CraETkonTu2B70zYpVt2aAq8QuSAUUaPvmtzuIcRoRrjBDUjq2lSgvQ0JRzMi07KaSJAiP0ZA4mnKkt3rZ7J0prGplAMNY6OIKztTFiQxFUk6iQHfmh8plLxf/85xUhVdeRnmSKsLxfFGYMqhimGcDB1QQrNhEE4QF1bdCPEICYaUTLOsQ7OWXV0m3Ubcv6s27ZqV1XcRRAqfgDNSADS5BC9yCNugADJ7AC3gD78az8Wp8GJ/z1jWjmDkBf2B8/QILjJt0</latexit>

(Z2 ⇥ Z2)[1]

<latexit sha1_base64="N2q2qf63p5LSWbiRyE62G0pY9kw=">AAACMHicbVDJSgNBEO2JW4xb1KOXxiDES5iJQT1JwIMeI5gFM0Po6fQkTXoWumvEMMwnefFT9KKgiFe/ws5yyOKDhsd7VV1Vz40EV2CaH0ZmZXVtfSO7mdva3tndy+8fNFQYS8rqNBShbLlEMcEDVgcOgrUiyYjvCtZ0B9cjv/nIpOJhcA/DiDk+6QXc45SAljr5mzMb2BMkDUYhLRZtn0DfdZOHtFPGNnCfqVnptG052JZjHc8ZnXzBLJlj4GViTUkBTVHr5F/tbkhjnwVABVGqbZkROAnRn1PB0pwdKxYROiA91tY0IHqkk4wPTvGJVrrYC6V+AeCxOtuREF+poe/qytGSatEbif957Ri8SyfhQRQDC+hkkBcLDCEepYe7XOqgxFATQiXXu2LaJ5JQ0BnndAjW4snLpFEuWeelyl2lUL2axpFFR+gYFZGFLlAV3aIaqiOKntEb+kRfxovxbnwbP5PSjDHtOURzMH7/AEcDqbQ=</latexit>

3Vect((Z2 ⇥ Z2)[1] o Z2)
<latexit sha1_base64="N2q2qf63p5LSWbiRyE62G0pY9kw=">AAACMHicbVDJSgNBEO2JW4xb1KOXxiDES5iJQT1JwIMeI5gFM0Po6fQkTXoWumvEMMwnefFT9KKgiFe/ws5yyOKDhsd7VV1Vz40EV2CaH0ZmZXVtfSO7mdva3tndy+8fNFQYS8rqNBShbLlEMcEDVgcOgrUiyYjvCtZ0B9cjv/nIpOJhcA/DiDk+6QXc45SAljr5mzMb2BMkDUYhLRZtn0DfdZOHtFPGNnCfqVnptG052JZjHc8ZnXzBLJlj4GViTUkBTVHr5F/tbkhjnwVABVGqbZkROAnRn1PB0pwdKxYROiA91tY0IHqkk4wPTvGJVrrYC6V+AeCxOtuREF+poe/qytGSatEbif957Ri8SyfhQRQDC+hkkBcLDCEepYe7XOqgxFATQiXXu2LaJ5JQ0BnndAjW4snLpFEuWeelyl2lUL2axpFFR+gYFZGFLlAV3aIaqiOKntEb+kRfxovxbnwbP5PSjDHtOURzMH7/AEcDqbQ=</latexit>

3Vect((Z2 ⇥ Z2)[1] o Z2)

<latexit sha1_base64="Wi9EB7vD2I36+XviAuZOmTDz194=">AAACL3icbVDJSgNBEO1xjXGLevTSGIR4CTMa1JMEBPEYxSyYGUJPpxKb9Cx014hhyB958VdyEVHEq39hZzlE44OGx3tVXVXPj6XQaNtv1sLi0vLKamYtu76xubWd29mt6ShRHKo8kpFq+EyDFCFUUaCERqyABb6Eut+7HPn1R1BaROEd9mPwAtYNRUdwhkZq5a5OXIQnTG8hHhQKbsDwwffT+0HrmLooAtCz0lHT8airxjr9ZbRyebtoj0HniTMleTJFpZUbuu2IJwGEyCXTuunYMXopM59zCYOsm2iIGe+xLjQNDZkZ6aXjewf00Cht2omUeSHSsTrbkbJA637gm8rRkvqvNxL/85oJds69VIRxghDyyaBOIilGdBQebQsFHGXfEMaVMLtS/sAU42gizpoQnL8nz5PacdE5LZZuSvnyxTSODNknB6RAHHJGyuSaVEiVcPJMhuSdfFgv1qv1aX1NShesac8e+QXr+wdiMqk/</latexit>

3Rep((Z2 ⇥ Z2)[1] o Z2)
<latexit sha1_base64="Wi9EB7vD2I36+XviAuZOmTDz194=">AAACL3icbVDJSgNBEO1xjXGLevTSGIR4CTMa1JMEBPEYxSyYGUJPpxKb9Cx014hhyB958VdyEVHEq39hZzlE44OGx3tVXVXPj6XQaNtv1sLi0vLKamYtu76xubWd29mt6ShRHKo8kpFq+EyDFCFUUaCERqyABb6Eut+7HPn1R1BaROEd9mPwAtYNRUdwhkZq5a5OXIQnTG8hHhQKbsDwwffT+0HrmLooAtCz0lHT8airxjr9ZbRyebtoj0HniTMleTJFpZUbuu2IJwGEyCXTuunYMXopM59zCYOsm2iIGe+xLjQNDZkZ6aXjewf00Cht2omUeSHSsTrbkbJA637gm8rRkvqvNxL/85oJds69VIRxghDyyaBOIilGdBQebQsFHGXfEMaVMLtS/sAU42gizpoQnL8nz5PacdE5LZZuSvnyxTSODNknB6RAHHJGyuSaVEiVcPJMhuSdfFgv1qv1aX1NShesac8e+QXr+wdiMqk/</latexit>

3Rep((Z2 ⇥ Z2)[1] o Z2)

Figure 30.

Hooft anomalies. This will bring into the fold more examples of non-invertible symmetries

in higher dimensions considered in [2, 3, 7]

Let us consider the situation in dimension D = 3 and consider a theory with a finite

2-group G constructed from a 0-form symmetry H, abelian 1-form symmetry A and non-

trivial Postnikov class e ∈ H3(H,A). This may be regarded as a higher analogue of a finite

group extension and for this reason it is sometime written as

1→ A[1]→ G→ H → 1 . (7.5)

The non-trivial Postnikov data means that the commutative diagram of theories considered

for example in figure 25 is restricted to a diagram where the bottom left corner is removed.

Starting from a theory T with 2-group symmetry G of this type, one cannot now gauge

the 0-form symmetry H. On the other hand, gauging the 1-form symmetry A[1] leads to

a theory T̂ = T /A[1] with a direct product 0-form symmetry

Â×H (7.6)

with a mixed ’t Hooft anomaly ∫

X4

â ∪ e(h) (7.7)

with background fields â ∈ H1(X4, Â) and h : X4 → BH [47].

Subsequently gauging the 0-form symmetry H in the theory T̂ is equivalent to gaug-

ing the entire 2-group symmetry G in T . By this sequence of gauging, and generalising

the methods in this paper, one compute the resulting symmetry category explicitly and

demonstrate that it is equivalent to 2Rep(G). This and higher dimensional analogues will

be considered in a subsequent paper.
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A Higher Representation Theory

Ordinary symmetries in quantum field theories can often be described by the structure of

ordinary groups. These can be discrete or continuous, abelian or non-abelian. A useful

way to study ordinary groups is via their representations, which form an ordinary category.

On the other hand, higher form symmetries in quantum field theories can often be

described by higher categorical analogues of groups. The aim of this appendix is to define

the first instance of such a higher categorical generalization, and to study a corresponding

higher categorical analogue of the notion of representations. Our description follows [48].

A.1 2-Groups

The first higher categorical generalization of the notion of a group is called a 2-group. In

the following, we will define 2-groups abstractly in analogy to the categorical description

of ordinary groups.

A.1.1 Groups as Categories

Let us begin our discussion with the well-known notion of an ordinary group:

Definition A.1. A group is a category C with a single object, all of whose morphisms are

invertible.

Pictorially, we can visualize this by representing the single object of C by • , and all

of its morphisms by loops starting and ending at • :

•

Id• ...

g1 g2

(A.1)

The composition of morphisms then provides a binary operation

◦ : EndC(•) × EndC(•) → EndC(•) , (A.2)

which we can visualize pictorially by

•g1 g2
◦−→ • g1 ◦ g2 (A.3)

As a consequence of the axioms of a category and our assumption of invertibility of

morphisms, the binary operation ◦ has the following properties:

� Associativity: For all g1, g2, g3 ∈ EndC(•) it holds that

(g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) . (A.4)
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� Identity element: There exists a distinguished morphism e := Id• ∈ EndC(•) such

that for all g ∈ EndC(•)

g ◦ e = e ◦ g = g . (A.5)

� Inverse element: For each morphism g ∈ EndC(•), there exist a distinguished mor-

phism g−1 ∈ EndC(•) such that

g ◦ g−1 = g−1 ◦ g = e . (A.6)

The binary operation ◦ is also called group multiplication. Since the whole structure of the

category C is contained in the endomorphism space of • and the group multiplication on

it, we will often denote C by (EndC(•), ◦) in what follows.

A.1.2 2-Groups as 2-Categories

We can now readily generalize the notion of a group by adding an additional layer of

structure to the picture in (A.1). This leads to a higher categorical analogue of a group:

Definition A.2. A 2-group is a 2-category G with a single object, all of whose 1-morphisms

and 2-morphisms are invertible.

Pictorially, we can visualize this by adding 2-morphisms as “morphisms between mor-

phisms” to the picture in (A.1):

•

e ...

g1 g2

α

β

... (A.7)

The vertical composition of 2-morphisms then provides a map

∗ : 2HomG(g1, g2) × 2HomG(g2, g3) → 2HomG(g1, g3) , (A.8)

which we can visualize pictorially by

•

g1

g2

g3

α

β

∗−→ •

g1

g3

α ∗ β (A.9)
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Furthermore, the horizontal compostion of 2-morphisms provides a map

⋆ : 2HomG(g1, g2) × 2HomG(g3, g4) → 2HomG(g1 ◦ g2, g3 ◦ g4) , (A.10)

which we can visualize pictorially by

•

g1 g2

g3 g4

α β
⋆−→ •

g1 ◦ g2

g3 ◦ g4

α ⋆ β (A.11)

As a consequence of the axioms of a 2-category and our assumption of invertibility of 1-

morphisms and 2-morphisms, the vertical and horizontal compositions ∗ and ⋆ have the

following properties:

� Associativity of ∗: Given 2-morphisms g1
α
=⇒ g2

β
=⇒ g3

γ
=⇒ g4, it holds that

(α ∗ β) ∗ γ = α ∗ (β ∗ γ) . (A.12)

� Associativity of ⋆: Given 2-morphisms g1
α
=⇒ g2, g3

β
=⇒ g4 and g5

γ
=⇒ g6, it holds that

(α ⋆ β) ⋆ γ = α ⋆ (β ⋆ γ) . (A.13)

� Identity elements: For each 1-morphism g in G there exists a distinguished 2-morphism

Idg ∈ 2EndG(g) such that for all α ∈ 2Hom(g, g′) it holds that

Idg ∗ α = α ∗ Idg′ and Ide ⋆ α = α ⋆ Ide . (A.14)

� Inverses for ∗: For each 2-morphism α ∈ 2HomG(g, g
′) there exists a distinguished

2-morphism α−1 ∈ 2HomG(g
′, g) such that

α ∗ α−1 = Idg and α−1 ∗ α = Idg′ . (A.15)

� Exchange law: Given 2-morphisms g1
α
=⇒ g2

α′
=⇒ g3 and h1

β
=⇒ h2

β′
=⇒ h3, it holds

that

(α ∗ α′) ⋆ (β ∗ β′) = (α ⋆ β) ∗ (α′ ⋆ β′) . (A.16)

Note that the exchange law guarantees that the different possibilities to compose 2-mor-

phisms in the flower diagram
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•

g1

g2

g3

h1

h2

h3

α

α′

β

β′

(A.17)

using ∗ and ⋆ are compatible with one another. Furthermore, given any α ∈ 2HomG(g1, g2),

the exchange law implies that the 2-morphism

α :=
(
Idg−1

2

)
⋆ (α−1) ⋆

(
Idg−1

1

)
∈ 2HomG(g

−1
1 , g−1

2 ) (A.18)

is an inverse of α w.r.t. ⋆ in the sense that α ⋆ α = α ⋆ α = Ide.

Example A.3. Given a group C, we can always construct a trivial 2-group containing C

by attaching to each 1-morphism g in C its identity 2-morphism Idg. Thus, as expected,

the notion of a 2-group contains the notion of an ordinary group.

A.2 2-Representations

Having generalized the notion of a group to a higher categorical analogue, we would like to

do the same for the notion of representations of groups. Here and in the following, what

we mean by “representations” are linear representations on complex vector spaces, all of

which we take to be finite-dimensional.

A.2.1 Representations as Functors

Let us recall the notion of ordinary representations of an ordinary group C:

Definition A.4. A representation of C is a functor F : C → Vect from C into the category

Vect of vector spaces.

More concretely, what this means is that F assigns

� a vector space V := F (•) to the single object • of C,

� a linear map Fg : V → V to each morphism g ∈ C.

Pictorially, we can visualize this as follows:

•

e ...

g g′

F−→ V

IdV ...

Fg Fg′

(A.19)
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Compatibility of F with composition then ensures that for all g, g′ ∈ C it holds that

Fg ◦ g′ = Fg ◦ Fg′ . (A.20)

As a usful by-product, the description of representations as functors allows us to readily

define what we mean by a morphism between representations F and F ′ of C:

Definition A.5. An intertwiner between F and F ′ is a natural transformation ϵ : F ⇒ F ′.

More concretely, what this means is that ϵ assigns to the single object • of C a linear

map φ := ϵ• between the vector spaces V := F (•) and V ′ := F ′(•), such that for each

morphism g ∈ C there is a commutative diagram

V V

V ′ V ′

Fg

φ φ

F ′
g

(A.21)

A.2.2 2-Representations as 2-Functors

In order to lift up the notion of representations to the level of 2-groups, we need to introduce

the 2-categorical analogue of the category Vect of vector spaces:

Definition A.6. The 2-category 2Vect of 2-vector spaces consists of the following data:

� It’s objects are natural numbers n ∈ N.

� Given two objects n,m ∈ N, the 1-morphism space Hom2Vect(n,m) between them is

given by the space of (n×m)-matrices A whose entries are vector spaces. Pictorially,

we write this as

n m
A

. (A.22)

Composition of 1-morphisms is given by “matrix multiplication” using direct sums

and tensor products of vector spaces, i.e.

(A ◦B)ik :=
m⊕

j=1

Aij ⊗Bjk . (A.23)

Pictorially, we write this as

n m l
A B ◦−→ n l

A ◦B
. (A.24)

� Given two 1-morphisms A,B ∈ Hom2Vect(n,m) between n and m, the 2-morphism

space 2Hom2Vect(A,B) between them is given by the space of (n × m)-matrices φ

whose (i, j)th entry is a linear map φij : Aij → Bij . Pictorially, we write this as

n m

A

B

φ (A.25)
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Vertical composition of 2-morphisms is given by composition of linear maps, i.e.

(φ ∗ ψ)ij := φij ◦ ψij , (A.26)

which we write pictorially as

n m

A

B

C

φ

ψ

∗−→ n m

A

C

φ ∗ ψ (A.27)

Horizontal composition of 2-morphsims is given by “matrix multiplication” using

direct sums and tensor products of linear maps, i.e.

(φ ⋆ ψ)ik :=
⊕

j=1

φij ⊗ ψjk , (A.28)

which we write pictorially as

n m s

A

B

φ

C

D

ψ
⋆−→ n s

A ◦ C

C ◦D

φ ⋆ ψ (A.29)

In analogy to before, we can now readily define what we mean by a 2-representation

of a 2-group G:
Definition A.7. A 2-representation of G is a 2-pseudofunctor F : G → 2Vect from G into

the 2-category 2Vect of 2-vector spaces.

More concretely, what this means is that F assigns

� a natural number n := F(•) to the single object • of G,

� a (n× n)-matrix Fg with vector spaces as entries to each 1-morphism g in G,

� a (n× n)-matrix F(α) with linear maps as entries to each 2-morphism α in G.
We call n ∈ N the dimension of F . Pictorially, we can visualize this as follows:

•

e ...

g g′

α

β

... F−→ n

In ...

Fg Fg′

F(α)

F(β)

...
(A.30)

Compatibility of F with composition of 2-morphisms then ensures that

– 61 –



� for all vertically composable 2-morphisms α and β in G it holds that

F(α ∗ β) = F(α) ∗ F(β) , (A.31)

� for all 2-morphisms α and β in G it holds that

F(α ⋆ β) = F(α) ⋆ F(β) . (A.32)

In addition, since F is a 2-pseudofunctor, there exist specified 2-isomorphimsms

ϕe : Fe ⇒ In and ϕg,g′ : Fg ◦ Fg′ ⇒ Fg ◦ g′ (A.33)

called the identifier and the compositor, respectively, which are subject to the following

compatibility conditions:

� For all 1-morphisms g, h and k in G the diagram

Fg ◦ Fh ◦ Fk Fg ◦ Fh ◦ k

Fg ◦h ◦ Fk Fg ◦h ◦ k

IdFg ⋆ ϕh,k

ϕg,h ⋆ IdFk
ϕg ◦h,k

ϕg,h ◦ k

(A.34)

commutes w.r.t. vertical composition of 2-morphisms.

� For all 1-morphisms g in G the following diagrams “commute”:

Fe ◦ Fg Fg Fg ◦ Fe

ϕe ⋆ IdFg

ϕe,g ϕg,e

IdFg ⋆ ϕe

(A.35)

In analogy to before, it is now straightforward to generalize the notion of intertwiners

between representations to the notion of intertwiners between 2-representations:

Definition A.8. A 1-intertwiner between two 2-representations F and F ′ of G is a pseudo-

natural transformation ε : F ⇒ F ′.

More concretely, what this means is that ε assigns

� a 1-morphism φ := ε• : n→ m to the single element • of G,

� a 2-morphism εg : φ ◦ F ′
g ⇒ Fg ◦ φ to each 1-morphism g in G,

so that the following compatibility conditions are satisfied:
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� φ is compatible with the identifiers of F and F ′ in the sense that the following

diagram commutes:

φ ◦ F ′
e Fe ◦ φ

φ

εg

Idφ ⋆ ϕ′e ϕe ⋆ Idφ
(A.36)

� ε is compatible with the compositors of F and F ′ in the sense that for all 1-morphisms

g1 and g2 in G the following diagram commutes:

Fg1 ◦ φ ◦ F ′
g2

φ ◦ F ′
g1 ◦ F ′

g2 Fg1 ◦ Fg2 ◦ φ

φ ◦ F ′
g1◦g2 Fg1◦g2 ◦ φ

IdFg1
⋆ εg2εg1 ⋆ IdF ′

g2

Idφ ⋆ ϕ
′
g1,g2 ϕg1,g2 ⋆ Idφ

εg1◦g2

(A.37)

� ε is compatible with the 2-morphisms in G in the sense that for any 2-morphism

α : g → g′ in G the following diagram commutes:

φ ◦ F ′
g Fg ◦ φ

φ ◦ F ′
g′ Fg′ ◦ φ

εg

Idφ ⋆ F ′(α) F(α) ⋆ Idφ

εg′

(A.38)

As the denomination suggests, we can regard 1-intertwiners as 1-morphisms between

2-representations. This viewpoint is supported by the fact that there is a natural way to

compose them:

Definition A.9. Let ε : F ⇒ F ′ and ε′ : F ′ → F ′′ be two 1-intertwiners between 2-repre-

sentations F , F ′ and F ′, F ′′ of G, respectively. Then, their composition is the 1-intertwiner

ε ◦ ε′ : F ⇒ F ′′ defined by

(ε ◦ ε′)• := φ ◦ φ′ (A.39)

(where φ ≡ ε• and φ′ ≡ ε′•) and

(ε ◦ ε′)g :=
(
Idφ ⋆ ε

′
g

)
∗
(
εg ⋆ Idφ′

)
(A.40)

for all 1-morphisms g in G.
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The composition of 1-intertwiners then allows us to define what we mean by saying

that two given 2-representations of G are “essentially the same”:

Definition A.10. Two 2-representations F and F ′ of G are said to be equivalent if there

exists an invertible 1-intertwiner ε : F ⇒ F ′ between them.

In addition to 1-intertwiners, there also exists a notion of 2-intertwiners that can be

seen as 2-morphisms between two 1-intertwiners:

Definition A.11. Let ε, ε′ : F ⇒ F ′ be two 1-intertwiners between two 2-representations

F and F ′ of G. Then, a 2-intertwiner between F and F ′ is a modification η : ε⇛ ε′.

More concretely, what this means is that η is a 2-morphism η : φ ⇒ φ′ in 2Vect such

that the following diagram commutes for all 1-morphisms g in G:

φ ◦ F ′
g Fg ◦ φ

φ′ ◦ F ′
g Fg ◦ φ′

εg

η ⋆ IdF ′
g

IdFg ⋆ η

ε′g

(A.41)

In summary, for each 2-group G we obtain a 2-category 2Rep(G) of 2-representations
of G, which can be described as follows:

Definition A.12. The 2-category 2Rep(G) consists of the following data:

� Its objects are 2-representations F : G → 2Vect.

� Given two objects F and F ′, the 1-morphism space between them is given by the space

of 1-intertwiners ε : F ⇒ F ′. Composition of 1-morphisms is given by composition

of 1-intertwiners as in Definition A.9.

� Given two 1-morpshims ε and ε′ between two objects F and F ′, the space of 2-

morphisms between them is given by the space of 2-intertwiners η : ε ⇛ ε′. Vertical

and horizontal composition are given by vertical and horizontal composition in 2Vect,

respectively.

For the remainder of the appendix, we will be interested in studying the 2-category

2Rep(G) for certain special types of 2-groups G that we will define below.

A.3 Classification

In the theory of ordinary groups and their representations, we often only care about families

of groups and representations that are “essentially the same”. Similarly, in the case of

2-groups and their 2-representations, we often only care about families of 2-groups and

2-representations that are “equivalent” in an appropriate sense. A natural question to ask

is if there is a simple way to classify equivalence classes of 2-groups and 2-representations.

In the following, we will try to answer this question for special types of 2-groups and

2-representations thereof.
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A.3.1 Classification of 2-groups

The definition of 2-groups as a special kind of 2-categories is elegant but rather abstract. It

can be related to the more familiar concept of ordinary groups using the notion of crossed

modules. Recall that a crossed module is a quadruple (C,D, ▷, ∂), where

� C is a group with group multiplication ⊙,

� D is a group with group multiplication ⊗,

� ▷ : C → Aut(D) is an action of C on D via automorphisms,

� ∂ : D → C is a group homomorphism compatible with ▷ in the sense that

∂(g ▷ α) = g ⊙ ∂(α)⊙ g−1 (A.42)

∂(α) ▷ β = α⊗ β ⊗ α−1 (A.43)

for all g ∈ C and α, β ∈ D.

Remark A.13. Note that that relation (A.42) implies that

g ⊙ h⊙ g−1 ∈ im(∂) (A.44)

for all h ∈ im(∂) and all g ∈ C, so that im(∂) ⊂ C is a normal subgroup of C. Consequently,

the quotient coker(∂) ≡ C / im(∂) is itself a group. Similarly, relation (A.43) implies that

[α, β] = 1 (A.45)

for all α ∈ ker(∂) and all β ∈ D, so that ker(∂) ⊂ D is a subgroup of the centre of D (and

is hence abelian). One can then check that ▷ descends to a well-defined action of coker(∂)

on ker(∂).

Using the above, we can now state the following:

Proposition A.14. There is a 1:1-correspondence between 2-groups and crossed modules.

Proof. We will only sketch one side of the correspondence. That is, given 2-group G, we
can define a crossed module (C,D, ▷, ∂) as follows:

� We set the group C to be the 1-endomorphism space of the single object • in G
together with composition of 1-morphisms, i.e.

C := (EndG(•), ◦ ) . (A.46)

� We set the group D to be space of 2-morphisms with source e ∈ EndG(•) together

with horizontal composition of 2-morphisms, i.e.

D := (2HomG(e, . ), ⋆ ) . (A.47)
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� We define the group homomorphism ▷ : C → Aut(D) by

g ▷ α :=
(
Idg−1

)
⋆ α ⋆

(
Idg

)
(A.48)

for each g ∈ C and α ∈ D.

� We define the group homomorphism ∂ : D → C by

α ∈ 2HomG(e, g) 7→ g ∈ EndG(•) . (A.49)

One can check that ▷ and ∂ as defined above satisfy the relations (A.42) and (A.43), so

that (C,D, ▷, ∂) forms a crossed module as claimed.

Example A.15. Given a group D, we can use it to construct a crossed module (C,D, ▷, ∂)

by setting C := Aut(D), ▷ := Id : C → Aut(D) and ∂ := conj : D → C. We call this the

automorphism crossed module of D.

As a by-product, the description of 2-groups as crossed modules allows us to readily

define what we mean by a morphism between two 2-groups:

Definition A.16. Let G = (C,D, ▷, ∂) and G′ = (C ′, D′, ▷′, ∂′) be two crossed modules.

Then, a morphism between G and G′ is a pair (φ,ψ) of group homomorphisms sitting in

the commutative diagram

D C

D′ C ′

∂

ψ φ

∂′

(A.50)

that respect the group actions ▷ and ▷′ in the sense that

ψ(g ▷ α) = φ(g) ▷′ ψ(α) (A.51)

for all g ∈ C and α ∈ D. The morphism (φ,ψ) is called an equivalence between G and G′
if it induces group isomorphisms between ker(∂) ∼= ker(∂′) and coker(∂) ∼= coker(∂′).

Furthermore, the notion of crossed modules allows us to define what we mean by a

sub-2-group (or equivalently a crossed submodule) of a 2-group:

Definition A.17. A crossed module (C,D, ▷, ∂) is called a crossed submodule of a crossed

module (C ′, D′, ▷′, ∂′) if

� C is a subgroup of C ′,

� D is a subgroup of D′,

� the action ▷ of C on D is induced by the action ▷′ of C ′ on D′,

� ∂ = ∂′|D is the restriction of ∂′ to D.
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Finally, we are able to classify equivalence classes of 2-groups as follows:

Theorem A.18. There is a 1:1-correspondence between equivalence classes of 2-groups G
and equivalence classes of quadruples (G,A, ρ, θ), where

� G is a group,

� A is an abelian group,

� ρ : G→ Aut(A) is an action of G on A via automorphisms,

� θ ∈ Z3
ρ(G,A) is a twisted 3-cocycle on G with values in A.

Two such quadruples (G,A, ρ, θ) and (G′, A′, ρ′, θ′) are said to be equivalent if there exist

group isomorphisms φ : G ∼−→ G′ and ψ : A ∼−→ A′ such that

ψ(g ▷ρ a) = φ(g) ▷ρ′ ψ(a) and [φ∗(θ′)] = [ψ ◦ θ] (A.52)

for all g ∈ G and a ∈ A, where [.] : Z3
ρ′ ◦φ(G,A

′) → H3
ρ′ ◦φ(G,A

′) denotes the projection

into group cohomology. The class [θ] ∈ H3
ρ (G,A) is often called the Postnikov class of the

(equivalence class of the) 2-group G.

Proof. We will only sketch one side of the correspondence. That is, given a 2-group G,
thought of as a crossed module (C,D, ▷, ∂), we can construct a quadruple (G,A, ρ, θ) as

follows: According to Remark A.13, the action ▷ descends to a well-defined action ρ of the

group G := coker(∂) on the abelian group A := ker(∂). By definition, the isomorphism

classes of G and A do not depend on the equivalence class of G. In order to construct the

twisted 3-cocycle θ, we embed G and A into the four-term exact sequence

1 A D C G 1 ,ı ∂ π (A.53)

where ı denotes inclusion of A into D and π denotes projection from C onto G. We then

choose a section s : G→ C such that π ◦ s = IdG and define c : G×G→ C by

c(g1, g2) := s(g1)⊙ s(g2)⊙ s(g1, g2)−1 (A.54)

for all g1, g2 ∈ G. Since π ◦ c = 1, there exists a d : G×G→ D with ∂ ◦d = c, which allows

us to define a 3-cochain θ : G×G×G→ D by

θ(g1, g2, g3) :=
[
s(g1) ▷ d(g2, g3)

]
⊗ d(g1, g2 · g3) ⊗ d(g1 · g2, g3)−1 ⊗ d(g1, g2)

−1 (A.55)

for all g1, g2, g3 ∈ G. One can then check that

∂ ◦ θ = 1 and δρ θ = 1 , (A.56)

so that θ defines a twisted 3-cocycle θ ∈ Z3
ρ(G,A) on G with values in A. One can check

that its class [θ] ∈ H3
ρ (G,A) in group cohomology does not depend on the choices of s and

d, and that equivalent 2-groups G and G′ lead to equivalent cohomology classes [θ] and [θ′]

in the sense of (A.52).
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Example A.19. Let D be a group and let G be its automorphism crossed module as

in Example A.15. Then, G is classified by the quadruple (Out(D), Z(D), Id, θ), where

Out(D) denotes the group of outer automorphisms of D, Z(D) denotes the centre of D,

and θ classifies the trivial double extension of Out(D) by Z(D) through the four-term exact

sequence

1 Z(D) D Aut(D) Out(D) 1 .ı conj π (A.57)

Remark A.20. In the following, we will abuse notation and speak of quadruples (G,A, ρ, θ)

as 2-groups. According to Theorem A.18, this abuse of notation is justified if we only care

about 2-groups up to equivalence.

The classification of 2-groups by quadruples (G,A, ρ, θ) allows us to define a special

type of 2-group that will be our main point of interest in the following:

Definition A.21. A 2-group G is said to be split if its Postnikov class vanishes, i.e. [θ] = 0.

In other words, a split 2-group G is such that θ is cohomologous to an exact piece.

Using equivalences of 2-groups, we can always remove this exact piece and set θ = 0, so

that, up to equivalence, we can label split 2-groups G by triples (G,A, ρ) with G, A and ρ

as above. It is then straightforward to describe sub-2-groups of split 2-groups:

Lemma A.22. Let H = (H,B, η) be a sub-2-group of a split 2-group G = (G,A, ρ). Then,

� H ⊂ G is a subgroup of G,

� B ⊂ A is a subgroup of A,

� the action η of H on B is induced by the action ρ of G on A.

Remark A.23. Note that, given a subgroup H ⊂ G, we can always construct a split

sub-2-group (H,A, ρ|H) of G. Any other sub-2-group of the form H = (H,B, η) can be

obtained from (H,A, ρ|H) by restricting A to H-orbits B ⊂ A w.r.t. ρ|H . In the following,

we will therefore only consider sub-2-groups of the form (H,A, ρ|H) for some subgroup

H ⊂ G, which for simplicity we also just denote by H ⊂ G.

A.3.2 Classification of 2-Representations

We now turn to the classification of equivalence classes of 2-representations. For the re-

mainder of the appendix, we will fix G = (G,A, ρ) to be a finite split 2-group. As shown

in [20, 22], the 2-representations of G can then be classified as follows:

Theorem A.24. There is a 1:1-correspondence between equivalence classes of n-dimension-

al 2-representations of G and equivalence classes of triples (σ, c, χ), where

� σ : G→ Sn is a permutation representation of G on ⟨n⟩ ≡ {1, ..., n},

� c ∈ Z2
σ(G,U(1)n) is a twisted 2-cocycle on G with values in U(1)n,
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� χ ∈ (A∨)n is a collection of n characters of A,

such that for all g ∈ G and a ∈ A it holds that

g ▷σ χ(a) = χ(g ▷ρ a) . (A.58)

Two such triples (σ, c, χ) and (σ′, c′, χ′) are said to be equivalent if there exists a permuta-

tion τ ∈ Sn such that

σ′ = τ ◦ σ ◦ τ−1 , [c′] = [τ ▷ c] , χ′ = τ ▷ χ , (A.59)

where [.] : Z2
σ′(G,U(1)n)→ H2

σ′(G,U(1)n) denotes the projection into group cohomology.

Proof. We will only sketch one side of the correspondence. That is, given a 2-representation

F of G, we want to construct a triple (σ, c, χ) as above. To do this, we again think of the

2-group G as a 2-category and the 2-representation F as a 2-pseudofunctor from G to 2Vect,

as illustrated in (A.30).

Then, F assigns to each 1-morphism g in G a (n × n)-matrix Fg, whose entries are

vector spaces. Due to the existence of 2-isomorphisms

ϕg,g−1 ∗ ϕe : Fg ◦ Fg−1 ⇒ In (A.60)

constructed from the compositors and the identifier of F , each Fg contains only one non-

vanishing vector space per row and column, all of which are 1-dimensional. Thus, we can

think of Fg as a (n× n)-permutation matrix for each 1-morphism g in G, which induces a

permutation representation

σ : (EndG(•), ◦) → Sn . (A.61)

In particular, if there exists a 2-isomorphism α : e ⇒ g in G, we can construct the 2-

isomorphism

F(α)−1 ∗ ϕe : Fg ⇒ In (A.62)

in 2Vect, which implies that the associated permutation matrix σg is trivial. Thus, the

permutation representation σ descends to a well-defined permutation representation of

G ≡ coker(∂) , (A.63)

where we denoted by ∂ : (2HomG(e, . ), ⋆)→ (EndG(•), ◦) the group homomorphism

α ∈ 2HomG(e, g) 7→ g ∈ EndG(•) . (A.64)

Next, we note that for two given 1-morphisms g and h in G, the compositor

ϕg,h : Fg ◦ Fh ⇒ Fg ◦h (A.65)

is an (n × n)-matrix of invertible linear maps between the 1-dimensional vector spaces

sitting in Fg ◦ Fh and Fg ◦h. Since the latter only have one non-vanishing entry per row

and column, ϕg,h is entirely determined by a collection of n phases ci(g, h) ∈ U(1) specifying
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the isomorphism between the 1-dimensional vector spaces sitting in the i-th row of Fg ◦Fh

and Fg ◦h, respectively. This induces a map

c : EndG(•) × EndG(•) → U(1)n , (A.66)

which as a consequence of (A.34) satisfies the twisted cocycle condition

cσ−1
g (i)(h, k)− ci(g ◦ h, k) + ci(g, h ◦ k)− ci(g, h) = 0 . (A.67)

Thus, we obtain a twisted 2-cocycle on (EndG(•), ◦) with values in U(1)n, which can be

checked to descend to a well-defined 2-cocycle on G ≡ coker(∂).

Lastly, we note that for each 2-isomoprhism α : e⇒ g we have a 2-isomorphism

F(α) : Fe ⇒ Fg , (A.68)

which is a (n×n)-matrix of invertible linear maps between the 1-dimensional vector spaces

sitting in Fe and Fg. Since the latter only have non-vanishing entries on the diagonal,

F (α) is again entirely determined by a collection of n phases χi(α) ∈ U(1) specifying the

isomorphism between the 1-dimensional vector spaces in the i-th diagonal entry of Fe and

Fg, respectively. This induces a homomorphism

χ : (2HomG(e, . ), ⋆) → U(1)n , (A.69)

which can be checked to satisfy

χ(g ▷ α) = g ▷σ χ(α) , (A.70)

where we denoted by ▷ the action of (EndG(•), ◦) on (2HomG(e, . ), ⋆) as in (A.48). The

homomorphism χ then descends to a well-defined collection of characters of A ≡ ker(∂).

Remark A.25. In the following, we will abuse notation and speak of triples (σ, c, χ) as

2-representations of G. According to Theorem A.24, this abuse of notation is justified if

we only care about 2-representations up to equivalence.

Example A.26. For any split 2-group G, setting (σ, c, χ) = (1, 1, 1) gives a 1-dimensional

2-representation of G, which is called the trivial 2-representation and denoted by 1.

Just as for ordinary complex representations of a group G, there exists a notion of the

conjugate of a 2-representation of the 2-group G:

Definition A.27. Let (σ, c, χ) be a 2-representation of G. Then, its conjugate is the

2-representation

(σ, c, χ)# := (σ, c̄, χ̄) , (A.71)

where c̄ and χ̄ denote complex conjugation of c and χ w.r.t their coefficients in U(1).
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A.4 Direct Sum and Tensor Product

From the theory of ordinary representations of finite groups G we are used to being able to

combine two given representations of G into new representations by taking direct sums and

tensor products. The description of 2-representations of G as triples (σ, c, χ) as in Theorem

A.24 allows us to introduce analogous constructions for 2-representations:

Definition A.28. Let (σ, c, χ) and (σ′, c′, χ′) be two 2-representations of G of dimensions

n and n′. Then, we can combine them as follows:

� Their direct sum is the (n+ n′)-dimensional 2-representation

(σ, c, χ)⊕ (σ′, c′, χ′) := (σ ⊕ σ′, c⊕ c′, χ⊕ χ′) , (A.72)

where the permutation representation σ ⊕ σ′ : G→ Sn+n′ is defined by

(σ ⊕ σ′)g(i) :=

{
σg(i) if 1 ≤ i ≤ n
σ′g(i− n) + n if n+ 1 ≤ i ≤ n+ n′

, (A.73)

the twisted 2-cocycle c⊕ c′ ∈ Z2
σ⊕σ′(G,U(1)n+n′

) is given by

(c⊕ c′)i(g, h) :=

{
ci(g, h) if 1 ≤ i ≤ n
c′i−n(g, h) if n+ 1 ≤ i ≤ n+ n′

, (A.74)

and the collection of characters χ⊕ χ′ ∈ (A∨)n+n′
is taken to be

(χ⊕ χ′)i :=

{
χi if 1 ≤ i ≤ n
χ′
i−n if n+ 1 ≤ i ≤ n+ n′

(A.75)

for all g, h ∈ G and i ∈ ⟨n+ n′⟩,

� Their tensor product is the (n · n′)-dimensional 2-representation

(σ, c, χ)⊗ (σ′, c′, χ′) := (σ ⊗ σ′, c⊗ c′, χ⊗ χ′) , (A.76)

where the permutation representation σ ⊗ σ′ : G→ Sn·n′ is defined by

(σ ⊗ σ′)g(i, j) :=
(
σg(i), σ

′
g(j)

)
, (A.77)

the twisted 2-cocycle c⊗ c′ ∈ Z2
σ⊗σ′(G,U(1)n·n

′
) is given by

(c⊗ c′)(i,j)(g, h) := ci(g, h) · cj(g, h)′ , (A.78)

and the collection of characters χ⊗ χ′ ∈ (A∨)n·n
′
is taken to be

(χ⊗ χ′)(i,j) := χi · χj (A.79)

for all g, h ∈ G and (i, j) ∈ ⟨n⟩ × ⟨n′⟩ ≃ ⟨n · n′⟩.
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A.5 Induction and Restriction

From the theory of ordinary representations of finite groups G we are used to being able

to construct representations of G from representations of subgroups H ⊂ G by induction.

We would like to obtain analogous constructions in the case of 2-representations of finite

split 2-groups.

Let therefore H ⊂ G be a sub-2-group of G in the sense of Remark A.23. We denote

by n := |G : H| the index of H in G. Let (σ, c, χ) be a m-dimensional 2-representation of

H. We would like to construct a (n ·m)-dimensional 2-representation (σ′, c′, χ′) of G out

of (σ, c, χ). To do this, we consider the space

G/H = {[R1] , ..., [Rn]} (A.80)

of left H-cosets [Ri] ≡ Ri ·H in G with fixed representatives Ri ∈ G such that [R1] = H.

Then, each g ∈ G acts on the left cosets as

g · [Ri]
!
= [Rηg(i)] (A.81)

for some ηg(i) ∈ ⟨n⟩, which induces a permutation representation η : G→ Sn of G on ⟨n⟩.
More concretely, Eq. (A.81) means that

g ·Ri = Rηg(i) · hi(g) (A.82)

with hi(g) ∈ H for each i ∈ ⟨n⟩ and g ∈ G. Using this, we define an induced permutation

representation σ′ : G→ Sn·m of G on ⟨n ·m⟩ by

σ′g(i, j) :=
(
ηg(i), σhi(g)(j)

)
. (A.83)

Furthermore, we can construct an induced twisted 2-cocycle c′ ∈ Z2
σ′(G,U(1)n·m) on G as

c′(i,j)(g, g
′) := cj

(
hη−1

g (i)(g) , hη−1
g·g′ (i)

(g′)
)
. (A.84)

Lastly, we obtain an induced collection χ′ ∈ (A∨)n·m of (n ·m) characters of A by

χ′
(i,j)(a) := χj(R

−1
i ▷ρ a) . (A.85)

One can then check that the triple (σ′, c′, χ′) forms a well-defined 2-representation of G,
whose equivalence class is independent of the choice of representatives Ri of left H-cosets

in G. We name it as follows:

Definition A.29. The 2-representation (σ′, c′, χ′) is called the induction of the 2-represen-

tation (σ, c, χ) from H to G and is denoted by

(σ′, c′, χ′) =: IndGH(σ, c, χ) . (A.86)

A natural question to ask is whether two 2-representations of two different sub-2-groups

of G give rise to equivalent 2-representations of G after induction. To answer this question,
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we note that, given a 2-representation (σ, c, χ) of H ⊂ G and a group element g ∈ G, we
can define a 2-representation (gσ, gc, gχ) of gH := gHg−1 ⊂ G by setting

gσ := σ ◦ conjg−1 , (A.87)
gc := c ◦ conjg−1 , (A.88)
gχ(.) := χ(g−1 ▷ρ (.)) . (A.89)

Definition A.30. The 2-representation g(σ, c, χ) := (gσ, gc, gχ) of gH ⊂ G is called the

conjugation of the 2-representation (σ, c, χ) of H ⊂ G by g ∈ G.

One can then check by an explicit calculation that conjugating 2-representations of

sub-2-groups leads to equivalent 2-representations of G after induction:

Lemma A.31. Let H ⊂ G a sub-2-group and let (σ, c, χ) be a 2-representations of H.

Then, for any g ∈ G it holds that

IndGH(σ, c, χ) ∼= IndGgH
(
g(σ, c, χ)

)
. (A.90)

On the other hand, we know that, given a representation of a finite group G, we

can restrict it to obtain a representation of a subgroup H ⊂ G. Analogously, given a

2-representation (σ, c, χ) of G and a sub-2-group H ⊂ G, we can construct a triple

σ′ := σ|H , c′ := ı∗(c) , χ′ := χ , (A.91)

where ı : H ↪−→ G denotes the inclusion of H into G. It is then clear that (σ′, c′, χ′) forms

a well-defined 2-representation of H ⊂ G, which we name as follows:

Definition A.32. The 2-representation (σ′, c′, χ′) is called the restriction of the 2-represen-

tation (σ, c, χ) from G to H and is denoted by

(σ′, c′, χ′) =: ResGH(σ, c, χ) . (A.92)

A natural question to ask is how induction and restriction of 2-representations interplay

with one another. This is answered by Mackey’s decomposition theorem:

Theorem A.33. LetK andH be two sub-2-groups of G and let (σ, c, χ) be am-dimensional

2-representation of K. Then, it holds that

(ResGH ◦ IndGK) (σ, c, χ) ∼=
⊕

[g]∈H\G/K

IndHH ∩ gK

(
g(σ, c, χ)

)
, (A.93)

where g ∈ G labels (arbitrary) representatives of double H-K-cosets in G.

Proof. Recall that, by definition, the induction IndGK(σ, c, χ) of (σ, c, χ) from K to G can

be constructed by considering the space

G/K = {[R1] , ..., [Rn]} (A.94)
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of left K-cosets [Ri] ≡ Ri ·K with fixed representatives Ri ∈ G and defining an induced

permutation representation η : G→ Sn by

g ·Ri
!
= Rηg(i) · ki(g) (A.95)

with ki(g) ∈ K for each g ∈ G. In order to understand the restriction of IndGK(σ, c, χ) to

H ⊂ G, we start by decomposing

⟨n⟩ =
⊔

i∈I
O(i) (A.96)

into orbits O(i) ≡ {ηh(i) |h ∈ H} of the restricted action η|H of H on ⟨n⟩ with fixed

representatives i ∈ I ⊂ ⟨n⟩, whose elements we label as

O(i) =:
{
i1, ... , ini

}
, (A.97)

where i1 ≡ i and ni ≡ |O(i)|. Analogously, we can then decompose

(ResGH ◦ IndGK) (σ, c, χ) ∼=
⊕

i∈I
(σi, ci, χi) , (A.98)

where for fixed i ∈ I we denoted by (σi, ci, χi) the (ni ·m)-dimensional 2-representation of

H defined as

σih(j, l) :=
(
θh(j), σkij (h)(l)

)
, (A.99)

ci(j,l)(h, h
′) := cl

(
kη−1

h (ij)
(h) , kη−1

h·h′ (ij)
(h′)

)
, (A.100)

χi
(j,l)(a) := χl(R

−1
ij
▷ρ a) , (A.101)

with θ : H → Sni the permutation action of H on ⟨ni⟩ induced by η through

ηh(ij)
!
= iθh(j) . (A.102)

It is then straightforward to check that

Hi := Stabη|H (i) ≡ H ∩ (RiKR
−1
i ) , (A.103)

so that, as sets, we have a correspondence

O(i) ∼= H/Hi =: {[S1], ... , [Sni ]} , (A.104)

where we fixed representatives Sj ∈ H of left Hi-cosets [Sj ] ≡ Sj ·Hi in H such that

h · Sj !
= Sθh(j) · hj(h) . (A.105)

One can check that the elements hj(h) ∈ Hi are given by

R−1
i · hj(h) ·Ri ≡ ki(Sθh(j))

−1 · kij (h) · ki(Sj) . (A.106)
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Using the above, we then define a permutation τ ∈ Sni·m by

τ : (j, l) 7→
(
j, σ−1

ki(Sj)
(l)

)
, (A.107)

which, using (A.106), can be checked to give an equivalence

(σi, ci, χi) ∼= IndHHi

(
Ri(σ, c, χ)

)
(A.108)

of 2-representations. Together with (A.98), the claim then follows from the fact that the

map I → H\G/K sending i 7→ [Ri] is a bijection.

Remark A.34. Note that, up to equivalence, the choice of representatives g ∈ G of double

H-K-cosets [g] ∈ H\G/K in (A.93) does not matter, since choosing different representa-

tives g′ = h · g · k for some h ∈ H and k ∈ K leads to

H ∩ g′K = h(H ∩ gK) and g′(σ, c, χ) ∼= h(g(σ, c, χ)) , (A.109)

which according to Lemma A.31 gives equivalent 2-representations after induction to H.

Remark A.35. Note that, on the right-hand side of Mackey’s decomposition formula

(A.93), the 2-representation g(σ, c, χ) of the intersection H ∩ gK should really be seen

as the restriction Res
gK
H ∩ gK(g(σ, c, χ)). In the following, in order to avoid cumbersome

notation, we will leave this restriction understood implicitly.

A special case of the above considerations is when H = K is normal in G (usually

denoted by H ◁ G), which means that gH = H for all g ∈ G. In this case, left H-cosets

equal right H-cosets in G, so that Mackey’s decomposition formula simplifies as follows:

Corollary A.36. Let H ◁ G be a normal subgroup and let (σ, c, χ) be a m-dimensional

2-representation of H ⊂ G. Then, it holds that

(ResGH ◦ IndGH) (σ, c, χ) ∼=
⊕

[g]∈G/H

g(σ, c, χ) , (A.110)

where g ∈ G labels (arbitrary) representatives of left H-cosets in G.

A.6 Simplicity

A useful way to study 2-representations of G is to study a particular subset of 2-represen-

tations that form “building blocks” for all other 2-representations of G:

Definition A.37. A 2-representation of G is said to be simple if, up to equivalence, it

cannot be written as a direct sum of other 2-representations of G.

More concretely, a n-dimensional 2-representation (σ, c, χ) of G is simple if the permu-

tation action σ : G→ Sn is transitive on ⟨n⟩. The classification of simple 2-representations

as “building blocks” is then due to the following:

Lemma A.38. Up to equivalence, every 2-representation of G can be written as a direct

sum of simple 2-representations of G.
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Proof. Let (σ, c, χ) be a n-dimensional 2-representation of G. Then, we can decompose

⟨n⟩ =
⊔

i∈I
O(i) (A.111)

into orbits O(i) ≡ {σg(i) | g ∈ G} of the permutation action σ of G on ⟨n⟩ with fixed

representatives i ∈ I ⊂ ⟨n⟩, whose elements we label as

O(i) =:
{
i1 , ... , ini

}
, (A.112)

where i1 ≡ i and ni ≡ |O(i)|. On each orbit, we then obtain an induced permutation action

σi : G→ Sni coming from

σg(ij)
!
= iσi

g(j)
, (A.113)

which we can use to decompose

(σ, c, χ) ∼=
⊕

i∈I
(σi, ci, χi) , (A.114)

where the 2-cocycles ci ∈ Z2
σi(G,U(1)ni) and characters χi ∈ (A∨)ni are given by

cij := cij and χi
j := χij . (A.115)

SinceG acts transitively on each orbit by construction, the (σi, ci, χi) then form well-defined

simple 2-representation of G for all i ∈ I.

Apart from their building-block nature, simple 2-representations are special since they

stem from 1-dimensional 2-representations of sub-2-groups H ⊂ G. Note that since there

are no non-trivial permutation actions on the single-element set ⟨1⟩, any 1-dimensional

2-representation of H ⊂ G is simply labelled by a pair (u, α), where

� u ∈ Z2(H,U(1)) is an ordinary 2-cocycle on H,

� α ∈ A∨ is a H-invariant character of A.

We now state the following:

Proposition A.39. Any simple n-dimensional 2-representation (σ, c, χ) of G is equivalent

to the induction of a 1-dimensional 2-representation (u, α) of a sub-2-group H ⊂ G of index

|G : H| = n.

Proof. Let (σ, c, χ) be a simple n-dimensional 2-representation of G. We want to construct

a subgroup H ⊂ G as well as a pair (u, α) as above. To do this, we set

H := Stabσ(1) ⊂ G (A.116)

and define a 2-cochain on H with values in U(1) by

u(h, h′) := c1(h, h
′) (A.117)

for all h, h′ ∈ H, which can be checked to give a well-defined 2-cocycle u ∈ Z2(H,U(1)) on

H (i.e. δu = 1). Then, we obtain a H-invariant character α ∈ A∨ by setting

α(.) := χ1(.) . (A.118)

One can check that (σ, c, χ) ∼= IndGH(u, α) as claimed.
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Corollary A.40. There exists a n-dimensional simple 2-representations of G if and only

if G has a subgroup of order n. In particular, there exist no simple 2-representations of G
of dimension greater than |G|.

Remark A.41. Note that the sub-2-group H ⊂ G and the 1-dimensional 2-representation

(u, α) of H in Proposition A.39 are not unique, since inducing the conjugation g(u, α) of

(u, α) up to G for any g ∈ G will lead to a simple 2-representation of G equivalent to

(σ, c, χ). Thus, we can label the equivalence class of the simple 2-representation (σ, c, χ)

of G by the equivalence class of a triple (H,u, α) (with H, u and α as above), where two

triples (H,u, α) and (H ′, u′, α′) are considered equivalent if there exists a g ∈ G such that

H ′ = gH , [u′] = [gu] , α′ = gα . (A.119)

Having classified the simple 2-representations of G, a natural question to ask is how

simple 2-representations fuse when taking tensor products. That is, given two simple 2-

representations of G, their tensor product must again decompose into simple 2-representa-

tions of G, whose form can be determined as follows:

Proposition A.42. Let (u, α) and (v, β) be two 1-dimensional 2-representations of sub-

2-groups H and K of G. Then, the tensor product of their inductions to G is given by

IndGH(u, α) ⊗ IndGK(v, β) ∼=
⊕

[g]∈H\G/K

IndGH ∩ gK

(
(u, α) ⊗ g(v, β)

)
, (A.120)

where g ∈ G labels (arbitrary) representatives of double H-K-cosets in G.

Proof. Using the push-pull-formula for the tensor product of inductions, we see that

IndGH(u, α) ⊗ IndGK(v, β) ∼= IndGH
[
(u, α) ⊗ (ResGH ◦ IndGK)(v, β)

]

∼=
⊕

[g]∈H\G/K

IndGH
[
(u, α) ⊗ IndHH ∩ gK

(
g(v, β)

) ]

∼=
⊕

[g]∈H\G/K

IndGH ∩ gK

[
(u, α) ⊗ g(v, β)

]
, (A.121)

where we used Mackey’s decomposition formula from Theorem A.33 in the second line.

Remark A.43. Note that, as before, the choice of representatives g ∈ G of double H-K-

cosets [g] ∈ H\G/K in (A.120) matters only up to equivalence. Furthermore, we again

implicitly understand an appropriate restriction of 2-representations on the right-hand side

of (A.120).

B Graded Projective Representations

In order to understand the 2-category 2Rep(G) of 2-representations of the split 2-group G,
it turns out to be useful to study a generalization of the notion of projective representations

of an ordinary group G, called graded projective representations. We will fix G to be a finite

group in what follows.
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B.1 The Category

We begin by generalizing the notion of the projective automorphism group PGL(V ) of a

vector space V to the notion of the projective automorphism group PAut(V) of a vector

bundle V π→M . This can be done as follows:

Definition B.1. Let V π→ M be a complex vector bundle over some base space M and

let Aut(V) denote the automorphism group of V. We denote by U(1)M the abelian normal

subgroup of Aut(V) consisting of maps f :M → U(1), seen as automorphisms

x ∈ Vm 7→ f(m) · x ∈ Vm . (B.1)

Then, the projective automorphism group of V is defined to be

PAut(V) := Aut(V) /U(1)M . (B.2)

In the following, we will be interested in the case where the base space M is finite, i.e.

M = ⟨n⟩, where ⟨n⟩ ≡ {1, ..., n} denotes the finite set of n elements. In this case, we have

that U(1)⟨n⟩ ∼= U(1)n as groups. We then make the following definition:

Definition B.2. A graded projective representation of G is a pair (V,Φ), where V is a

complex vector bundle V π−→ ⟨n⟩ and Φ is a representative of a group homomorphism

[Φ] : G → PAut(V) from G into the projective automorphism group of V. We call n ∈ N
the grading of (V,Φ).

More concretely, this means that for each g ∈ G there is an associated fibre-preserving

bundle automorphism Φg ∈ Aut(V), which sits in a commutative diagram

V V

⟨n⟩ ⟨n⟩

Φg

π π

σg

where σg ∈ Sn is the corresponding induced bijection on the base space ⟨n⟩. This induces
a well-defined permutation representation σ : G → Sn. The bundle automorphisms Φg

themselves however only satisfy the homomorphism property projectively, meaning that

Φg·g′ = c(g, g′) ◦ Φg ◦ Φg′ (B.3)

for some c(g, g′) ∈ U(1)n, seen as a bundle automorphism as in Definition B.1. This defines

a 2-cochain c : G×G→ U(1)n in C2(G,U(1)n), which, as a consequence of the associativity

of the group multiplication in G, obeys the twisted cocycle-condition

δσ(c) = 0 , (B.4)

where δσ denotes the nilpotent differential on C2(G,U(1)n) twisted by σ. Thus, we obtain

a well-defined 2-cocycle c ∈ Z2
σ(G,U(1)n), which together with σ classifies the graded

projective representation (V,Φ) in the following sense:
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Definition B.3. The pair (σ, c) is called the obstruction pair of the graded projective

representation (V,Φ) of G. To see what it obstructs, we consider the following cases:

� σ = 1: In this case, (V,Φ) consists of n decoupled vector spaces Vi equipped with

projective G-actions Φi := Φ|Vi ∈ PGL(Vi) of cocycles ci ∈ Z2(G,U(1)). We say that

that the graded projective representations (V,Φ) splits.

� c = δσ(b): In this case, we can redefine Φg → Φ̂g := bg ◦ Φg for each g ∈ G, which
turns Φ̂ : G→ Aut(V) into a group homomorphism. We say that (V,Φ) can be lifted.

Notation: Given a n-graded projective representation (V,Φ), we will speak of its support

as the subset of ⟨n⟩ whose fibres are non-trivial, i.e.

Sup(V) := {i ∈ ⟨n⟩ | Vi ̸= 0} . (B.5)

In the following, we would like to study the “category” of graded projective represen-

tations of G. In order to make this category well-defined, we need to define what we mean

by a morphism between two graded projective representations:

Definition B.4. Amorphism between graded projective representations (V,Φ) and (V ′,Φ′)

of G of gradings n and n′ is a vector bundle morphism φ : V → V ′ such that

[φ ◦ Φ] = [Φ′ ◦ φ] . (B.6)

We call φ an isomorphism if it is a vector bundle isomorphism. In this case, we say that

the two graded projective representations are isomorphic and write (V,Φ) ∼= (V ′,Φ′).

Note that a necessary condition for an isomorphism between (V,Φ) and (V ′,Φ′) to

exist is that their gradings n and n′ coincide, i.e. n = n′. In this case, it is straightforward

to establish a relationship between the corresponding obstruction pairs:

Proposition B.5. Let φ be an isomorphism between graded projective representations

(V,Φ) and (V ′,Φ′) of G. Then, their obstruction pairs (σ, c) and (σ′, c′) are related by

σ′ = τ ◦ σ ◦ τ−1 and [c′] = [τ ▷ c] , (B.7)

where τ : ⟨n⟩ → ⟨n⟩ is the bijection on the base spaces induced by φ.

Proof. Since φ is an isomorphism between (V,Φ) and (V ′,Φ′), we know that there exists a

1-cochain b ∈ C1(G,U(1)n) such that

φ ◦ Φg = bg ◦ Φ′
g ◦ φ (B.8)
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for all g ∈ G. We can embed this relation into a cuboid of maps

V V ′

V V ′

⟨n⟩ ⟨n⟩

⟨n⟩ ⟨n⟩

φ

Φg

π

π′

bg ◦ Φ′
g

φ

π′
τ

σg

σ′g

τ

π (B.9)

where the upper square commutes by construction. One can then check that projecting

down on the lower square via π and π′ implies that σ′g ◦ τ = τ ◦ σg for all g ∈ G. Secondly,
we note that for any bundle isomorphism ψ : V → V ′ and any u ∈ U(1)n it holds that

ψ ◦ u = (κ ▷ u) ◦ ψ , (B.10)

where κ ∈ Sn is the bijection on the bases spaces induced by ψ. Using this, we see that

φ ◦ Φg1·g2 = φ ◦ c(g1, g2) ◦ Φg1 ◦ Φg2

= (τ ▷ c(g1, g2)) ◦ bg1 ◦ (σ′g1 ▷ bg2) ◦ Φ′
g1 ◦ Φ′

g2 ◦ φ , (B.11)

φ ◦ Φg1·g2 = bg1·g2 ◦ Φ′
g1·g2 ◦ φ

= bg1·g2 ◦ c′(g1, g2) ◦ Φ′
g1 ◦ Φ′

g2 ◦ φ . (B.12)

Comparing (B.11) and (B.12) and using that Φg1 , Φg2 and φ are invertible shows that

c′(g1, g2) = [(σ′g1 ▷ bg2) ◦ b−1
g1·g2 ◦ bg1 ] ◦ (τ ▷ c(g1, g2))

≡ (δσ′b)(g1, g2) ◦ (τ ▷ c(g1, g2)) , (B.13)

which implies [c′] ≡ [τ ▷ c] as group cohomology classes in H2
σ′(G,U(1)n).

Notation: In the following, we will denote the category of n-graded projective represen-

tations of G with fixed obstruction pair (σ, c) and support S ⊂ ⟨n⟩ by

Rep
(σ,c)
S (G) . (B.14)

B.2 Direct Sum and Tensor Product

Just as ordinary representations of a group G can be added and multiplied, there exists a

notion of direct sums and tensor products for graded projective representations:

Definition B.6. Two graded projective representations (V,Φ) and (V ′,Φ′) of G with

gradings n and n′ can be combined to form new graded projective representations as

follows:
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� Their direct sum is the (n+ n′)-graded projective representation

(V,Φ)⊕ (V ′,Φ′) = (V ⊕ V ′,Φ⊕ Φ′) , (B.15)

where the vector bundle V ⊕ V ′ π−→ ⟨n+ n′⟩ is defined by

(V ⊕ V ′)i :=

{
Vi if 1 ≤ i ≤ n
V ′i−n if n+ 1 ≤ i ≤ n+ n′

(B.16)

and (Φ⊕ Φ′) : G→ Aut(V ⊕ V ′) is given by

(Φ⊕ Φ′)g|i :=

{
Φg|Vi if 1 ≤ i ≤ n
Φ′
g|V ′

i−n
if n+ 1 ≤ i ≤ n+ n′

(B.17)

for all g ∈ G and i ∈ ⟨n+ n′⟩.

� Their tensor product is the (n · n′)-graded projective representation

(V,Φ)⊗ (V ′,Φ′) = (V ⊗ V ′,Φ⊗ Φ′) , (B.18)

where the vector bundle V ⊗ V ′ π−→ ⟨n · n′⟩ is defined by

(V ⊗ V ′)(i,j) := Vi ⊗ V ′j (B.19)

and (Φ⊗ Φ′) : G→ Aut(E ⊗ E′) is given by

(Φ⊗ Φ′)g|(i,j) := (Φg|Vi)⊗ (Φg|V ′
j
) (B.20)

for all g ∈ G and (i, j) ∈ ⟨n⟩ × ⟨n′⟩ ≃ ⟨n · n′⟩.
It is natural to ask how the obstruction pairs of (V,Φ) and (V ′,Φ′) behave when taking

direct sums and tensor products. One can check that this is answered as follows:

Proposition B.7. Let (V,Φ) and (V ′,Φ′) be two graded projective representations of G

with corresponding obstruction pairs (σ, c) and (σ′, c′). Then,

� the direct sum (V,Φ)⊕ (V ′,Φ′) has obstruction pair (σ⊕σ′, c⊕ c′), where σ⊕σ′ and
c⊕ c′ are as in (A.73) and (A.74),

� the tensor product (V,Φ)⊗ (V ′,Φ′) has obstruction pair (σ⊗ σ′, c⊗ c′), where σ⊗ σ′
and c⊗ c′ are as in (A.77) and (A.78).

For later purposes, it is useful to understand how the support of graded projective

representations behaves under direct sums and tensor products. To see this, first note that

given two subsets A ⊂ ⟨n⟩ and B ⊂ ⟨n′⟩, we can define their direct sum A⊕B ⊂ ⟨n+ n′⟩
and tensor product A⊗B ⊂ ⟨n · n′⟩ by

A⊕B := { i ∈ ⟨n+ n′⟩ | i ∈ A or i− n′ ∈ B } , (B.21)

A⊗B := { (i, j) ∈ ⟨n · n′⟩ | i ∈ A and j ∈ B } , (B.22)

It is then straightforward to check the following:

Lemma B.8. Let (V,Φ) and (V ′,Φ′) be two graded projective representations of G. Then,

Sup(V ⊕ V ′) = Sup(V) ⊕ Sup(V ′) , (B.23)

Sup(V ⊗ V ′) = Sup(V) ⊗ Sup(V ′) . (B.24)
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B.3 Induction and Restriction

Just as ordinary representations can be induced from and restricted to subgroups of G,

there exists a notion of induction and restriction for graded projective representations: Let

H ⊂ G be a subgroup of G of index |G : H| = n, and let (V,Φ) be a m-graded projective

representation of H. We would like to construct a (n ·m)-graded projective representation

(V ′,Φ′) of G out of (V,Φ). As before, we consider the space

G/H = {[R1] , ... , [Rn]} (B.25)

of left cosets [Ri] ≡ Ri ·H in G with fixed representatives Ri ∈ G such that [R1] = H. We

denote by η : G→ Sn the induced permutation action coming from

g ·Ri
!
= Rηg(i) · hi(g) (B.26)

with hi(g) ∈ H, which allows us to define the vector bundle V ′ → ⟨n ·m⟩ by

V ′(i,j) := Ri ⊗ Vj . (B.27)

Furthermore, we can define the projective homomorphism Φ′ : G→ Aut(V ′) by

Φ′
g|(i,j) := ηg ⊗ Φhi(g)|j (B.28)

for all g ∈ G and (i, j) ∈ ⟨m⟩ × ⟨n⟩ ≃ ⟨m · n⟩. One can then check that (V ′,Φ′) forms a

well-defined graded projective representation of G, whose isomorphism class is independent

of the choice of representatives Ri of left H-cosets in G. We name it as follows:

Definition B.9. The graded projective representation (V ′,Φ′) is called the induction of

(V,Φ) from H to G and is denoted by

(V ′,Φ′) =: IndGH(V,Φ) . (B.29)

A natural question to ask is how the obstruction pair of the induction IndGH(V,Φ) is

related to the obstruction pair of (V,Φ):

Proposition B.10. Let (V,Φ) be a graded projective representation of H ⊂ G with

obstruction pair (σ, c). Then, its induction IndGH(V,Φ) to G has obstruction pair (σ′, c′),

where σ′ and c′ are as in (A.83) and (A.84).

Similarly to the case of 2-representations, we can ask whether two different sub-groups

of G give rise to isomorphic graded projective representations of G after induction. To

answer this question, we note that, given a graded projective representation (V,Φ) of

H ⊂ G and a group element g ∈ G, we can define a graded projective representation

(gV, gΦ) of gH ≡ gHg−1 ⊂ G by setting

gV := V and gΦ := Φ ◦ conjg−1 . (B.30)

Definition B.11. The graded projective representation g(V,Φ) := (gV, gΦ) of gH ⊂ G is

called the conjugation of the graded projective representation (V,Φ) of H ⊂ G by g ∈ G.
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One can then check that conjugating graded projective representations of sub-groups

leads to isomorphic graded projective representations after induction to G:

Lemma B.12. LetH ⊂ G a sub-group and let (V,Φ) be a graded projective representation

of H. Then, for any g ∈ G it holds that

IndGH(V,Φ) ∼= IndGgH
(
g(V,Φ)

)
. (B.31)

On the other hand, given an n-graded projective representation (V,Φ) of G, we can

restrict it to obtain a n-graded projective representation (V ′,Φ′) of H ⊂ G by setting

V ′ := V and Φ′ := Φ|H . (B.32)

Definition B.13. The graded projective representation (V ′,Φ′) is called the restriction of

(V,Φ) from G to H and is denoted by

(V ′,Φ′) =: ResGH(V,Φ) . (B.33)

Again, we can ask how the obstruction pair of the restriction ResGH(V,Φ) is related to

the obstruction pair of (V,Φ):
Proposition B.14. Let (V,Φ) be a graded projective representation of G with obstruction

pair (σ, c). Then, its restriction ResGH(V,Φ) to H ⊂ G has obstruction pair (σ′, c′), where

σ′ and c′ are as in (A.91).

A natural question to ask is how induction and restriction interplay with one another.

This is again answered by Mackey’s decomposition theorem:

Theorem B.15. Let H,K ⊂ G be two subgroups of G and let (V,Φ) be a m-graded

projective representation of K. Then:

(ResGH ◦ IndGK) (V,Φ) ∼=
⊕

[g]∈H\G/K

IndHH ∩ gK

(
g(V,Φ)

)
, (B.34)

where g ∈ G labels (arbitrary) representatives of double H-K-cosets in G.

The proof is analogous to the proof of Theorem A.33 describing Mackey’s decomposi-

tion for 2-representations. Note that, again, the choice of representatives g ∈ G of double

H-K-cosets [g] ∈ H\G/K in (B.34) matters only up to isomorphism. Furthermore, we

again understand an implicit restriction of the graded projective representation g(V,Φ) to
the intersection H ∩ gK on the right-hand side of (B.34).

Similarly to before, Mackey’s decomposition formula simplifies in special cases:

Corollary B.16. Let H ◁ G be a normal subgroup and let (V,Φ) be a graded projective

representations of H. Then, it holds that

(ResGH ◦ IndGH) (V,Φ) ∼=
⊕

[g]∈G/H

g(V,Φ) , (B.35)

where g ∈ G labels (arbitrary) representatives of left H-cosets in G. In particular, if G is

abelian (in which case every subgroup of G is normal), we have that

(ResGH ◦ IndGH) (V,Φ) ∼= |G : H| · (V,Φ) . (B.36)
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B.4 Simplicity

A useful way to study graded projective representations is again to study a particular

subset that forms “building blocks” for all other graded projective representations:

Definition B.17. A graded projective representation of G is simple if, up to isomorphism,

it cannot be written as a direct sum of other graded projective representations.

More concretly, a graded projective representation (V,Φ) is simple if the corresponding

permutation action σ : G → Sn in its obstruction pair acts transitively on the base space

⟨n⟩ of V. The labelling of simple graded projective representations as “building blocks” is

then due to the following:

Lemma B.18. Every graded projective representation of G is isomorphic to a direct sum

of simple graded projective representations.

Proof. Let (V,Φ) be a n-graded projective representation of G with obstruction pair (σ, c).

Then, we can decompose

⟨n⟩ =
⊔

i∈I
O(i) (B.37)

into orbits O(i) ≡ {σg(i) | g ∈ G} of the permutation action σ of G on ⟨n⟩ with fixed

representatives i ∈ I ⊂ ⟨n⟩, whose elements we label as

O(i) =:
{
i1 , ... , ini

}
, (B.38)

where i1 ≡ i and ni ≡ |O(i)|. On each orbit, we then obtain an induced permutation action

σi : G→ Sni coming from

σg(ij)
!
= iσi

g(j)
, (B.39)

which we can use to decompose

(V,Φ) ∼=
⊕

i∈I
(V i,Φi) , (B.40)

where the vector bundles V i → ⟨ni⟩ and bundle automorphisms Φi : V i → V i are given by

V ij := Vij and Φi
g|j := Φg|ij . (B.41)

Since G acts transitively on each orbit by construction, the (V i,Φi) form well-defined simple

graded projective representations of G for all i ∈ I.

Apart from their building-block nature, simple graded projective representations of

G are special since they can be obtained from 1-graded projective representations of sub-

groups H ⊂ G. Note that a 1-graded projective representation of H ⊂ G is simply a pair

(V, φ), where

� V is a complex vector space,

� φ : H → GL(V ) projective representation of H on V .
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We now state the following:

Proposition B.19. Any simple n-graded projective representation (V,Φ) of G is isomor-

phic to the induction of a 1-graded projective representation (V, φ) of a sub-group H ⊂ G
of index |G : H| = n.

Proof. Let (V,Φ) be a simple n-graded projective representation of G with obstruction pair

(σ, c). We can construct a subgroup H ⊂ G by setting

H := Stabσ(1) ⊂ G , (B.42)

and obtain a projective representation (V, φ) of H by defining

V := V1 and φ := (Φ|H)|V1 . (B.43)

One can then check that (V,Φ) ∼= IndGH(V, φ) as claimed.

Remark B.20. Note that the sub-group H ⊂ G and the projective representation (V, φ)

of H in Proposition B.19 are not unique, since inducing the conjugation g(V, φ) of (V, φ)

up to G for any g ∈ G will lead to a simple graded projective representation of G isomor-

phic to (V,Φ). Thus, we can label the isomorphism class of the simple graded projective

representation (V,Φ) of G by the equivalence class of a triple (H,V, φ) (with H, V and

φ as above), where two triples (H,V, φ) and (H ′, V ′, φ′) are considered equivalent if there

exists a g ∈ G such that

H ′ = gH , V ′ = V , φ′ = gφ . (B.44)

Having classified the simple graded projective representations of G, a natural question

to ask is how simple graded projective representations fuse when taking tensor products:

Proposition B.21. Let (V, φ) and (W,ψ) be two projective representations of sub-groups

H and K of G. Then, the tensor product of their inductions to G is given by

IndGH(V, φ) ⊗ IndGK(W,ψ) ∼=
⊕

[g]∈H\G/K

IndGH ∩ gK

(
(V, φ)⊗ g(W,ψ)

)
, (B.45)

where g ∈ G labels (arbitrary) representatives of double H-K-cosets in G.

The proof is analogous to the proof of Proposition A.42 for the fusion of simple 2-

representations, using the push-pull-formula for the tensor product of inductions. Note

that, again, the choice of representatives g ∈ G of double H-K-cosets [g] ∈ H\G/K in

(B.45) matters only up to isomorphism. Furthermore, we again implicitly understand an

appropriate restriction of graded projective representations on the right-hand side of (B.45).
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B.5 Primality

Just as simple graded projective representations form building blocks for general graded

projective representations w.r.t. direct sums, we can introduce a notion of building blocks

for graded projective representations w.r.t. tensor products:

Definition B.22. A graded projective representation of G is said to be prime if, up

to isomorphism, it cannot be written as a tensor product of other (non-trivial) graded

projective representations.

Here, we think of the “trivial” graded projective representation as the the 1-graded

projective representation with trivial fibre C. From Proposition B.7 we know that if a

graded projective representation (V,Φ) factorises as a non-trivial tensor product, so does

its obstruction pair (σ, c). The converse need not be true in general, as the following

construction shows:

Definition B.23. Two graded projective representations (V,Φ) and (V ′,Φ′) of G are said

to be composable if their obstruction pairs (σ, c) and (σ′, c′) factorise as

(σ, c) = (σ1, c1)
# ⊗ (σ2, c2) , (B.46)

(σ′, c′) = (σ2, c2)
# ⊗ (σ3, c3) . (B.47)

for some permutation actions σi : G→ Sni and 2-cocycles ci ∈ Z2
σi
(G,U(1)ni).

Given two such composable graded projective representations (V,Φ) and (V ′,Φ′), we

can construct a new graded projective representation (V ′′,Φ′′) of G with obstruction pair

(σ′′, c′′) = (σ1, c1)
# ⊗ (σ3, c3) (B.48)

as follows: The fibre of V ′′ at (i, k) ∈ ⟨n1⟩ × ⟨n3⟩ is given by

V ′′(i,k) :=

n2⊕

j=1

(
V(i,j) ⊗ V ′(j,k)

)
, (B.49)

which is acted upon by each g ∈ G through the projective automorphism

Φ′′
g |(i,k) :=

n2⊕

j=1

(
Φg|(i,j) ⊗ Φ′

g|(j,k)
)
. (B.50)

One can check that this yields a well-defined (n1 · n3)-graded projective representation of

G, which we label as follows:

Definition B.24. The graded projective representations (V ′′,Φ′′) is called the composition

of (V,Φ) and (V ′,Φ′), and denoted by (V,Φ) ◦ (V ′,Φ′).

One can then see from the construction in (B.49) that, even though its obstruction

pair (σ1, c1)
# ⊗ (σ3, c3) factorises, the composition of (V,Φ) and (V ′,Φ′) itself does not

factorise in general as a graded projective representation.
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For later purposes, it is useful to understand how the support of graded projective

representations behaves under composition. To see this, first note that given two subsets

A ⊂ ⟨n1 · n2⟩ and B ⊂ ⟨n2 · n3⟩, we can define their composition A ◦B ⊂ ⟨n1 · n3⟩ by

A ◦B := { (i, k) ∈ ⟨n1 · n3⟩ | ∃ j ∈ ⟨n2⟩ : (i, j) ∈ A and (j, k) ∈ B } . (B.51)

It is then straightforward to check the following:

Lemma B.25. The support of the composition (V,Φ) ◦ (V ′,Φ′) of two composable graded

projective representations (V,Φ) and (V ′,Φ′) is given by

Sup(V ◦ V ′) = Sup(V) ◦ Sup(V ′) . (B.52)

C The 2-Category of 2-Representations

We are now in the position to describe the 2-category 2Rep(G) of 2-representations of the
split 2-group G in more detail. In particular, we will try to describe the 1-morphism spaces

of this 2-category, which are themselves categories, as well as their fusion and composition.

C.1 Morphisms

In order to describe the category of 1-morphisms between two given 2-representations of

G, we recall that we denoted by

Rep
(σ,c)
S (G) (C.1)

the category of graded projective representations of G with fixed obstruction pair (σ, c)

and support S. It was shown in [20] that the 1-morphism spaces in 2Rep(G) can then be

described as follows:

Theorem C.1. Let (σ, c, χ) and (σ′, c′, χ′) be two 2-representations of G. Then, their

1-morphism space in 2Rep(G) is given by the category of graded projective representations

of G with obstruction pair (σ ⊗ σ′, c⊗ c′) and support S(χ⊗ χ′), i.e.

Hom
(
(σ, c, χ) , (σ′, c′, χ′)

) ∼= Rep
(σ⊗σ′, c⊗ c′)
S(χ⊗χ′) (G) , (C.2)

where for any collection ψ ∈ (A∨)n of characters of A we set S(ψ) := {i ∈ ⟨n⟩ | ψi = 1}.

Example C.2. For each n-dimensional 2-representation (σ, c, χ) of G, there exists an

identity 1-endomorphism Id(σ,c,χ) ∈ End(σ, c, χ), which in the sense of Theorem C.1 is

given by the n2-graded projective representation of G whose only non-vanishing fibres are

given by C on the diagonal elements in ⟨n⟩ × ⟨n⟩.

We can visualize 1-morphisms pictorially by representing the 2-representations (σ, c, χ)

and (σ′, c′, χ′) by two-dimensional surfaces, and a 1-morphism (V,Φ) between them by a

one-dimensional line joining up the corresponding surfaces. This is shown in Figure 31.

A special class of 2-representations of G is given by the simple 2-representations. Recall

from Proposition A.39 that every simple 2-representation is induced by a 1-dimensional 2-

representations (u, α) of a sub-2-group H ⊂ G, which is unique up to conjugation by group
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Figure 31.

elements g ∈ G. In the following, we will thus label simple 2-representations of G by triples

(H,u, α) – thought of as 2-representations via the correspondence

(H,u, α) ←→ IndGH(u, α) . (C.3)

A natural question to ask is whether the 1-morphism space between two simple 2-represen-

tations labelled by triples (H,u, α) and (K, v, β) has an analogous simpler description in

terms of the data (H,u, α) and (K, v, β). This is answered as follows:

Proposition C.3. Consider two simple 2-representations of G labelled by triples (H,u, α)

and (K, v, β). Then, their 1-morphism space is equivalent to the (H\G/K)-graded category

Hom
(
(H,u, α), (K, v, β)

) ∼=
⊕

[g]∈H\G/K:

α⊗ gβ = 1

Repu⊗ gv(H ∩ gK) , (C.4)

where g ∈ G labels (arbitrary) representatives of double H-K-cosets in G.

Proof. Recall that, by definition, the induced simple 2-representations

(σ, c, χ) := IndGH(u, α) (C.5)

(σ′, c′, χ′) := IndGK(v, β) (C.6)

of G can be constructed by considering the left-coset spaces

G/H = {[R1] , ..., [Rn]} (C.7)

G/K = {[S1] , ..., [Sm]} (C.8)

with fixed representatives Ri, Sj ∈ G (such that [R1] = H and [S1] = K) and defining the

permutation representations σ : G→ Sn and σ′ : G→ Sm by

g ·Ri
!
= Rσg(i) · hi(g) , (C.9)

g · Sj !
= Sσ′

g(j)
· kj(g) , (C.10)

where hi(g) ∈ H and kj(g) ∈ K. The 2-cocycles c ∈ Z2
σ(G,U(1)n) and c′ ∈ Z2

σ′(G,U(1)m)

are then given by

ci(g, g
′) := u

(
hσ−1

g (i)(g) , hσ−1
g·g′ (i)

(g′)
)
, (C.11)

c′j(g, g
′) := v

(
kσ′−1

g (j)(g) , kσ′−1
g·g′ (j)

(g′)
)
, (C.12)
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whereas the collections of characters χ ∈ (A∨)n and χ′ ∈ (A∨)m are defined as

χi(a) := α(R−1
i ▷ρ a) , (C.13)

χ′
j(a) := β(S−1

j ▷ρ a) . (C.14)

Let (V,Φ) now be a 1-morphsim between (σ, c, χ) and (σ′, c′, χ′), which according

to Theorem C.1 is a (n · m)-graded projective representation of G with obstruction pair

(σ ⊗ σ′, c⊗ c′) and support S(χ⊗ χ′). We decompose

⟨n⟩ × ⟨m⟩ =

p⊔

l=1

O(il, jl) (C.15)

into orbits O(il, jl) ≡ { (σ ⊗ σ′)g(il, jl) | g ∈ G } of the G-action σ ⊗ σ′ on ⟨n⟩ × ⟨m⟩ with
fixed representatives (il, jl). According to Lemma B.18, (V,Φ) then decomposes as

(V,Φ) ∼=
p⊕

l=1

(Vl,Φl) , (C.16)

where the (Vl,Φl) are simple graded projective representations. According to Proposition

B.19, they are induced by ordinary projective representations

(Vl, φl) := (V(il,jl), Φ|(il,jl)) (C.17)

of subgroups Ll ⊂ G given by

Ll ≡ Stabσ⊗σ′(il, jl) = Ril · (H ∩ glK) ·R−1
il
, (C.18)

where we defined gl := R−1
il
·Sjl ∈ G for each l ∈ ⟨p⟩. One can check that the corresponding

2-cocycles wl of (Vl, φl) are given by

wl ≡ (c⊗ c′)(il,jl)|Ll
= Ril (u⊗ glv) . (C.19)

Using Lemma B.12 as well as the fact that the map ⟨p⟩ → H\G/K sending l 7→ [gl] is

a bijection, we thus see that the (Vl, φl) are equivalent to a (H\G/K)-graded family of

ordinary projective representations of subgroups H∩ glK of 2-cocycle u⊗ glv. Furthermore,

since the support of (V,Φ) is S(χ ⊗ χ′), we know that (Vl, φl) can only be (potentially)

non-zero when

(χ⊗ χ′)(il,jl) ≡ Ril (α⊗ glβ)
!
= 1 . (C.20)

Conversely, given a (H\G/K)-graded family (Vl, φl) of ordinary projective representa-

tions of H ∩ glK ⊂ G with 2-cocycles u⊗ glv, one can check that

(V,Φ) :=

p⊕

l=1

IndGH ∩ glK(Vl, φl) (C.21)

is isomorphic to a 1-morphism between (σ, c, χ) and (σ′, c′, χ′).
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Remark C.4. Note that, on the right-hand side of (C.4), we regard two projective rep-

resentations as equivalent if they are related by conjugation. Then, up to equivalence,

the choice of representatives g ∈ G of double H-K-cosets [g] ∈ H\G/K in (C.4) does not

matter, since choosing different representatives g′ = h · g · k for some h ∈ H and k ∈ K
leads to

Repu⊗ (g
′
v)(H ∩ g′K) ∼= h

(
Repu⊗ (gv)(H ∩ gK)

)
. (C.22)

As a useful by-product of Proposition C.3, we learn that the connected components

of the 2-category 2Rep(G) are labelled by G-orbits in A∨. Indeed, given two simple 2-

representations of G labelled by (H,u, α) and (K, v, β), formula (C.4) tells us that their

1-morphism space is non-vanishing if and only if there exists a g ∈ G such that α = gβ.

The latter is equivalent to saying that the characters α and β are in the same G-orbit

inside A∨.

Proposition C.3 also tells us that we can think of a 1-morphism between two simple

2-representations of G labelled by triples (H,u, α) and (K, v, β) as a collection

φ = {φg} (C.23)

of ordinary projective representations φg : H ∩ gK → GL(Vg) indexed by (representa-

tives of) double H-K-cosets [g] ∈ H\G/K. Pictorially, we can again visualize this by

representing (H,u, α) and (K, v, β) by two-dimensional surfaces that are joined up by a

one-dimensional line representing φ, as shown in Figure 32.

Figure 32.

The representation of 1-morphisms between simple 2-representations as in (C.23) fur-

thermore allows us to associate an element F (φ) ∈ Z[H\G/K] in the free abelian group

generated by double H-K-cosets to each such 1-morphism φ by setting

F (φ) :=
∑

[g]∈H\G/K

dim(φg) · [g] . (C.24)

In the following, we will call F (φ) the character of the 1-morphism φ.

Example C.5. If we denote by e ∈ G the neutral element of G, then the identity 1-endo-

morphism Id(H,u,α) of a simple 2-representation labelled by (H,u, α) can be seen as the

family of projective representations indexed by (representatives of) double H-cosets whose

only non-vanishing component is
(
Id(H,u,α)

)
e
≡ 1 : H → C . (C.25)

Consequently, its character is given by F (Id(H,u,α)) = 1 · [e] ≡ H ∈ Z[G//H].
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Example C.6. In the special case where G is abelian, the endomorphism category of a

simple 2-representation (H,u, α) of G simplifies to

End(H,u, α) ∼=
⊕

[g]∈G/H:

α⊗ gα = 1

Rep(H) =: Rep(H)(G/H)α , (C.26)

where we denoted by (G/H)α the subgroup of G/H consisting of left H-cosets [g] ∈ G/H
for which gα = α. The notation Rep(H)(G/H)α will be justified through the additional

fusion structure on End(H,u, α) coming from composition, as we will describe later.

C.2 Fusion

We know from Definition A.28 that there exists a well-defined notion of the tensor product

of two 2-representations of G. Similarly, we can use the tensor product for graded projective

representations from Definition B.6 to obtain a well-defined tensor product operation on

1-morphisms between 2-representations of G:

Hom
(
(σ1, c1, χ1) , (σ2, c2, χ2)

)
× Hom

(
(σ3, c3, χ3) , (σ4, c4, χ4)

)

Hom
(
(σ1, c1, χ1)⊗ (σ3, c3, χ3) , (σ2, c2, χ2)⊗ (σ4, c4, χ4)

)
⊗ (C.27)

Pictorially, the tensor product of 1-morphisms can be visualized as the fusion of two parallel

surfaces, each of which consists of two 2-representations joined up by a 1-morphism. This

is shown in Figure 33.

Figure 33.

A natural question to ask is how the tensor product acts on 1-morphisms between

simple 2-representations labelled by triples (H,u, α) and (K, v, β). To answer this question,
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we note that the trivial 1-dimensional 2-representation 1 of G gives rise to a map

Hom
(
(H,u, α) , (K, v, β)

)
× End(1)

Hom
(
(H,u, α) , (K, v, β)

)
,

⊗ (C.28)

where we used that (σ, c, χ)⊗ 1 ∼= (σ, c, χ) for any 2-representation (σ, c, χ) of G. According
to Theorem C.1, the 1-endomorphism category of 1 is simply given by

End(1) ∼= Rep(G) , (C.29)

so that the objects of End(1) are ordinary representations ψ : G → GL(W ) of G on a

vector space W . The tensor product operation in (C.28) can then be described as follows:

Proposition C.7. Let φ be a 1-morphism between two simple 2-representations (H,u, α)

and (K, v, β) and let ψ : G→ GL(W ) be a 1-endomorphism of the trivial 2-representation

1. Then, their tensor product is given by the 1-morphism

(φ⊗ ψ)g ∼= φg ⊗ ResGH ∩ gK(ψ) , (C.30)

where g ∈ G labels (arbitrary) representatives of double H-K-cosets [g] ∈ H\G/K.

Proof. Recall that the 1-morphism φ between (H,u, α) and (K, v, β) can be thought of

as a family {φg} of ordinary projetive representations φg : H ∩ gK → GL(Vg) indexed by

double H-K-cosets [g] ∈ H\G/K. We can construct a corresponding graded projective

representation (V,Φ) of G out of φ by setting

(V,Φ) :=
⊕

[g]∈H\G/K

IndGH ∩ gK(Vg, φg) . (C.31)

Similarly, we can regard the ordinary representation ψ : G → GL(W ) as the 1-graded

projective representation IndGG(W,ψ) induced from G to itself. Then, using Proposition

B.21, the tensor product of (V,Φ) and (W,ψ) can be computed to be

(V,Φ)⊗ (W,ψ) ∼=
⊕

[g]∈H\G/K

IndGH ∩ gK ∩G

(
(Vg, φg)⊗ (W,ψ)

)

∼=
⊕

[g]∈H\G/K

IndGH ∩ gK

(
(Vg, φg)⊗ ResGH ∩ gK(W,ψ)

)
. (C.32)

Thus, we again obtain a family of ordinary projective representations

φg ⊗ ResGH ∩ gK(ψ) : H ∩ gK → GL(Vg ⊗W ) (C.33)

indexed by double H-K-cosets [g] ∈ H\G/K, which coincides with the family of projective

representations given in (C.30).
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Figure 34.

Pictorially, the tensor product of a 1-morphism between simple 2-representations and

a 1-endomorphism of 1 as in (C.28) can be visualized as shown in Figure 34.

In the special case where (H,u, α) = (K, v, β), we can choose φ to be the identity

morphism Id(H,u,α), which simplifies the tensor product operation in (C.28) as follows:

Corollary C.8. Let Id(H,u,α) be the identity 1-morphism of a 2-representation (H,u, α)

and let ψ : G → GL(W ) be a 1-endomorphism of the trivial 2-representation 1. Then,

their tensor product is the 1-morphism whose only non-vanishing component is given by
(
Id(H,u,α) ⊗ ψ

)
e
∼= ResGH(ψ) . (C.34)

C.3 Composition

Using the notion of composition of graded projective representations from Definition B.24,

we can introduce the composition of 1-morphisms between three 2-representations (σ, c, χ),

(σ′, c′, χ′) and (σ′′, c′′, χ′′) of G as a map

Hom
(
(σ, c, χ) , (σ′, c′, χ′)

)
× Hom

(
(σ′, c′, χ′) , (σ′′, c′′, χ′′)

)

Hom
(
(σ, c, χ) , (σ′′, c′′, χ′′)

)
.

◦ (C.35)

Pictorially, the composition of two 1-morphisms (V,Φ) and (V ′,Φ′) can be visualized as

the collision of two parallel lines joining up three surfaces labelled by the corresponding

2-representations. This is shown in Figure 35.

A natural question to ask is how composition acts on 1-morphisms between simple

2-representations labelled by (H,u, α), (K, v, β) and (L,w, γ), giving rise to a map

Hom
(
(H,u, α) , (K, v, β)

)
× Hom

(
(K, v, β) , (L,w, γ)

)

Hom
(
(H,u, α), (L,w, γ)

)
.

◦ (C.36)
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Figure 35.

We conjecture this question to be answered as follows:

Proposition C.9. Let φ be a 1-morphism between (H,u, α) and (K, v, β) and let φ′

be a 1-morphism between (K, v, β) and (L,w, γ). Then, their composition φ ◦ φ′ is the

1-morphism between (H,u, α) and (L,w, γ) whose components are given by

(φ ◦ φ′)g ∼=
⊕

[ḡ] ∈ (H ∩ gL)\G/K

IndH ∩ gL
H ∩ ḡK ∩ gL

[
φḡ ⊗ ḡ

(
φ′
ḡ−1g

) ]
, (C.37)

where g ∈ G labels (arbitrary) representatives of double H-L-cosets [g] ∈ H\G/L.

Pictorially, the composition of 1-morphisms between simple 2-representations as in

(C.36) can be visualized as shown in Figure 36.

Figure 36.

Remark C.10. If we denote by F (φ) ∈ Z[H\G/K] and F (φ′) ∈ Z[K\G/L] the characters
of φ and φ′ as in (C.24), one can check that the character of their composition is given by

F (φ ◦ φ′) = F (φ) ∗ F (φ′) , (C.38)

where ∗ denotes the convolution product

∗ : Z[H\G/K] × Z[K\G/L] → Z[H\G/L] . (C.39)

Example C.11. In the special case where G is abelian, we know from Example C.6

that the 1-endomorphism category of a simple 2-representation (H,u, α) of G is given

by Rep(H)(G/H)α . The notation of the latter is justified by the fact that, according to

Proposition C.9, the composition of two 1-endomorphisms φ and φ′ of (H,u, α) is given by

(φ ◦ φ′)g =
⊕

[g1] · [g2] = [g]

φg1 ⊗ φ′
g2 . (C.40)
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C.4 Examples

Let us conclude by considering examples of the 2-category 2Rep(G) for different split 2-

groups G = (G,A, ρ). For simplicity, we will only consider such G for which G is abelian.

Then, according to Remark A.41, the simple n-dimensional 2-representations of G are

classified by triples (H,u, α), where

� H ⊂ G is a subgroup of G of index |G : H| = n,

� u ∈ H2(H,U(1)) is a degree-2 cohomology class on H with coefficients in U(1),

� α ∈ A∨ represents an equivalence class of H-invariant characters on A, where two

such characters α1 and α2 are equivalent if there exists a g ∈ G such that α2 =
gα1.

According to Proposition A.42, the tensor product of two such triples can be computed via

(H,u, α) ⊗ (K, v, β) ∼=
⊕

[g]∈H\G/K

(H ∩K, u⊗ v, α⊗ gβ) , (C.41)

whereas according to Proposition C.3 their 1-morphism category is given by

Hom
(
(H,u, α), (K, v, β)

) ∼=
⊕

[g]∈H\G/K:

α⊗ gβ = 1

Repu⊗ v(H ∩K) . (C.42)

Furthermore, according to Example C.6, the composition of 1-morphisms endows the cat-

egory of 1-endomorphisms of any simple 2-representation (H,u, α) with the structure

End(H,u, α) ∼= Rep(H)(G/H)α . (C.43)

We will use the notation n for a n-dimensional simple 2-representation of G in what follows.

In order to describe the 1-morphism categories between simple 2-representations n and m,

we use the diagrammatic notation

n m

Hom(n,m)

Hom(m,n) .

(C.44)

C.4.1 2Rep(Z2)

Consider the 2-group G = (Z2, 1, 1). We denote the elements of the cyclic group Z2 by

Z2 = {1, x} . (C.45)

Since H2(Z2, U(1)) = 1, the simple 2-representations of G are completely determined by

the choice of subgroup H ⊂ Z2, leaving us with

H

1 Z2

2 {1} .

(C.46)
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Using (C.41), their fusion structure can be computed to be

⊗ 1 2

1 1 2

2 2 2⊕ 2 .

(C.47)

Furthermore, using (C.42), their 1-morphism categories can be described by the diagram

1 2Rep(Z2)

Vect

VectZ2

Vect .

(C.48)

C.4.2 2Rep(D8)

Consider the 2-group G = (Z2, Z2 × Z2, ρ), where Z2 = {1, x} acts on Z2 × Z2 via

x ▷ρ (a, b) := (b, a) . (C.49)

We denote the elements of the Pontryagin dual of Z2 by

Z∨
2 =: {1, λ} , (C.50)

where the non-trivial character λ is defined by λ(x) = −1. Since H2(Z2, U(1)) = 1, the

simple 2-representations of G are completely determined by the choices of subgroup H ⊂ Z2

and H-invariant character α ∈ Z∨
2 × Z∨

2 , leaving us with15

H α

1+ Z2 (1, 1)

1− Z2 (λ, λ)

2+ {1} (1, 1)

20 {1} (λ, 1)

2− {1} (λ, λ) .

(C.51)

15Note that (1, λ) = x(λ, 1), which gets rid of the additional 2-dimensional simple 2-representation of G
we could have written down naively.
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Using (C.41), their fusion structure can be computed to be

⊗ 1+ 1− 2+ 20 2−

1+ 1+ 1− 2+ 20 2−

1− 1− 1+ 2− 20 2+

2+ 2+ 2− 2+ ⊕ 2+ 20 ⊕ 20 2− ⊕ 2−

20 20 20 20 ⊕ 20 2+ ⊕ 2− 20 ⊕ 20

2− 2− 2+ 2− ⊕ 2− 20 ⊕ 20 2+ ⊕ 2+ .

(C.52)

Furthermore, using (C.42), their 1-morphism categories can be described by the diagram

1+ 1−

2+ 20 2−

Vect

Rep(Z2)

Vect

Rep(Z2)

Vect

VectZ2 Vect

Vect

VectZ2 .

(C.53)

As expected, there are three connected components, corresponding to the three Z2-orbits

inside (Z2 × Z2)
∨.

C.4.3 2Rep(Z2 × Z2)

Consider the 2-group G = (Z2 × Z2, 1, 1), where we again denote the elements of Z2 by

Z2 = {1, x}. Using that H2(Z2 × Z2, U(1)) = Z2 and H2(Z2, U(1)) = 1, the simple 2-

representations of G are completely determined by the choices of subgroup H ⊂ Z2 × Z2
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and a corresponding cohomology class u ∈ H2(H,U(1)), leaving us with

H u

1α Z2 × Z2 α ∈ Z2

2L ZL
2 1

2D ZD
2 1

2R ZR
2 1

4 {1} 1 ,

(C.54)

where we denoted the non-trivial subgroups of Z2 × Z2 by

ZL
2 := {(1, 1), (x, 1)} ,

ZD
2 := {(1, 1), (x, x)} , (C.55)

ZR
2 := {(1, 1), (1, x)} .

Using (C.41), their fusion structure can be computed to be

⊗ 1α 2L 2D 2R 4

1β 1α+β 2L 2D 2R 4

2L 2L 2L ⊕ 2L 4 4 4⊕ 4

2D 2D 4 2D ⊕ 2D 4 4⊕ 4

2R 2R 4 4 2R ⊕ 2R 4⊕ 4

4 4 4⊕ 4 4⊕ 4 4⊕ 4 4⊕ 4⊕ 4⊕ 4 .

(C.56)

Furthermore, using (C.42), their 1-morphism categories can be described by the diagram
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1α

1β

2L 2D 2R

4

Rep(Z2 × Z2)

Repβ−α(Z2 × Z2)

Vect

Repα−β(Z2 × Z2)

Rep(Z2)Rep(Z2)

Rep(Z2)Z2

Vect

Vect⊕Vect

Rep(Z2)Z2

Vect⊕Vect

Vect

Rep(Z2)Z2

Vect

Vect⊕Vect

VectZ2×Z2

Vect
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